Sample records for angle estimation algorithm

  1. Novel angle estimation for bistatic MIMO radar using an improved MUSIC

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Zhang, Xiaofei; Chen, Han

    2014-09-01

    In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.

  2. Sparse array angle estimation using reduced-dimension ESPRIT-MUSIC in MIMO radar.

    PubMed

    Zhang, Chaozhu; Pang, Yucai

    2013-01-01

    Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.

  3. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation.

    PubMed

    Tan, Jun; Nie, Zaiping

    2018-05-12

    Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.

  4. Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor

    NASA Astrophysics Data System (ADS)

    Bae, Eun-Hyon; Lee, Kyun-Kyung

    A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.

  5. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  6. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    NASA Technical Reports Server (NTRS)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  7. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    PubMed Central

    2018-01-01

    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze. PMID:29304120

  8. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography.

    PubMed

    Hládek, Ľuboš; Porr, Bernd; Brimijoin, W Owen

    2018-01-01

    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.

  9. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  10. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  11. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  12. Theoretical and experimental study of DOA estimation using AML algorithm for an isotropic and non-isotropic 3D array

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz; Ali, Andreas M.; Collier, Travis C.; Yao, Yuan; Hudson, Ralph E.; Yao, Kung; Taylor, Charles E.

    2007-09-01

    The focus of most direction-of-arrival (DOA) estimation problems has been based mainly on a two-dimensional (2D) scenario where we only need to estimate the azimuth angle. But in various practical situations we have to deal with a three-dimensional scenario. The importance of being able to estimate both azimuth and elevation angles with high accuracy and low complexity is of interest. We present the theoretical and the practical issues of DOA estimation using the Approximate-Maximum-Likelihood (AML) algorithm in a 3D scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. Various numerical results are presented. We use two acoustic arrays each consisting of 8 microphones to do some field measurements. The processing of the measured data from the acoustic arrays for different azimuth and elevation angles confirms the effectiveness of the proposed methods.

  13. Efficient algorithms for single-axis attitude estimation

    NASA Technical Reports Server (NTRS)

    Shuster, M. D.

    1981-01-01

    The computationally efficient algorithms determine attitude from the measurement of art lengths and dihedral angles. The dependence of these algorithms on the solution of trigonometric equations was reduced. Both single time and batch estimators are presented along with the covariance analysis of each algorithm.

  14. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  15. An analysis of a candidate control algorithm for a ride quality augmentation system

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent; Downing, David R.

    1987-01-01

    This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.

  16. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less

  17. Robust head pose estimation via supervised manifold learning.

    PubMed

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    PubMed Central

    Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-01-01

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588

  19. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    PubMed

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  20. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  1. A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.

    PubMed

    Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J

    2014-01-01

    Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.

  2. The MAP Spacecraft Angular State Estimation After Sensor Failure

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, the conclusions have a far reaching consequence.

  3. The Effect of Sensor Failure on the Attitude and Rate Estimation of MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, its conclusions are more general.

  4. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  5. DOA estimation of noncircular signals for coprime linear array via locally reduced-dimensional Capon

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhang, Xiaofei; Zheng, Wang

    2018-05-01

    We investigate the issue of direction of arrival (DOA) estimation of noncircular signals for coprime linear array (CLA). The noncircular property enhances the degree of freedom and improves angle estimation performance, but it leads to a more complex angle ambiguity problem. To eliminate ambiguity, we theoretically prove that the actual DOAs of noncircular signals can be uniquely estimated by finding the coincide results from the two decomposed subarrays based on the coprimeness. We propose a locally reduced-dimensional (RD) Capon algorithm for DOA estimation of noncircular signals for CLA. The RD processing is used in the proposed algorithm to avoid two dimensional (2D) spectral peak search, and coprimeness is employed to avoid the global spectral peak search. The proposed algorithm requires one-dimensional locally spectral peak search, and it has very low computational complexity. Furthermore, the proposed algorithm needs no prior knowledge of the number of sources. We also derive the Crámer-Rao bound of DOA estimation of noncircular signals in CLA. Numerical simulation results demonstrate the effectiveness and superiority of the algorithm.

  6. A novel ULA-based geometry for improving AOA estimation

    NASA Astrophysics Data System (ADS)

    Shirvani-Moghaddam, Shahriar; Akbari, Farida

    2011-12-01

    Due to relatively simple implementation, Uniform Linear Array (ULA) is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA) estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA) configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE) of the detected angles descends as the input Signal to Noise Ratio (SNR) increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.

