Sample records for angle diffractometer sans

  1. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  2. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  3. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  4. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  5. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  6. Development of a simultaneous SANS / FTIR measuring system and its application to polymer cocrystals

    NASA Astrophysics Data System (ADS)

    Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M. M.; Allgaier, J.; Ute, K.

    2016-09-01

    In order to provide plenty of structure information which would assist in the analysis and interpretation of small angle neutron scattering (SANS) profile, a novel method for the simultaneous time-resolved measurement of SANS and Fourier transform infrared (FTIR) spectroscopy has been developed. The method was realized by building a device consisting of a portable FTIR spectrometer and an optical system equipped with two aluminum coated quartz plates that are fully transparent to neutron beams but play as mirrors for infrared radiation. The optical system allows both a neutron beam and an infrared beam pass through the same position of a test specimen coaxially. The device was installed on a small angle neutron diffractometer, KWS2 of the Jülich Centre for Neutron Science (JCNS) outstation at Heinz Maier-Leibnitz Center (MLZ) in Garching, Germany. In order to check the performance of this simultaneous measuring system, the structural changes in the cocrystals of syndiotactic polystyrene during the course of heating were followed. It has been confirmed that FTIR spectra measured in parallel are able to provide information about the behavior of each component and also useful to grasp in real time what is actually happening in the sample system.

  7. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  8. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture, at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to hydrogen bonding. It is found that the population of this bonding would increase and the corresponding relaxation would slow down as molecular charge increases. We perceive that through more and longer interaction between penetrating water molecules and polymeric part of dendrimer, the dynamics of latter could be enhanced.

  9. Structural characterization of semicrystalline polymer morphologies by imaging-SANS

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Fetters, L. J.; Richter, D.

    2012-02-01

    Control and optimization of polymer properties require the global knowledge of the constitutive microstructures of polymer morphologies in various conditions. The microstructural features can be typically explored over a wide length scale by combining pinhole-, focusing- and ultra-small-angle neutron scattering (SANS) techniques. Though it proved to be a successful approach, this involves major efforts related to the use of various scattering instruments and large amount of samples and the need to ensure the same crystallization kinetics for the samples investigated at various facilities, in different sample cell geometries and at different time intervals. With the installation and commissioning of the MgF2 neutron lenses at the KWS-2 SANS diffractometer installed at the Heinz Maier-Leibnitz neutron source (FRMII reactor) in Garching, a wide Q-range, between 10-4Å-1 and 0.5Å-1, can be covered at a single instrument. This enables investigation of polymer microstructures over a length scale from lnm up to 1μm, while the overall polymer morphology can be further examined up to 100μm by optical microscopy (including crossed polarizers). The study of different semi-crystalline polypropylene-based polymers in solution is discussed and the new imaging-SANS approach allowing for an unambiguous and complete structural characterization of polymer morphologies is presented.

  10. A new fast detection system at the KWS-2 high-intensity SANS diffractometer of the JCNS at MLZ - prototype test

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.

    2016-09-01

    A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.

  11. Neutrons measure phase behavior in pores at Angstrom size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoel, Agatha A; Melnichenko, Yuri B

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storagemore » for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS instrument to study how the size and shape of pores in sub-nanometer porous carbons varies, depending on the manufacturing conditions. While small angle X-ray scattering (SAXS) can do the job too, Melnichenko says, the SANS method broke new ground in analyzing the shape and behavior of pores at subnanometer size, when subjected to varying synthesis temperature. 'We found that these very small pores are in fact spherical, and that when we change the synthesis conditions, they become elongated, even 'slit-like', and all of this on a subnanometer scale,' Melnichenko said.« less

  12. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.

    PubMed

    Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A

    2014-09-01

    The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.

  13. An X-ray diffractometer using mirage diffraction

    PubMed Central

    Fukamachi, Tomoe; Jongsukswat, Sukswat; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2014-01-01

    Some characteristics are reported of a triple-crystal diffractometer with a (+, −, +) setting of Si(220) using mirage diffraction. The first crystal is flat, while the second and third crystals are bent. Basically, the first crystal is used as a collimator, the second as a monochromator and the third as the sample. The third crystal also works as an analyzer. The advantages of this diffractometer are that its setup is easy, its structure is simple, the divergence angle from the second crystal is small and the energy resolution of the third crystal is high, of the order of sub-meV. PMID:25242911

  14. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentationmore » on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.« less

  15. NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station.

    PubMed

    Bowron, D T; Soper, A K; Jones, K; Ansell, S; Birch, S; Norris, J; Perrott, L; Riedel, D; Rhodes, N J; Wakefield, S R; Botti, A; Ricci, M-A; Grazzi, F; Zoppi, M

    2010-03-01

    NIMROD is the Near and InterMediate Range Order Diffractometer of the ISIS second target station. Its design is optimized for structural studies of disordered materials and liquids on a continuous length scale that extends from the atomic, upward of 30 nm, while maintaining subatomic distance resolution. This capability is achieved by matching a low and wider angle array of high efficiency neutron scintillation detectors to the broad band-pass radiation delivered by a hybrid liquid water and liquid hydrogen neutron moderator assembly. The capabilities of the instrument bridge the gap between conventional small angle neutron scattering and wide angle diffraction through the use of a common calibration procedure for the entire length scale. This allows the instrument to obtain information on nanoscale systems and processes that are quantitatively linked to the local atomic and molecular order of the materials under investigation.

  16. Time-of-flight Extreme Environment Diffractometer at the Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhnenko, Oleksandr, E-mail: prokhnenko@helmholtz-berlin.de; Stein, Wolf-Dieter; Bleif, Hans-Jürgen

    2015-03-15

    The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, themore » possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.« less

  17. Neutron apparatus for measuring strain in composites

    DOEpatents

    Kupperman, David S.; Majumdar, Saurindranath; Faber, Jr., John F.; Singh, J. P.

    1990-01-01

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  18. Unusual Thermal Stability of High-Entropy Alloy Amorphous Structure

    DTIC Science & Technology

    2012-06-20

    incident angle X - ray diffractometer (GIAXRD, RIGAKU D/MAX2500) with Cu Kα radiation and at the incident angle of 1°. The surface morphology and...microanalyzer (EPMA, JEOL JAX-8800). The crystallographic structures of as-deposited and annealed metallic films were characterized utilizing a glancing ...field image and selected-area- diffraction (SAD) patterns of (a) 800 °C-, (b) 850 °C- and (c) 900 °C-annealed alloy thin films, respectively. Both

  19. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration.

    PubMed

    Stefanopoulos, Konstantinos L; Youngs, Tristan G A; Sakurovs, Richard; Ruppert, Leslie F; Bahadur, Jitendra; Melnichenko, Yuri B

    2017-06-06

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO 2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO 2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO 2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO 2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO 2 , suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO 2 sequestration.

  20. High-resolution neutron powder diffractometer SPODI at research reactor FRM II

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.

    2012-03-01

    SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.

  1. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

    PubMed Central

    Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter

    2016-01-01

    The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296

  2. Remote analysis of planetary soils: X-ray diffractometer development

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1973-01-01

    A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.

  3. Portable X-ray diffractometer equipped with XRF for archaeometry

    NASA Astrophysics Data System (ADS)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-09-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.

  4. Neutron Time-of-Flight Diffractometer HIPPO at LANSCE

    NASA Astrophysics Data System (ADS)

    Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf

    2004-03-01

    The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.

  5. Neutron scattering measurements of carbon dioxide adsorption in pores within the Marcellus Shale: Implications for sequestration

    USGS Publications Warehouse

    Stefanopoulos, Konstantinos L.; Youngs, Tristan G. A.; Sakurovs, Richard; Ruppert, Leslie F.; Bahadur, Jitendra; Melnichenko, Yuri B.

    2017-01-01

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO2sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO2, suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO2 sequestration.

  6. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  7. Composite germanium monochromators - Results for the TriCS single-crystal diffractometer at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Fischer, S.; Böhm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P.

    Composite germanium monochromators are foremost in application in neutron diffraction due to their good scattering properties, low absorption values and the diamond structure which avoids second-order contamination when using hhk reflections (all odd). Our slices for the monochromator are built from 24 wafers, each 0.4 mm thick. The alignment of the wafers within the final composite wafer package has been improved by adding tin for the soldering process with a sputtering method instead of foils. Nine slices, each 12.5 mm high, are mounted on separate miniature goniometer heads to the focusing monochromator. The focusing angle is controlled by only one motor/digitizer by using a sophisticated mechanism. Turning the monochromator by 9° around overlineω allow access of the 311 (primary) and 511 (secondary) reflection. We also show the importance of permanent quality control with neutrons. The monochromator will be used on the single-crystal diffractometer TriCS at SINQ.

  8. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less

  9. The Wide Angle Neutron Diffractometer (WAND) at HFIR: possibilities and future

    NASA Astrophysics Data System (ADS)

    Frontzek, Matthias; Andrews, Katie M.; Chakoumakos, Bryan C.

    The Wide Angle Neutron Diffractometer (WAND) at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) has been built and continues to be, a joint project between ORNL and the Japan Atomic Energy Agency. Equipped with a 1-dimensional position sensitive detector (PSD), the instrument is a multi-purpose instrument for both powder and single crystal diffraction. WAND is currently in the process of a 2-phase upgrade to become a world class, general purpose instrument. In phase 1, finished in the beginning of 2016, the whole instrument was practically re-built from scratch, keeping only the front end and the 1-D PSD. Phase 2 will replace the 1-D PSD with the state of the art BNL120 2D-PSD which comes from the Lujan Neutron Scattering Center. We are currently integrating the detector off-line into the data acquisition architecture at HFIR. The new instrument, WAND2, will be available for general users in the proposal call 2018A. In our contribution we present results from experiments on WAND after phase 1. The upgrade now allows mounting the whole suite of available sample environment (50 mK to 1500 K, magnetic fields (5 T), high pressures (4 GPa)). We will further discuss the scientific impact the new capabilities of WAND2 will have.

  10. A novel small-angle neutron scattering detector geometry

    PubMed Central

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  11. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  12. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  13. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamal, I., E-mail: imtiaz-kamal26@yahoo.com; Yunus, S. M., E-mail: yunussm11@yahoo.com; Datta, T. K., E-mail: tk-datta4@yahoo.com

    2016-07-12

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with amore » large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6 mm thickness each. The monochromator design was optimized to provide maximum flux on 3 mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30° (2θ) at each step and covers 120° in 4 steps. When the detector is placed at 1.6 m it subtends 20° at each step and covers 120° in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.« less

  14. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology for diffraction study in our country.

  15. 6. Photocopy of painting (from California Historical Society, San Francisco, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of painting (from California Historical Society, San Francisco, California, Oriana Day, artist, 1879) EXTERIOR, VIEW FROM AN ANGLE OF MISSION AND SURROUNDING STRUCTURES - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  16. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  17. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N 2 and CO 2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  18. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE PAGES

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.; ...

    2014-12-17

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N 2 and CO 2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  19. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  20. 1. WEST SIDE, NORTH END OF BUILDING 1. SHOWS ADDITIONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WEST SIDE, NORTH END OF BUILDING 1. SHOWS ADDITIONAL ANGLES IN BUILDING AT SOUTHERN END. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA

  1. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  2. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  3. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  5. Lipid based drug delivery systems: Kinetics by SANS

    NASA Astrophysics Data System (ADS)

    Uhríková, D.; Teixeira, J.; Hubčík, L.; Búcsi, A.; Kondela, T.; Murugova, T.; Ivankov, O. I.

    2017-05-01

    N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we demonstrate structural responsivity of C12NO/dioleoylphospha-tidylethanolamine (DOPE)/DNA complexes designed as pH sensitive gene delivery vectors. Small angle neutron scattering (SANS) was employed to follow kinetics of C12NO protonization and DNA binding into C12NO/DOPE/DNA complexes in solution of 150 mM NaCl at acidic condition. SANS data analyzed using paracrystal lamellar model show the formation of complexes with stacking up to ∼32 bilayers, spacing ∼ 62 Å, and lipid bilayer thickness ∼37 Å in 3 minutes after changing pH from 7 to 4. Subsequent structural reorganization of the complexes was observed along 90 minutes of SANS mesurements.

  6. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers

    PubMed Central

    Cheary, R. W.; Coelho, A. A.; Cline, J. P.

    2004-01-01

    The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594

  7. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  8. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  9. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering

    PubMed Central

    Anfinrud, Philip

    2010-01-01

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02–2.5 Å-1, thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 Å), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 Å3 volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume ∼2 Å3 larger than MbCO within ∼10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them. PMID:20406909

  10. Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.

    PubMed

    Cho, Hyun Sun; Dashdorj, Naranbaatar; Schotte, Friedrich; Graber, Timothy; Henning, Robert; Anfinrud, Philip

    2010-04-20

    We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02-2.5 A(-1), thereby providing simultaneous coverage of the small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) regions. To demonstrate its capabilities, we have tracked structural changes in myoglobin as it undergoes a photolysis-induced transition from its carbon monoxy form (MbCO) to its deoxy form (Mb). Though the differences between the MbCO and Mb crystal structures are small (rmsd < 0.2 A), time-resolved x-ray scattering differences recorded over 8 decades of time from 100 ps to 10 ms are rich in structure, illustrating the sensitivity of this technique. A strong, negative-going feature in the SAXS region appears promptly and corresponds to a sudden > 22 A(3) volume expansion of the protein. The ensuing conformational relaxation causes the protein to contract to a volume approximately 2 A(3) larger than MbCO within approximately 10 ns. On the timescale for CO escape from the primary docking site, another change in the SAXS/WAXS fingerprint appears, demonstrating sensitivity to the location of the dissociated CO. Global analysis of the SAXS/WAXS patterns recovered time-independent scattering fingerprints for four intermediate states of Mb. These SAXS/WAXS fingerprints provide stringent constraints for putative models of conformational states and structural transitions between them.

  11. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE PAGES

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...

    2017-03-07

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  12. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  13. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering.

    PubMed

    Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan

    2017-04-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.

  14. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  15. Magnetic small-angle neutron scattering on bulk metallic glasses: A feasibility study for imaging displacement fields

    NASA Astrophysics Data System (ADS)

    Mettus, Denis; Deckarm, Michael; Leibner, Andreas; Birringer, Rainer; Stolpe, Moritz; Busch, Ralf; Honecker, Dirk; Kohlbrecher, Joachim; Hautle, Patrick; Niketic, Nemanja; Fernández, Jesús Rodríguez; Barquín, Luis Fernández; Michels, Andreas

    2017-12-01

    Magnetic-field-dependent small-angle neutron scattering (SANS) has been utilized to study the magnetic microstructure of bulk metallic glasses (BMGs). In particular, the magnetic scattering from soft magnetic Fe70Mo5Ni5P12.5B2.5C5 and hard magnetic (Nd60Fe30Al10) 92Ni8 alloys in the as-prepared, aged, and mechanically deformed state is compared. While the soft magnetic BMGs exhibit a large field-dependent SANS response with perturbations originating predominantly from spatially varying magnetic anisotropy fields, the SANS cross sections of the hard magnetic BMGs are only weakly dependent on the field, and their angular anisotropy indicates the presence of scattering contributions due to spatially dependent saturation magnetization. Moreover, we observe an unusual increase in the magnetization of the rare-earth-based alloy after deformation. Analysis of the SANS cross sections in terms of the correlation function of the spin misalignment reveals the existence of field-dependent anisotropic long-wavelength magnetization fluctuations on a scale of a few tens of nanometers. We also give a detailed account of how the SANS technique relates to unraveling displacement fields on a mesoscopic length scale in disordered magnetic materials.

  16. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridier, Karl; Gillon, Béatrice; André, Gilles

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A newmore » length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.« less

  17. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  18. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.

    PubMed

    Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas

    2016-11-03

    The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

  19. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  20. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  1. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  2. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    PubMed

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  3. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  4. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  5. Magnetic small-angle neutron scattering of bulk ferromagnets.

    PubMed

    Michels, Andreas

    2014-09-24

    We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.

  6. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  7. Nicaraguan Volcanoes, 26 February 2000

    NASA Image and Video Library

    2000-04-19

    The true-color image at left is a downward-looking (nadir) view of the area around the San Cristobal volcano, which erupted the previous day. This image is oriented with east at the top and north at the left. The right image is a stereo anaglyph of the same area, created from red band multi-angle data taken by the 45.6-degree aftward and 70.5-degree aftward cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. View this image through red/blue 3D glasses, with the red filter over the left eye. A plume from San Cristobal (approximately at image center) is much easier to see in the anaglyph, due to 3 effects: the long viewing path through the atmosphere at the oblique angles, the reduced reflection from the underlying water, and the 3D stereoscopic height separation. In this image, the plume floats between the surface and the overlying cumulus clouds. A second plume is also visible in the upper right (southeast of San Cristobal). This very thin plume may originate from the Masaya volcano, which is continually degassing at as low rate. The spatial resolution is 275 meters (300 yards). http://photojournal.jpl.nasa.gov/catalog/PIA02600

  8. 75 FR 17952 - Notice of Filing of Plat of Survey, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Beginning at Angle Point 1 on the line between Secs. 21 and 22, T. 20 N., R. 7 E., thence along the N. bdy. of San Ildefonso lands and S. bdy. of Santa Clara Lands; S 45826' E 22.79 chs. to Angle Point 2, S 85847' E 12.37 chs. to Angle Point 3, S 25824' E 13.23 chs. to Angle Point 4, S 83854' E 29.72 chs. to...

  9. Redetermination of Na(3)TaF(8).

    PubMed

    Langer, Vratislav; Smrcok, Lubomír; Boca, Miroslav

    2010-09-01

    The crystal structure of trisodium octafluoridotantalate, Na(3)TaF(8), has been redetermined using diffractometer data collected at 153 K, resulting in more accurate bond distances and angles than obtained from a previous structure determination based on film data. The structure is built from layers running along [101], which are formed by distorted [TaF(8)] antiprisms and [NaF(6)] rectangular bipyramids sharing edges and corners. The individual layers are separated by eight-coordinated Na ions. Two atoms in the asymmetric unit are in special positions: the Ta atom is on a twofold axis in Wyckoff position 4e and one of the Na ions lies on an inversion centre in Wyckoff site 4d.

  10. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  11. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.

    PubMed

    Liu, Jodi; Saw, Robert E; Kiang, Y-H

    2010-09-01

    The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, V., E-mail: vdaditya1000@gmail.com; Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. Themore » gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.« less

  13. The Effects of Fault Bends on Rupture Propagation: A Parameter Study

    NASA Astrophysics Data System (ADS)

    Lozos, J. C.; Oglesby, D. D.; Duan, B.; Wesnousky, S. G.

    2008-12-01

    Segmented faults with stepovers are ubiquitous, and occur at a variety of scales, ranging from small stepovers on the San Jacinto Fault, to the large-scale stepover on of the San Andreas Fault between Tejon Pass and San Gorgonio Pass. Because this type of fault geometry is so prevalent, understanding how rupture propagates through such systems is important for evaluating seismic hazard at different points along these faults. In the present study, we systematically investigate how far rupture will propagate through a fault with a linked (i.e., continuous fault) stepover, based on the length of the linking fault segment and the angle that connects the linking segment to adjacent segments. We conducted dynamic models of such systems using a two-dimensional finite element code (Duan and Oglesby 2007). The fault system in our models consists of three segments: two parallel 10km-long faults linked at a specified angle by a linking segment of between 500 m and 5 km. This geometry was run both as a extensional system and a compressional system. We observed several distinct rupture behaviors, with systematic differences between compressional and extensional cases. Both shear directions rupture straight through the stepover for very shallow stepover angles. In compressional systems with steeper angles, rupture may jump ahead from the stepover segment onto the far segment; whether or not rupture on this segment reaches critical patch size and slips fully is also a function of angle and stepover length. In some compressional cases, if the angle is steep enough and the stepover short enough, rupture may jump over the step entirely and propagate down the far segment without touching the linking segment. In extensional systems, rupture jumps from the nucleating segment onto the linking segment even at shallow angles, but at steeper angles, rupture propagates through without jumping. It is easier to propagate through a wider range of angles in extensional cases. In both extensional and compressional cases, for each stepover length there exists a maximum angle through which rupture can fully propagate; this maximum angle decreases asymptotically to a minimum value as the stepover length increases. We also found that a wave associated with a stopping phase coming from the far end of the fault may restart rupture and induce full propagation after a significant delay in some cases where the initial rupture terminated.

  14. 7. VARIABLEANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VARIABLE-ANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), AND W.H. SAYLOR (RIGHT), AT THE DEDICATION CEREMONY, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  15. 54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ASSEMBLIES AND METAL REINFORCING, December 19, 1947. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  16. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  17. Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.; Heinrich, M.; Pyckhout-Hintzen, W.

    The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales belowmore » the tube diameter is accounted for.« less

  18. PREFACE: SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor: Devoted to the 75th anniversary of Yu M Ostanevich's birth

    NASA Astrophysics Data System (ADS)

    Gordely, Valentin; Kuklin, Alexander; Balasoiu, Maria

    2012-03-01

    The Second International Workshop 'SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor', devoted to the 75th anniversary of the birth of Professor Yu M Ostanevich (1936-1992), an outstanding neutron physicist and the founder of small-angle neutron scattering (field, group, and instrument) at JINR FLNPh, was held on 27-30 May at the Frank Laboratory of Neutron Physics. The first Workshop was held in October 2006. Research groups from different neutron centers, universities and research institutes across Europe presented more than 35 oral and poster presentations describing scientific and methodological results. Most of them were obtained with the help of the YuMO instrument before the IBR-2 shutdown in 2006. For the last four years the IBR-2 reactor has been shut down for refurbishment. At the end of 2010 the physical launch of the IBR-2M reactor was finally realized. Nowadays the small-angle neutron scattering (SANS) technique is applied to a wide range of scientific problems in condensed matter, soft condensed matter, biology and nanotechnology, and despite the fact that there are currently over 30 SANS instruments in operation worldwide at both reactor and spallation sources, the demand for beam-time is considerably higher than the time available. It must be remembered, however, that as the first SANS machine on a steady-state reactor was constructed at the Institute Laue Langevin, Grenoble, the first SANS instrument on a 'white' neutron pulsed beam was accomplished at the Joint Institute for Nuclear Research at the IBR-30 reactor, beamline N5. During the meeting Yu M Ostanevich's determinative and crucial contribution to the construction of spectrometers at the IBR-2 high-pulsed reactor was presented, as well as his contribution to the development of the time-of-flight (TOF) small-angle scattering technique, and a selection of other scientific areas. His leadership and outstanding scientific achievements in applications of the Mossbauer effect in physics and chemistry, in SANS studies of polyelectrolytes, small molecules, fractals, metallic glasses, macromolecules, polymers, etc., were recognized by a number of awards including the State Prize of the Russian Federation in 2000. The scientific program of the workshop focused on fundamental and methodical research at the YuMO spectrometer and developments of the SANS instrument at the modernized IBR-2M reactor. We recall that the acronym YuMO of the small-angle neutron scattering spectrometer (MURN), was given in honor of Yu M Ostanevich. One of the most important objectives of this user meeting was to discuss the further development possibilities of the YuMO spectrometer with experts, in the frame of a SANS YuMO Round Table, taking into account the specific performance of the modernized YuMO SANS instrument, and the scientific and technical requests of the instrument's users. Highlights on modern achievements in nanoscience, polymers and biology were other significant goals of the meeting. The plenary invited talks were presented by leading scientists in small-angle neutron scattering and soft condensed matter, including members of the Russian Academy of Sciences: Prof. Heinrich Stuhrmann, Prof. Alexei Khokhlov, Prof. Jose Teixeira, Prof. Alexander Ozerin, Prof. Albrecht Wiedenmann, etc. There were 27 oral talks given and 32 posters presented by 92 participants from 12 countries: Czech Republic, Egypt, France, Germany, Hungary, Moldova, Mongolia, Poland, Romania, Russian Federation, Slovak Republic, and Ukraine. The workshop was organized with the financial support of the Frank Laboratory of Neutron Physics (Joint Institute for Nuclear Research), Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH (Romania), Institute of Macromolecular Chemistry AS CR (Czech Republic), and Comenius University (Slovakia). V Gordeliy, A Kuklin and M Balasoiu SANSgroup Participants of the meeting The PDF also contains additional photographs from the meeting.

  19. A novel X-ray diffractometer for studies of liquid-liquid interfaces.

    PubMed

    Murphy, Bridget M; Greve, Matthais; Runge, Benjamin; Koops, Christian T; Elsen, Annika; Stettner, Jochim; Seeck, Oliver H; Magnussen, Olaf M

    2014-01-01

    The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.

  20. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  1. Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions

    NASA Astrophysics Data System (ADS)

    Rajewska, A.

    2012-03-01

    The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25°C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D2O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products & Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm-1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.

  2. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  3. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com; Porcar, Lionel; Large Scale Structure Group, Institut Laue Langevin, Grenoble

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). Themore » SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.« less

  4. 75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM A FIXED CAMERA STATION, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  6. 83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ON TEMPORARY SUPPORTS LOOKING NORTHEAST SHOWING TWO LAUNCHING TUBES, Date unknown, circa 1950'S. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. 82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE LOOKING NORTH SHOWING THE CONNECTING BRIDGE AND TWO LAUNCHING TUBES, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. 81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE RESERVOIR SHOWING TWO LAUNCHING TUBES ON THE LAUNCHER BRIDGE, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. 63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, CABLES, LAUNCHER RAILS, PROJECTILE CAR AND SUPPORT CARRIAGE, April 8, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. San Diego, California as seen by Expedition Two crew

    NASA Image and Video Library

    2001-04-16

    ISS002-E-5657 (16 April 2001) --- San Diego, California, and the California border with Mexico were photographed with a digital still camera by the Expedition Two crew onboard the International Space Station (ISS). A 105mm lens was used for this frame. Other pictures taken in this April 16, 2001 series show different angles of the metropolitan area and utilize various lenses.

  11. San Diego, California (with sunglint) as seen by Expedition Two crew

    NASA Image and Video Library

    2001-04-16

    ISS002-E-5661 (16 April 2001) --- As the International Space Station (ISS) recently passed over the Pacific Ocean, one of the Expedition Two crew members, using an 800mm lens on a digital still camera, photographed this high oblique image of the coastal metropolitan area of San Diego, California. The angle of the view allows one to see quite a distance inland.

  12. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  13. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  14. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE PAGES

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...

    2018-02-06

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  15. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  16. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  17. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  18. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  19. Protein structure and interactions in the solid state studied by small-angle neutron scattering.

    PubMed

    Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan

    2012-01-01

    Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.

  20. High intensity multi beam design of SANS instrument for Dhruva reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K.; Désert, S.

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies ofmore » agglomerates larger than few tens of nm.« less

  1. 57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, STAIRS AND PORTION OF LAUNCHING DECK. NOTE SUPPORT CARRIAGE ASSEMBLY IN DISTANCE. Date unknown, circa March 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN WITH A 70 MM MITCHEL MOTION PICTURE CAMERA, Date unknown, circa 1950. (Original photograph in possession of Dave Willis, San Diego, California.) Photograph represents central frame of negative. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE PAGES

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  4. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    PubMed

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  5. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less

  6. Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.

    2005-08-01

    The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.

  7. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers.

    PubMed

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-10-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae.

  9. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers1

    PubMed Central

    Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi

    2016-01-01

    Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412

  10. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    DOE PAGES

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; ...

    2014-10-02

    Here we discuss a gripping capability that was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory.

  11. Better powder diffractometers. II—Optimal choice of U, V and W

    NASA Astrophysics Data System (ADS)

    Cussen, L. D.

    2007-12-01

    This article presents a technique for optimising constant wavelength (CW) neutron powder diffractometers (NPDs) using conventional nonlinear least squares methods. This is believed to be the first such design optimisation for a neutron spectrometer. The validity of this approach and discussion should extend beyond the Gaussian element approximation used and also to instruments using different radiation, such as X-rays. This approach could later be extended to include vertical and perhaps horizontal focusing monochromators and probably other types of instruments such as three axis spectrometers. It is hoped that this approach will help in comparisons of CW and time-of-flight (TOF) instruments. Recent work showed that many different beam element combinations can give identical resolution on CW NPDs and presented a procedure to find these combinations and also find an "optimum" choice of detector collimation. Those results enable the previous redundancy in the description of instrument performance to be removed and permit a least squares optimisation of design. New inputs are needed and are identified as the sample plane spacing ( dS) of interest in the measurement. The optimisation requires a "quality factor", QPD, chosen here to be minimising the worst Bragg peak separation ability over some measurement range ( dS) while maintaining intensity. Any other QPD desired could be substituted. It is argued that high resolution and high intensity powder diffractometers (HRPDs and HIPDs) should have similar designs adjusted by a single scaling factor. Simulated comparisons are described suggesting significant improvements in performance for CW HIPDs. Optimisation with unchanged wavelength suggests improvements by factors of about 2 for HRPDs and 25 for HIPDs. A recently quantified design trade-off between the maximum line intensity possible and the degree of variation of angular resolution over the scattering angle range leads to efficiency gains at short wavelengths. This in turn leads in practice to another trade-off between this efficiency gain and losses at short wavelength due to technical effects. The exact gains from varying wavelength depend on the details of the short wavelength technical losses. Simulations suggest that the total potential PD performance gains may be very significant-factors of about 3 for HRPDs and more than 90 for HIPDs.

  12. Effects of occupational therapy on hospitalized chronic schizophrenia patients with severe negative symptoms.

    PubMed

    Tatsumi, Eri; Yotsumoto, Kayano; Nakamae, Toshimichi; Hashimoto, Takeshi

    2012-05-24

    The aim of this study was to determine whether occupational therapy (OT) can improve the interpersonal relationships and negative symptoms of hospitalized chronic schizophrenia patients with severe negative symptoms. Subjects were 38 patients with chronic schizophrenia. They were randomly divided into an OT group and a control group. Patients in the OT group participated in cooking activities once a week for 15 weeks, while patients in the control group did not. During this period, both groups had the usual treatment except for the cooking activities. In interviews, the patient was asked to place a chair toward the interviewer (a therapist). The angle and distance from the interviewer were taken as indicators of an ability to have interpersonal relationships. Negative symptoms were evaluated with the Scale for the Assessment of Negative Symptoms (SANS). Patients who received OT were able to sit at the smaller angle and shorter distance from the interviewer than before OT (p=0.015 and p=0.013, respectively). The total SANS score was lower after OT than before OT (p=0.033). In the control group, the distance from the interviewer also decreased during the experimental period (p=0.040) but the seating angle and the SANS scores did not change. The results suggest that OT can help to improve a relationship allowing the patient to face the therapist and that it might improve negative symptoms of schizophrenia.

  13. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  14. Primary Data Treatment Software for Position-Sensitive Detector of Small-Angle Neutron Scattering Spectrometer in the Isotropic Pattern Scattering Case

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexei; Kutuzov, Sergei; Ivankov, Olexander; Kuklin, Alexander

    2018-02-01

    A new data converter has been created for the new position-sensitive detector (PSD) of small-angle neutron scattering (SANS) spectrometer YuMO. In the isotropic pattern scattering case, it provides the possibility for processing PSD data with the SAS data processing program that has already been in use.

  15. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  16. Aneurysm clip motion during magnetic resonance imaging: in vivo experimental study with metallurgical factor analysis.

    PubMed

    Dujovny, M; Kossovsky, N; Kossowsky, R; Valdivia, R; Suk, J S; Diaz, F G; Berman, S K; Cleary, W

    1985-10-01

    Because of various mechanical, metallurgical, and commercial constraints, aneurysm clips are manufactured from different alloys, including several stainless steel and cobalt alloys. Some of the steels contain volume fractions of the crystal phase known as martensite. Martensitic alloys have body-centered cubic structure, are prone to stress corrosion failure, and are ferromagnetic. Martensitic steel can be displaced like a compass needle when exposed to a magnetic field such as that generated during magnetic resonance imaging (MRI). The force exerted by the magnetic field is proportional to the volume fraction of the magnetic phase. We investigated the martensitic content and magnetic field-induced displacement of 12 common aneurysm clips. Four clips of each of the following types were examined: Sugita, Sundt-Kees Multi-Angle, Heifetz (two types), Vari-Angle McFadden, Yasargil (two types), Scoville, Mayfield, Vari-Angle, Pivot, and Kapp. Phase homogeneity and crystal structure were analyzed by x-ray diffraction using a Phillips x-ray diffractometer. Clip deflection in an Oxford Research Systems MRI spectrometer was measured in our in vivo rat abdominal aortic aneurysm model. Results showed that the volume fraction of the martensitic phase in the various clips correlated with the magnitude of the deflection. Among the clips examined, the Yasargil, Sugita, Heifetz Elgiloy, and Vari-Angle McFadden had a nonmartensitic composition and did not deflect in the magnetic field. The Scoville contained 5% martensite and deflected only marginally. Martensite comprised 35% of the Mayfield clip, which deflected 45 degrees, and 90% of the Heifetz, Vari-Angle, Pivot, and Sundt-Kees Multi-Angle clips, which deflected approximately 70 degrees or slipped off the aneurysm.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less

  18. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, V. V., E-mail: vlaegur@omrb.pnpi.spb.ru; Gorshkov, A. N.; Murugova, T. N.

    2016-01-15

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are ablemore » to influence the protein oligomerization are discussed.« less

  19. Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer

    NASA Technical Reports Server (NTRS)

    Semmler, R. A.

    1971-01-01

    A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.

  20. Optimization of a multi-channel parabolic guide for the material science diffractometer STRESS-SPEC at FRM II

    NASA Astrophysics Data System (ADS)

    Rebelo Kornmeier, Joana; Ostermann, Andreas; Hofmann, Michael; Gibmeier, Jens

    2014-02-01

    Neutron strain diffractometers usually use slits to define a gauge volume within engineering samples. In this study a multi-channel parabolic neutron guide was developed to be used instead of the primary slit to minimise the loss of intensity and vertical definition of the gauge volume when using slits placed far away from the measurement position in bulky components. The major advantage of a focusing guide is that the maximum flux is not at the exit of the guide as for a slit system but at the focal point relatively far away from the exit of the guide. Monte Carlo simulations were used to optimise the multi-channel parabolic guide with respect to the instrument characteristics of the diffractometer STRESS-SPEC at the FRM II neutron source. Also the simulations are in excellent agreement with experimental measurements using the optimised multi-channel parabolic guide at the neutron diffractometer. In addition the performance of the guide was compared to the standard slit setup at STRESS-SPEC using a single bead weld sample used in earlier round robin tests for residual strain measurements.

  1. Micro-focused Small Angle Neutron Scattering and Imaging for Science and Engineering Using RTP--A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Abdul Aziz; Al Rashid Megat Ahmad, Megat Harun; Md Idris, Faridah

    2010-01-05

    Malaysian Nuclear Agency's (Nuclear Malaysia) Small Angle Neutron Scattering (SANS) facility--(MYSANS)--is utilizing low flux of thermal neutron at the agency's 1 MW TRIGA reactor. As the design nature of the 8 m SANS facility can allow object resolution in the range between 5 and 80 nm to be obtained. It can be used to study alloys, ceramics and polymers in certain area of problems that relate to samples containing strong scatterers or contrast. The current SANS system at Malaysian Nuclear Agency is only capable to measure Q in limited range with a PSD (128x128) fixed at 4 m from themore » sample. The existing reactor hall that incorporate this MYSANS facility has a layout that prohibits the rebuilding of MYSANS therefore the position between the wavelength selector (HOPG) and sample and the PSD cannot be increased for wider Q range. The flux of the neutron at current sample holder is very low which around 10{sup 3} n/cm{sup 2}/sec. Thus it is important to rebuild the MYSANS to maximize the utilization of neutron. Over the years, the facility has undergone maintenance and some changes have been made. Modification on secondary shutter and control has been carried out to improve the safety level of the instrument. A compact micro-focus SANS method can suit this objective together with an improve cryostat system. This paper will explain some design concept and approaches in achieving higher flux and the modification needs to establish the micro-focused SANS.« less

  2. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  3. Microstructure of hydrogenated Mg2Ni studied by SANS

    NASA Astrophysics Data System (ADS)

    Mori, K.; Sugiyama, M.; Iwase, K.; Kawabe, S.; Onodera, Y.; Itoh, K.; Otomo, T.; Fukunaga, T.

    2010-10-01

    X-ray powder diffraction (XRD) and small-angle neutron scattering (SANS) experiments were carried out for the hydrogenated and duterated Mg2Ni, respectively. According to the results of XRD experiments, both of them coexisted with unhydrogenated (or undeuterated) Mg2Ni in the hydrogen absorbing cycle. Furthermore, in the SANS experiments, a slope of SANS curve, I(Q), was roughly evaluated by using the following power law: I(Q) propto Q-m, where Q is the magnitude of the scattering vector, and m can be equated with a fractal dimensionality, DS (= 6 - m). In conclusion, the hydrogenated and duterated Mg2Ni showed DS~ 3 and ~ 2, respectively. The significant difference between DS's can be understood by considering the scattering length densities, ρ, of Mg2Ni, Mg2NiH4, and Mg2NiD4.

  4. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim

    2016-06-15

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less

  5. Effects of Sample Impurities on the Analysis of MS2 Bacteriophage by Small-Angle Neutron Scattering

    DTIC Science & Technology

    2005-08-01

    and the efficiency of water treatment plants and filtration devices (Jolis et al., 1999;3 Oppenheimer et al., 1997;4 Woolwine and Gerberding, 1995;5...the solvent water to deuterated water ratio so that structural information about the protein and nucleic acid components can be obtained separately...de-stained in a 30% methanol: 10% acetic acid:60% (v/v) water solution for 8 hr (Maniatis, Fritsch et al., 1982).37 2.4 SANS Measurements. SANS

  6. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  7. Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Pencer, J.; Mills, T.; Anghel, V.; Krueger, S.; Epand, R. M.; Katsaras, J.

    2005-12-01

    Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or “clusters” (~10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called “rafts”, in ~30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 °C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of ~10 nm.

  8. California: San Joaquin Valley

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image This illustration features Multi-angle Imaging SpectroRadiometer ... quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a ...

  9. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, P.A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiver. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector. 5 figures.

  10. Diffractometer data collecting method and apparatus

    DOEpatents

    Steinmeyer, Peter A.

    1991-04-16

    Diffractometer data is collected without the use of a movable receiving s. A scanning device, positioned in the diffractometer between a sample and detector, varies the amount of the beam diffracted from the sample that is received by the detector in such a manner that the beam is detected in an integrated form. In one embodiment, a variable diameter beam stop is used which comprises a drop of mercury captured between a pair of spaced sheets and disposed in the path of the diffracted beam. By varying the spacing between the sheets, the diameter of the mercury drop is varied. In another embodiment, an adjustable iris diaphragm is positioned in the path of the diffracted beam and the iris opening is adjusted to control the amount of the beam reaching the detector.

  11. Calibration of X-Ray diffractometer by the experimental comparison method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudka, A. P., E-mail: dudka@ns.crys.ras.ru

    2015-07-15

    A software for calibrating an X-ray diffractometer with area detector has been developed. It is proposed to search for detector and goniometer calibration models whose parameters are reproduced in a series of measurements on a reference crystal. Reference (standard) crystals are prepared during the investigation; they should provide the agreement of structural models in repeated analyses. The technique developed has been used to calibrate Xcalibur Sapphire and Eos, Gemini Ruby (Agilent) and Apex x8 and Apex Duo (Bruker) diffractometers. The main conclusions are as follows: the calibration maps are stable for several years and can be used to improve structuralmore » results, verified CCD detectors exhibit significant inhomogeneity of the efficiency (response) function, and a Bruker goniometer introduces smaller distortions than an Agilent goniometer.« less

  12. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.

  13. Earth Observations taken during Expedition Four

    NASA Image and Video Library

    2002-04-21

    ISS004-E-10288 (21 April 2002) --- This view featuring the San Francisco Bay Area was photographed by an Expedition 4 crewmember onboard the International Space Station (ISS). The gray urban footprint of San Francisco, Oakland, San Jose, and their surrounding suburbs contrasts strongly with the green hillsides. Of particular note are the Pacific Ocean water patterns that are highlighted in the sun glint. Sets of internal waves traveling east impinge on the coastline south of San Francisco. At the same time, fresher bay water flows out from the bay beneath the Golden Gate Bridge, creating a large plume traveling westward. Tidal current channels suggest the tidal flow deep in the bay. Because the ISS orbits are not synchronous with the sun, station crewmembers view Earth with variable solar illumination angles. This allows them to document phenomena such as the sun reflecting differentially off surface waters in a way that outlines complicated water structures.

  14. The morphology of blends of linear and branched polyethylenes in solid state by SANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1994-12-31

    In a previous paper the authors have shown how small-angle neutron and X-ray scattering (SANS, SAXS) can be used to determine the melt compatibility of different polyolefins, including high-density (HD), low-density (LD), and linear low density (LLD) polyethylene. Such blends have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has hitherto been handicapped by the absence of a consensus concerning the degree of mixing of the components, both in the melt and solid states. Recent SANS data indicate that for HDPE/LDPE blends, the melt is homogeneous for all compositions after proper accountingmore » for H/D isotope effects. In this publication the authors use complementary SANS, DSC, and SAXS to examine the types of morphologies and the different degrees of phase separation which may arise via crystallization effects on cooling from a homogeneous melt.« less

  15. The morphology of blends of linear and branched polyethylenes in solid state by SANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-03-01

    In a previous paper, the authors have shown how small-angle neutron and X-ray scattering (SANS, SAXS) can be used to determine the melt compatibility of different polyolefins, including high-density (HD), low-density (LD), and linear low density (LLD) polyethylene. Such blends have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has hitherto been handicapped by the absence of a consensus concerning the degree of mixing of the components, both in the melt and solid states. Recent SANS data indicate that for HDPE/LDPE blends, the melt is homogeneous for all compositions after proper accountingmore » for H/D isotope effects. In this publication the authors use complementary SANS, DSC, and SAXS to examine the types of morphologies and the different degrees of phase separation which may arise via crystallization effects on cooling from a homogeneous melt.« less

  16. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal

    USGS Publications Warehouse

    Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.

    2004-01-01

    This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.

  17. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering.

    PubMed

    Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco

    2018-04-09

    The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.

  18. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V.; Kuklin, A. I.

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantialmore » contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.« less

  19. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badita, C. R., E-mail: ramona@tandem.nipne.ro; University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele; Aranghel, D., E-mail: daranghe@nipne.ro

    2016-03-25

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca{sup 2+} ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca{supmore » 2+} concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.« less

  20. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  1. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    NASA Astrophysics Data System (ADS)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  2. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line

    NASA Astrophysics Data System (ADS)

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-01

    Thermal density fluctuations of supercritical CO2 were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  3. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line.

    PubMed

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-06

    Thermal density fluctuations of supercritical CO_{2} were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  4. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missori, Mauro; Bicchieri, Marina; Mondelli, Claudia

    2006-12-08

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose's supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed.

  5. Co-existence of monomers and clusters in concentrated protein solutions

    NASA Astrophysics Data System (ADS)

    Chinchalikar, Akshay J.; Kumar, Sugam; Aswal, V. K.; Callow, P.; Wagh, A. G.

    2012-06-01

    Small-angle neutron scattering (SANS) measurements have been performed on concentrated protein solutions in order to study aggregation of lysozyme molecules at different pH. The variation of correlation peak in concentration (C) dependent SANS data shows deviation from C1/3 behavior suggesting the aggregation phenomena in these systems. The aggregates or clusters coexist along with monomers with cluster fraction proportional to protein concentration. The clustering is also favored at higher pH approaching isoelectric point (pI) because of decrease in charge on the protein molecule.

  6. Spin-echo small-angle neutron scattering (SESANS) measurements of needle-like crystallites of gelator compounds

    NASA Astrophysics Data System (ADS)

    Coumou, Pieter-Jan C. J. J.; Brizard, Aurelie M. A.; van Esch, Jan H.; de Schepper, Ignatz M.; Bouwman, Wim G.

    2010-11-01

    From dibenzoyl cystine, a low molecular weight gelator, we have prepared needle shaped crystals at relatively high concentrations. For the first time SESANS measurements are performed on objects with this geometry. From the measurements the average diameter can be seen directly. From a more careful analysis the width distribution is determined. The gel phase itself prepared at lower concentrations did not show any signal, in contrast to what one observes with conventional SANS. This shows the complementarity of SESANS and SANS.

  7. Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation

    NASA Astrophysics Data System (ADS)

    Missori, Mauro; Mondelli, Claudia; de Spirito, Marco; Castellano, Carlo; Bicchieri, Marina; Schweins, Ralf; Arcovito, Giuseppe; Papi, Massimiliano; Castellano, Agostina Congiu

    2006-12-01

    Paper is the main component of a huge quantity of cultural heritage. It is primarily composed of cellulose that undergoes significant degradation with the passage of time. By using small angle neutron scattering (SANS), we investigated cellulose’s supramolecular structure, which allows access to degradation agents, in ancient and modern samples. For the first time, SANS data were interpreted in terms of water-filled pores, with their sizes increasing from 1.61 nm up to 1.97 nm in natural and artificially aged papers. The protective effect of gelatine sizing was also observed.

  8. Microgravity

    NASA Image and Video Library

    1998-06-16

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  9. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  11. Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

    USGS Publications Warehouse

    Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.

    1996-01-01

    Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.

  12. POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.

    2009-05-01

    In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.

  13. Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles.

    PubMed

    Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter

    2004-05-11

    We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.

  14. A temperature-controlled cell for X-ray study of liquid systems using a commercial DRON-UM1 diffractometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrun`kin, S.P.; Garavina, E.V.; Trostin, V.N.

    1995-02-01

    A container (cell) and a temperature-control system have been designed enabling one to carry out x-ray diffraction study of liquid samples both at a fixed temperature and within a certain temperature range using a commercial DRON-UMl x-ray diffractometer. Special features of the cell and the materials used for it allow one to study both chemically inert and corrosive liquids.

  15. Sample holder for X-ray diffractometry

    DOEpatents

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  16. In-situ data collection at the photon factory macromolecular crystallography beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yusuke, E-mail: yusuke.yamada@kek.jp; Matsugaki, Naohiro; Kato, Ryuichi

    Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel arraymore » detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.« less

  17. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Hart, P.E.

    1999-01-01

    The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.

  18. Comparison of SANS instruments at reactors and pulsed sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.

    1992-09-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges untilmore » now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.« less

  19. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  20. Microgravity

    NASA Image and Video Library

    1998-06-16

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  1. Peak broadening and peak shift pole figures investigations by STRESS-SPEC diffractometer at FRM II

    NASA Astrophysics Data System (ADS)

    Gan, W. M.; Randau, C.; Hofmann, M.; Brokmeier, H. G.; Mueller, M.; Schreyer, A.

    2012-02-01

    This paper studied for the first time peak intensity, peak position and FHWM pole figures with one time measurement at the neutron diffractometer STRESS-SPEC via in-situ tensile deformation on austenitic steel. Fibre distribution with its evolution from central tensile direction to normal direction of these three kinds of pole figures was obtained. Variation of peak position and FWHM can be correlated to the reorientation of the texture component.

  2. Resolving 3D magnetism in nanoparticles using polarization analyzed SANS

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Booth, R.; Borchers, J. A.; Chen, W. C.; Conlon, C.; Gentile, T. R.; Hogg, C.; Ijiri, Y.; Laver, M.; Maranville, B. B.; Majetich, S. A.; Rhyne, J. J.; Watson, S. M.

    2009-09-01

    Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.

  3. Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik

    2002-11-01

    The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.

  4. Microstructural studies of nanocrystalline α-alumina powder produced from Al13-cluster

    NASA Astrophysics Data System (ADS)

    Harun Al Rashid Megat Ahmad, Megat; Aziz Mohamed, Abdul; Ibrahim, Azmi; Seman Mahmood, Che; Giri Rachman Putra, Edy; Jamro, Rafhayudi; Kasim, Razali; Rawi Muhammad Zin, Muhammad

    2007-12-01

    Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ˜2.8 indicative of low intra-granular porosity.

  5. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with different exponent. Narrowing of SANS profile of the irradiated sample indicates creation of significant number of larger pores due to neutron irradiation.

  6. Southern California Wildfires Observed by NASA MISR

    NASA Image and Video Library

    2016-06-24

    The Los Angeles area is currently suffering the effects of three major wildfires that are blanketing the area with smoke. Over the past few days, Southern California has experienced record-breaking temperatures, topping 110 degrees Fahrenheit in some cities. The heat, in combination with offshore winds, helped to stoke the Sherpa Fire west of Santa Barbara, which has been burning since June 15, 2016. Over the weekend of June 18-19, this fire rapidly expanded in size, forcing freeway closures and evacuations of campgrounds and state beaches. On Monday, June 20, two new fires ignited in the San Gabriel Mountains north of Azusa and Duarte, together dubbed the San Gabriel Complex Fire. They have burned more than 4,900 acres since June 20, sending up plumes of smoke visible to many in the Los Angeles basin and triggering air quality warnings. More than 1,400 personnel have been battling the blazes in the scorching heat, and evacuations were ordered for neighborhoods in the foothills. On June 21, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured this view of the San Gabriel Mountains and Los Angeles Basin from its 46-degree forward-viewing camera, which enhances the visibility of the smoke compared to the more conventional nadir (vertical) view. The width of this image is about 75 miles (120 kilometers) across. Smoke from the San Gabriel Complex Fire is visible at the very right of the image. Stereoscopic analysis of MISR's multiple camera angles is used to compute the height of the smoke plume from the San Gabriel Complex Fire. In the right-hand image, these heights are superimposed on the underlying image. The color scale shows that the plume is not much higher than the surrounding mountains. As a result, much of the smoke is confined to the local area. http://photojournal.jpl.nasa.gov/catalog/PIA20718

  7. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.

    PubMed

    Wellert, S; Karg, M; Imhof, H; Steppin, A; Altmann, H-J; Dolle, M; Richardt, A; Tiersch, B; Koetz, J; Lapp, A; Hellweg, T

    2008-09-01

    Most toxic industrial chemicals and chemical warfare agents are hydrophobic and can only be solubilized in organic solvents. However, most reagents employed for the degradation of these toxic compounds can only be dissolved in water. Hence, microemulsions are auspicious media for the decontamination of a variety of chemical warfare agents and pesticides. They allow for the solubilization of both the lipophilic toxics and the hydrophilic reagent. Alkyl oligoglucosides and plant derived solvents like rapeseed methyl ester enable the formulation of environmentally compatible bicontinuous microemulsions. In the present article the phase behavior of such a microemulsion is studied and the bicontinuous phase is identified. Small angle neutron scattering (SANS) and freeze fracture electron microscopy (FFEM) measurements are used to characterize the structure of the bicontinuous phase and allow for an estimation of the total internal interface. Moreover, also the influence of the co-surfactant (1-pentanol) on the structural parameters of the bicontinuous phase is studied with SANS.

  8. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  9. Effect of annealing conditions on the microstructure and magnetic properties of sintered Nd-Fe-B magnets as seen by magnetic small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Périgo, Élio A.; Titov, Ivan; Weber, Raoul; Mettus, Denis; Peral, Inma; Vallcorba, Oriol; Honecker, Dirk; Feoktystov, Artem; Michels, Andreas

    2018-03-01

    We have investigated the effect of the annealing conditions (heating rate and temperature) on the magnetic microstructure of sintered Nd-Fe-B magnets by means of magnetometry, scanning electron microscopy, high-energy synchrotron x-ray diffraction, and small-angle neutron scattering (SANS). While the temperature treatment has a strong effect on the coercivity (reduction by about 50% on annealing), the associated changes in the microstructure do surprisingly not show up (or at best only very weakly) in the neutron-scattering signal, which probes a mesoscopic real-space length scale ranging between about 1–300 nm. On the other hand, the x-ray data reveal microstructural changes in the Nd-rich phases, presumably due to modifications in grain-boundary regions. Moreover, we observe an unusual diamond-shaped angular anisotropy in the SANS cross section, which strongly points towards the existence of texture in the nuclear microstructure.

  10. Aggregation study in mixture surfactant system TX-100+SDS in heavy water solutions by SANS method

    NASA Astrophysics Data System (ADS)

    Rajewska, A.; Islamov, A. Kh.; Bakeeva, R. F.

    2018-03-01

    The mixing of amphiphiles in water may lead to the formation of mixed micelles which often present new properties with respect to the pure component solutions [1,2]. The mixture system of classic surfactants SDS (sodium dodecyl sulfate)+TX-100(p-(1,1,3,3- tetramethyl) poly(oxyethylene) (anionic + non-ionic) in heavy water solutions was investigated at temperatures 30°, 50°, 70°C for compositions 1:1, 2:1, 3:1 by the small-angle neutron scattering(SANS) method on spectrometer (‘YuMO’) at the IBR-2 pulsed neutron source at FLNP, JINR in Dubna (Russia). Measurements have covered Q range from 8x10-3 to 0.4 Å-1. From the measured dependence of the scattered intensity on the scattering angle, we derived the size, shape of micelles, aggregation number at various compositions and temperatures. The size of mixed micelle is a weak function of the mixing ratio between the two components.

  11. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.

    PubMed

    Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  13. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Performance of SMARTer at Very Low Scattering Vector q-Range Revealed by Monodisperse Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto

    2008-03-17

    A monodisperse nanoparticle sample of polystyrene has been employed to determine performance of the 36 meter small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) at the Neutron Scattering Laboratory (NSL)--Serpong, Indonesia, in a very low scattering vector q-range. Detector position at 18 m from sample position, beam stopper of 50 mm in diameter, neutron wavelength of 5.66 A as well as 18 m-long collimator had been set up to achieve very low scattering vector q-range of SMARTer. A polydisperse smeared-spherical particle model was applied to fit the corrected small-angle scattering data of monodisperse polystyrene nanoparticle sample. The mean average of particlemore » radius of 610 A, volume fraction of 0.0026, and polydispersity of 0.1 were obtained from the fitting results. The experiment results from SMARTer are comparable to SANS-J, JAEA - Japan and it is revealed that SMARTer is powerfully able to achieve the lowest scattering vector down to 0.002 A{sup -1}.« less

  15. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends.

    PubMed

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-05-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

  16. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.

    2014-07-01

    Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.

  17. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  18. Thermal stabilization of neutron Larmor diffractometers

    NASA Astrophysics Data System (ADS)

    Keller, T.; Tralmer, F.

    2017-06-01

    We report on the design of a support unit for the radio frequency (RF) coils of a Larmor diffractometer (LD) eliminating fluctuations of the Larmor phase resulting from thermal expansion of the support structures. The key component defining the spacing between the RF coils is a Zerodur bar with a very low thermal expansion coefficient (α = 7 × 10-8 K-1). This support unit will allow for LD measurements on the 10-6 accuracy level even if the ambient temperature is fluctuating.

  19. Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL

    DOE PAGES

    He, Lilin; Do, Changwoo; Qian, Shuo; ...

    2014-11-25

    Small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were upgraded in area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correctionmore » is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Furthermore, both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35°. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world.« less

  20. Insights into molecular architecture of terpenes using small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  1. 9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  3. Dielectric RheoSANS - Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids.

    PubMed

    Richards, Jeffrey J; Gagnon, Cedric V L; Krzywon, Jeffery R; Wagner, Norman J; Butler, Paul D

    2017-04-10

    A procedure for the operation of a new dielectric RheoSANS instrument capable of simultaneous interrogation of the electrical, mechanical and microstructural properties of complex fluids is presented. The instrument consists of a Couette geometry contained within a modified forced convection oven mounted on a commercial rheometer. This instrument is available for use on the small angle neutron scattering (SANS) beamlines at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The Couette geometry is machined to be transparent to neutrons and provides for measurement of the electrical properties and microstructural properties of a sample confined between titanium cylinders while the sample undergoes arbitrary deformation. Synchronization of these measurements is enabled through the use of a customizable program that monitors and controls the execution of predetermined experimental protocols. Described here is a protocol to perform a flow sweep experiment where the shear rate is logarithmically stepped from a maximum value to a minimum value holding at each step for a specified period of time while frequency dependent dielectric measurements are made. Representative results are shown from a sample consisting of a gel composed of carbon black aggregates dispersed in propylene carbonate. As the gel undergoes steady shear, the carbon black network is mechanically deformed, which causes an initial decrease in conductivity associated with the breaking of bonds comprising the carbon black network. However, at higher shear rates, the conductivity recovers associated with the onset of shear thickening. Overall, these results demonstrate the utility of the simultaneous measurement of the rheo-electro-microstructural properties of these suspensions using the dielectric RheoSANS geometry.

  4. Physical properties of aqueous solutions of a thermo-responsive neutral copolymer and an anionic surfactant: turbidity and small-angle neutron scattering studies.