  7. Estimation of TOA based MUSIC algorithm and cross correlation algorithm of appropriate interval

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Liu, Jun; Zhou, Yineng; Huang, Jiyan

    2017-03-01

    Localization of mobile station (MS) has now gained considerable attention due to its wide applications in military, environmental, health and commercial systems. Phrase angle and encode data of MSK system model are two critical parameters in time-of-arrival (TOA) localization technique; nevertheless, precise value of phrase angle and encode data are not easy to achieved in general. In order to meet the actual situation, we should consider the condition that phase angle and encode data is unknown. In this paper, a novel TOA localization method, which combine MUSIC algorithm and cross correlation algorithm in an appropriate interval, is proposed. Simulations show that the proposed method has better performance than music algorithm and cross correlation algorithm of the whole interval.

  8. Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.

  9. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  10. A Direction of Arrival Estimation Algorithm Based on Orthogonal Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Cao, Fei; Liu, Lipeng

    2018-02-01

    The results show that the modified DSM is able to predict local buckling capacity of hot-rolled RHS and SHS accurately. In order to solve the problem of the weak ability of anti-radiation missile against active decoy in modern electronic warfare, a direction of arrival estimation algorithm based on orthogonal matching pursuit is proposed in this paper. The algorithm adopts the compression sensing technology. This paper uses array antennas to receive signals, gets the sparse representation of signals, and then designs the corresponding perception matrix. The signal is reconstructed by orthogonal matching pursuit algorithm to estimate the optimal solution. At the same time, the error of the whole measurement system is analyzed and simulated, and the validity of this algorithm is verified. The algorithm greatly reduces the measurement time, the quantity of equipment and the total amount of the calculation, and accurately estimates the angle and strength of the incoming signal. This technology can effectively improve the angle resolution of the missile, which is of reference significance to the research of anti-active decoy.

  11. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  12. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  13. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  14. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  15. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  16. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  17. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    PubMed Central

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  18. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  19. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  20. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  1. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  2. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  3. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  4. Acoustic Source Elevation Angle Estimates Using Two Microphones

    DTIC Science & Technology

    2014-06-01

    elevated. Elevation angles are successfully estimated, under certain conditions, for a loudspeaker broadcasting band limited white noise. 15. SUBJECT...INTENTIONALLY LEFT BLANK. 1 1. Introduction The U.S. Army uses acoustic arrays to track and locate various sources including...ground and airborne vehicles, small arms, mortars, and rockets. The tracking and locating algorithms often used with these acoustic arrays perform

  5. Sequential Bayesian Filters for Estimating Time Series of Wrapped and Unwrapped Angles with Hyperparameter Estimation

    NASA Astrophysics Data System (ADS)

    Umehara, Hiroaki; Okada, Masato; Naruse, Yasushi

    2018-03-01

    The estimation of angular time series data is a widespread issue relating to various situations involving rotational motion and moving objects. There are two kinds of problem settings: the estimation of wrapped angles, which are principal values in a circular coordinate system (e.g., the direction of an object), and the estimation of unwrapped angles in an unbounded coordinate system such as for the positioning and tracking of moving objects measured by the signal-wave phase. Wrapped angles have been estimated in previous studies by sequential Bayesian filtering; however, the hyperparameters that are to be solved and that control the properties of the estimation model were given a priori. The present study establishes a procedure of hyperparameter estimation from the observation data of angles only, using the framework of Bayesian inference completely as the maximum likelihood estimation. Moreover, the filter model is modified to estimate the unwrapped angles. It is proved that without noise our model reduces to the existing algorithm of Itoh's unwrapping transform. It is numerically confirmed that our model is an extension of unwrapping estimation from Itoh's unwrapping transform to the case with noise.

  6. A Novel Attitude Determination Algorithm for Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2007-01-01

    This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.

  7. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  8. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  9. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  10. Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface

    NASA Astrophysics Data System (ADS)

    Kim, Hyunchul; Kim, Jungsuk

    2017-04-01

    This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.

  11. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  12. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  13. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  14. Estimating Angle-of-Arrival and Time-of-Flight for Multipath Components Using WiFi Channel State Information.