    PubMed

    Galant, Céline; Kjøniksen, Anna-Lena; Knudsen, Kenneth D; Helgesen, Geir; Lund, Reidar; Laukkanen, Antti; Tenhu, Heikki; Nyström, Bo

    2005-08-16

    Aqueous mixtures of the anionic sodium dodecyl sulfate (SDS) surfactant and thermo-responsive poly(N-vinylcaprolactam) chains grafted with omega-methoxy poly(ethylene oxide) undecyl alpha-methacrylate (PVCL-g-C11EO42) have been characterized using turbidimetry and small-angle neutron scattering (SANS). Turbidity measurements show that the addition of SDS to a dilute aqueous copolymer solution (1.0 wt %) induces an increase of the cloud point (CP) value and a decrease of the turbidity at high temperatures. In parallel, SANS results show a decrease of both the average distance between chains and the global size of the objects in solution at high temperatures as the SDS concentration is increased. Combination of these findings reveals that the presence of SDS in the PVCL-g-C11EO42 solutions (1.0 wt %) promotes the formation of smaller aggregates and, consequently, leads to a more homogeneous distribution of the chains in solution upon heating of the mixtures. Moreover, the SANS data results show that the internal structure of the formed aggregates becomes more swollen as the SDS concentration increases. On the other hand, the addition of moderate amounts of SDS (up to 4 mm) to a semidilute copolymer solution (5.0 wt %) gives rise to a more pronounced aggregation as the temperature rises; turbidity and SANS studies reveal in this case a decrease of the CP value and an increase of the scattered intensity at low q. The overall picture that emerges from this study is that the degree of aggregation can be accurately tuned by varying parameters such as the temperature, level of surfactant addition, and polymer concentration.

  5. Three-dimensional Model of Human Platelet Integrin αIIbβ3 in Solution Obtained by Small Angle Neutron Scattering*

    PubMed Central

    Nogales, Aurora; García, Carolina; Pérez, Javier; Callow, Phil; Ezquerra, Tiberio A.; González-Rodríguez, José

    2010-01-01

    Integrin αIIbβ3 is the major membrane protein and adhesion receptor at the surface of blood platelets, which after activation plays a key role in platelet plug formation in hemostasis and thrombosis. Small angle neutron scattering (SANS) and shape reconstruction algorithms allowed formation of a low resolution three-dimensional model of whole αIIbβ3 in Ca2+/detergent solutions. Model projections after 90° rotation along its long axis show an elongated and “arched” form (135°) not observed before and a “handgun” form. This 20-nm-long structure is well defined, despite αIIbβ3 multidomain nature and expected segmental flexibility, with the largest region at the top, followed by two narrower and smaller regions at the bottom. Docking of this SANS envelope into the high resolution structure of αIIbβ3, reconstructed from crystallographic and NMR data, shows that the solution structure is less constrained, allows tentative assignment of the disposition of the αIIb and β3 subunits and their domains within the model, and points out the structural analogies and differences of the SANS model with the crystallographic models of the recombinant ectodomains of αIIbβ3 and αVβ3 and with the cryo-electron microscopy model of whole αIIbβ3. The ectodomain is in the bent configuration at the top of the model, where αIIb and β3 occupy the concave and convex sides, respectively, at the arched projection, with their bent knees at its apex. It follows the narrower transmembrane region and the cytoplasmic domains at the bottom end. αIIbβ3 aggregated in Mn2+/detergent solutions, which impeded to get its SANS model. PMID:19897481

  6. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.

    PubMed

    Yan, Ci; Sagisaka, Masanobu; James, Craig; Rogers, Sarah; Alexander, Shirin; Eastoe, Julian

    2014-12-01

    The formation, stability and structural properties of normal liquid phase microemulsions, stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of this model for other types of microemulsions. High Pressure Small-Angle Neutron Scattering (HP-SANS) has been used to study w/c microemulsions, using contrast variation to highlight scattering from the stabilizing fluorinated surfactant films: these data show clear evidence for spherical core-shell structures for the microemulsion droplets. The results extend understanding of w/c microemulsions since previous SANS studies are based only on scattering from water core droplets. Here, detailed structural parameters for the surfactant films, such as thickness and film bending energy, have been extracted from the core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 densities (∼0.7gcm(-3)), elongated cylindrical droplet structures have been observed, which are uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical micelles and droplets for applications of CO2, and viscosity enhancements are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Phase behavior of blends of linear and branched polyethylenes in the molten and solid states by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamo, R.G.; Mandelkern, L.; Londono, J.D.

    1994-01-17

    The state of mixing in blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) in the liquid and solid state has been examined by small-angle neutron scattering (SANS) in conjunction with deuterium labeling. In the melt, SANS results indicate that HDPE/LDPE mixtures from a single-phase solution for all concentrations, including blends containing high volume fractions ([phi] > 0.5) of branched polymer, for which multiphase melts have previously been suggested. Proper accounting for isotope effects is essential to avoid artifacts, because the H/D interaction parameter is sufficiently large ([sub [chi]HD] [approximately] 4 [times] 10[sup [minus]4]) to cause phase separation in themore » amorphous state for molecular weights (MW) >150,000. In the solid state, after slow cooling from the melt ([approximately]0.75 C/min), the HDPE/LDPE system shows extensive segregation into separate domains [approximately]100--300 [angstrom] in size. Both the shape and magnitude of the absolute scattering cross section are consistent with the conclusion that the components are extensively segregated into separate lamellae. Two-peak melting curves obtained for such mixtures support the SANS interpretation, and the segregation of components in the solid state is therefore a consequence of crystallization mechanisms rather than incompatibility in the liquid state.« less

  8. Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.

    PubMed

    Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram

    2014-01-01

    Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.

  9. A Software Architecture for a Small Autonomous Underwater Vehicle Navigation System

    DTIC Science & Technology

    1993-06-01

    angle consistent with system accuracy objectives for the interim SANS system must be quantified. 12 DEPTH CHAC oCLIMB ANGLE HORIZONTAL DISTANCE Figure...Figure 4.1 illustrates the hardware interface. COMPUTER (ESP-8o80) D IG IT A L B I N A R GYRO SIGNAL BINARY BINARY HEADING DATA "\\DATA DEPTH /RS-232...Mode 3 of the 82C54 provides a square wave through any of the 3 counters in the 82C54. An initial count N is written to the counter control register

  10. Spin-analyzed SANS for soft matter applications

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.

    2017-06-01

    The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.

  11. Microfluidic-SANS: insitu molecular insight into complex fluid processing and high throughput characterisation

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos; Watanabe, Takaichi; Cabral, Joao; Graham, Peter; Porcar, Lionel; Martel, Anne

    2014-03-01

    The coupling of microfluidics and small angle neutron scattering (SANS) is successfully demonstrated for the first time. We have developed novel microdevices with suitably low SANS background and high pressure compatibility for the investigation of flow-induced phenomena and high throughput phase mapping of complex fluids. We successfully obtained scattering profiles from 50 micron channels, in 10s - 100s second acquisition times. The microfluidic geometry enables the variation of both flow type and magnitude, beyond traditional rheo-SANS setups, and is exceptionally well-suited for complex fluids due to the commensurability of relevant time and lengthscales. We demonstrate our approach by studying model flow responsive systems, including surfactant/co-surfactant/water mixtures, with well-known equilibrium phase behaviour,: sodium dodecyl sulfate (SDS)/octanol/brine, cetyltrimethyl ammonium chloride (C16TAC)/pentanol/water and a model microemulsion system (C10E4 /decane/ D20), as well as polyelectrolyte solutions. Finally, using an online micromixer we are able to implement a high throughput approach, scanning in excess of 10 scattering profiles/min for a continuous aqueous surfactant dilution over two decades in concentration.

  12. Magnetic Correlations In A Magnetite Nanoparticle Assembly Investigated Using Polarized SANS

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn; Hogg, Charles; Ijiri, Yumi; Booth, Ryan; Borchers, Julie; Chen, Wangchun; Laver, Mark; Gentile, Thomas; Maranville, Brian; Breslauer, Benjamin; Majetich, Sara

    2008-03-01

    Using small angle neutron scattering (SANS) with polarization analysis, we have studied ferromagnetic magnetite monodisperse nanospheres in order to determine the field (0 and 1.3 Tesla) and temperature (50, 100, and 200 K) dependence of the magnetic interparticle correlations. These particles were 7 nm in diameter with an average edge-to-edge separation of 2.5 nm. Preparation techniques are described elsewhere [1]. An FeSi supermirror polarized the incident neutrons, and a polarized 3He cell was used as a spin analyzer. While a typical magnetic SANS experiment observes the convolution of the nuclear and magnetic terms, we have implemented and further developed an algorithm to separate the four spin dependent cross sections. This provides an unambiguous separation and measurement of magnetic and nuclear contributions. At low temperatures, magnetic correlation lengths have been found to be significantly larger than at high temperatures.[1] J. Am. Chem. Soc. 2002, 124, 8204-8205.

  13. Rotatable multifunctional load frames for neutron diffractometers at FRM II—design, specifications and applications

    NASA Astrophysics Data System (ADS)

    Hoelzel, M.; Gan, W. M.; Hofmann, M.; Randau, C.; Seidl, G.; Jüttner, Ph.; Schmahl, W. W.

    2013-05-01

    Novel tensile rigs have been designed and manufactured at the research reactor Heinz Maier-Leibnitz (FRM II, Garching near Munich). Besides tensile and compressive stress, also torsion can be applied. The unique Eulerian cradle type design (ω, χ, and φ axis) allows orienting the stress axis with respect to the scattering vector. Applications of these tensile rigs at our neutron diffractometers enable various investigations of structural changes under mechanical load, e.g. crystallographic texture evolution, stress-induced phase transformations or lattice expansion, and the anisotropy of mechanical response.

  14. Low-angle X-ray scattering properties of irradiated spices

    NASA Astrophysics Data System (ADS)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  15. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    PubMed

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q -3.6 , which is consistent with the results for the SBR/CP mixture.

  16. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    PubMed Central

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q −3.6, which is consistent with the results for the SBR/CP mixture. PMID:27980510

  17. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    NASA Astrophysics Data System (ADS)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.

  18. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    PubMed

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  19. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  20. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    PubMed

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  1. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  2. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  3. Sintering behavior of spin-coated FePt and FePtAu nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Jia, Zhiyong; Zoto, I.; Reed, D.; Nikles, David E.; Harrell, J. W.; Thompson, Gregory; Mankey, Gary; Krishnamurthy, Vemuru V.; Porcar, L.

    2006-04-01

    FePt and [FePt]95Au5 nanoparticles with an average size of about 4 nm were chemically synthesized and spin coated onto silicon substrates. Samples were subsequently thermally annealed at temperatures ranging from 250 to 500 °C for 30 min. Three-dimensional structural characterization was carried out with small-angle neutron scattering (SANS) and small-angle x-ray diffraction (SAXRD) measurements. For both FePt and [FePt]95Au5 particles before annealing, SANS measurements gave an in-plane coherence length parameter a=7.3 nm, while SAXRD measurements gave a perpendicular coherence length parameter c=12.0 nm. The ratio of c/a is about 1.64, indicating the as-made particle array has a hexagonal close-packed superstructure. For both FePt and FePtAu nanoparticles, the diffraction peaks shifted to higher angles and broadened with increasing annealing temperature. This effect corresponds to a shrinking of the nanoparticle array, followed by agglomeration and sintering of the nanoparticles, resulting in the eventual loss of positional order with increasing annealing temperature. The effect is more pronounced for FePtAu than for FePt. Dynamic coercivity measurements show that the FePtAu nanoparticles have both higher intrinsic coercivity and higher switching volume at the same annealing temperature. These results are consistent with previous studies that show that additive Au both lowers the chemical ordering temperature and promotes sintering.

  4. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  5. Effects of macromolecular crowding on the structure of a protein complex: A small-angle scattering study of superoxide dismutase

    DOE PAGES

    Rajapaksha, Ajith; Stanley, Christopher B.; Todd, Brian A.

    2015-02-17

    Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%.more » Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.« less

  6. Effect of heat treatment on phase composition and crystal structure of thin WSi2 films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Biryukov, Y. P.; Dostanko, A. P.; Maltsev, A. A.; Shakhlevich, G. M.

    1984-10-01

    An experimental study of WSi2 films on silicon substrates with either 111 or 100 orientation was made, for the purpose of determining the effect of annealing by heat treatment on their phase composition and crystal structure. Films of 0.2 micron thickness were deposited at a rate of 0.5 nm/s on a silicon surface which was predecontaminated of SiO2 layers and adsorbate atoms by ion sputtering in one vacuum cycle. Deposition was by condensation, with the substrate held at various temperatures from 390 to 500 C, and then annealed in an argon atmosphere at various temperatures from 700 to 1000 C for 30 min. Subsequent phase analysis at room temperature was performed with a DRON-2 X-ray diffractometer, using a CuK (sub alpha)-radiation source and covering the 20 = 10 to 130 deg range of angles by the Debye-Sherer method, while the surface morphology was examined under an electron microscope.

  7. Crystal-Site-Selective Spectrum of Fe3BO6 by Synchrotron Mössbauer Diffraction with Pure Nuclear Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kurokuzu, Masayuki; Shimomura, Susumu

    2017-08-01

    We have succeeded in obtaining the crystal-site-selective spectra of the collinear antiferromagnet Fe3BO6 using a synchrotron Mössbauer diffractometer with pure nuclear Bragg scattering at SPring-8 BL11XU. Well-resolved 300, 500, and 700 reflection spectra, having asymmetric line shapes owing to the higher-order interference effect between the nuclear energy levels, were quantitatively analyzed using a formula based on the dynamical theory of diffraction. Reasonable hyperfine parameters were obtained. The intensity ratio of Fe1 to Fe2 subspectra is in accordance with the nuclear structure factor. However, when the spectrum is measured at the peak position of the rocking curve (very near the Bragg position), the value of the center shift deviates from its intrinsic value. This is also due to the dynamical effect of γ-ray diffraction. To avoid this problem, it is necessary to use diffraction angles near the foot of the rocking curve, approximately 0.02° apart from the peak position.

  8. Data acquisition of neutron crystallography on tetragonal and triclinic forms of hen-egg-white (HEW) lysozyme with an elastically bent Si monochromator

    NASA Astrophysics Data System (ADS)

    Tanaka, I.; Minezaki, Y.; Harada, K.; Niimura, N.

    An elastically bent silicon (EBSi) as a monochromator has been optimized for neutron diffractometers of biocrystallography. It was found that several stacked thin Si plates were easier to be bent much for the near focusing point and they increased neutron reflectivity by aligning the plates. Currently, an EBSi(1 1 1) monochromator system was equipped at a diffractometer (BIX-I). It took 50 days to collect about 12 000 reflections of hen-egg-white lysozyme. The minimum d-spacing was 2.1 Å.

  9. High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.

    PubMed

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade < or = 2 in 3 or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the 2 groups did not differ in terms of sex, refraction, intraocular pressure, or cup-to-disk ratio (all, P > or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.

  10. Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California

    USGS Publications Warehouse

    Bohannon, Robert G.; Howell, David G.

    1982-01-01

    If the San Andreas fault with about 300 km of right slip, the Carlock fault with about 60 km of left slip, and the Big Pine fault with about 15 km of left slip are considered to have been contemporaneously active, a space problem at their high-angle junctions becomes apparent. Large crustal masses converge in the area of the junctions as a result of the simultaneous large displacements on the faults. We present here a model in which an early straight north-northwest–trending San Andreas deforms to its present bent configuration in response to a westward displacement of crust north of the Garlock fault. During this deformation, the crust north of the Garlock in the vicinity of the junction undergoes north-south shortening, while the fault junction migrates along the trace of the San Andreas fault to the southeast relative to its original position. As a result of this migration, the Mojave area is displaced to the east relative to the original junction position. We suggest a similar history in mirror image for the Big Pine fault and the areas of crust adjacent to it.

  11. Navigation of military and space unmanned ground vehicles in unstructured terrains

    NASA Technical Reports Server (NTRS)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  12. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGES

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; ...

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO 3) 4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/R g, where R g is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis frommore » SANS data when R g is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  13. Dielectric Rheo-SANS: An Instrument for the Simultaneous Interrogation of Rheology, Microstructure and Electronic Properties of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Richards, Jeffrey; Hipp, Julie; Butler, Paul

    In situ measurements are an increasingly important tool to inform the complex relationship between nanoscale properties and macroscopic measurements. For conducting colloidal suspensions, we seek intrinsic relationships between the measured electrical and mechanical response of a material both in quiescence and under applied shear. These relationships can be used to inform the development of new materials with enhanced electrical and mechanical performance. In order to study these relationships, we have developed a dielectric rheology instrument that is compatible with small angle neutron scattering (SANS) experiments. This Dielectric RheoSANS instrument consists of a Couette geometry mounted on an ARES G2 strain controlled rheometer enclosed in a modified Forced Convection Oven (FCO). In this talk, we outline the development of the Dielectric RheoSANS instruments and demonstrate its operation using two systems - a suspension of carbon black particles in propylene carbonate and poly(3-hexylthiophene) organogel - where there is interest in how shear influences the microstructure state of the material. By monitoring the conductivity and rheological response of these materials at the same time, we can capture the entire evolution of the material response to an applied deformation. NCNR NIST Cooperative Agreement #70NANB12H239.

  14. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy.

    PubMed

    Karino, Takeshi; Ikeda, Yuko; Yasuda, Yoritaka; Kohjiya, Shinzo; Shibayama, Mitsuhiro

    2007-02-01

    The microscopic structures of natural rubber (NR) and deproteinized NR (DPNR) were investigated by means of small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM). They were compared to those of isoprene rubber (IR), which is a synthetic analogue of NR in terms of chemical structure without any non-rubber components like proteins. Comparisons of the structure and mechanical properties of NR, DPNR, and IR lead to the following conclusions. (i) The well-known facts, for example, the outstanding green strength of NR and strain-induced crystallization, are due not much to the presence of proteins but to other components such as the presence of phospholipids and/or the higher stereoregularity of NR. It also became clear the naturally residing proteins accelerate the upturn of stress at low strain. The protein phases work as cross-linking sites and reinforcing fillers in the rubbery matrix. (ii) The microscopic structures of NR were successfully reproduced by SANS intensity functions consisting of squared-Lorentz and Lorentz functions, indicating the presence of inhomogeneities in bulk and thermal concentration fluctuations in swollen state, respectively. On the other hand, IR rubbers were homogeneous in bulk. (iii) The inhomogeneities in NR are assigned to protein aggregates of the order of 200 A or larger. Although these aggregates are larger in size as well as in volume fraction than those of cross-link inhomogeneities introduced by cross-linking, they are removed by deproteinization. (iv) Swelling of both NR and IR networks introduces gel-like concentration fluctuations whose mesh size is of the order of 20 A.

  15. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    PubMed

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.

  16. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering.

    PubMed

    Goodwin, Daniel J; Sepassi, Shadi; King, Stephen M; Holland, Simon J; Martini, Luigi G; Lawrence, M Jayne

    2013-11-04

    Production of polymer and/or surfactant-coated crystalline nanoparticles of water-insoluble drugs (nanosuspensions) using wet bead milling is an important formulation approach to improve the bioavailability of said compounds. Despite the fact that there are a number of nanosuspensions on the market, there is still a deficiency in the characterization of these nanoparticles where further understanding may lead to the rational selection of polymer/surfactant. To this end small-angle neutron scattering (SANS) measurements were performed on drug nanoparticles milled in the presence of a range of polymers of varying molecular weight. Isotopic substitution of the aqueous solvent to match the scattering length density of the drug nanoparticles (i.e., the technique of contrast matching) meant that neutron scattering resulted only from the adsorbed polymer layer. The layer thickness and amount of hydroxypropylcellulose adsorbed on nabumetone nanoparticles derived from fitting the SANS data to both model-independent and model dependent volume fraction profiles were insensitive to polymer molecular weight over the range Mv = 47-112 kg/mol, indicating that the adsorbed layer is relatively flat but with tails extending up to approximately 23 nm. The constancy of the absorbed amount is in agreement with the adsorption isotherm determined by measuring polymer depletion from solution in the presence of the nanoparticles. Insensitivity to polymer molecular weight was similarly determined using SANS measurements of nabumetone or halofantrine nanoparticles stabilized with hydroxypropylmethylcellulose or poly(vinylpyrrolidone). Additionally SANS studies revealed the amount adsorbed, and the thickness of the polymer layer was dependent on both the nature of the polymer and drug particle surface. The insensitivity of the adsorbed polymer layer to polymer molecular weight has important implications for the production of nanoparticles, suggesting that lower molecular weight polymers should be used when preparing nanoparticles by wet bead milling since nanoparticle formation is more rapid but with no likely consequence on the resultant physical stability of the nanoparticles.

  17. Characterization of porosity in sulfide ore minerals: A USANS/SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, F.; Zhao, J.; Etschmann, B. E.

    Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less

  18. Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study

    NASA Astrophysics Data System (ADS)

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-07-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.

  19. Microfluidic-SANS: flow processing of complex fluids

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.

  20. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  2. The morphology of blends of linear and branched polyethylenes in solid state by small-angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-01

    We have used small-angle neutron and x-ray scattering (SANS And SAXS) to investigate the solid state morphology of blends of high-density and low-density polyethylenes (HDPE and LDPE). The blends are homogenous in the melt as demonstrated by SANS using the contrast obtained by deuterating the linear polymer, though they phase segregate on slow cooling (0.75{degree}C/min). For high concentrations ({theta} {ge} 0.5) of linear polymer, there are separate stacks of HDPE and LDPE lamellae, as indicated by 2-peak SAXS curves. For predominantly branched blends, the phase separation is less complete, and the components are separated within the same lamellar stack, withmore » alternating HDPE and LDPE lamellae. Moreover, the phases no longer consist of the pure components and the HDPE lamellae contain up to 15% LDPE. Rapid quenching into dry-ice/acetone (-78{degree}C) produces only one lamellar stack over the whole concentration range. The blends show extensive cocrystallization with a tendency for the branched material to be preferentially located in the amorphous regions. For high concentrations ({theta} {ge} 0.5) of HDPE-D the overall scattering length density is high and the excess concentration of LDPE between the lamellae enhances the contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quench rate and samples quenched less rapidly (e.g., into water at 23{degree}C) show a similar morphology to slowly cooled samples.« less

  3. Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins

    PubMed Central

    Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan

    2016-01-01

    In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979

  4. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, B D; Asoka-Kumar, P; Howell, R H

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less

  5. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE PAGES

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.; ...

    2018-02-06

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  6. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    PubMed

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling. © 2016 Elsevier Inc. All rights reserved.

  7. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    NASA Astrophysics Data System (ADS)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  8. The new materials science diffractometer STRESS-SPEC at FRM-II

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Schneider, R.; Seidl, G. A.; Rebelo-Kornmeier, J.; Wimpory, R. C.; Garbe, U.; Brokmeier, H.-G.

    2006-11-01

    In response to the development of new materials and the application of materials and components in new technologies the direct measurement, calculation and evaluation of textures and residual stresses has gained worldwide significance in recent years. In order to cater for the development of these analytical techniques the Materials Science Diffractometer STRESS-SPEC at FRM-II is designed to be equally applied to texture or residual stress analysis by virtue of its flexible configuration and the high neutron flux at the sample position. The instrument is now available for routine operation and here we present details of first experiments and instrument performance.

  9. 90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.

    PubMed

    Schiferl, D; Jamieson, J C; Lenko, J E

    1978-03-01

    A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.

  10. Texture analysis at neutron diffractometer STRESS-SPEC

    NASA Astrophysics Data System (ADS)

    Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.

    2011-06-01

    In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.

  11. Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.

    2010-12-01

    Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.

  12. Scattering from fractals

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.

    The realization that structures in Nature often can be described by Mandelbrot's fractals has led to a revolution in many areas of physics. The interaction of waves with fractal systems has, understandably, become intensely studied since scattering is the method of choice to probe delicate fractal structures such as chainlike particle aggregates. Not all of these waves are electromagnetic. Neutron scattering, for example, is an important complementary tool to structural studies by X-ray and light scattering. Since the phenomenology of small-angle neutron scattering (SANS), as it is applied to fractal systems, is identical to that of small-angle X-ray scattering (SAXS), it falls within the scope of this paper.

  13. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    DTIC Science & Technology

    2011-10-25

    range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped...be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2

  14. Double Fourier Harmonic Balance Method for Nonlinear Oscillators by Means of Bessel Series

    DTIC Science & Technology

    2014-10-16

    at the same angle to the horizontal, so that the two ramps form a V-shape. In the absence of rolling friction or air drag , the ball rolls a distance...Marichev, Integrals and Series Volume 2: Special Functions, translated by N.M. Queen (Gordon & Breach, New York, 1986). [9] V. Méndez, C. Sans, D

  15. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  16. Reentrant behaviour in polyvinyl alcohol-borax hydrogels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2018-01-01

    Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.

  17. SAXS study of ion tracks in San Carlos olivine and Durango apatite

    NASA Astrophysics Data System (ADS)

    Afra, B.; Rodriguez, M. D.; Lang, M.; Ewing, R. C.; Kirby, N.; Trautmann, C.; Kluth, P.

    2012-09-01

    Ion tracks were generated in crystalline San Carlos olivine (Mg,Fe)2SiO4 and Durango apatite Ca10(PO4)6F2 using different heavy ions (58Ni, 101Ru, 129Xe, 197Au, and 238U) with energies ranging between 185 MeV and 2.6 GeV. The tracks and their annealing behavior were studied by means of synchrotron based small angle X-ray scattering in combination with in situ annealing. Track radii vary as a function of electronic energy loss but are very similar in both minerals. Furthermore, the annealing behavior of the track radii has been investigated and preliminary results reveal a lower recovery rate of the damaged area in olivine compared with apatite.

  18. Crystallization and textural porosity of synthetic clay minerals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrado, K. A.; Csencsits, R.; Thiyagarajan, P.

    2002-12-01

    The crystallization of synthetic layered magnesium silicate hectorite clays from both silica sol and organosilane sources is compared. For the silica sol-derived clays, a templating method is employed wherein organic or polymeric molecules are included during clay crystallization that are then removed from the composites via calcination. The mechanism of silane-derived hectorite formation is followed by XRD, TGA, 29Si MAS NMR, and small angle X-ray scattering (SAXS), and results are compared to those obtained for the sol-derived hectorite. The mechanism appears to be similar but the rate is approximately doubled when the silane is used rather than silica sol. Analyticalmore » transmission electron microscopy (TEM) is exploited to glean structural morphology information towards resolving the nature of the resulting pore network structures. Results are compared with nitrogen adsorption-desorption isotherm behavior; dominant hysteresis loops are present in the type IV isotherms. Pore size distributions based on both the adsorption and desorption isotherms are compared. Small angle neutron scattering (SANS) experiments reveal that the average particle size increases as synthetic laponite < sol-derived hectorite < silane-derived hectorite < natural hectorite. Contrast matching SANS studies in aqueous and organic solvents are carried out to extract information about pore accessibility.« less

  19. Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Nnyigide, Osita Sunday; Oh, Yuna; Song, Hyeong Yong; Park, Eun-kyoung; Choi, Soo-Hyung; Hyun, Kyu

    2017-05-01

    This paper reports the effects of urea on the heat-induced gelation of bovine serum albumin (BSA), which was studied by the tube inversion method, rheological measurements, and small-angle neutron scattering (SANS). An increase in the urea concentration accelerated the rate of gelation because the protein molecules have already been unfolded to some extent during sample preparation in the urea solution. In addition, the BSA solution in the presence of urea underwent a sol-gel-sol transition during the time sweep test at a constant temperature of 80oC. On the other hand, the BSA solution without urea turned into a hard and brittle gel that did not return to the solution state during isothermal heating at a constant temperature of 80oC. Aggregation and re-bonding of the denatured and unfolded protein chains led to gel formation. Urea added to the protein denatures its tertiary and secondary structures by simultaneously disrupting the hydrogen bonds, hydrophobic interactions, and altering the solvent properties. Furthermore, urea induces thermoreversible chemical interactions in BSA solutions leading to the formation of a gel with dynamic properties under these experimental conditions.

  20. Earth Observations taken by Expedition 41 crewmember.

    NASA Image and Video Library

    2014-10-06

    ISS041-E-067595 (6 Oct. 2014) --- This moonlit panorama was shot recently with a wide-angle lens by an Expedition 41 crew member aboard the International Space Station, as they looked southwest from a point over Nebraska. The wide-angle lens shows a huge swath of country that stretches from Portland, Oregon (right) to Phoenix, Arizona (left). The largest string of lights is the Ogden-Salt Lake City-Provo area (lower center) in Utah. The Los Angeles and San Francisco metropolitan regions, and the cities of the central valley of California (Bakersfield to Redding) stretch across the horizon. The green airglow layer always appears in night images. Moonlight shows the red tinge of the space station?s solar arrays top left. Moonlight emphasizes the broader-scale geological zones. Nevada?s short, dark, parallel mountain ranges of the basin and range geological province (center) contrast with the expanses of flat terrain of the Colorado Plateau (left) in Colorado, Arizona, Utah and New Mexico. The near-full moon even reveals the vast dry lake bed known as the Bonneville Salt Flats. The black line of the Sierra Nevada marks the edge of California?s well-lit central valley (directly below the San Francisco Bay area).

  1. Clusters of imidazolium-based ionic liquid in benzene solutions.

    PubMed

    Shimomura, Takuya; Takamuku, Toshiyuki; Yamaguchi, Toshio

    2011-07-07

    Cluster formation of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (C(12)mim(+)TFSA(-)) in benzene solutions was investigated using small-angle neutron scattering (SANS), NMR, attenuated total reflectance infrared (ATR-IR), and large-angle X-ray scattering (LAXS) techniques. The SANS measurements revealed that C(12)mim(+)TFSA(-) is heterogeneously mixed with benzene in the narrow range of benzene mole fraction 0.9 ≤ x(C6D6) ≤ 0.995 with a maximum heterogeneity at x(C6D6) ≈ 0.99. The NMR results suggested that the imidazolium ring is sandwiched between benzene molecules through the cation-π interaction. Moreover, TFSA(-) probably interacts with the imidazolium ring even in the range of x(C6H6) ≥ 0.9. Thus, the imidazolium rings, benzene molecules, and TFSA(-) would form clusters in the C(12)mim(+)TFSA(-)-benzene solutions. The LAXS measurements showed that the distance between the imidazolium ring and benzene is ∼3.8 Å with that between the benzene molecules of ∼7.5 Å. On the basis of these results, we discussed a plausible reason for the liquid-liquid equilibrium of the C(12)mim(+)TFSA(-)-benzene system.

  2. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  3. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  4. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE PAGES

    Scott, Jamieson; Tong, Katie; William, Hamilton; ...

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  5. Small angle neutron scattering (SANS) studies on the structural evolution of pyromellitamide self-assembled gels.

    PubMed

    Jamieson, Scott A; Tong, Katie W K; Hamilton, William A; He, Lilin; James, Michael; Thordarson, Pall

    2014-11-25

    The kinetics of aggregation of two pyromellitamide gelators, tetrabutyl- (C4) and tetrahexyl-pyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to 6 days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 h) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4, indicating one-dimensional stacking and aggregation corresponding to a multifiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggest that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multifiber braided cluster that has a diameter of about 62 Å. Over a longer period of time, the radius, persistence length, and contour length all continue to increase in 6 days after cooling. These data suggest that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g., tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.

  6. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jamieson; Tong, Katie; William, Hamilton

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  7. Quaternary crustal deformation along a major branch of the San Andreas fault in central California

    USGS Publications Warehouse

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.

    1979-01-01

    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.

  8. High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients

    PubMed Central

    Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C

    2009-01-01

    Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385

  9. CCD Measurements of Star Systems 00152+2722 J 868 and 05413+5329 BUP 82AD

    NASA Astrophysics Data System (ADS)

    Luberto, Judah; Priest, Stephen; Jackman, Max; Splettstoeszer, Annaclare; Blankenbiller, Craig; Priest, Allen

    2018-01-01

    Position angle (Theta) and separation (Rho) measurements were acquired through images of WDS 00152+2722 (J 868) and WDS 05413+5329 (BUP 82AD) using T7, a 17-inch telescope in Nerpio, Spain, through the iTelescope network, and a 10-inch telescope near San Diego, California. Image data was analyzed using MaxIm DL Pro 6 and Mira Pro x64 software tools. J 868 has an angle of 231.158 degrees and a separation of 6.205 arcseconds. BUP 82AD has an angle of 283.404 degrees and a separation of 699.842 arcseconds. Measurements of J 868 follow its proposed orbit, but it is likely the two stars are not gravitationally bound. Measurements on BUP 82AD suggest this pair is an optical binary.

  10. Gravity and magnetic expression of the San Leandro gabbro with implications for the geometry and evolution of the Hayward Fault zone, northern California

    USGS Publications Warehouse

    Ponce, D.A.; Hildenbrand, T.G.; Jachens, R.C.

    2003-01-01

    The Hayward Fault, one of the most hazardous faults in northern California, trends north-northwest and extends for about 90 km along the eastern San Francisco Bay region. At numerous locations along its length, distinct and elongate gravity and magnetic anomalies correlate with mapped mafic and ultramafic rocks. The most prominent of these anomalies reflects the 16-km-long San Leandro gabbroic block. Inversion of magnetic and gravity data constrained with physical property measurements is used to define the subsurface extent of the San Leandro gabbro body and to speculate on its origin and relationship to the Hayward Fault Zone. Modeling indicates that the San Leandro gabbro body is about 3 km wide, dips about 75??-80?? northeast, and extends to a depth of at least 6 km. One of the most striking results of the modeling, which was performed independently of seismicity data, is that accurately relocated seismicity is concentrated along the western edge or stratigraphically lower bounding surface of the San Leandro gabbro. The western boundary of the San Leandro gabbro block is the base of an incomplete ophiolite sequence and represented at one time, a low-angle roof thrust related to the tectonic wedging of the Franciscan Complex. After repeated episodes of extension and attenuation, the roof thrust of this tectonic wedge was rotated to near vertical, and in places, the strike-slip Hayward Fault probably reactivated or preferentially followed this pre-existing feature. Because earthquakes concentrate near the edge of the San Leandro gabbro but tend to avoid its interior, we qualitatively explore mechanical models to explain how this massive igneous block may influence the distribution of stress. The microseismicity cluster along the western flank of the San Leandro gabbro leads us to suggest that this stressed volume may be the site of future moderate to large earthquakes. Improved understanding of the three-dimensional geometry and physical properties along the Hayward Fault will provide additional constraints on seismic hazard probability, earthquake modeling, and fault interactions that are applicable to other major strike-slip faults around the world.

  11. Wildfires Rage in Southern California

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, are highlighted in this set of images from the Multi-angle Imaging SpectroRadiometer (MISR). These images include a natural color view from MISR's nadir camera (left) and an automated stereo height retrieval (right). The tops of the smoke plumes range in altitude from 500 - 3000 meters, and the stereo retrieval clearly differentiates the smoke from patches of high-altitude cirrus. Plumes are apparent from fires burning near the California-Mexico border, San Diego, Camp Pendleton, the foothills of the San Bernardino Mountains, and in and around Simi Valley. The majority of the smoke is coming from the fires near San Diego and the San Bernardino Mountains.

    The Multiangle Imaging Spectro Radiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20510. The panels cover an area of 329 kilometers x 543 kilometers, and utilize data from blocks 62 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  12. The performance of magnetic lens for focusing VCN-SANS

    NASA Astrophysics Data System (ADS)

    Nop Collaboration; Yamada, M.; Iwashita, Y.; Kanaya, T.; Ichikawa, M.; Tongu, H.; Kennedy, S. J.; Shimizu, H. M.; Mishima, K.; Yamada, N. L.; Hirota, K.; Carpenter, J. M.; Lal, J.; Andersen, K.; Geltenbort, P.; Guerard, B.; Manzin, G.; Hino, M.; Kitaguchi, M.; Bleuel, M.; NOP Collaboration

    2011-04-01

    We have developed a prototype rotating-permanent magnet sextupole lens (named rot-PMSx) for more efficient experiments with neutron beams in time of flight (ToF) mode. This lens can modulate the focusing strength over range 1.5×104T/m2⩽g‧⩽5.9×104T/m2. Synchronization between the modulation and the beam pulse produces a focused beam without significant chromatic aberration. We anticipate that this lens could be utilized in focusing small angle neutron scattering (SANS) instruments for novel approach to high resolution SANS.We carried out experiments testing the principle of this lens at the very cold neutron (VCN) beamline (PF2) at Institut Laue-Langevin (ILL), France. The focused beam image size at the detector was kept constant at the same beam size as the source (≈3mm) over a wavelength range of 30Å⩽λ⩽48Å in focal length of ≈1.14m. The flux gain was about 12 relative to a beam without focusing, and the depth of focus was quite large. These results show the good performance of this lens and the system. Thereupon we have demonstrated the performance of this test bed for high resolution focusing of VCN-SANS for a well-studied softmatter sample; a deuterium oxide solution of Pluronic F127, an (PEO)100(PPO)65(PEO)100 tri-block copolymer in deuterium oxide. The results of the focusing experiment and the focusing VCN-SANS are presented.

  13. In-line metrology for roll-to-roll UV assisted nanoimprint lithography using diffractometry

    NASA Astrophysics Data System (ADS)

    Kreuzer, Martin; Whitworth, Guy L.; Francone, Achille; Gomis-Bresco, Jordi; Kehagias, Nikolaos; Sotomayor-Torres, Clivia M.

    2018-05-01

    We describe and discuss the optical design of a diffractometer to carry out in-line quality control during roll-to-roll nanoimprinting. The tool measures diffractograms in reflection geometry, through an aspheric lens to gain fast, non-invasive information of any changes to the critical dimensions of target grating structures. A stepwise tapered linear grating with constant period was fabricated in order to detect the variation in grating linewidth through diffractometry. The minimum feature change detected was ˜40 nm to a precision of 10 nm. The diffractometer was then integrated with a roll-to-roll UV assisted nanoimprint lithography machine to gain dynamic measurements in situ.

  14. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  15. Versatile strain-tuning of modulated long-period magnetic structures

    DOE PAGES

    Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...

    2017-05-10

    In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less

  16. Calibrating SANS data for instrument geometry and pixel sensitivity effects: access to an extended Q range

    PubMed Central

    Karge, Lukas; Gilles, Ralph

    2017-01-01

    An improved data-reduction procedure is proposed and demonstrated for small-angle neutron scattering (SANS) measurements. Its main feature is the correction of geometry- and wavelength-dependent intensity variations on the detector in a separate step from the different pixel sensitivities: the geometric and wavelength effects can be corrected analytically, while pixel sensitivities have to be calibrated to a reference measurement. The geometric effects are treated for position-sensitive 3He proportional counter tubes, where they are anisotropic owing to the cylindrical geometry of the gas tubes. For the calibration of pixel sensitivities, a procedure is developed that is valid for isotropic and anisotropic signals. The proposed procedure can save a significant amount of beamtime which has hitherto been used for calibration measurements. PMID:29021734

  17. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials.

    PubMed

    Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.

  18. The morphology of blends of linear and branched polyethylenes by small-angle neutron and x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londono, J.D.; Wignall, G.D.; Lin, J.S.

    1995-12-31

    The solid-state morphology and liquid-state homogeneity of blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) were investigated by small-angle neutron and x-ray scattering (SANS and SAXS). The solid state morphology was investigated as a function of composition and cooling rate from the melt. After slow cooling, the evidence indicated that the mixtures were either completely (HDPE-rich blends) or almost completely (LDPE-rich blends) phase separated into separate HDPE and LDPE lamellae over the whole compositional range. In contrast, for rapidly quenched blends the components are extensively co-crystallized for all concentrations, though the SANS data indicated that the branched component hadmore » a tendency to be preferentially located in the inter-lamellar regions. In the liquid state, the blends were homogeneous at all compositions, showing that the solid state morphology is not determined by the melt structure, but is a function of the crystallization kinetics. Further evidence for blend homogeneity in the liquid is presented. In particular the authors examine the hypothesis that a phase separated mixture might give a scattering pattern similar to a homogeneous blend if the domain sizes were larger than the maximum spatial resolution of the SANS experiment (D > 2{pi}/Q{sub min} {approximately} 2,000 {angstrom}). In this scenario, the differential scattering cross section d{Sigma}/d{Omega}(Q) {approximately} Q{sup {minus}2}, though phase separation decreases the cross section in this Q-range with respect to the homogeneous blend. For HDPE/LDPE blends in the melt, this decrease in intensity was not observed, thus ruling out the possibility of phase separation.« less

  19. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni 50–xCo xMn₄₀Sn₁₀ alloys

    DOE PAGES

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...

    2012-04-27

    The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  20. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  1. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  2. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less

  3. Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data

    NASA Astrophysics Data System (ADS)

    Abubakar, A. J.; Hashim, M.; Pour, A. B.

    2017-05-01

    In this study, the performance of ASTER data is evaluated for mapping subtle geothermal prospects in an unexplored tropical region having a number of thermal springs. The study employed a simple Decorrelation stretch with specific absorptions to highlight possible alteration zones of interest related to Geothermal (GT) systems. Hydrothermal alteration minerals are subsequently mapped using Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) algorithms to target representative minerals such as clays, carbonates and AL-OH minerals as indicators of GT activity. The results were validated through field GPS survey, rock sampling and laboratory analysis using latest smart lab X-Ray Diffractometer technology. The study indicates that ASTER broadband satellite data could be used to map subtle GT prospects with the aid of an in-situ verification. However, it also shows that ASTER could not discriminate within specie minerals especially for clays using SWIR bands. Subsequent studies are aimed at looking at both ASTER and Hyperion hyperspectral data in the same area as this could have significant implications for GT resource detection in unmapped aseismic and inaccessible tropical regions using available spaceborne data.

  4. A small-angle neutron scattering study of the kinetics of phase separation in a supersaturated Ni-12.5 at. pct Si alloy

    NASA Astrophysics Data System (ADS)

    Polat, S.; Chen, Haydn; Epperson, J. E.

    1989-04-01

    The kinetic behavior of precipitation in a supersaturated Ni-12.5 at. pct Si alloy single crystal has been studied by the small-angle neutron scattering (SANS) technique to supplement earlier transmission electron microscopy (TEM) and wide-angle X-ray diffraction (XRD) work. The SANS measurements performed at room temperature on quenched specimens subjected to isothermal anneals at 400, 450, 505, and 550 °C for various amounts of time have revealed the presence of an interference peak in the scattering function. The particle size, determined according to the Guinier approximation, is found to grow in accordance with the diffusion controlled model put forth by Lifshitz and Slyozov, and independently by Wagner. The activation energy for solute diffusion is determined using the rate constants governing the growth of particle size and the variation of the mean interparticle distance. Results are in agreement with the values given in the literature. Transition from an earlier growth stage has been observed, and enhanced diffusion is noted at temperatures below 505 °C; both observations are consistent with the previous X-ray results. The dynamical scaling law appears to be followed by the data obtained in the coarsening stage. A disruption of scaling occurs at the point when the particle growth changes from a parabolic rate behavior to a cubic coarsening rate. Dynamical scaling offers the potential for projecting the service lifetimes for components from experimental measurements carried out over a much shorter time interval. Discrepancies in the size parameters determined by different techniques are discussed.

  5. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  6. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  7. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  8. Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point

    USGS Publications Warehouse

    Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.

    2009-01-01

    We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank fault zone is more discontinuous and in places has no strong physiographic expression. The San Diego Trough fault zone consists of one or two well-defined linear fault strands that cut through the center of the San Diego Trough and strike N30??W. North of the La Jolla fan valley, this fault zone steps to the west and is composed of up to four fault strands. At the base of the continental slope, faults that show recency of movement include the San Onofre fault and reverse, oblique-slip faulting associated with the San Mateo and Carlsbad faults. In addition, the low-angle Oceanside detachment fault is imaged beneath much of the continental slope, although reflectors associated with the detachment are more prominent in the area directly offshore of San Mateo Point. North of San Mateo Point, the Oceanside fault is imaged as a northeast-dipping detachment surface with prominent folds deforming hanging-wall strata. South of San Mateo point, reflectors associated with the Oceanside detachment are often discontinuous with variable dip as imaged in WesternGeco MCS data. Recent motion along the Oceanside detachment as a reactivated thrust fault appears to be limited primarily to the area between Dana and San Mateo Points. Farther south, offshore of Carlsbad, an additional area of folding associated with the Carlsbad fault also is imaged near the base of the slope. These folds coincide with the intersection of a narrow subsurface ridge that trends at a high angle to and intersects the base of the continental slope. The complex pattern of faulting observed along the base of the continental slope associated with the San Mateo, San Onofre, and Carlsbad fault zones may be the result of block rotation. We propose that the clockwise rotation of a small crustal block between the Newport-Inglewood-Rose Canyon and Coronado Bank fault zones accounts for the localized enhanced folding along the Gulf of Santa Catalina margin. Prominent subsurface basement ridges imaged offshore of Dana Point m

  9. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  10. Influence of the strength of the smectic order on the backbone anisotropy of side-chain liquid crystal polymers as revealed by SANS

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Keller, P.; Cotton, J. P.

    1992-06-01

    It is proposed that the strength of the smectic order determines the backbone anisotropy of side-chain liquid crystal polymers. Here this strength increases with the length of the alkyl terminal group of the mesogens. Two liquid crystal polymethacrylates differing only by the mesogenic tails —OCH3 and —OC4H9 are considered. The backbone anisotropy of these polymers is measured by small angle neutron scattering (SANS) whereas the smectic order is evaluated from the intensity of the 001 Bragg peak. Il est proposé que la qualité de l'ordre smectique détermine l'anisotropie du squelette de polymères mésomorphes en peigne confinés dans les lamelles. Ici l'ordre smectique est augmenté en allongeant le groupe alkyl terminal des mésogènes. Nous étudions deux polyméthacrylates cristal liquide qui ne différent que par leurs groupes terminaux : —OCH3 et —OC4H9. L'anisotropie du squellete est mesurée par diffusion de neutrons aux petits angles tandis que l'ordre smectique est évalué à l'aide de l'intensité du pic de Bragg 001.

  11. Small angle neutron scattering study of polyelectrolyte brushes grafted to well-defined gold nanoparticle interfaces.

    PubMed

    Jia, Haidong; Grillo, Isabelle; Titmuss, Simon

    2010-05-18

    Small angle neutron scattering (SANS) has been used to study the conformations, and response to added salt, of a polyelectrolyte layer grafted to the interfaces of well-defined gold nanoparticles. The polyelectrolyte layer is prepared at a constant coverage by grafting thiol-functionalized polystyrene (M(w) = 53k) to gold nanoparticles of well-defined interfacial curvature (R(c) = 26.5 nm) followed by a soft-sulfonation of 38% of the segments to sodium polystyrene sulfonate (NaPSS). The SANS profiles can be fit by Fermi-Dirac distributions that are consistent with a Gaussian distribution but are better described by a parabolic distribution plus an exponential tail, particularly in the high salt regime. These distributions are consistent with the predictions and measurements for osmotic and salted brushes at interfaces of low curvature. When the concentration of added salt exceeds the concentration of counterions inside the brush, there is a salt-induced deswelling, but even at the highest salt concentration the brush remains significantly swollen due to a short-ranged excluded volume interaction. This is responsible for the observed resistance to aggregation of these comparatively high concentration polyelectrolyte stabilized gold nanoparticle dispersions even in the presence of a high concentration of added salt.

  12. Molecular conformation of the full-length tumor suppressor NF2/Merlin—a small angle neutron scattering study

    PubMed Central

    Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei

    2014-01-01

    Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693

  13. Solution Structure of an Amyloid-Forming Protein During Photoinitiated Hexamer-Dodecamer Transitions Revealed Through Small-Angle Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamill,A.; Wang, S.; Lee, Jr., C.

    2007-01-01

    Shape-reconstruction analysis applied to small angle neutron scattering (SANS) data is used to determine the in vitro conformations of {alpha}-chymotrypsin oligomers that form as a result of partial unfolding with a photoresponsive surfactant. In the presence of the photoactive surfactant under visible light, the native oligomers (dimers or compact hexamers) rearrange into expanded corkscrew-like hexamers. Converting the surfactant to the photopassive form with UV light illumination causes the hexamers to laterally aggregate and intertwine into dodecamers with elongated, twisted conformations containing cross-sectional dimensions similar to amyloid protofilaments. Secondary-structure measurements with FT-IR indicate that this photoinduced hexamer-to-dodecamer association occurs through intermolecularmore » {beta} sheets stabilized with hydrogen bonds, similar to amyloid formation. Traditional structural characterization techniques such as X-ray crystallography and NMR are not easily amenable to the study of these non-native protein conformations; however, SANS is ideally suited to the study of these associated intermediates, providing direct observation of the mechanism of oligomeric formation in an amyloid-forming protein. Combined with photoinitiated hexamer-to-dodecamer associations in the presence of the photoresponsive surfactant, this study could provide unique insight into the amyloidosis disease pathway, as well as novel disease treatment strategies.« less

  14. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less

  15. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less

  16. Sans study of reverse micelles formed upon extraction of inorganic acids by TBP in n-octane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarizia, R.; Briand, A.; Jensen, M. P.

    2008-01-01

    Small-angle neutron scattering (SANS) data for n-octane solutions of TBP loaded with progressively larger amounts of HNO{sub 3}, HClO{sub 4}, H{sub 2}SO{sub 4}, and H{sub 3}PO{sub 4} up to and beyond the LOC (limiting organic concentration of acid) condition, were interpreted using the Baxter model for hard spheres with surface adhesion. The coherent picture of the behavior of the TBP solutions derived from the SANS investigation discussed in this paper confirmed our recently developed model for third phase formation. This model analyses the features of the scattering data in the low Q region as arising from van der Waals interactionsmore » between the polar cores of reverse micelles. Our SANS data indicated that the TBP micelles swell when acid and water are extracted into their polar core. The swollen micelles have critical diameters ranging from 15 to 22 {angstrom}, and polar core diameters between 10 and 15 {angstrom}, depending on the specific system. At the respective LOC conditions, the TBP weight-average aggregation numbers are -4 for HClO{sub 4}, -6 for H2SO{sub 4}, -7 for HCl, and -10 for H{sub 3}PO{sub 4}. The comparison between the behavior of HNO{sub 3}, a non-third phase forming acid, and the other acids provided an explanation of the effect of the water molecules present in the polar core of the micelles on third phase formation. The thickness of the lipophilic shell of the micelles indicated that the butyl groups of TBP lie at an angle of -25 degrees relative to a plane tangent to the micellar core. The critical energy of intermicellar attraction, U(r), was about -2 k{sub B}T for all the acids investigated. This value is the same as that reported in our previous publications on the extraction of metal nitrates by TBP, confirming that the same mechanism and energetics are operative in the formation of a third phase, independent of whether the chemical species extracted are metal nitrate salts or inorganic acids.« less

  17. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.

    2015-09-01

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 (angstrom) -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 angstrom -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 angstrom -1 was significantly decreased when the collimatorsmore » were installed.« less

  18. Improved sample manipulation at the STRESS-SPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses

    NASA Astrophysics Data System (ADS)

    Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.

    2015-09-01

    The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.

  19. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE PAGES

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; ...

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å -1 was significantly decreased when themore » collimators were installed.« less

  20. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  1. Physicochemical perspectives (aggregation, structure and dynamics) of interaction between pluronic (L31) and surfactant (SDS).

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Pan, A; Aswal, V K; Subramanian, J; Mandal, A B; Moulik, S P

    2015-11-11

    The influence of the water soluble non-ionic tri-block copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E2P16E2 (L31) on the microstructure and self-aggregation dynamics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution was investigated using cloud point (CP), isothermal titration calorimetry (ITC), high resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and small-angle neutron scattering (SANS) measurements. CP provided the thermodynamic information on the Gibbs free energy, enthalpy, entropy and heat capacity changes pertaining to the phase separation of the system at elevated temperature. The ITC and NMR self-diffusion measurements helped to understand the nature of the binding isotherms of SDS in the presence of L31 in terms of the formation of mixed aggregates and free SDS micelles in solution. EPR analysis provided the micro-viscosity of the spin probe 5-DSA in terms of rotational correlation time. The SANS study indicated the presence of prolate ellipsoidal mixed aggregates, whose size increased with the increasing addition of L31. At a large [L31], SANS also revealed the progressive decreasing size of the ellipsoidal mixed aggregates of SDS-L31 into nearly globular forms with the increasing SDS addition. Wrapping of the spherical SDS micelles by L31 was also corroborated from (13)C NMR and SANS measurements.

  2. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    PubMed

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  3. Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3

    DOE PAGES

    Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.; ...

    2017-11-09

    Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less

  4. Realization of the axial next-nearest-neighbor Ising model in U 3 Al 2 Ge 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fobes, David M.; Lin, Shi-Zeng; Ghimire, Nirmal J.

    Inmore » this paper, we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U 3 Al 2 Ge 3 . Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order at T N = 63 K to be second order and a first-order phase transition to ferromagnetic order at T c = 48 K. Within the sinusoidally modulated magnetic phase (T c < T < T N), we uncover a dramatic change, by a factor of 3, in the ordering wave vector as a function of temperature. Finally, these observations all indicate that U 3 Al 2 Ge 3 is a close realization of the three-dimensional axial next-nearest-neighbor Ising model, a prototypical framework for describing commensurate to incommensurate phase transitions in frustrated magnets.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleissl, J.; Urquhart, B.; Ghonima, M.

    During the University of California, San Diego (UCSD) Sky Imager Cloud Position Study, two University of California, San Diego Sky Imagers (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. The UCSD Sky Imagers were placed 1.7 km apart to allow for stereographic determination of the cloud height for clouds over approximately 1.5 km. Images with a 180-degree field of view were captured from both systems during daylight hours every 30 seconds beginning on March 11, 2013 and ending on November 4, 2013. The spatial resolutionmore » of the images was 1,748 × 1,748, and the intensity resolution was 16 bits using a high-dynamic-range capture process. The cameras use a fisheye lens, so the images are distorted following an equisolid angle projection.« less

  6. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the topographically complex terrain, no results are obtained over the Sierra Nevada and Coastal mountains and these areas are shown in black. However, the enhanced haziness of the San Joaquin Valley is evident in this derived product. Within the yellow pixels, the Sun would look about 40% dimmer to an observer on the ground in comparison to its brightness on a much clearer day.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  8. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  9. Ordered arrays of Ni magnetic nanowires: Synthesis and investigation

    NASA Astrophysics Data System (ADS)

    Napolskii, K. S.; Eliseev, A. A.; Yesin, N. V.; Lukashin, A. V.; Tretyakov, Yu. D.; Grigorieva, N. A.; Grigoriev, S. V.; Eckerlebe, H.

    2007-03-01

    The present study is focused on the synthesis and investigation of anodic aluminum oxide (AAO) films and magnetic nanocomposites Ni/AAO obtained by Ni electrodeposition into porous matrix. AAO membranes and magnetic nanocomposites were investigated by HRSEM, EDX microanalysis, XRD, nitrogen capillary adsorption method, SQUID magnetometry, and polarized small-angle neutron scattering (SANS). The influence of synthesis conditions and form factor effect on the magnetic properties of nanowire arrays is reported.

  10. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    PubMed

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  11. Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander

    2010-09-17

    The solution structures of free Enzyme I (EI, {approx}128 kDa, 575 x 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr ({approx}146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS datamore » that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C{sub 2} symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large ({approx}70-90{sup o}) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.« less

  12. Effect of enzymatic hydrolysis on native starch granule structure.

    PubMed

    Blazek, Jaroslav; Gilbert, Elliot Paul

    2010-12-13

    Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.

  13. A possibility of parallel and anti-parallel diffraction measurements on neu- tron diffractometer employing bent perfect crystal monochromator at the monochromatic focusing condition

    NASA Astrophysics Data System (ADS)

    Choi, Yong Nam; Kim, Shin Ae; Kim, Sung Kyu; Kim, Sung Baek; Lee, Chang-Hee; Mikula, Pavel

    2004-07-01

    In a conventional diffractometer having single monochromator, only one position, parallel position, is used for the diffraction experiment (i.e. detection) because the resolution property of the other one, anti-parallel position, is very poor. However, a bent perfect crystal (BPC) monochromator at monochromatic focusing condition can provide a quite flat and equal resolution property at both parallel and anti-parallel positions and thus one can have a chance to use both sides for the diffraction experiment. From the data of the FWHM and the Delta d/d measured on three diffraction geometries (symmetric, asymmetric compression and asymmetric expansion), we can conclude that the simultaneous diffraction measurement in both parallel and anti-parallel positions can be achieved.

  14. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

    PubMed

    Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal

    2017-11-01

    The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Grinding With Diamond Burs and Hydrothermal Aging of a Y-TZP Material: Effect on the Material Surface Characteristics and Bacterial Adhesion.

    PubMed

    Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B

    The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.

  16. High-resolution seismic-reflection data offshore of Dana Point, southern California borderland

    USGS Publications Warehouse

    Sliter, Ray W.; Ryan, Holly F.; Triezenberg, Peter J.

    2010-01-01

    The U.S. Geological Survey collected high-resolution shallow seismic-reflection profiles in September 2006 in the offshore area between Dana Point and San Mateo Point in southern Orange and northern San Diego Counties, California. Reflection profiles were located to image folds and reverse faults associated with the San Mateo fault zone and high-angle strike-slip faults near the shelf break (the Newport-Inglewood fault zone) and at the base of the slope. Interpretations of these data were used to update the USGS Quaternary fault database and in shaking hazard models for the State of California developed by the Working Group for California Earthquake Probabilities. This cruise was funded by the U.S. Geological Survey Coastal and Marine Catastrophic Hazards project. Seismic-reflection data were acquired aboard the R/V Sea Explorer, which is operated by the Ocean Institute at Dana Point. A SIG ELC820 minisparker seismic source and a SIG single-channel streamer were used. More than 420 km of seismic-reflection data were collected. This report includes maps of the seismic-survey sections, linked to Google Earth? software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats.