    PubMed

    Ahmed, Afaz Uddin; Arablouei, Reza; Hoog, Frank de; Kusy, Branislav; Jurdak, Raja; Bergmann, Neil

    2018-05-29

    Channel state information (CSI) collected during WiFi packet transmissions can be used for localization of commodity WiFi devices in indoor environments with multipath propagation. To this end, the angle of arrival (AoA) and time of flight (ToF) for all dominant multipath components need to be estimated. A two-dimensional (2D) version of the multiple signal classification (MUSIC) algorithm has been shown to solve this problem using 2D grid search, which is computationally expensive and is therefore not suited for real-time localisation. In this paper, we propose using a modified matrix pencil (MMP) algorithm instead. Specifically, we show that the AoA and ToF estimates can be found independently of each other using the one-dimensional (1D) MMP algorithm and the results can be accurately paired to obtain the AoA⁻ToF pairs for all multipath components. Thus, the 2D estimation problem reduces to running 1D estimation multiple times, substantially reducing the computational complexity. We identify and resolve the problem of degenerate performance when two or more multipath components have the same AoA. In addition, we propose a packet aggregation model that uses the CSI data from multiple packets to improve the performance under noisy conditions. Simulation results show that our algorithm achieves two orders of magnitude reduction in the computational time over the 2D MUSIC algorithm while achieving similar accuracy. High accuracy and low computation complexity of our approach make it suitable for applications that require location estimation to run on resource-constrained embedded devices in real time.

  15. A Monte Carlo comparison of the recovery of winds near upwind and downwind from the SASS-1 model function by means of the sum of squares algorithm and a maximum likelihood estimator

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.

    1984-01-01

    Backscatter measurements at upwind and crosswind are simulated for five incidence angles by means of the SASS-1 model function. The effects of communication noise and attitude errors are simulated by Monte Carlo methods, and the winds are recovered by both the Sum of Square (SOS) algorithm and a Maximum Likelihood Estimater (MLE). The SOS algorithm is shown to fail for light enough winds at all incidence angles and to fail to show areas of calm because backscatter estimates that were negative or that produced incorrect values of K sub p greater than one were discarded. The MLE performs well for all input backscatter estimates and returns calm when both are negative. The use of the SOS algorithm is shown to have introduced errors in the SASS-1 model function that, in part, cancel out the errors that result from using it, but that also cause disagreement with other data sources such as the AAFE circle flight data at light winds. Implications for future scatterometer systems are given.

  16. [Radiance Simulation of BUV Hyperspectral Sensor on Multi Angle Observation, and Improvement to Initial Total Ozone Estimating Model of TOMS V8 Total Ozone Algorithm].

    PubMed

    Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun

    2015-11-01

    New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting mode is about 0.9% higher than exponential fitting model. With the increasing of VZA or SZA, the fitting precision gradually lower, and the fall is more in the larger VZA or SZA. In addition, the precision of fitting mode exist a plateau in the small SZA range. The modified initial total ozone estimating model (ln(I) vs. Ω) is established based on logarithm fitting mode, and compared with traditional estimating model (I vs. ln(Ω)), that shows: the RMSE of ln(I) vs. Ω and I vs. ln(Ω) all have the down trend with the rise of total ozone. In the low region of total ozone (175-275 DU), the RMSE is obvious higher than high region (425-525 DU), moreover, a RMSE peak and a trough exist in 225 and 475 DU respectively. With the increase of VZA and SZA, the RMSE of two initial estimating models are overall rise, and the upraising degree is ln(I) vs. Ω obvious with the growing of SZA and VZA. The estimating result by modified model is better than traditional model on the whole total ozone range (RMSE is 0.087%-0.537% lower than traditional model), especially on lower total ozone region and large observation geometries. Traditional estimating model relies on the precision of exponential fitting model, and modified estimating model relies on the precision of logarithm fitting model. The improvement of the estimation accuracy by modified initial total ozone estimating model expand the application range of TOMS V8 algorithm. For sensor carried on geostationary orbit platform, there is no doubt that the modified estimating model can help improve the inversion accuracy on wide spatial and time range This modified model could give support and reference to TOMS algorithm update in the future.

  17. A new DOD and DOA estimation method for MIMO radar

    NASA Astrophysics Data System (ADS)

    Gong, Jian; Lou, Shuntian; Guo, Yiduo

    2018-04-01

    The battlefield electromagnetic environment is becoming more and more complex, and MIMO radar will inevitably be affected by coherent and non-stationary noise. To solve this problem, an angle estimation method based on oblique projection operator and Teoplitz matrix reconstruction is proposed. Through the reconstruction of Toeplitz, nonstationary noise is transformed into Gauss white noise, and then the oblique projection operator is used to separate independent and correlated sources. Finally, simulations are carried out to verify the performance of the proposed algorithm in terms of angle estimation performance and source overload.