  17. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2015-12-01

    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  18. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  19. Experimental evidences for molecular origin of low-Q peak in neutron/x-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids

    NASA Astrophysics Data System (ADS)

    Fujii, Kenta; Kanzaki, Ryo; Takamuku, Toshiyuki; Kameda, Yasuo; Kohara, Shinji; Kanakubo, Mitsuhiro; Shibayama, Mitsuhiro; Ishiguro, Shin-ichi; Umebayashi, Yasuhiro

    2011-12-01

    Short- and long-range liquid structures of [CnmIm+][TFSA-] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 Å -1, indicating the heterogeneity of their ionic liquids. SANS profiles IH(Q) and ID(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=ID(Q) - IH(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, SQpeak(r). The SQpeak(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 Å for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the CnmIm.

  20. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP) summer internship program and the budget goal was $1200. In this report, we will describe our motorization design and discuss the results of its implementation.

  1. Small angle neutron scattering applications in fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, P.; Cody, G.D.; Hunt, J.E.

    1995-08-01

    A wide range of physical and chemical methods have been used to study complex, multicomponent systems in fuel chemistry (crude oil, coal), and we are still far from complete understanding. Since chemical modification and/or solvent extraction of coal result in a number of different systems, it is important to understand the products in terms of their colloidal properties as a function of the solvent type, as well as other physical conditions. This would be helpful in design of processing techniques. Another area of research where SANS can be useful is characterization of the synthetic and modified clays being developed formore » processing in the petroleum industry. Major limitations for performing SANS experiments are nonavailability/high cost sof certain deuterated solvents and the paucity of beam time at the neutron scattering centers. This paper reports briefly on analysis of coal and asphaltenes.« less

  2. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    PubMed

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  3. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less

  4. Relevance of Internal Friction and Structural Constraints for the Dynamics of Denatured Bovine Serum Albumin.

    PubMed

    Ameseder, Felix; Radulescu, Aurel; Holderer, Olaf; Falus, Peter; Richter, Dieter; Stadler, Andreas M

    2018-05-17

    A general property of disordered proteins is their structural expansion that results in a high molecular flexibility. The structure and dynamics of bovine serum albumin (BSA) denatured by guanidinium hydrochloride (GndCl) were investigated using small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). SANS experiments demonstrated the relevance of intrachain interactions for structural expansion. Using NSE experiments, we observed a high internal flexibility of denatured BSA in addition to center-of-mass diffusion detected by dynamic light scattering. Internal motions measured by NSE were described using concepts based on polymer theory. The contribution of residue-solvent friction was accounted for using the Zimm model including internal friction (ZIF). Disulfide bonds forming loops of amino acids of the peptide backbone have a major impact on internal dynamics that can be interpreted with a reduced set of Zimm modes.

  5. Neutron-scattering-based evidence for interacting magnetic excitons in LaCo O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Khatib, S.; Phelan, D.; Barker, J. G.

    Recent progress with the thermally-driven spin-state crossover in LaCoO3 has made it increasingly apparent that the nominally non-magnetic low spin ground state of this material actually hosts novel defect-'based magnetism. This is investigated here via a small-angle neutron scattering (SANS) study of LaCoO3-s crystals. The results provide: (i) the surprising finding that the spin-state crossover is clearly reflected in SANS via quasielastic/inelastic scattering from paramagnetic spin fluctuations/excitations, and (ii) evidence for the formation, likely around oxygen defects, of local entities known as magnetic excitons. The latter generate distinct magnetic scattering below 60 K, providing valuable quantitative information on exciton densitiesmore » and interactions. Potential relevance to the unexpected ferromagnetism recently discovered in epitaxial LaCoO3 films is discussed.« less

  6. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  7. Gelation under shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying tomore » interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.« less

  8. Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid

    DOE PAGES

    Kang, T.; Qian, S.; Smith, G. S.; ...

    2017-09-07

    Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here in this work, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominantmore » phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. Finally, the results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438–16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.« less

  9. Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, T.; Qian, S.; Smith, G. S.

    Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here in this work, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominantmore » phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. Finally, the results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438–16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.« less

  10. A new ultrasonic transducer sample cell for in situ small-angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Gupta, Sudipta; Bleuel, Markus; Schneider, Gerald J.

    2018-01-01

    Ultrasound irradiation is a commonly used technique for nondestructive diagnostics or targeted destruction. We report on a new versatile sonication device that fits in a variety of standard sample environments for neutron and X-ray scattering instruments. A piezoelectric transducer permits measuring of the time-dependent response of the sample in situ during or after sonication. We use small-angle neutron scattering (SANS) to demonstrate the effect of a time-dependent perturbation on the structure factor of micelles formed from sodium dodecyl sulfate surfactant molecules. We observe a substantial change in the micellar structure during and after exposure to ultrasonic irradiation. We also observe a time-dependent relaxation to the equilibrium values of the unperturbed system. The strength of the perturbation of the structure factor depends systematically on the duration of sonication. The relaxation behavior can be well reproduced after multiple times of sonication. Accumulation of the recorded intensities of the different sonication cycles improves the signal-to-noise ratio and permits reaching very short relaxation times. In addition, we present SANS data for the micellar form factor on alkyl-poly (ethylene oxide) surfactant molecules irradiated by ultrasound. Due to the flexibility of our new in situ sonication device, different experiments can be performed, e.g., to explore molecular potentials in more detail by introducing a systematic time-dependent perturbation.

  11. SANS study of deformation and relaxation of a comb-like liquid crystal polymer in the nematic phase

    NASA Astrophysics Data System (ADS)

    Brûlet, A.; Boué, F.; Keller, P.; Davidson, P.; Strazielle, C.; Cotton, J. P.

    1994-06-01

    A comb-like liquid crystal polymer is stretched and quenched after a certain time in the nematic phase. The conformation of the deformed chain is determined using small angle neutron scattering (SANS) as a function of the temperature of stretching, the stretching ratio and the duration of the relaxation. The scattering data are well fitted to junction affine and phantom network models. Some data are even well fitted by a totally affine model that we call “ pseudo affine ” because the only parameter, the stretching ratio, is found to be well below the macroscopic stretching ratio. The latter result, never encountered with amorphous polymers, is attributed to the cooperative effects of the nematic phase. We also note that the form factors of the chain in the underformed sample remain similar in the isotropic, nematic and glassy state ; they correspond to a Gaussian chain. The same samples were studied by wide angle X-ray scattering. On one hand, the orientation of the mesogenic groups is found to be parallel or perpendicular to the stretching direction depending on the stretching temperature. This result is discussed as a function of the presence of smectic fluctuations. On the other hand, longer relaxations at constant elongation ratio do not lead to a disorganization of the mesogenic group orientation whereas the polymer chains are partly relaxed.

  12. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Rosemary K.; Harris, Bradley J.; Iwuchukwu, Ifeyinwa J.

    2014-05-01

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein–detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI–DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANSmore » data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI–DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.« less

  13. A high-temperature neutron diffraction study of Nb 2AlC and TiNbAlC

    DOE PAGES

    Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; ...

    2014-12-16

    In this paper, we report on the crystal structures of Nb 2AlC and TiNbAlC actual composition (Ti 0.45,Nb 0.55) 2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb 2AlC sample in the a and c directions are, respectively, 7.9(5)x10 -6 K -1 and 7.7(5)x10 -6 K -1 on one neutron diffractometer and 7.3(3)x10 -6 K -1 and 7.0(2)x10 -6 K -1 on a second diffractometer. The respective values for the (Ti 0.45,Nb 0.55) 2AlC composition - only tested on one diffractometer - are 8.5(3)x10more » -6 K -1 and 7.5(5)x10 -6 K -1. These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less

  14. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  15. Neutron diffraction studies for realtime leaching of catalytic Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iles, Gail N., E-mail: gail.iles@helmholtz-berlin.de; Reinhart, Guillaume, E-mail: guillaume.reinhart@im2np.fr; Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processingmore » route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.« less

  16. Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian

    2002-01-01

    Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.

  17. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California

    USGS Publications Warehouse

    Fumal, T.E.; Rymer, M.J.; Seitz, G.G.

    2002-01-01

    Paleoseismic investigations across the Mission Creek strand of the San Andreas fault at Thousand Palms Oasis indicate that four and probably five surface-rupturing earthquakes occurred during the past 1200 years. Calendar age estimates for these earthquakes are based on a chronological model that incorporates radio-carbon dates from 18 in situ burn layers and stratigraphic ordering constraints. These five earthquakes occurred in about A.D. 825 (770-890) (mean, 95% range), A.D. 982 (840-1150), A.D. 1231 (1170-1290), A.D. 1502 (1450-1555), and after a date in the range of A.D. 1520-1680. The most recent surface-rupturing earthquake at Thousand Palms is likely the same as the A.D. 1676 ?? 35 event at Indio reported by Sieh and Williams (1990). Each of the past five earthquakes recorded on the San Andreas fault in the Coachella Valley strongly overlaps in time with an event at the Wrightwood paleoseismic site, about 120 km northwest of Thousand Palms Oasis. Correlation of events between these two sites suggests that at least the southernmost 200 km of the San Andreas fault zone may have ruptured in each earthquake. The average repeat time for surface-rupturing earthquakes on the San Andreas fault in the Coachella Valley is 215 ?? 25 years, whereas the elapsed time since the most recent event is 326 ?? 35 years. This suggests the southernmost San Andreas fault zone likely is very near failure. The Thousand Palms Oasis site is underlain by a series of six channels cut and filled since about A.D. 800 that cross the fault at high angles. A channel margin about 900 years old is offset right laterally 2.0 ?? 0.5 m, indicating a slip rate of 4 ?? 2 mm/yr. This slip rate is low relative to geodetic and other geologic slip rate estimates (26 ?? 2 mm/yr and about 23-35 mm/yr, respectively) on the southernmost San Andreas fault zone, possibly because (1) the site is located in a small step-over in the fault trace and so the rate is not be representative of the Mission Creek fault, (2) slip is partitioned northward from the San Andreas fault and into the eastern California shear zone, and/or (3) slip is partitioned onto the Banning strand of the San Andreas fault zone.

  18. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  19. The Impact of Long-Run CRAF Activation Risk on International Routes

    DTIC Science & Technology

    2011-06-01

    CRAF Stage II activations. United Airlines’ Los Angeles ( LAX ) to Tokyo, Japan (NRT) route scored a low .236, while the country risk for United in...0.5969 3.0173 16.5955 CO EWR MUC 0.0038 0.0213 3.0173 16.5955 UA LAX NRT 0.0333 0.2363 4.7173 28.4942 Route Risk Score Ranges - Low: 0 - .5...International Airport LAX – Los Angles International Airport ORD – Chicago O’Hare International Airport SFO – San Francisco International Airport

  20. Effect of high intensity ultrasound on the mesostructure of hydrated zirconia

    NASA Astrophysics Data System (ADS)

    Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.

    2012-02-01

    We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.

  1. Symposium on Nondestructive Evaluation Held in San Antonio, Texas on 17- 20 April 1989

    DTIC Science & Technology

    1989-04-01

    crack-tip diffraction started from work ous orientations (tilt and skew angle) by B6ttcher et al (5 ) where diffracted and shapes (aspect ratio...Zr-Nb al - cludes optimizing the method to obtain loy. Hence, deviations from these re- the best accuracy of the depth calcu- sults with our...20 MHz), and damping. Mastroianni et al (17 ) have performed crack-tip diffraction studies on The main-bang pulse excites the trans- notches 2.5 mm

  2. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  3. Anterior segment parameters as predictors of intraocular pressure reduction after phacoemulsification in eyes with open-angle glaucoma.

    PubMed

    Hsia, Yen C; Moghimi, Sasan; Coh, Paul; Chen, Rebecca; Masis, Marisse; Lin, Shan C

    2017-07-01

    To evaluate intraocular pressure (IOP) change after cataract surgery in eyes with open-angle glaucoma (OAG) and its relationship to angle and anterior segment parameters measured by anterior segment optical coherence tomography (AS-OCT). University of California, San Francisco, California, USA. Prospective case series. Eyes were placed into a narrow-angle group or open-angle group based on gonioscopy grading. Biometric parameters were measured using AS-OCT (Visante) preoperatively, and IOP 4 months after surgery was obtained. The IOP change and its relationship to AS-OCT parameters were evaluated. Eighty-one eyes of 69 patients were enrolled. The mean age of the patients was 76.8 years. The preoperative IOP was 15.02 mm Hg on 1.89 glaucoma medications. The average mean deviation of preoperative visual field was -4.58 dB. The mean IOP reduction was 2.1 mm Hg (12.8%) from a preoperative mean of 15.0 mm Hg. The IOP reduction was significantly greater in eyes with narrow angles than in eyes with open angles (20.4% versus 8.0%) (P = .002). In multivariate analysis, preoperative IOP (β = -0.53, P < .001, R 2  = 0.40), angle-opening distance at 500 mm (β = 5.83, P = .02, R 2  = 0.45), angle-opening distance at 750 mm (β = 5.82, P = .001, R 2  = 0.52), and lens vault (β = -0.002, P = .009, R 2  = 0.47) were associated with IOP reduction postoperatively. In eyes with OAG, IOP reduction after cataract surgery was greater in eyes with narrower angles. Preoperative IOP, angle-opening distance, and lens vault were predictors for IOP reduction. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Applications of cone-beam computed tomography to assess the effects of labial crown morphologies and collum angles on torque for maxillary anterior teeth.

    PubMed

    Kong, Wei-Dong; Ke, Jun-Yu; Hu, Xiang-Quan; Zhang, Wu; Li, Shu-Shu; Feng, Yi

    2016-11-01

    Currently, cone-beam computed tomography (CBCT) has been widely used because of its capacity to evaluate the anatomic structures of the maxilla, mandible, and teeth in 3 dimensions. However, articles about the use of CBCT to evaluate the relationships between the morphology of individual teeth and torque expression remain rare. In this study, we aimed to determine the influence of labial crown morphologies and collum angles on torque for maxillary anterior teeth using CBCT. A total of 206 extracted maxillary anterior teeth were selected to establish scanning models using dental wax, and they were scanned by CBCT. Three-dimensionally reconstructed images and median sagittal sections of the teeth were digitized and analyzed with AutoCAD software (Autodesk, San Rafael, Calif). The angle α, formed by the intersection of the tangent at a certain vertical height on the labial surface from the incisal edge with the crown long axis, and the collum angle, were measured. The variations in angle α at different heights from the incisal edge for the same type of tooth were statistically significantly different (P <0.001). Moreover, the variations between collum angles and 0° for any type of maxillary anterior tooth were statistically significant (P <0.01). This study suggested that there are great differences in labial crown morphologies and collum angles for maxillary anterior teeth between persons, indicating that the morphologies of these teeth do play important roles in torque variations. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.

    PubMed

    Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C

    2017-11-01

    To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.

    PubMed

    Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita

    2018-07-15

    Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.

  7. X-Ray diffraction on large single crystals using a powder diffractometer

    DOE PAGES

    Jesche, A.; Fix, M.; Kreyssig, A.; ...

    2016-06-16

    Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimizationmore » of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.« less

  8. The new powder diffractometer D1B of the Institut Laue Langevin

    NASA Astrophysics Data System (ADS)

    Puente Orench, I.; Clergeau, J. F.; Martínez, S.; Olmos, M.; Fabelo, O.; Campo, J.

    2014-11-01

    D1B is a medium resolution high flux powder diffractometer located at the Institut Laue Langevin, ILL. D1B a suitable instrument for studying a large variety of polycrystalline materials. D1B runs since 1998 as a CRG (collaborating research group) instrument, being exploited by the CNRS (Centre National de la Recherche Scientifique, France) and CSIC (Consejo Superior de Investigaciones Cientificas, Spain). In 2008 the Spanish CRG started an updating program which included a new detector and a radial oscillating collimator (ROC). The detector, which has a sensitive height of 100mm, covers an angular range of 128°. Its 1280 gold wires provide a neutron detection point every 0.1°. The ROC is made of 198 gadolinium- based absorbing collimation blades, regular placed every 0.67°. Here the present characteristics of D1B are reviewed and the different experimental performances will be presented.

  9. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-06-15

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less

  10. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  11. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  12. Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Sehar, Fatima; Awan, M. S.; Zia, Rehana

    2016-04-01

    Bismuth-doped cobalt ferrite CoBi x Fe(2- x)O4 with x = 0, 0.1,0.2, 0.3, 0.4, 0.5 have been prepared using powder metallurgy route. The structural, morphological, elemental, magnetic and optical properties have been investigated using X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-rays, vibrating sample magnetometer and ultraviolet-visible spectrometer, respectively. X-ray diffractometer analysis confirms the formation of single-phase cubic spinel structure. As the substitution of larger ionic radii Bi3+ ions increases in cobalt ferrite which is responsible to increase the lattice parameters and decrease the crystallite size. SEM micrographs revealed the spherical shape of the particles with the nonuniform grain boundaries. The saturation magnetization decreases and bandgap energy increases as the concentration of non-magnetic Bi3+ ions increases.

  13. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    PubMed

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  14. A New Control System Software for SANS BATAN Spectrometer in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharoto; Putra, Edy Giri Rachman

    2010-06-22

    The original main control system of the 36 meter small-angle neutron scattering (SANS) BATAN Spectrometer (SMARTer) has been replaced with the new ones due to the malfunction of the main computer. For that reason, a new control system software for handling all the control systems was also developed in order to put the spectrometer back in operation. The developed software is able to control the system such as rotation movement of six pinholes system, vertical movement of four neutron guide system with the total length of 16.5 m, two-directional movement of a neutron beam stopper, forward-backward movement of a 2Dmore » position sensitive detector (2D-PSD) along 16.7 m, etc. A Visual Basic language program running on Windows operating system was employed to develop the software and it can be operated by other remote computers in the local area network. All device positions and command menu are displayed graphically in the main monitor or window and each device control can be executed by clicking the control button. Those advantages are necessary required for developing a new user-friendly control system software. Finally, the new software has been tested for handling a complete SANS experiment and it works properly.« less

  15. A New Control System Software for SANS BATAN Spectrometer in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharoto,; Putra, Edy Giri Rachman

    2010-06-22

    The original main control system of the 36 meter small‐angle neutron scattering (SANS) BATAN Spectrometer (SMARTer) has been replaced with the new ones due to the malfunction of the main computer. For that reason, a new control system software for handling all the control systems was also developed in order to put the spectrometer back in operation. The developed software is able to control the system such as rotation movement of six pinholes system, vertical movement of four neutron guide system with the total length of 16.5 m, two‐directional movement of a neutron beam stopper, forward‐backward movement of a 2Dmore » position sensitive detector (2D‐PSD) along 16.7 m, etc. A Visual Basic language program running on Windows operating system was employed to develop the software and it can be operated by other remote computers in the local area network. All device positions and command menu are displayed graphically in the main monitor or window and each device control can be executed by clicking the control button. Those advantages are necessary required for developing a new user‐friendly control system software. Finally, the new software has been tested for handling a complete SANS experiment and it works properly.« less

  16. Northern California and San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The left image of this pair was acquired by MISR's nadir camera on August 17, 2000 during Terra orbit 3545. Toward the top, and nestled between the Coast Range and the Sierra Nevadas, are the green fields of the Sacramento Valley. The city of Sacramento is the grayish area near the right-hand side of the image. Further south, San Francisco and other cities of the Bay Area are visible.

    On the right is a zoomed-in view of the area outlined by the yellow polygon. It highlights the southern end of San Francisco Bay, and was acquired by MISR's airborne counterpart, AirMISR, during an engineering check-out flight on August 25, 1997. AirMISR flies aboard a NASA ER-2 high-altitude aircraft and contains a single camera that rotates to different view angles. When this image was acquired, the AirMISR camera was pointed 70 degrees forward of the vertical. Colorful tidal flats are visible in both the AirMISR and MISR imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  17. Passive bottom reflection-loss estimation using ship noise and a vertical line array.

    PubMed

    Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M

    2017-06-01

    An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.

  18. Relating structure and flow of soft colloids

    NASA Astrophysics Data System (ADS)

    Kundu, S. K.; Gupta, S.; Stellbrink, J.; Willner, L.; Richter, D.

    2013-11-01

    To relate the complex macroscopic flow of soft colloids to details of its microscopic equilibrium and non-equilibrium structure is still one big challenge in soft matter science. We investigated several well-defined colloidal model systems like star polymers or diblock copolymer micelles by linear/non-linear rheology, static/dynamic light scattering (SLS/DLS) and small angle neutron scattering (SANS). In addition, in-situ SANS experiments during shear (Rheo-SANS) revealed directly shear induced structural changes on a microscopic level. Varying the molecular architecture of the individual colloidal particle as well as particle-particle interactions and covering at the same time a broad concentration range from the very dilute to highly concentrated, glassy regime, we could separate contributions from intra- and inter-particle softness. Both can be precisely "tuned" by varying systematically the functionality, 6 ≤ f≤ 64, for star polymers or aggregation number, 30 ≤ N agg ≤ 1000 for diblock copolymer micelles, as well as the degree of polymerization of the individual polymer arm 100 ≤ D p ≤ 3000. In dilute solutions, the characteristic shear rate at which deformation of the soft colloid is observed can be related to the Zimm time of the polymeric corona. In concentrated solutions, we validated a generalized Stokes-Einstein approach to describe the increase in macroscopic viscosity and mesoscopic self diffusion coefficient on approaching the glassy regime. Both can be explained in terms of an ultra-soft interaction potential. Moreover, non-equilibrium structure factors are obtained by Rheo-SANS. All experimental results are in excellent quantitative agreement with recent theoretical predictions.

  19. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.

    2014-01-01

    The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements inmore » the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.« less

  20. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  1. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill

    2011-03-10

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  2. Morphological Study of Poly(vinylbenzyl chloride)-Grafted Poly(ethylene-co-tetrafluoroethylene) [ETFE-g-PVBC] Films Using Small-Angle Neutron Scattering Analysis.

    PubMed

    Song, J M; Ko, B S; Sohn, J Y; Shin, J

    2016-06-01

    In this study, the effect of degree of the grafting and crosslinking on the morphology of the crystalline domain in poly(vinylbenzyl chloride)-grafted poly(ethylene-co-tetrafluoroethylene) [ETFE-g-PVBC] films was investigated using a SANS (small-angle neutron scattering) analysis. The grafted films can be used as a precursor for ion-exchange membrane. ETFE-g-PVBC films with various degrees of cross-linking were prepared by a simultaneous irradiation grafting of vinylbenzyl chloride (VBC) and divinylbenzene (DVB) onto an ETFE film. The SEM-EDX (scanning electron microscopy-energy dispersive X-ray spectroscopy) results of a cross-sectional distribution of ETFE-g-PVBC films showed that the chlorine atoms were well-distributed throughout the films. SANS profiles of the PVBC-grafted films in the absence of a DVB crosslinker showed that the crystalline domain peaks were observed and the peak maximum position shifted significantly from 0.032 Å-(-1) to 0.02 Å(-1) with an increase in the degree of grafting. However, peak maximum positions of the PVBC-grafted films in the presence of a DVB crosslinker shifted slightly from 0.02 Å(-1) to 0.024 Å(-1) with an increase in the amount of DVB monomer at same degree of grafting. These results indicate that the degree of grafting and crosslinking affect the morphology of the crystalline domain in the ETFE-g-PVBC films.

  3. Does the West Salton Detachment extend through San Gorgonio Pass, southern California?

    NASA Astrophysics Data System (ADS)

    Matti, J. C.; Langenheim, V. E.

    2008-12-01

    Rift-related extension and low-angle crustal detachment are key structural elements of the late Cenozoic southern San Andreas Fault system, as manifested by the West Salton Detachment (WSD). The most northwestern exposure of the WSD is in the Santa Rosa Mts (SRM), where the Zosel Fault bottoms a hangingwall sequence of upper Cenozoic marine and terrestrial sedimentary deposits that include stratigraphic units well known throughout the Salton Trough region. We have used geologic and geophysical data to investigate the distribution of the WSD system in the northern Salton Trough, including its possible extension into and beyond San Gorgonio Pass. Although the WSD is not exposed north of the SRM, late Miocene marine and terrigenous sedimentary rocks at Garnet Hill probably are hangingwall deposits squeezed up within the San Andreas Fault zone. West of Garnet Hill lie San Gorgonio Pass (SGP) and the 3 km-high northern escarpment of the San Jacinto Mountains (SJM). In SGP, upper Cenozoic sedimentary rocks south of the Banning strand of the San Gabriel Fault include the marine Imperial Formation and associated terrestrial deposits, a sequence similar to that in the WSD hangingwall throughout the greater Salton Trough region. We propose that the WSD originally extended from the NW head of Coachella Valley west into SGP, where the detachment may form the base of the Cenozoic marine and terrestrial sedimentary sequence. The WSD probably continues west beyond SGP, with extensional translation decreasing until the detachment intersects the Banning Fault near Calimesa. There, we propose that the WSD underlies a subsurface sedimentary package north of the San Timoteo badlands and south of the Banning Fault that a gravity low suggests is 2 km thick, and that reportedly contains marine sediment penetrated in boreholes. When ~44 km of right-slip is restored on the Banning Fault (Matti and Morton, 1993), the Calimesa low restores opposite a similar low in the northwestern Coachella Valley. The juxtaposed gravity lows mark a late Cenozoic depocenter that formed at the NW head of the Salton Trough during evolution of the San Gabriel and San Andreas Faults (10 Ma to 1.2 Ma). This reconstruction has several implications: (1) the WSD was active while the late Cenozoic sedimentary sequence in SGP accumulated in its hangingwall at 7 Ma (marine Imperial Fm) and probably as early as 10 Ma (Hathaway Fm); (2) At that time the San Jacinto Mts (SJM) began to rise in the WSD footwall, shedding sediment and landslide breccia into the SGP basin. Simultaneously, Transverse Ranges sources shed sediment southwest, south, and southeast into the SGP basin and the adjoining San Timoteo basin; (3) Prior to disruption by right-slip on the Banning Fault, the WSD probably extended around the NW head of the Salton Trough, where the detachment would have separated footwall crystalline rocks of SGP from hangingwall deposits of the Salton Trough (Coachella Fanglomerate, Imperial and Painted Hill fms). The enigmatic Whitewater Fault in the SE San Bernardino Mts may be part of the WSD. (4) Because extensional translation on the WSD diminished westward through SGP, it is doubtful that >3 km of topographic relief on the WSD footwall in the SJM resulted from footwall uplift alone during the period 10 Ma to 1.2 Ma. Post-WSD Quaternary uplift must account for an unknown component of this relief.

  4. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  5. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy?

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Becker, T. W.

    2013-09-01

    Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.

  6. Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton Fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30)

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.; Steedman, C.E.

    2008-01-01

    In this report, we present seismic data and acquisition parameters for two seismic profiles acquired in the San Bernardino, California area in May and October 2003. We refer to these seismic profiles as the San Bernardino Regional (SBR) and San Bernardino High-Resolution (SBHR) seismic profiles. We present both un-interpreted and interpreted seismic images so that the structure of the area can independently interpreted by others. We explain the rationale for our interpretations within the text of this report, and in addition, we provide a large body of supporting evidence. The SBR seismic profile extended across the San Bernardino Basin approximately N30?E from the town of Colton to the town of Highland. The data were acquired at night when the signal-to-noise ratios were reasonably good, and for the larger shots, seismic energy propagated across the ~20-km-long array. Tomographic velocity data are available to depths of about 4 km, and low-fold reflection data are available to depths in excess of 5 km. The SBR seismic data reveal an asymmetric, fault-bound basin to about 5 km depth. The SBHR seismic profile trended along the I-215 freeway from its intersection with the Santa Ana River to approximately State Road 30 in San Bernardino. Seismic data acquired along the I-215 freeway provide detailed images, with CDP spacing of approximately 2.5 m along an approximately 8.2-km-long profile; shot and geophone spacing was 5 m. For logistical reasons, the high-resolution (SBHR) seismic data were acquired during daylight hours on the shoulder of the I-215 freeway and within 5 to 10 m of high-traffic volumes, resulting in low signal-to-noise ratios. The limited offset at which refracted first-arrivals could be measured along the SBHR seismic profile limited our measurements of tomographic refraction velocities to relatively shallow (< 150 m) depths. The SBHR reflection data reveal a basin with complex structural details within the upper kilometer. The two seismic profiles show internal consistency and consistency with other existing geophysical data. Collectively, the data suggest that the I-215 freeway trends along the faulted edge of a pull-apart basin, within a zone where the principal slip of the San Jacinto Fault is transferred to the San Andreas Fault. Because the I-215 freeway trends at low angles to these flower-structure faults, both primary and numerous secondary faults are apparent between the I-10 exchange and State Road-30, suggesting that much of the 8-km-long segment of the I-215 freeway could experience movement along primary or secondary faults.

  7. Magnetic domain formation in monolayer nanoparticle films

    NASA Astrophysics Data System (ADS)

    Maranville, Brian; Krycka, Kathryn; Borchers, Julie; Hogg, Charles; Majetich, Sara; Ijiri, Yumi

    2009-03-01

    Self-assembled magnetic nanoparticle films offer promise as data storage media, but an understanding of the interactions is missing. Modified Langmuir-Blodgett methods were used to prepare monolayer films of 7 and 11 nm diameter Fe3O4 nanoparticles with large structural domains. Small-angle neutron scattering (SANS) shows a peak at a wavevector Q corresponding to the particle size and spacing, and scattering at intermediate Q indicating possible long-range correlations. We extend to lower Q with off-specular neutron reflectivity, achieving high intensity by sacrificing resolution along one in-plane direction y while retaining high resolution in the other in-plane direction x and the normal direction z. We measure in saturation and zero field to extract magnetic scattering. In high fields, the specular scattering (Qx=0) is increased, consistent with aligned moments. Preliminary results show weak magnetic scattering for nonzero Qx . Since the maximal Qx roughly corresponds to the lowest Q in SANS, the combination of these techniques allows us to quantify field-dependent magnetic domain size.

  8. Polysulfone - CNT composite membrane with enhanced water permeability

    NASA Astrophysics Data System (ADS)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  9. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki

    2017-04-01

    The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.

  10. Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Thomas E.; He, Wei; Evans, Angela C.

    Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less

  11. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE PAGES

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    2017-09-29

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  12. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  13. On the adsorption properties of magnetic fluids: Impact of bulk structure

    NASA Astrophysics Data System (ADS)

    Kubovcikova, Martina; Gapon, Igor V.; Zavisova, Vlasta; Koneracka, Martina; Petrenko, Viktor I.; Soltwedel, Olaf; Almasy, László; Avdeev, Mikhail V.; Kopcansky, Peter

    2017-04-01

    Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size 30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon.

  14. Quantifying adsorption-induced deformation of nanoporous materials on different length scales

    PubMed Central

    Morak, Roland; Braxmeier, Stephan; Ludescher, Lukas; Hüsing, Nicola; Reichenauer, Gudrung

    2017-01-01

    A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors. PMID:29021735

  15. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  16. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  17. Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.

    2014-01-01

    The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.

  18. Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles

    DOE PAGES

    Cleveland, Thomas E.; He, Wei; Evans, Angela C.; ...

    2018-02-13

    Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less

  19. SANS contrast variation study of magnetoferritin structure at various iron loading

    NASA Astrophysics Data System (ADS)

    Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter

    2015-03-01

    Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.

  20. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  1. Structural study of surfactant-dependent interaction with protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  2. Structural study of surfactant-dependent interaction with protein

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-01

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  3. Catenaries in viscous fluid

    NASA Astrophysics Data System (ADS)

    Hanna, James; Chakrabarti, Brato

    2015-11-01

    Slender structures live in fluid flows across many scales, from towed instruments to plant blades to microfluidic valves. The present work details a simple model of a flexible structure in a uniform flow. We present analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and linear drag forces. This is an extension of the classical catenaries to a five-parameter family of solutions, represented as trajectories in angle-curvature ``phase space.'' Limiting cases include neutrally buoyant towed cables and freely sedimenting flexible filaments. Now at University of California, San Diego.

  4. Synthesis of Carbonate-Based Micro/Nanoscale Particles With Controlled Morphology and Mineralogy

    DTIC Science & Technology

    2013-04-01

    patterns were obtained using a Panalytical X’Pert Pro diffractometer using iron-filtered cobalt radiation, and analyzed using Panalytical X’Pert...develop composites by hydrothermal recrystallization of metastable phases. 15. SUBJECT TERMS Aragonite Calcite Calcium carbonate Dopant Mineralogy

  5. Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4

    NASA Astrophysics Data System (ADS)

    Myoung, Bo Ra; Lim, Jung Tae; Kim, Chul Sung

    2017-09-01

    We have studied crystal and magnetic properties of chalcogenides FeGa2S4 and FeIn2S4 with X-ray diffractometer (XRD), magnetic property measurement system (MPMS), magnetometer, physical property measurement system (PPMS), and Mössbauer spectrometer. The crystal structure has 2-dimension triangular lattice structure with P-3m1 of FeGa2S4, while FeIn2S4 has inverse spinel with space group Fd3m. The AC magnetic susceptibility measurements show that FeGa2S4 is an insulating spin glass material, exhibiting geometrical frustration, unlike in the antiferromagnetic [AFM] metallic spin glass FeIn2S4. From hysteresis (M-H) curves at 4.2 K, FeGa2S4 has spin-flop behavior with an angle of 120° of triangle, as against linear slope of FeIn2S4 due to anti-parallel spin. The gap energy by splitting of 5T2g, Δ1 and electric quadrupole splitting ΔEQ of FeIn2S4 are much higher than that of FeGa2S4 at 4.2 K because FeGa2S4 is geometrically frustrated magnet having degenerate ground state at low temperature.

  6. X-ray scattering signatures of β-thalassemia

    NASA Astrophysics Data System (ADS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  7. Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction

    NASA Astrophysics Data System (ADS)

    Mora, J. Alejandro; Oncken, Onno; Le Breton, Eline; Ibánez-Mejia, Mauricio; Faccenna, Claudio; Veloza, Gabriel; Vélez, Vickye; de Freitas, Mario; Mesa, Andrés.

    2017-11-01

    Collision with and subduction of an oceanic plateau is a rare and transient process that usually leaves an indirect imprint only. Through a tectonostratigraphic analysis of pre-Oligocene sequences in the San Jacinto fold belt of northern Colombia, we show the Late Cretaceous to Eocene tectonic evolution of northwestern South America upon collision and ongoing subduction with the Caribbean Plate. We linked the deposition of four fore-arc basin sequences to specific collision/subduction stages and related their bounding unconformities to major tectonic episodes. The Upper Cretaceous Cansona sequence was deposited in a marine fore-arc setting in which the Caribbean Plate was being subducted beneath northwestern South America, producing contemporaneous magmatism in the present-day Lower Magdalena Valley basin. Coeval strike-slip faulting by the Romeral wrench fault system accommodated right-lateral displacement due to oblique convergence. In latest Cretaceous times, the Caribbean Plateau collided with South America marking a change to more terrestrially influenced marine environments characteristic of the upper Paleocene to lower Eocene San Cayetano sequence, also deposited in a fore-arc setting with an active volcanic arc. A lower to middle Eocene angular unconformity at the top of the San Cayetano sequence, the termination of the activity of the Romeral Fault System, and the cessation of arc magmatism are interpreted to indicate the onset of low-angle subduction of the thick and buoyant Caribbean Plateau beneath South America, which occurred between 56 and 43 Ma. Flat subduction of the plateau has continued to the present and would be the main cause of amagmatic post-Eocene deposition.

  8. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  9. Analgesic and anti-arthritic effects of Lingzhi and San Miao San supplementation in a rat model of arthritis induced by Freund's complete adjuvant.

    PubMed

    Lam, Francis Fu Yuen; Ko, Iris Wai Man; Ng, Ethel Sau Kuen; Tam, Lai Shan; Leung, Ping Chung; Li, Edmund Kwok Ming

    2008-10-30

    In this study, we have investigated the analgesic and anti-arthritic effects of a traditional Chinese medicine (TCM) combination of Lingzhi and San Miao San (SMS) in a rat model of arthritis induced by Freund's complete adjuvant (FCA). Sprague-Dawley rats were induced with monoarthritis by single unilateral injection of FCA into the knee joint. The TCM combination was administered to the rats daily by intraperitoneal injection (50mg/(kgday)) or via oral administration (500mg/(kgday)) for 7 days before induction of arthritis and 7 days after. Extension angle that provoked struggling behavior, and size and blood flow of the rat knees were measured to give indexes of allodynia, edema, and hyperemia, respectively. The extent of cell infiltration, tissue proliferation, and erosions of joint cartilage provided additional indexes of the arthritis condition. FCA injection produced significant allodynia, edema, hyperemia, immune cell infiltration, synovial tissue proliferation, and erosions of joint cartilage in the ipsilateral knees compared with the contralateral saline-injected knees. Intraperitoneal injection of the TCM combination (50mg/(kgday)) suppressed allodynia, edema, and hyperemia in the inflamed knees, and oral administration (500mg/(kgday)) suppressed edema and hyperemia. Histological examination showed that the TCM administered by either route reduced immune cell infiltration and erosion of joint cartilage. These findings suggest the Lingzhi and SMS formulation has analgesic and anti-inflammatory effects in arthritic rat knees, and concur to previous clinical studies that showed the TCM combination reduced pain in rheumatoid arthritis patients, and extends its possible benefit to suppression of inflammatory symptoms in these patients.

  10. Influence of water-insoluble nonionic copolymer E(6)P(39)E(6) on the microstructure and self-aggregation dynamics of aqueous SDS solution-NMR and SANS investigations.

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Aswal, V K; Mandal, Asit Baran

    2013-10-28

    The influence of water-insoluble nonionic triblock copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E6P39E6 with molecular weight 2800, on the microstructure and self-aggregation dynamics of anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D2O) were investigated using high resolution nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) measurements. Variable concentration and temperature proton ((1)H), carbon ((13)C) NMR chemical shifts, (1)H self-diffusion coefficients, (1)H spin-lattice and spin-spin relaxation rates data indicate that the higher hydrophobic nature of copolymer significantly influenced aggregation characteristics of SDS. The salient features of the NMR investigations include (i) the onset of mixed micelles at lower SDS concentrations (<3 mM) relative to the copolymer-free case and their evolution into SDS free micelles at higher SDS concentrations (~30 mM), (ii) disintegration of copolymer-SDS mixed aggregate at moderate SDS concentrations (~10 mM) and still binding of a copolymer with SDS and (iii) preferential localization of the copolymer occurred at the SDS micelle surface. SANS investigations indicate prolate ellipsoidal shaped mixed aggregates with an increase in SDS aggregation number, while a contrasting behavior in the copolymer aggregation is observed. The aggregation features of SDS and the copolymer, the sizes of mixed aggregates and the degree of counterion dissociation (α) extracted from SANS data analysis corroborate reasonably well with those of (1)H NMR self-diffusion and sodium ((23)Na) spin-lattice relaxation data.

  11. SANS study of HC1 extraction by selected neutral organophosphorus compounds in n-octane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarizia, R.; Stepinski, D.; Antonio, M. R.

    2010-01-01

    The extraction of HCl by tri(2-ethylhexyl) phosphate (TEHP), tri-n-octyl phosphate (TOP), and tri-n-octylphosphine oxide (TOPO) in n-octane was investigated by liquid-liquid distribution of acid and water and small-angle neutron scattering (SANS) measurements. No formation of a heavy organic phase (third phase) was observed with TEHP and TOP under the experimental conditions used, whereas for 0.4 M TOPO the HCl limiting organic concentration (LOC) at 23 C was 0.32 M (with 5.1 M HCl in the equilibrium aqueous phase). For higher HCl concentrations in the aqueous phase, the organic phase splits into a light and a heavy layer. For TEHP andmore » TOP, the SANS results, interpreted using the Baxter model for hard spheres with surface adhesion, indicated the formation of only small reverse micelles with little intermicellar attraction. For TOPO, the scattering signals suggested the formation of much larger and strongly interacting micelles. The critical values of the stickiness parameter, {tau}{sup -1}, and the interaction potential energy, U(r), for the LOC sample in the TOPO system were consistent with the model for third-phase formation previously developed for tri-n-butyl phosphate (TBP). According to this model, organic phase splitting is due to van der Waals interactions between the polar cores of reverse micelles formed by the extractants in the organic phase.« less

  12. Small angle neutron scattering (SANS) study of gastric mucin solutions

    NASA Astrophysics Data System (ADS)

    Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.

    2002-03-01

    We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.

  13. Structural changes in block copolymer micelles induced by cosolvent mixtures†

    PubMed Central

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.

    2013-01-01

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles. PMID:24282441

  14. Structural changes in block copolymer micelles induced by cosolvent mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.

    2012-11-26

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (lowmore » interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.« less

  15. Offshore geology and geomorphology from Point Piedras Blancas to Pismo Beach, San Luis Obispo County, California

    USGS Publications Warehouse

    Watt, Janet Tilden; Johnson, Samuel Y.; Hartwell, Stephen R.; Roberts, Michelle

    2015-01-01

    Sea level was approximately 120 to 130 m lower during the Last Glacial Maximum (about 21 ka). This approximate depth corresponds to the modern shelf break, a lateral change from the gently dipping (0.8° to 1.0°) outer shelf to the slightly more steeply dipping (about 1.5° to 2.5°) upper slope in the central and northern parts of the map area. South of Point San Luis in San Luis Bay, deltaic deposits offshore of the mouth of the Santa Maria River (11 km south of the map area) have prograded across the shelf break and now form a continuous low-angle (about 0.8°) ramp that extends to water depths of more than 160 m. The shelf break defines the landward boundary of slope deposits. North of Estero Bay, the shelf break is characterized by a distinctly sharp slope break that is mapped as a landslide headscarp above landslide deposits. Multibeam imagery and seismic-reflection profiles across this part of the shelf break show evidence of slope failure, such as slumping, sliding, and soft-sediment deformation, along the entire length of the scarp. Notably, this shelf-break scarp corresponds to a west splay of the Hosgri Fault that dies out just north of the scarp, suggesting that faulting is controlling the location (and instability) of the shelf break in this area.

  16. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of varying cross-sectional diameters. The biochemical experiments not only confirmed the ability of the core constituents to form large aggregates but also established that phospholipids do not play a role in this aggregate formation.

  17. Textural development of clayey and quartzofeldspathic fault gouges relative to their sliding behavior

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.D.

    1990-01-01

    Many of the secondary fault structures developed during triaxial friction experiments have been generally correlated with the structures of natural fault zones. Therefore, any physical differences that can be found between laboratory samples that slide stably and those that show stick-slip motion may help to identify the cause of earthquakes. We have examined petrographically the run products of many triaxial friction experiments using clayey and quartzofeldspathic gouges, which comprise the principal types of natural fault gouge material. The examined samples were tested under a wide range of temperature, confining and fluid pressure, and velocity conditions. The clayey and quartzofeldspathic gouges show some textural differences, owing to their different mineral contents and grain sizes and shapes. In the clayey gouges, for example, a clay mineral fabric and kink band sets are commonly developed, whereas in the quartzofeldspathic gouges fracturing and crushing of the predominately quartz and feldspar grains are important processes. For both types of gouge, however, and whatever the pressure-temperature-velocity conditions of the experiments, the transition from stable sliding to stick-slip motion is correlated with: (i) a change from pervasive deformation of the gouge layer to localized slip in subsidiary shears; and (ii) an increase in the angle betweem the shears that crosscut the gouge layer (Riedel shears) and ones that form along the gouge-rock cylinder boundaries (boundary shears). This suggests that the localization of shear within a fault zone combined with relatively high Riedel-shear angles are somehow connected with earthquakes. Secondary fracture sets similar to Riedel shears have been identified at various scales in major strike-slip faults such as the San Andreas of the western United States (Wallace, 1973) and the Luhuo and Fuyun earthquake faults of China (Deng and Zhang, 1984; Deng et al., 1986). The San Andreas also contains locked and creeping sections that correspond to the stick-slip and stably sliding experimental samples, respectively. We plan to study the physical structure of the San Andreas fault, to see if the experimentally observed differences related to sliding behavior can also be distinguished in the field. ?? 1990.

  18. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  19. Modeling of the focusing device and the elliptical neutron guide for the DN-6 diffractometer at IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Belushkin, A. V.; Manoshin, S. A.; Kozlenko, D. P.; Kichanov, S. E.

    2018-06-01

    Possible options for modernization of the neutron beam forming system of the DN-6 diffractometer for the study of crystal and magnetic structures of microsamples at high pressures are being considered. It was demonstrated that for samples with the cross-section not exceeding 5 × 5 mm2 the most efficient option would be the use of an elliptical neutron guide. It allows to deliver neutrons for large distances from the source to samples with minimal losses using, as a rule, just one neutron reflection per dimension i.e. one at a side and one at top or bottom. For the present moment due to technical difficulties of such option realization, the simplified solution was proposed. At the end of the curved neutron guide it is planned to install a vertical plane focusing 7-meter-long parabolic section. Such a modernization will increase the neutron flux at the sample by a factor 1.5-3.5 and reduce respectively the typical measurement times.

  20. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  1. Hippo/crates-in-situ deformation strain and testure studies using neutron time-of-flight diffraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, S. C.; Hartig, C.; Brissier, T. D.

    2005-01-01

    In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less

  2. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.

    2012-05-15

    A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less

  3. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru

    2013-06-15

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an externalmore » driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.« less

  4. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex.

    PubMed

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  5. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.

    PubMed

    Rath, Emma M; Duff, Anthony P; Gilbert, Elliot P; Doherty, Greg; Knott, Robert B; Church, W Bret

    2017-07-01

    The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Evaluation of the coracoid and coracoacromial arch geometry on Thiel-embalmed cadavers using the three-dimensional MicroScribe digitizer.

    PubMed

    Alobaidy, Mohammad A; Soames, Roger W

    2016-01-01

    Understanding the geometry of the coracoid and coracoacromial arch will improve surgical intervention in shoulder surgery. Thirty pairs of scapulae from 20 female and 10 male deceased donors, average age of 82 years (range, 62-101 years), were scanned and measurements taken using the 3-dimensional (3D) MicroScribe digitizer (Immersion Corp, San Jose CA, USA) and Rhino software (McNeel North America, Seattle, WA, USA). The following mean angles were determined: coracoid slope, 44° ± 11°; coracoid deviation, 35° ± 6°; coracoid root to glenoid, 115° ± 14°; coracoid head to glenoid, 110° ± 11°; scapular spine angle, 35° ± 6°; and coracoacromial angle, 63° ± 9°. The following mean distances were also determined: coracoid height, 10 ± 3 mm; coracoacromial distance, 42 ± 7 mm; coracoacromial arch height, 20 ± 5 mm; and coracoid (anterior, 29 ± 6 mm; middle, 20 ± 4 mm; posterior tip, 18 ± 6 mm) to the glenoid fossa. The coracoid root-to-glenoid angle was significantly correlated with the coracoacromial angle. In addition, coracoid slope was significantly correlated with coracoid root-to-glenoid angle and also with coracoid deviation. Left shoulders had a significantly higher coracoid-to-glenoid angle (P < .029) than right shoulders. Women had a significantly higher coracoid root-to-glenoid angle than men (P < .042), and men had a significantly higher coracoid deviation (P < .011), anterior (P < .006) and posterior coracoid-to-glenoid distances (P < .03), and coracoacromial arch height (P < .07) than women. This is the first time that the 3D MicroScribe digitizer has been used to evaluate the geometry of the coracoacromial arch and coracoid process. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Crystallization behavior of polyamide-6 microcellular nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi

    2004-09-01

    The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...

  8. POWTEX Neutron Diffractometer at FRM II - New Perspectives for In-Situ Rock Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B. T.; Kuhs, W. F.

    2012-04-01

    In Geoscience quantitative texture analysis here defined as the quantitative analysis of the crystallographic preferred orientation (CPO), is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Bulk texture measurements also allow the quantitative characterisation of the anisotropic physical properties of rock materials. A routine tool to measure bulk sample volumes is neutron texture diffraction, as neutrons have large penetration capabilities of several cm in geological sample materials. The new POWTEX (POWder and TEXture) Diffractometer at the neutron research reactor FRM II in Garching, Germany is designed as a high-intensity diffractometer by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast time-resolved experiments and the measurement of larger sample series as necessary for the study of large scale geological structures. POWTEX is a dedicated beam line for geoscientific research. Effective texture measurements without sample tilting and rotation are possible firstly by utilizing a range of neutron wavelengths simultaneously (Time-of-Flight technique) and secondly by the high detector coverage (9.8 sr) and a high flux (~1 - 107 n/cm2s) at the sample. Furthermore the instrument and the angular detector resolution is designed also for strong recrystallisation textures as well as for weak textures of polyphase rocks. These instrument characteristics allow in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials as large sample environments will be implemented at POWTEX. The in-situ deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 250 kN, which will be redesigned to minimize shadowing effects inside the cylindrical detector. The HT deformatione experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The deformation apparatus is designed for continuous long-term deformation experiments and can be exchanged between in-situ and ex-situ placements during continuous operation inside and outside the neutron detector.

  9. Radiographic angles in hallux valgus: differences between measurements made manually and with a computerized program.

    PubMed

    Piqué-Vidal, Carlos; Maled-García, Ignaci; Arabi-Moreno, Juanjo; Vila, Joan

    2006-03-01

    The objective of this study was to compare angular measurements in the evaluation of hallux valgus deformities using a goniometer and a computerized program to assess degree of concordance between the two methods and determine the reliability of manual measurements. Angles measured included the hallux valgus angle (HVA), the intermetatarsal angle (IMA), the distal metatarsal articular angle (DMAA), and the proximal phalangeal articular angle (PPAA), also called the hallux valgus interphalangeus angle or interphalangeal angle. Measurements were made on preoperative weightbearing radiographs in 176 patients with symptomatic hallux valgus. Manual measurements were made with a goniometer by an orthopaedic surgeon. An independent experienced technician used digitized images to perform angular measurements with the Autocad software program (Autodesk Inc., San Rafael, CA). HVA values obtained with the two techniques were similar. However, significantly higher mean values were obtained with the Autocad for the IMA and PPAA measurements, and higher mean values were obtained for the DMAA measurement with the manual technique. Whereas differences were more or less randomly distributed for the HVA, in the remaining patients, measurements were clearly related to the measurement technique, i.e., for the DMAA, the manual technique had a tendency to show higher values, and for the IMA and PPAA the manual technique showed lower values than the computer. Correlations between both techniques for the different angular measurements were as follows: HVA, -0.179 (p = 0.018); DMMA, -0.294 (p < 0.001); PPAA, -0.876 (p < 0.001); and IMA, -0.661 (p < 0.001). The intraclass correlation coefficient (ICC) showed that the concordance between manual and Autocad angular measurements was excellent for the HVA (ICC = 0.89) and DMAA (ICC = 0.80) and very poor for the PPAA (ICC = 0.11) and IMA (ICC = 0.42). Angular measurements made on weightbearing radiographs with the Autocad in patients with hallux valgus deformities were more reliable than those made with a goniometer. Although for large angles, such as HVA and DMAA, results obtained with both measurement techniques were similar. Manual measurements, however, may underestimate the true values of the smaller IMA and PPAA angles.

  10. Microwave Diffraction Techniques from Macroscopic Crystal Models

    ERIC Educational Resources Information Center

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  11. Asymptotics of action variables near semi-toric singularities

    NASA Astrophysics Data System (ADS)

    Wacheux, Christophe

    2015-12-01

    The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.

  12. The Morphology of Titanium Dioxide Aerogels

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu

    The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.

  13. MISR Multi-angle Views of Sunday Morning Fires

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Hot, dry Santa Ana winds began blowing through the Los Angeles and San Diego areas on Sunday October 21, 2007. Wind speeds ranging from 30 to 50 mph were measured in the area, with extremely low relative humidities. These winds, coupled with exceptionally dry conditions due to lack of rainfall resulted in a number of fires in the Los Angeles and San Diego areas, causing the evacuation of more than 250,000 people.

    These two images show the Southern California coast from Los Angeles to San Diego from two of the nine cameras on the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite. These images were obtained around 11:35 a.m. PDT on Sunday morning, October 21, 2007 and show a number of plumes extending out over the Pacific ocean. In addition, locations identified as potential hot spots from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the same satellite are outlined in red.

    The left image is from MISR's nadir looking camera and the plumes appear very faint. The image on the right is from MISR's 60o forward looking camera, which accentuates the amount of light scattered by aerosols in the atmosphere, including smoke and dust. Both these images are false color and contain information from MISR's red, green, blue and near-infrared wavelengths, which makes vegetated land appear greener than it would naturally. Notice in the right hand image that the color of the plumes associated with the MODIS hot spots is bluish, while plumes not associated with hot spots appear more yellow. This is because the latter plumes are composed of dust kicked up by the strong Santa Ana winds. In some locations along Interstate 5 on this date, visibility was severely reduced due to blowing dust. MISR's multiangle and multispectral capability give it the ability to distinguish smoke from dust in this situation.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These images were generated from a portion of the imagery acquired during Terra orbit 41713, and use data from blocks 63 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. JPL is a division of the California Institute of Technology.

  14. Geologic map of the Palo Alto and part of the Redwood Point 7-1/2' quadrangles, San Mateo and Santa Clara counties, California

    USGS Publications Warehouse

    Pampeyan, Earl H.

    1993-01-01

    The Palo Alto and southern part of the Redwood Point 7-1/2' quadrangles cover an area on the San Francisco peninsula between San Francisco Bay and the Santa Cruz Mountains. San Francisquito and Los Trancos Creeks, in the southeastern part of the map area, form the boundary between San Mateo and Santa Clara Counties. The area covered by the geologic map extends from tidal and marsh lands at the edge of the bay southward across a gently sloping alluvial plain to the foothills of the northern Santa Cruz Mountains. The foothills are separated from the main mass of the mountains by two northwest-striking faults, the San Andreas and Pilarcitos, that cross the southwest corner of the map area (fig. 1). The map and adjoining areas are here divided into three structural blocks juxtaposed along these faults, adopting the scheme of Nilsen and Brabb (1979): (1) the San Francisco Bay block lying east of the San Andreas Fault Zone; (2) the Pilarcitos block lying between the San Andreas and Pilarcitos Faults; and (3) the La Honda block that includes the main mass of the Santa Cruz Mountains lying west of the Pilarcitos Fault. The west boundary of the La Honda block is the Seal Cove-San Gregorio Fault. Pre-late Pleistocene Cenozoic rocks of the foothills have been compressed into northwest-striking folds, which have been overridden by Mesozoic rocks along southwest-dipping low-angle faults. Coarse- to fine-grained upper Pleistocene and Holocene alluvial and estuarine deposits, eroded from the foothills and composing the alluvial plain, are essentially undeformed. Most of the alluvial plain, including some parts of the marsh land that borders the bay, has been covered by residential and commercial developments, and virtually all of the remaining marsh land has been diked off and used as salt evaporating ponds. The map area includes parts of the municipalities of San Carlos, Redwood City, Atherton, Woodside, Portola Valley, Menlo Park, and East Palo Alto in San Mateo County; and Palo Alto, Stanford University, Los Altos, and Los Altos Hills in Santa Clara County (fig. 2). Much of the university land remains as undeveloped open space surrounded by densely urbanized lands. Geologic maps of all or part of the present map area have been prepared previously by Branner and others (1909), Thomas (1949), Dobbs and Forbes (1960), Dibblee (1966), Page and Tabor (1967), Pampeyan (1970a, 1970b), Beaulieu (1970), Helley and others (1979), and by numerous Stanford University students working on topical earth science problems. In addition, numerous engineering geologic studies have been conducted for site investigations relating to residential and commercial developments and, in particular, for construction of the Stanford Linear Accelerator Center (SLAC). The reports pertaining to SLAC are summarized in Skjei and others (1965) and more recently in a report by Earth Sciences Associates (1983). The interested reader is referred to Brabb and Pampeyan (1983), Brabb and others (1982), Wentworth and others (1985), Wieczorek and others (1985), Thomson and Evernden (1986), Brabb and Olson (1986), Youd and Perkins (1987), Perkins (1987), and Mark and Newman (1988) for information pertaining to geology, history, slope stability, seismic shaking, liquifaction potential, and faulting and seismicity in San Mateo County, some of which can be applied directly to northern Santa Clara County. Field work for the present geologic map was done in 1962-1964 and 1966 when SLAC and Interstate 280 were in early stages of construction. Only minor additions and revisions have been made since this mapping was first released (Pampeyan, 1970a; 1970b) as it was impractical to keep pace with accelerating urban development of the area. Geologic units of the flatlands area are largely adapted from Helley and Lajoie (1979).

  15. Interactions of the anticancer drug tamoxifen with lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing

    Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer areamore » compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Lastly, our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.« less

  16. Assessment of Radiation Embrittlement in Nuclear Reactor Pressure Vessel Surrogate Materials

    NASA Astrophysics Data System (ADS)

    Balzar, Davor

    2010-10-01

    The radiation-enhanced formation of small (1-2 nm) copper-rich precipitates (CRPs) is critical for the occurrence of embrittlement in nuclear-reactor pressure vessels. Small CRPs are coherent with the bcc matrix, which causes local matrix strain and interaction with the dislocation strain fields, thus impeding dislocation mobility. As CRPs grow, there is a critical size at which a phase transformation occurs, whereby the CRPs are no longer coherent with the matrix, and the strain is relieved. Diffraction-line-broadening analysis (DLBA) and small-angle neutron scattering (SANS) were used to characterize the precipitate formation in surrogate ferritic reactor-pressure vessel steels. The materials were aged for different times at elevated temperature to produce a series of specimens with different degrees of copper precipitation. SANS measurements showed that the precipitate size distribution broadens and shifts toward larger sizes as a function of ageing time. Mechanical hardness showed an increase with ageing time, followed by a decrease, which can be associated with the reduction in the number density as well as the loss of coherency at larger sizes. Inhomogeneous strain correlated with mechanical hardness.

  17. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  18. Interactions of the anticancer drug tamoxifen with lipid membranes

    DOE PAGES

    Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing; ...

    2015-05-19

    Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer areamore » compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Lastly, our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.« less

  19. Investigating structural details of lipid-cholesterol-A β interactions

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Anunciado, Divina; Heller, William; O'Neill, Hugh; Urban, Volker; Qian, Shuo

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia and is predicted to affect 1 in 85 people around the world by 2050. Amyloid beta (A β) -peptide, a peptide composed of 40- 42 amino acids that is the product of cleavage from the amyloid precursor protein (APP), is regarded to play a major role in the development of AD. In addition, accumulating evidence points to a positive association between cholesterol and AD. Here, we present results from our studies about A β-peptide and cholesterol in bilayer by small-angle neutron scattering (SANS) using a combination of dimyristoyl, phosphocholine (DMPC) and partially deuterated cholesterol (cholesterol-d7) with and without A β. We compare the results using grazing incidence and transmission SANS on lipid bilayer films and unilamellar vesicles respectively. The structural details on vesicles and bilayers work in conjunction with the circular dichroism on peptide in solution and oriented circular dichroism in bilayer films. The studies confirm a positive association of A β with the membrane layers. The results from different studies will be compared and contrasted in presentation.

  20. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    PubMed

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  1. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix.

    PubMed

    Musch, Judith; Schneider, Stefanie; Lindner, Peter; Richtering, Walter

    2008-05-22

    The thermoresponsive behavior of poly-(N-isopropylacrylamide) (PNiPAM) microgels embedded in a covalently cross-linked polyacrylamide hydrogel matrix was investigated using ultraviolet-visible (UV-vis) spectroscopy, small-angle neutron scattering (SANS), and confocal laser scanning microscopy. The hydrogel synthesis was performed at two different temperatures, below and above the volume phase transition temperature of PNiPAM, resulting in highly swollen or fully collapsed PNiPAM microgel particles during the incorporation step. UV-vis spectroscopy experiments verify that the incorporation of thermosensitive microgels leads to temperature-sensitive optical properties of the composite materials. SANS measurements at different temperatures show that the thermosensitive swelling behavior of the PNiPAM microgels is fully retained in the composite material. Volume and structure criteria of the embedded microgel particles are compared to those of the free microgels in acrylamide solution. To visualize the temperature responsive behavior of larger PNiPAM particles, confocal fluorescence microscopy images of PNiPAM beads, of 40-microm size, were taken at two different temperatures. The micrographs also demonstrate the retained temperature sensitivity of the embedded microgels.

  2. Slope maps of the San Francisco Bay region, California a digital database

    USGS Publications Warehouse

    Graham, Scott E.; Pike, Richard J.

    1998-01-01

    PREFACE: Topography, the configuration of the land surface, plays a major role in various natural processes that have helped shape the ten-county San Francisco Bay region and continue to affect its development. Such processes include a dangerous type of landslide, the debris flow (Ellen and others, 1997) as well as other modes of slope failure that damage property but rarely threaten life directly?slumping, translational sliding, and earthflow (Wentworth and others, 1997). Different types of topographic information at both local and regional scales are helpful in assessing the likelihood of slope failure and the mapping the extent of its past activity, as well as addressing other issues in hazard mitigation and land-use policy. The most useful information is quantitative. This report provides detailed digital data and plottable map files that depict in detail the most important single measure of ground-surface form for the Bay region, slope angle. We computed slope data for the entire region and each of its constituent counties from a new set of 35,000,000 digital elevations assembled from 200 local contour maps.

  3. Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    1999-01-01

    The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.

  4. Marine geology and earthquake hazards of the San Pedro Shelf region, southern California

    USGS Publications Warehouse

    Fisher, Michael A.; Normark, William R.; Langenheim, V.E.; Calvert, Andrew J.; Sliter, Ray

    2004-01-01

    High-resolution seismic-reflection data have been com- bined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro Shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington Graben, the Palos Verdes Fault Zone, various faults below the western part of the shelf and slope, and the deep-water San Pedro Basin. The structure of the Palos Verdes Fault Zone changes mark- edly southeastward across the San Pedro Shelf and slope. Under the northern part of the shelf, this fault zone includes several strands, but the main strand dips west and is probably an oblique-slip fault. Under the slope, this fault zone con- sists of several fault strands having normal separation, most of which dip moderately east. To the southeast near Lasuen Knoll, the Palos Verdes Fault Zone locally is a low-angle fault that dips east, but elsewhere near this knoll the fault appears to dip steeply. Fresh sea-floor scarps near Lasuen Knoll indi- cate recent fault movement. The observed regional structural variation along the Palos Verdes Fault Zone is explained as the result of changes in strike and fault geometry along a master strike-slip fault at depth. The shallow summit and possible wavecut terraces on Lasuen knoll indicate subaerial exposure during the last sea-level lowstand. Modeling of aeromagnetic data indicates the presence of a large magnetic body under the western part of the San Pedro Shelf and upper slope. This is interpreted to be a thick body of basalt of Miocene(?) age. Reflective sedimentary rocks overlying the basalt are tightly folded, whereas folds in sedimentary rocks east of the basalt have longer wavelengths. This difference might mean that the basalt was more competent during folding than the encasing sedimentary rocks. West of the Palos Verdes Fault Zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because age dates on deformed or offset sediment are lacking.

  5. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  6. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  7. SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid

    DOE PAGES

    Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi; ...

    2016-06-17

    Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less

  8. 3D reconstruction of carbon nanotube networks from neutron scattering experiments

    DOE PAGES

    Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; ...

    2015-09-03

    Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less

  9. 3D reconstruction of carbon nanotube networks from neutron scattering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa

    Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less

  10. Locus-specific microemulsion catalysts for sulfur mustard (HD) chemical warfare agent decontamination.

    PubMed

    Fallis, Ian A; Griffiths, Peter C; Cosgrove, Terence; Dreiss, Cecile A; Govan, Norman; Heenan, Richard K; Holden, Ian; Jenkins, Robert L; Mitchell, Stephen J; Notman, Stuart; Platts, Jamie A; Riches, James; Tatchell, Thomas

    2009-07-22

    The rates of catalytic oxidative decontamination of the chemical warfare agent (CWA) sulfur mustard (HD, bis(2-chlororethyl) sulfide) and a range (chloroethyl) sulfide simulants of variable lipophilicity have been examined using a hydrogen peroxide-based microemulsion system. SANS (small-angle neutron scattering), SAXS (small-angle X-ray scattering), PGSE-NMR (pulsed-gradient spin-echo NMR), fluorescence quenching, and electrospray mass spectroscopy (ESI-MS) were implemented to examine the distribution of HD, its simulants, and their oxidation/hydrolysis products in a model oil-in-water microemulsion. These measurements not only present a means of interpreting decontamination rates but also a rationale for the design of oxidation catalysts for these toxic materials. Here we show that by localizing manganese-Schiff base catalysts at the oil droplet-water interface or within the droplet core, a range of (chloroethyl) sulfides, including HD, spanning some 7 orders of octanol-water partition coefficient (K(ow)), may be oxidized with equal efficacy using dilute (5 wt. % of aqueous phase) hydrogen peroxide as a noncorrosive, environmentally benign oxidant (e.g., t(1/2) (HD) approximately 18 s, (2-chloroethyl phenyl sulfide, C(6)H(5)SCH(2)CH(2)Cl) approximately 15 s, (thiodiglycol, S(CH(2)CH(2)OH)(2)) approximately 19 s {20 degrees C}). Our observations demonstrate that by programming catalyst lipophilicity to colocalize catalyst and substrate, the inherent compartmentalization of the microemulsion can be exploited to achieve enhanced rates of reaction or to exert control over product selectivity. A combination of SANS, ESI-MS and fluorescence quenching measurements indicate that the enhanced catalytic activity is due to the locus of the catalyst and not a result of partial hydrolysis of the substrate.

  11. Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Majetich, Sara

    2009-03-01

    Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).

  12. Sphere-to-rod transition of non-surface-active amphiphilic diblock copolymer micelles: a small-angle neutron scattering study.

    PubMed

    Kaewsaiha, Ploysai; Matsumoto, Kozo; Matsuoka, Hideki

    2007-08-28

    Micellization behavior of amphiphilic diblock copolymers with strong acid groups, poly(hydrogenated isoprene)-block-poly(styrenesulfonate), was investigated by small-angle neutron scattering (SANS). We have reported previously (Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938) that this strongly ionic amphiphilic diblock copolymer shows almost no surface activity but forms micelles in water. In this study, the size, shape, and internal structures of the micelles formed by these unique copolymers in aqueous solution were duly investigated. The SANS data were well described by the theoretical form factor of a core-shell model and the Pedersen core-corona model. The micellar shape strongly depends on the hydrophobic chain length of the block copolymer. The polymer with the shortest hydrophobic chain was suggested to form spherical micelles, whereas the scattering curves of the longer hydrophobic chain polymers showed a q-1 dependence, reflecting the formation of rodlike micelles. Furthermore, the addition of salt at high concentration also induced the sphere-to-rod transition in micellar shape as a result of the shielding effect of electrostatic repulsion. The corona thickness was almost constant up to the critical salt concentration (around 0.2 M) and then decreased with further increases in salt concentration, which is in qualitatively agreement with existing theories. The spherical/rodlike micelle ratio was also constant up to the critical salt concentration and then decreased. The micelle size and shape of this unique polymer could be described by the common concept of the packing parameter, but the anomalously stable nature of the micelle (up to 1 M NaCl) is a special characteristic.

  13. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    PubMed

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai

    2017-04-01

    To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    NASA Astrophysics Data System (ADS)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  15. Structure of cellulose microfibrils in mature cotton fibres.

    PubMed

    Martínez-Sanz, Marta; Pettolino, Filomena; Flanagan, Bernadine; Gidley, Michael J; Gilbert, Elliot P

    2017-11-01

    The structure of cellulose microfibrils in mature cotton fibres from three varieties - Gossypium hirsutum, G. barbadense and G. arboreum - has been investigated by a multi-technique approach combining small angle scattering techniques with spectroscopy and diffraction. Cellulose microfibrils present a Iβ-rich crystalline structure with limited surface disorder. Small angle scattering (SAXS and SANS) data have been successfully fitted using a core-shell model and the results obtained indicate that the cellulose microfibrils, formed by the association of 2-3 elementary fibrils, are composed of a ca. 2nm impermeable crystalline core, surrounded by a partially hydrated paracrystalline shell, with overall cross-sections of ca. 3.6-4.7nm. Different low levels of cell wall matrix components have a strong impact on the microfibril architecture and enable moisture penetration upon hydration. Furthermore, the higher amounts of non-cellulosic components in G. barbadense result in a less dense packing of cellulose microfibrils and increased solvent accessibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Crystallization in Micellar Cores: confinement effects and dynamics

    NASA Astrophysics Data System (ADS)

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  17. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  18. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  19. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  20. A preliminary neutron crystallographic study of thaumatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Susana C. M.; Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble; EPSAM and ISTM, Keele University, Staffordshire ST5 5BG

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL).more » The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.« less

  1. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination.

    PubMed

    Avilov, A; Kuligin, K; Nicolopoulos, S; Nickolskiy, M; Boulahya, K; Portillo, J; Lepeshov, G; Sobolev, B; Collette, J P; Martin, N; Robins, A C; Fischione, P

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.

  2. Investigation of the response of a neutron-Hand monitor dedicated to the powder diffractometer at CENM-Maamora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messous, M.Y.; Belhorma, B.; Labrim, H.

    2015-07-01

    Neutrons are used for the study of condensed matter. A neutron beam can indeed easily penetrate the solid material and undergo diffraction phenomena. Analysis of the diffused neutrons allows studying the atomic structure of crossed material. Their neutral electric charge makes them nondestructive probe of a great interest. In general, the size of the powder samples is very small and therefore the centering of the beam on these is very crucial. It is in this context we proceed to test a portable neutron monitor for centering and checking beam leak around the shielding to be installed around the diffractometer inmore » TRIGA Mark II of CENM. It's consisting of a scintillation neutron detector NE426 ({sup 6}LiF + ZnS (Ag)) with electronic module and data acquisition system. The effect of radiation from radioactive neutrons source {sup 252}Cf is shown. Sensitivity and differential linearity are also performed. This study indicates several advantages of this detector with very good detection sensitivity and excellent stability during the counting time. (authors)« less

  3. Structural studies on sweet taste inhibitors: lactisole, DL-2(4-methoxyphenoxy)-propanoic acid

    NASA Astrophysics Data System (ADS)

    Matholouthi, M.; Angiboust, J. F.; Kacurakova, M.; Hooft, R. W. W.; Kanters, J. A.; Kroon, J.

    1994-09-01

    Lactisole, DL-2-(4-methoxyphenoxy)-propanoic acid (HPMP) has the formula C 10O 4H 12, Mr = 196.20, and is monoclinic, C2/c. a = 34.944(5), b = 5.2146(14), c = 11.201(2) Å, β = 101.495(13)°, V = 2000.1(7) Å 3, Z = 8, Dx = 1.3031(5) mg m -3, λ(Mo Kα) = 0.71073 Å, μ = 0.9 cm -1, F(000) = 832, R = 0.0392 for 1468 unique observed diffractometer data ( I ⩾ 2.5σ( I)). In the molecule two planar fragments, the acetic acid group and the phenyl ring, are almost perpendicular (interplanar angle 80.4(1)°). The crystal structure is characterized by cyclic dimers formed by hydrogen bonds between carboxyl groups across centers of inversion. The sodium salt of lactisole, NaPMP, is also a selective inhibitor of the sweetness of sucrose and was studied in aqueous solution in order to elucidate the mechanism of sweet taste inhibition. Solution properties, FT-IR spectra and the effect of NaPMP on the structure of water as determined by Raman spectra in the region of the OH stretching vibration were investigated. The hydrophobicity of NaPMP together with the steric hindrance caused by this molecule at the entrance of the sweet taste receptor site are probably at the origin of its inhibitory effect.

  4. The enhancement in dielectric and magnetic property in Na and Mn co substituted lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline solid solutions of La1-xNaxFe1-yMnyO3 (x=y=0.00 and 0.25) were prepared via modified Pechini route. No evidence of secondary or impurity phase has been detected up to the detection of error limit of high power X-ray diffractometer. Dielectric property of the samples has been investigated in the frequency range 100 Hz-4MHz at temperature ranging 300-450K. The value of relative permittivity (ɛr) increases drastically and shows colossal dielectric response (˜104) by cosubstitution of Na and Mn as compared to pure LaFeO3. Dielectric relaxation peak in loss tangent in both samples have been found and shift towards higher frequency region as temperature increases. Magnetization-Field (M-H) loop of the calcined sample have been recorded at room temperature (300K) at field ±60kOe. Magnetic property also enhanced by co substitution of Na and Mn. The change in Fe/Mn-O-Fe/Mn angle by co-substitution of Na and Mn in LaFeO3 and indirect exchange interaction between two different magnetic sub lattices Fe and Mn might be responsible for drastic change. Saturation/maximum magnetic moment increase ˜four times in LNFM25 (5.335emu/g) as compared to pure LaFeO3 (1.302emu/g).

  5. Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics.

    PubMed

    Jaiswal, Jyoti; Mourya, Satyendra; Malik, Gaurav; Chandra, Ramesh

    2018-05-01

    In the present work, we have fabricated plasmonic gold/alumina nanocomposite (Au/Al 2 O 3 NC) thin films on a glass substrate at room temperature by RF magnetron co-sputtering. The influence of the film thickness (∼10-40  nm) on the optical and other physical properties of the samples was investigated and correlated with the structural and compositional properties. The X-ray diffractometer measurement revealed the formation of Au nanoparticles with average crystallite size (5-9.2 nm) embedded in an amorphous Al 2 O 3 matrix. The energy-dispersive X ray and X-ray photoelectron spectroscopy results confirmed the formation of Au/Al 2 O 3 NC quantitatively and qualitatively and it was observed that atomic% of Au increased by increasing thickness. The optical constants of the plasmonic Au/Al 2 O 3 NC thin films were examined by variable angle spectroscopic ellipsometry in the wide spectral range of 246-1688 nm, accounting the surface characteristics in the optical stack model, and the obtained results are expected to be unique. Additionally, a thickness-dependent blueshift (631-590 nm) of surface plasmon resonance peak was observed in the absorption spectra. These findings of the plasmonic Au/Al 2 O 3 NC films may allow the design and fabrication of small, compact, and efficient devices for optoelectronic and photonic applications.

  6. POWTEX Neutron Diffractometer at FRM II - New Perspectives in Rock Deformation and Recrystallisation Analysis

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B.; Kuhs, W. F.

    2011-12-01

    Neutron diffraction has become a routine method in Geoscience for the quantitative analysis of crystallographic preferred orientations (CPOs) and for (experimental) powder diffraction. Quantitative texture analysis is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Furthermore the quantitative characterization of anisotropic physical properties by bulk texture measurements can be achieved due to the high penetration capabilities of neutrons. To cope with increasing needs for beam time at neutron diffraction facilities with the corresponding technical characteristics and equipment, POWTEX (POWder and TEXture Diffractometer) is designed as a high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast (texture) measurements for either time-resolved experiments or the measurement of larger sample series as necessary for the study of large scale geological structures. By utilizing a range of neutron wavelengths simultaneously (TOF-technique), a high flux (~1 x 107 n/cm2s) and a high detector coverage ( 9.8 sr) effective texture measurements without sample tilting and rotation are possible. Furthermore the instrument and the angular detector resolution is sufficient for strong recrystallisation textures as well as weak textures of polyphase rocks. Thereby large sample environments will be implemented at POWTEX allowing in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials. Furthermore a furnace for 3D-recrystallisation analysis of single grains will be realized complementary to the furnace that already exists for fine grained materials at the synchrotron beamline BW5 at HASYLAB, Germany (e.g. Klein et al. 2009). The in-situ triaxial deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 200 kN, which will be redesigned to minimize shadowing effects on the detector. The HT experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The furnace for the recrystallization analysis will be a mirror furnace with temperatures up to 1500° C, which will be rotatable around a vertical axis to obtain the required stereologic orientation information.

  7. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    NASA Astrophysics Data System (ADS)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results show two corrosion zones: 1) the original (internal) surface zone of the metallic copper object was replaced by copper(I) oxide (cuprite), while 2) basic copper(II) carbonate (malachite) was deposited (externally) on the original surface. In our view these two minerals were formed during long-time burial, and protected the cauldron from further corrosion. Rarely copper(I) chloride (nantokite), basic copper(II) trihydroxychloride (atacamite/paratacamite) and basic copper(II) sulphate (brochantite) were also identified in the two corrosion zones. Their uneven distribution on the cauldron and their known formation conditions indicate, that these latter mineral phases may be the results of active corrosion, started possibly after excavation.

  8. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water

    USGS Publications Warehouse

    Ruppert, Leslie F.; Sakurovs, Richard; Blach, Tomasz P.; He, Lilin; Melnichenko, Yuri B.; Mildner, David F.; Alcantar-Lopez, Leo

    2013-01-01

    Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (~25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases.

  9. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  10. Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillura-Martino, D; Triolo, R.; McClain, J.B.

    1995-12-31

    Supercritical fluids are becoming an attractive alternative to the liquid solvents traditionally used as polymerization media. As the synthesis proceeds, a wide range of colloidal aggregates form, but there has hitherto been no way to measure such structures directly. We have applied small-angle neutron scattering (SANS) to characterize such systems, and although SCF polymerizations are carried out at high pressures, the penetrating power of the neutron beam means that typical cell windows are virtually transparent. Systems studied include molecules soluble in CO{sub 2} (e.g. polyfluoro-octyl acrylate or PFOA) and this polymer has previously been shown to exhibit a positive secondmore » virial coefficient (A{sub 2}). Other CO{sub 2}-soluble polymers include hexafluoro-polypropylene oxide (HFPPO), which appears to have a second virial coefficient which is close to zero (10{sup 4}A{sub 2} {approx_equal} 0 +{+-} 0.2 cm{sup 3} g{sup -2} mol). Polydimethylsiloxane (PDMS), is soluble on the molecular level only in the limit of dilute solution and seems to form aggregates as the concentration increases (c > 0.01 g cm{sup -3}). Other polymers (e.g. polystyrene) are insoluble in CO{sub 2}, though polymerizations may be accomplished via the use of PS-PFOA blockcopolymer stabilizers, which are also amenable to SANS characterization, and have been shown to form micelles in CO{sub 2}. Other amphiphilic surfactant molecules that form micelles include PFOA-polyethylene oxide (PFOA-PEO) graft copolymers, which swell as the CO{sub 2} medium is saturated with water. These systems have been characterized by SANS, by taking advantage of the different contrast options afforded by substituting D{sub 2}O for H{sub 2}O. This paper illustrates the utility of SANS to measure molecular dimensions, thermodynamic variables, molecular weights, micelle structures etc. in supercritical CO{sub 2}.« less

  11. Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: A study by SANS, SAXS, and DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Lin, J.S.

    1995-04-24

    Differential scanning calorimetry (DSC), small-angle neutron scattering (SANS), and X-ray scattering (SAXS) have been used to investigate the solid-state morphology of blends of linear (high density) and long-chain-branched (low-density) polyethylenes (HDPE/LDPE). The blends are homogeneous in the melt, as previously demonstrated by SANS using the contrast obtained by deuterating the linear polymer. However, due to the structural and melting point differences ({approximately} 20 C) between HDPE and LDPE, the components may phase segregate on slow cooling (0.75 C/min). For high concentrations ({phi} {ge} 0.5) of HDPE, relatively high rates of crystallization of the linear component lead to the formation ofmore » separate stacks of HDPE and LDPE lamellae, as indicated by two-peak SAXS curves. For predominantly branched blends, the difference in crystallization rate of the components becomes smaller and only one SAXS peak is observed, indicating that the two species are in the same lamellar stack. Moreover, the phases no longer consist of the pure component and the HDPE lamellae contain up to 15--20% LDPE (and vice versa). Rapid quenching into dry ice/2-propanol ({minus}78 C) produces only one SAXS peak (and hence one lamellar stack) over the whole concentration range. The blends show extensive cocrystallization, along with a tendency for the branched material to be preferentially located in the amorphous interlamellar regions. For high concentrations ({phi} > 0.5) of HDPE-D, the overall scattering length density (SLD) is high and the excess concentration of LDPE between the lamellae enhances the SLD contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quenching rate, and samples quenched less rapidly (e.g., into water at 23 C) are similar to slowly cooled blends.« less

  12. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract.

    PubMed

    Huang, Guofu; Gonzalez, Eduardo; Lee, Roland; Chen, Yi-Chun; He, Mingguang; Lin, Shan C

    2012-01-01

    To evaluate anterior chamber biometric factors associated with the degree of angle widening and intraocular pressure (IOP) reduction after phacoemulsification. University of California, San Francisco, California, USA. Case series. Anterior chamber parameters obtained by anterior segment coherence tomography were compared preoperatively and 3 months postoperatively. Measurements included the angle opening distance 500 μm anterior to the scleral spur (AOD500), trabecular-iris space area 500 μm from the scleral spur (TISA500), iris curvature (I-Curv), anterior chamber angle (ACA), trabecular-iris space area, anterior chamber volume, anterior chamber width, and lens vault (LV). The study enrolled 73 eyes. The mean patient age was 77.45 years ± 7.84 (SD); 65.75% of patients were women. From preoperatively to 3 months postoperatively, the mean AOD500 increased significantly (0.254 ± 0.105 to 0.433 ± 0.108 mm) and the mean IOP decreased significantly (14.97 ± 3.35 to 12.62 ± 3.37 mm Hg) (P<.001). The reduction in IOP was correlated with the increase in AOD500 (r = 0.240, P=.041) and preoperative LV (r = 0.235, P=.045). After adjusting for related factors, AOD500 widening was positively correlated with LV (β = 0.458, P=.044) and I-Curv (β = 0.235, P=.043) and negatively correlated with preoperative TISA500 (β = -0.269, P=.025) and ACA (β = -0.919, P=.027). Surgically induced AOD widening was significantly correlated with anterior chamber biometric factors. Preoperative LV appears to be a significant factor in angle widening and IOP reduction after phacoemulsification. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Simulaid: a simulation facilitator and analysis program.

    PubMed

    Mezei, Mihaly

    2010-11-15

    Simulaid performs a large number of simulation-related tasks: interconversion and modification of structure and trajectory files, optimization of orientation, and a large variety of analysis functions. The program can handle structures in PDB (Berman et al., Nucleic Acids Res 2000, 28, 235), Charmm (Brooks et al., J Comput Chem 4, 187) CRD, Amber (Case et al.), Macromodel (Mohamadi et al., J Comput Chem 1990, 11, 440), Gromos/Gromacs (Hess et al.), InsightII (InsightII. Accelrys Inc.: San Diego, 2005), Grasp (Nicholls et al., Proteins: Struct Funct Genet 1991, 11, 281) .crg, Tripos (Tripos International, S. H. R., St. Louis, MO) .mol2 (input only), and in the MMC (Mezei, M.; MMC: Monte Carlo program for molecular assemblies. Available at: http://inka.mssm.edu/~mezei/mmc) formats; and trajectories in the formats of Charmm, Amber, Macromodel, and MMC. Analysis features include (but are not limited to): (1) simple distance calculations and hydrogen-bond analysis, (2) calculation of 2-D RMSD maps (produced both as text file with the data and as a color-coded matrix) and cross RMSD maps between trajectories, (3) clustering based on RMSD maps, (4) analysis of torsion angles, Ramachandran (Ramachandran and Sasiskharan, Adv Protein Chem 1968, 23, 283) angles, proline kink (Visiers et al., Protein Eng 2000, 13, 603) angles, pseudorotational (Altona and Sundaralingam, J Am Chem Soc 1972, 94, 8205; Cremer and Pople, J Am Chem Soc 1975, 97, 1354) angles, and (5) analysis based on circular variance (Mezei, J Mol Graphics Model 2003, 21, 463). Torsion angle evolutions are presented in dial plots (Ravishanker et al., J Biomol Struct Dyn 1989, 6, 669). Several of these features are unique to Simulaid. 2010 Wiley Periodicals, Inc.

  14. Electronic Properties and Device Applications of III-V Compound Semiconductor Native Oxides

    DTIC Science & Technology

    2006-03-02

    MRD X-ray diffractometer with CuKa as the radiation source. The doping level in GaAs was meassured by electrochemical voltage (ECV) using an Accent... hard to prevent the gate metal from overlapping the mesa edge thus creating a parasitic leakage path to the channel42. To reduce the gate leakage

  15. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  16. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  17. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  18. Application of the Baxter model for hard-spheres with surface adhesion to SANS data for the U(VI) - HNO{sub 3}, TBP-n-dodecane system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarizia, R.; Nash, K. L.; Jensen, M. P.

    2003-11-11

    Small-angle neutron scattering (SANS) data for the tri-n-butyl phosphate (TBP)-n-dodecane, HNO{sub 3}-UO{sub 2}(NO{sub 3}){sub 2} solvent extraction system have been interpreted using the Baxter model for hard spheres with surface adhesion. The increase in the scattering intensity in the low Q range observed when increasing amounts of HNO{sub 3} or UO{sub 2}(NO{sub 3}){sub 2} are transferred into the organic phase has been interpreted as arising from interactions between solute particles. The SANS data have been reproduced using a 12--16 {angstrom} diameter of the hard sphere, d{sub hs}, and a 5.6k{sub B}T-7.1k{sub B}T stickiness parameter, {tau}{sup -1}. When in contact withmore » an aqueous phase, TBP in n-dodecane forms small reverse micelles containing three TBP molecules. Upon extraction of water, HNO{sub 3}, and UO{sub 2}(NO{sub 3}){sub 2}, the swollen micelles interact through attractive forces between their polar cores with a potential energy of about 2k{sub B}T and an effective Hamaker constant of about 4k{sub B}T. The intermicellar attraction, under suitable conditions, leads to third-phase formation. Upon phase splitting, most of the solutes in the original organic phase (water, TBP, HNO{sub 3}, and UO{sub 2}(NO{sub 3}){sub 2}) separate in a continuous phase containing interspersed layers of n-dodecane.« less

  19. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  20. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  1. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  2. Bathymetry, Chirp and Deep Crustal Structure of the Santos Basin SÃO Paulo Ridge Complex (sbspr)

    NASA Astrophysics Data System (ADS)

    Aslanian, D.; Klingelhoefer, F.; Moulin, M.; Schnurle, P.; Rabineau, M.; Afilhado, A.; Roest, W. R.; Feld, A.; Evain, M.; Rochat, A.; Rousic, D.; Rigoti, C. A.; Capechi, E.; Bochenek, G.; Viana, A. R.; Magnavita, L. P.; Szatmari, P.; Neto, M.; Soares, J. P.; Fuck, R. A.; Paula Ribas, M.; De Lima, M.; Corela, C.; Duarte, J.; Matias, L. M.; OBS Team of Sanba Cruise

    2011-12-01

    The SanBa (Santos Basin- Seismic Research experiment) research experiment is a joint project of the Department of Marine Geosciences (IFREMER: Institut Français de Recherche pour l'Exploitation de la MER, France), the Laboratory of "Oceanic Domain" (Institut Universitaire et Européen de la Mer, France), the Faculdade de Ciências da Universidade de Lisboa (Lattex and CGUL, Portugal), the Universidade de Brasilia (Brazil) and PETROBRAS. Its aim is to test hypotheses that have been proposed such as the existence of failed rift and a micro-block (Moulin et al., GSL submitted) or the presence of exhumed mantle on its south-eastern part (Zalan et al., AAPG 2009). Six wide-angle seismic data were acquired together with coincident deep frequency reflection seismic data during the SanBa cruise in Dec 2010 - Jan. 2011 (total > 850 Nm). Chirp and Bathymetry were also acquired during the cruise. The preliminary results suggest a very thin crust (< 5km) in the center and in the south-eastern part of the SBSPR. Both refraction and reflection data present a clear signal of the Moho in the distalmost part of the study area, which seems to preclude the exhumed mantle hypothesis."

  3. Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Viswanathan, Karthik; Lodge, Timothy P.; Park, Moon Jeong; Char, Kookheon

    2004-12-01

    The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.

  4. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  5. The Structural Properties and Stability of Monoclonal Antibodies at Freezing Conditions

    NASA Astrophysics Data System (ADS)

    Perevozchikova, Tatiana; Zarraga, Isidro; Scherer, Thomas; Wagner, Norman; Liu, Yun

    2013-03-01

    Monoclonal Antibodies (MAb) have become a crucial therapeutic agent in a number of anti-cancer treatments. Due to the inherent unstable nature of proteins in an aqueous formulation, a freeze-drying method has been developed to maintain long-term stability of biotherapeutics. The microstructural changes in Mabs during freezing, however, remain not fully described, and it was proposed that the formed morphology of freeze drying samples could affect the final product quality after reconstitution. Furthermore, it is well known that proteins tend to aggregate during the freezing process if a careful processing procedure is not formulated. Small Angle Neutron Scattering (SANS) is a powerful tool to investigate the structural properties and interactions of Mabs during various stages of lyophilization in situ. Here we present the SANS results of freeze-thaw studies on two MAbs at several different freezing temperatures. While the chosen proteins share a significant sequence homology, their freezing properties are found to be strikingly distinctive. We also show the effect of excipients, concentration and quenching speed on the final morphology of the frozen samples. These findings provide critical information for more effective lyophilization schemes for therapeutic proteins, as well as increase our understanding on structural properties of proteins under cryogenic conditions.

  6. Effect of solvent quality on aggregate structures of common surfactants.

    PubMed

    Hollamby, Martin J; Tabor, Rico; Mutch, Kevin J; Trickett, Kieran; Eastoe, Julian; Heenan, Richard K; Grillo, Isabelle

    2008-11-04

    Aggregate structures of two model surfactants, AOT and C12E5 are studied in pure solvents D2O, dioxane-d8 (d-diox) and cyclohexane-d12 (C6D12) as well as in formulated D2O/d-diox and d-diox/C6D12 mixtures. As such these solvents and mixtures span a wide and continuous range of polarities. Small-angle neutron scattering (SANS) has been employed to follow an evolution of the preferred aggregate curvature, from normal micelles in high polarity solvents, through to reversed micelles in low polarity media. SANS has also been used to elucidate the micellar size, shape as well as to highlight intermicellar interactions. The results shed new light on the nature of aggregation structures in intermediate polarity solvents, and point to a region of solvent quality (as characterized by Hildebrand Solubility Parameter, Snyder polarity parameter or dielectric constant) in which aggregation is not favored. Finally these observed trends in aggregation as a function of solvent quality are successfully used to predict the self-assembly behavior of C12E5 in a different solvent, hexane-d14 (C6D14).

  7. Faults on Skylab imagery of the Salton Trough area, Southern California

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.

  8. Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore

    DOE PAGES

    Gurnev, Philip A.; Stanley, Christopher B.; Aksoyoglu, M. Alphan; ...

    2017-03-09

    In this work, using two approaches, small-angle neutron scattering (SANS) from bulk solutions and nanopore conductance-fluctuation analysis, we studied structural and dynamic features of poly(ethylene glycol) (PEG) water/salt solutions in the dilute and semidilute regimes. SANS measurements on PEG 3400 at the zero-average contrast yielded the single chain radius of gyration (R g) over 1–30 wt %. We observed a small but statistically reliable decrease in R g with increasing PEG concentration: at 30 wt % the chain contracts by a factor of 0.94. Analyzing conductance fluctuations of the α-hemolysin nanopore in the mixtures of PEG 200 with PEG 3400,more » we demonstrated that polymer partitioning into the nanopore is mostly due to PEG 200. Specifically, for a 1:1 wt/wt mixture the smaller polymer dominates to the extent that only about 1/25 of the nanopore volume is taken by the larger polymer. In conclusion, these findings advance our conceptual and quantitative understanding of nanopore polymer partitioning; they also support the main assumptions of the recent “polymers-pushing-polymers” model.« less

  9. Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Gillon, Béatrice; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Rivière, Eric; Mallah, Talal

    2017-02-01

    Prussian blue analogues (PBA) ferromagnetic nanoparticles CsIxNiII[CrIII(CN)6 ]z·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length Lmag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70534-9

  10. Nanostructures and nanosecond dynamics at the polymer/filler interface

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Taniguchi, Takashi

    We report in-situ nanostructures and nanosecond dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in polymer solutions (from dilute to concentrated solutions). The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene (a good solvent) to label the BPL for ``contrast-matching'' small-angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the NSE results show that the dynamics of the swollen bound chains in the polymer solutions can be explained by the collective dynamics, the so-called ``breathing mode''. Intriguingly, it was also indicative that the collective dynamics is independent of the polymer concentrations and is much faster than that predicted from the solution viscosity. We will discuss the mechanism at the bound polymer-free polymer interface at the nanometer scale. T.K. acknowledges the financial support from NSF Grant (CMMI-1332499).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A J; Petersson, N A; Morency, C E

    The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hostsmore » over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.« less

  12. Slow Domain Motions of an Oligomeric Protein from Deep-Sea Hyperthermophile probed by Neutron Spin Echo

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team

    Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities

  13. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    PubMed

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  14. The SPRING Nanoenergetics Hub at UTD

    DTIC Science & Technology

    2008-12-01

    synthesis and processing of advanced nanostructured materials, the structure and property characterization needed for materials optimization, the...nano-particles into hexane solvent a deposited films. Here we are modeling that processes to see how the droplet evaporation progresses in time. What...nanofibers was determined by powder X-ray diffraction (XRD) (Scintag XDS 2000 X-ray diffractometer with Cu Ka radiation). The fiber morphology was

  15. Crystal and Vibrational Structure of Energetic 3,5-dinitro 1,3,5-oxadiazinane (DOD) by Single Crystal X-ray Diffractometry and Raman Spectroscopy

    DTIC Science & Technology

    2018-03-19

    calculations using a temperature of 298 K. 15. SUBJECT TERMS 3,5-dinitro-1,3,5-oxadiazinane (DOD), X-ray crystallography , Raman, energetic material...X-ray analysis. 2.2 Characterization X-ray Crystallography . DOD crystals were characterized with a SuperNova, Dualflex, EosS2 diffractometer using

  16. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...

    2016-01-05

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less

  17. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  18. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    PubMed Central

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  19. Test Rover at JPL During Preparation for Mars Rover Low-Angle Selfie

    NASA Image and Video Library

    2015-08-19

    This view of a test rover at NASA's Jet Propulsion Laboratory, Pasadena, California, results from advance testing of arm positions and camera pointings for taking a low-angle self-portrait of NASA's Curiosity Mars rover. This rehearsal in California led to a dramatic Aug. 5, 2015, selfie of Curiosity, online at PIA19807. Curiosity's arm-mounted Mars Hand Lens Imager (MAHLI) camera took 92 of component images that were assembled into that mosaic. The rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This practice version was taken at JPL's Mars Yard in July 2013, using the Vehicle System Test Bed (VSTB) rover, which has a test copy of MAHLI on its robotic arm. MAHLI was built by Malin Space Science Systems, San Diego. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19810

  20. CCD Astrometric Measurements of Double Stars BAL 746, BPM 342, KU 92, and STF 897

    NASA Astrophysics Data System (ADS)

    Smith, Schuyler

    2017-07-01

    Double stars WDS 06589-0106 (BAL 746), WDS 06579+1430 (BPM 342), WDS 07006+0921 (KU 92), and WDS 06224+2640 (STF 897) were measured as part of a science fair project for the 2016 Greater San Diego Science and Engineering Fair. The goal was to measure the separation and position angles of stars by using a telescope with a charge-coupled device (CCD) on the iTelescope network. Five images were taken of each of the stars. These images were plate solved with Visual PinPoint and measured using Aladin Sky Atlas. Measurements for all five doubles compare well to the more recent values in the Washington Double Star Catalog.

  1. Earth observations taken during the STS-71 mission

    NASA Image and Video Library

    1995-06-29

    STS071-701-098 (27 June-7 July 1995) --- This wide-angle, west-looking view shows all of California, from the Los Angeles basin (left, at the coast), to the Oregon border (far right). A large cloud mass occupies the Pacific Ocean all the way to the horizon. The effect of interaction between the land and sea can be seen by the cloud patterns at the coast. San Francisco lies in the bay where clouds penetrate inland farthest (right of center). The central valley of California stands out very well as a cigar-shaped feature across the center of view - green in the middle, surrounded by a brown line, with dark green (forests) surrounding that.

  2. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  3. A scattering function of star polymers including excluded volume effects

    DOE PAGES

    Li, Xin; Do, Changwoo; Liu, Yun; ...

    2014-11-04

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffnessmore » of its constituent branch.« less

  4. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    PubMed Central

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  5. Polarimetric survey of main-belt asteroids. VI. New results from the second epoch of the CASLEO survey

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; García-Migani, E.

    2017-11-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry and to estimate the diversity in the polarimetric properties of asteroids that belong to different taxonomic classes. Methods: The data were obtained using the CASPOL polarimeter at the 2.15 m telescope. CASPOL is a polarimeter based on a CCD detector and a Savart plate. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. Results: We present and analyze the unpublished results for 128 asteroids of different taxonomic types, 55 of them observed for the first time. The observational data allowed us to find probable new cases of Barbarian objects but also two D-type objects, (565) Marbachia and (1481) Tubingia, that seem to have phase-polarization curves with a large inversion angle. The data obtained combined with data from the literature enabled us to find phase-polarization curves for 121 objects of different taxonomic types and to study the relations between several polarimetric and physical parameters. Using an approximation for the phase-polarization curve we found the index of refraction of the surface material and the scatter separation distance for all the objects with known polarimetric parameters. We also found that the inversion angle is a function of the index of refraction of the surface, while the phase angle where the minimum of polarization is produced provides information about the distance between scatter particles or, to some extent, the porosity of the surface. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A103

  6. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-06-02

    Electronics •Superconducting Wiring in LSI •One Wafer Computer •Josephson Devices •SQUID Devices Infrared Sensor Magnetic Sensor •Superconducting...Guinier- de Wolff monochromatic focusing camera (CoK* radiation) and with Philips APD-10 auto-powder diffractometer (CuKÄ radiation). Pure Si was used as...crystallized and smooth surface. The values indicated in Fig. 2 were the thickness monitored by a quartz oscillating sensor located near the

  7. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  8. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  9. Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment

    PubMed Central

    Wong-Ng, W.; Siegrist, T.; DeTitta, G. T.; Finger, L. W.; Evans, H. T.; Gabe, E. J.; Enright, G. D.; Armstrong, J. T.; Levenson, M.; Cook, L. P.; Hubbard, C. R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material® for single crystal diffractometer alignment. This SRM is a set of ≈3500 units of Cr-doped Al2O3, or ruby spheres [(0.420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals: the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 ű0.0062 Å, and c=12.9979 ű0.020 Å (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Hägg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies– are rhombohedral, with space group R3¯c. The certified mean unit cell parameters are a=4.76080±0.00029 Å, and c=12.99568 ű0.00087 Å (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Hägg transmission measurements on five samples of powdered rubies (a=4.7610 ű0.0013 Å, and c = 12.9954 ű0.0034 Å) agreed well with the values obtained from the single crystal spheres. PMID:27500067

  10. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  11. Laser surface modification of AZ31B Mg alloy for bio-wettability.

    PubMed

    Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B

    2015-02-01

    Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Neutron capillary optics: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kumakhov, M. A.

    2004-08-01

    The article is dedicated to the current status of neutron polycapillary optics and its application. X-ray and neutron polycapillary optics was first suggested in my papers published and patented about 20 years ago. The first X-ray lens was made about 20 years ago (in 1985) in my laboratory at the Kurchatov Institute of Atomic Power. The first neutron assembled capillary lens consisting of several thousand polycapillaries was assembled and tested 2 years later at the atomic reactor of the Kurchatov Institute. A great many experiments were done at the atomic reactors in Russia, Germany, France, USA for neutron beam focusing, turning. Most successful were the experiments on turning neutron beam at the atomic reactor in Berlin, where it was possible to turn the neutron beam by the angle of 20°. Numerous experiments in Germany and France proved high efficacy of polycapillary optics in controlling thermal neutron radiation. The article gives new results obtained in creating pure beams of thermal neutrons on the basis of polycapillary optics. New polycapillary technologies developed at IRO, Moscow/Unisantis, Geneva, enable creation of neutron diffractometers, spectrometers, reflectometers, microscopes—all with a micron-size focal spot. All instruments are portable and highly efficient. Such generation of instruments has been already developed and realized for X-rays, and the same process for neutron beams has already started. So, neutron polycapillary optics makes it possible to create new instruments and raise the level of scientific research, and also enables use of neutron beam for industrial application in production environment.

  13. The enhancement in dielectric and magnetic property in Na and Mn co substituted lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K., E-mail: akt@iitp.ac.in; Centre for Energy and Environment Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline solid solutions of La{sub 1-x}Na{sub x}Fe{sub 1-y}Mn{sub y}O{sub 3} (x=y=0.00 and 0.25) were prepared via modified Pechini route. No evidence of secondary or impurity phase has been detected up to the detection of error limit of high power X-ray diffractometer. Dielectric property of the samples has been investigated in the frequency range 100 Hz-4MHz at temperature ranging 300–450K. The value of relative permittivity (ε{sub r}) increases drastically and shows colossal dielectric response (∼10{sup 4}) by cosubstitution of Na and Mn as compared to pure LaFeO{sub 3}. Dielectric relaxation peak in loss tangent in both samples have been found and shiftmore » towards higher frequency region as temperature increases. Magnetization-Field (M-H) loop of the calcined sample have been recorded at room temperature (300K) at field ±60kOe. Magnetic property also enhanced by co substitution of Na and Mn. The change in Fe/Mn-O-Fe/Mn angle by co-substitution of Na and Mn in LaFeO{sub 3} and indirect exchange interaction between two different magnetic sub lattices Fe and Mn might be responsible for drastic change. Saturation/maximum magnetic moment increase ∼four times in LNFM25 (5.335emu/g) as compared to pure LaFeO{sub 3} (1.302emu/g).« less

  14. Investigation of the phase morphology of bacterial PHA inclusion bodies by contrast variation SANS

    NASA Astrophysics Data System (ADS)

    Russell, R. A.; Holden, P. J.; Garvey, C. J.; Wilde, K. L.; Hammerton, K. M.; Foster, L. J.

    2006-11-01

    Under growth-limiting conditions, many bacteria are able to metabolise excess organic acids into polyhydroxyalkanoates (PHA) and store these polymers as intracellular inclusions until the return of favourable conditions. Various models have been proposed for the macromolecular organisation of the boundary layer surrounding the polymer, and contrast-variation small-angle neutron scattering (SANS) was used to study its organisation. Inclusions formed by Pseudomonas oleovorans under hydrogenating conditions showed lowest scattering intensity at ca. 20% D 2O. The inclusions consist of protein and membrane lipids in the boundary layer and polyhydroxyoctanoate (lipid) in the inclusion body. At 20% D 2O the contributions of lipids were contrast matched with the solvent, indicating that lipids contributed the bulk of the scattering intensity observed at other D 2O/H 2O ratios. These results are inconsistent with a model of the boundary layer which proposed outer and inner layers of crystalline protein lattice sandwiching a membrane lipid membrane layer [E.S. Stuart, R.W. Lenz, R.C. Fuller, Can J Microbiol 41(Suppl 1) (1995) 84-93], and is more consistent with a model consisting of a lipid monolayer containing embedded proteins [U. Pieper-furst, M.H. Madkour, F. Mayer, A. Steinbuchel, J. Bacteriol. 176 (1994) 4328-4337.] By altering the H/D content of the precursors, we were able to collect SANS data from preparations of both deuterated and H/D copolymer inclusions, where initial PHA produced was hydrogenated followed by deuteration. Deuterated inclusions showed minimum intensity above 90% D 2O/H 2O whereas the sequentially produced copolymer (assumed to be in a core/shell arrangement) displayed minimum scattering some 20% lower, which is consistent with the increased hydrogenation of the boundary layer expected from its synthesis during supply of hydrogenated followed by deuterated precursors.

  15. Temperature driven annealing of perforations in bicellar model membranes.

    PubMed

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  16. The morphology of blends of linear and branched polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-31

    The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less

  17. Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.

    PubMed

    Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J

    2007-07-19

    The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.

  18. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au; Wood, Kathleen; Taylor, Adam

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANSmore » in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.« less

  19. Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants.

    PubMed

    Bergström, L Magnus; Tehrani-Bagha, Alireza; Nagy, Gergely

    2015-04-28

    Micelles formed by novel gemini esterquat surfactants have been investigated with small-angle neutron scattering (SANS). The growth behavior of the micelles is found to differ conspicuously depending on the length of the gemini surfactant spacer group. The gemini surfactant with a long spacer form rather small triaxial ellipsoidal tablet-shaped micelles that grow weakly with surfactant concentration in the entire range of measured concentrations. Geminis with a short spacer, on the other hand, form weakly growing oblates or tablets at low concentrations that start to grow much more strongly into polydisperse rodlike or wormlike micelles at higher concentrations. The latter behavior is consistent with the presence of a second CMC that marks the transition from the weakly to the strongly growing regime. It is found that the growth behavior in terms of aggregation number as a function of surfactant concentration always appear concave in weakly growing regimes, while switching to convex behavior in strongly growing regimes. As a result, we are able to determine the second CMC of the geminis with short spacer by means of suggesting a rather precise definition of it, located at the point of inflection of the growth curve that corresponds to the transition from concave to convex growth behavior. Our SANS results are rationalized by comparison with the recently developed general micelle model. In particular, this theory is able to explain and reproduce the characteristic appearances of the experimental growth curves, including the presence of a second CMC and the convex strongly growing regime beyond. By means of optimizing the agreement between predictions from the general micelle model and results from SANS experiments, we are able to determine the three bending elasticity constants spontaneous curvature, bending rigidity, and saddle-splay constant for each surfactant.

  20. Structural Insights into High Density Lipoprotein: Old Models and New Facts

    PubMed Central

    Gogonea, Valentin

    2016-01-01

    The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen–deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function. PMID:26793109

  1. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  2. Isopycnic Phases and Structures in H2O/CO2/Ethoxylated Alcohol Surfactant Mixtures

    NASA Technical Reports Server (NTRS)

    Paulaitis, Michael E.; Zielinski, Richard G.; Kaler, Eric W.

    1996-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(i)E(j)) surfactants can form three coexisting liquid phases at conditions where two of the phases have the same density (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing the surfactants C8E5, C10E6, and C12E6, but not for those mixtures containing either C4E1 or CgE3. Pressure-temperature (PT) projections for this isopycnic three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. As a preliminary to measuring the microstructure in isopycnic three component mixtures, phase behavior and small angle neutron scattering (SANS) experiments were performed on mixtures of D2O/CO2/ n-hexaethyleneglycol monododecyl ether (C12E6) as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%). Parameters extracted from model fits of the SANS spectra indicate that, while micellar structure remains essentially unchanged, critical concentration fluctuations increase as the phase boundary and plait point are approached.

  3. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability.

    PubMed

    Liebi, Marianne; Kuster, Simon; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-11-27

    Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.

  4. Progressive evolution of deformation band populations during Laramide fault-propagation folding: Navajo Sandstone, San Rafael monocline, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle

    2014-11-01

    Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.

  5. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure

    USGS Publications Warehouse

    Byerlee, J.

    1992-01-01

    Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.

  6. Ambiguities and completeness of SAS data analysis: investigations of apoferritin by SAXS/SANS EID and SEC-SAXS methods

    NASA Astrophysics Data System (ADS)

    Zabelskii, D. V.; Vlasov, A. V.; Ryzhykau, Yu L.; Murugova, T. N.; Brennich, M.; Soloviov, D. V.; Ivankov, O. I.; Borshchevskiy, V. I.; Mishin, A. V.; Rogachev, A. V.; Round, A.; Dencher, N. A.; Büldt, G.; Gordeliy, V. I.; Kuklin, A. I.

    2018-03-01

    The method of small angle scattering (SAS) is widely used in the field of biophysical research of proteins in aqueous solutions. Obtaining low-resolution structure of proteins is still a highly valuable method despite the advances in high-resolution methods such as X-ray diffraction, cryo-EM etc. SAS offers the unique possibility to obtain structural information under conditions close to those of functional assays, i.e. in solution, without different additives, in the mg/mL concentration range. SAS method has a long history, but there are still many uncertainties related to data treatment. We compared 1D SAS profiles of apoferritin obtained by X-ray diffraction (XRD) and SAS methods. It is shown that SAS curves for X-ray diffraction crystallographic structure of apoferritin differ more significantly than it might be expected due to the resolution of the SAS instrument. Extrapolation to infinite dilution (EID) method does not sufficiently exclude dimerization and oligomerization effects and therefore could not guarantee total absence of dimers account in the final SAS curve. In this study, we show that EID SAXS, EID SANS and SEC-SAXS methods give complementary results and when they are used all together, it allows obtaining the most accurate results and high confidence from SAS data analysis of proteins.

  7. Characterization of the effects of different tempers and aging temperatures on the precipitation behavior of Al-Mg (5.25at.%)-Mn alloys

    DOE PAGES

    Yi, Gaosong; Littrell, Kenneth C.; Poplawsky, Jonathan D.; ...

    2017-01-11

    We investigated the effects of different tempers (H131 and H116) and different aging temperatures (50 and 70 °C) on the precipitation behavior of Al-Mg (5.25 at.%)-Mn (Al 5083) alloys aged for a long time (41 and 30 months) using electron backscatter diffraction(EBSD), scanning transmission electron microscopy(STEM), energy-dispersive X-ray spectroscopy(EDS), atom probe tomography (APT), and small angle neutron scattering (SANS). Results for the GP zones and β'' phases were found in Al 5083 H116 aged at 50 °C for 24 months using APT. EDS and SANS revealed that a phase transformation process from GP zones to β'/β phases occurred for precipitatesmore » formed in both Al 5083 H131 and H116 aged at 70 °C. The effective diffusion coefficient of Mg in Al 5083 H131 is 1.8 times of that in Al 5083 H116 aged at 70 °C. The precipitation process in Al 5083 H116 aged at 50 °C is much slower than that in the sample aged at 70 °C. Finally, we identified the coarsening process in Al 5083 H131 and H116 aged at 70 °C for > 9 months.« less

  8. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE PAGES

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    2017-12-24

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  9. Identifying and classifying water hyacinth (Eichhornia crassipes) using the HyMap sensor

    NASA Astrophysics Data System (ADS)

    Rajapakse, Sepalika S.; Khanna, Shruti; Andrew, Margaret E.; Ustin, Susan L.; Lay, Mui

    2006-08-01

    In recent years, the impact of aquatic invasive species on biodiversity has become a major global concern. In the Sacramento-San Joaquin Delta region in the Central Valley of California, USA, dense infestations of the invasive aquatic emergent weed, water hyacinth (Eichhornia crassipes) interfere with ecosystem functioning. This silent invader constantly encroaches into waterways, eventually making them unusable by people and uninhabitable to aquatic fauna. Quantifying and mapping invasive plant species in aquatic ecosystems is important for efficient management and implementation of mitigation measures. This paper evaluates the ability of hyperspectral imagery, acquired using the HyMap sensor, for mapping water hyacinth in the Sacramento-San Joaquin Delta region. Classification was performed on sixty-four flightlines acquired over the study site using a decision tree which incorporated Spectral Angle Mapper (SAM) algorithm, absorption feature parameters in the spectral region between 0.4 and 2.5μm, and spectral endmembers. The total image dataset was 130GB. Spectral signatures of other emergent aquatic species like pennywort (Hydrocotyle ranunculoides) and water primrose (Ludwigia peploides) showed close similarity with the water hyacinth spectrum, however, the decision tree successfully discriminated water hyacinth from other emergent aquatic vegetation species. The classification algorithm showed high accuracy (κ value = 0.8) in discriminating water hyacinth.

  10. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  11. Investigating the Structural Impact of the Glutamine Repeat in Huntingtin Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevozchikova, Tatiana; Stanley, Christopher B; McWilliams-Koeppen, Helen P

    2014-01-01

    Acquiring detailed structural information about the various aggregation states of the huntingtin-exon1 protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible for Huntington s disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ42P10) and compared the results with those obtained for the wild-type (NtQ22P10). Our results show that the aggregation pathway of NtQ22P10 is very different from that of NtQ42P10, as the initial steps require a monomer to 7-mer transition stage. Inmore » contrast, the earliest species identified for NtQ42P10 are monomer and dimer. The divergent pathways ultimately result in NtQ22P10 fibrils that possess a pack- ing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ42P10 fibrils present a better fit to the Perutz b-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD.« less

  12. Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants

    NASA Astrophysics Data System (ADS)

    Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.

    Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.

  13. Softening of the stiffness of bottle-brush polymers by mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetty, S.; Airaud, C.; Rosenfeldt, S.

    2007-04-15

    We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less

  14. View planetary differentiation process through high-resolution 3D imaging

    NASA Astrophysics Data System (ADS)

    Fei, Y.

    2011-12-01

    Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.

  15. Biological Small Angle Scattering: Techniques, Strategies and Tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less

  16. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  17. Acquisition of an X-Ray Diffractometer with WAXS and SAXS for Materials Research

    DTIC Science & Technology

    2015-03-31

    2. This ligand is known as a sensitizer for applications in dye -sensitized solar cells, and the presence of the amino groups could potentially...achieve different surface properties, thus making them excellent candidates for use as fillers in bio-based biodegradable composite materials...These CNCs are environmentally safe sustainable, biodegradable , carbon neutral, and have low environmental, health and safety risks. Figure 9 below

  18. A User’s Manual for Fiber Diffraction: The Automated Picker and Huber Diffractometers

    DTIC Science & Technology

    1990-07-01

    17 3. Layer line scan of degummed silk ( Bombyx mori ) ................................. 18...index (arbitrary units) Figure 3. Layer line scan of degummed silk ( Bombyx mori ) showing layers 0 through 6. If the fit is rejected, new values for... originally made at intervals larger than 0.010. The smoothing and interpolation is done by a least-squares polynomial fit to segments of the data. The number

  19. Bruker SMART X2S Benchtop System: A Means to Making X-Ray Crystallography More Mainstream in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Guzei, Ilia A.; Hill, Nicholas J.; Zakai, Uzma I.

    2010-01-01

    Bruker SMART X2S is a portable benchtop diffractometer that requires only a 110 V outlet to operate. The instrument operation is intuitive and facile with an automation layer governing the workflow from behind the scenes. The user participation is minimal. At the end of an experiment, the instrument attempts to solve the structure automatically;…

  20. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer.

    PubMed

    Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

Top