  18. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  19. Development of a global LAI estimation algorithm for JAXA's new earth observation satellite sensor, GCOM-C/SGLI

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Murakami, H.; Kobayashi, H.; Nasahara, K. N.; Kajiwara, K.; Honda, Y.

    2014-12-01

    Leaf Area Index (LAI) is defined as the one-side green leaf area per unit ground surface area. Global LAI products, such as MOD15 (Terra&Aqua/MODIS) and CYCLOPES (SPOT/VEGETATION) are used for many global terrestrial carbon models. Japan Aerospace eXploration Agency (JAXA) is planning to launch GCOM-C (Global Change Observation Mission-Climate) which carries SGLI (Second-generation GLobal Imager) in the Japanese Fiscal Year 2017. SGLI has the features, such as 17-channel from near ultraviolet to thermal infrared, 250-m spatial resolution, polarization, and multi-angle (nadir and ±45-deg. along-track slant) observation. In the GCOM-C/SGLI land science team, LAI is scheduled to be generated from GCOM-C/SGLI observation data as a standard product (daily 250-m). In extisting algorithms, LAI is estimated by the reverse analysis of vegetation radiative transfer models (RTMs) using multi-spectral and mono-angle observation data. Here, understory layer in vegetation RTMs is assumed by plane parallel (green leaves + soil) which set up arbitrary understroy LAI. However, actual understory consists of various elements, such as green leaves, dead leaves, branches, soil, and snow. Therefore, if understory in vegetation RTMs differs from reality, it will cause an error of LAI to estimate. This report describes an algorithm which estimates LAI in consideration of the influence of understory using GCOM-C/SGLI multi-spectral and multi-angle observation data.

  20. F-8C adaptive flight control extensions. [for maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Stein, G.; Hartmann, G. L.

    1977-01-01

    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.

  1. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  2. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  3. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  4. Image-based aircraft pose estimation: a comparison of simulations and real-world data

    NASA Astrophysics Data System (ADS)

    Breuers, Marcel G. J.; de Reus, Nico

    2001-10-01

    The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.

  5. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    PubMed

    Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo

    2018-05-18

    Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.

  6. A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair

    We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.

  7. Automated quasi-3D spine curvature quantification and classification

    NASA Astrophysics Data System (ADS)

    Khilari, Rupal; Puchin, Juris; Okada, Kazunori

    2018-02-01

    Scoliosis is a highly prevalent spine deformity that has traditionally been diagnosed through measurement of the Cobb angle on radiographs. More recent technology such as the commercial EOS imaging system, although more accurate, also require manual intervention for selecting the extremes of the vertebrae forming the Cobb angle. This results in a high degree of inter and intra observer error in determining the extent of spine deformity. Our primary focus is to eliminate the need for manual intervention by robustly quantifying the curvature of the spine in three dimensions, making it consistent across multiple observers. Given the vertebrae centroids, the proposed Vertebrae Sequence Angle (VSA) estimation and segmentation algorithm finds the largest angle between consecutive pairs of centroids within multiple inflection points on the curve. To exploit existing clinical diagnostic standards, the algorithm uses a quasi-3-dimensional approach considering the curvature in the coronal and sagittal projection planes of the spine. Experiments were performed with manuallyannotated ground-truth classification of publicly available, centroid-annotated CT spine datasets. This was compared with the results obtained from manual Cobb and Centroid angle estimation methods. Using the VSA, we then automatically classify the occurrence and the severity of spine curvature based on Lenke's classification for idiopathic scoliosis. We observe that the results appear promising with a scoliotic angle lying within +/- 9° of the Cobb and Centroid angle, and vertebrae positions differing by at the most one position. Our system also resulted in perfect classification of scoliotic from healthy spines with our dataset with six cases.

  8. The algorithm of motion blur image restoration based on PSF half-blind estimation

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ke; Lin, Zhe

    2011-08-01

    A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.

  9. An automatic calibration procedure for remote eye-gaze tracking systems.

    PubMed

    Model, Dmitri; Guestrin, Elias D; Eizenman, Moshe

    2009-01-01

    Remote gaze estimation systems use calibration procedures to estimate subject-specific parameters that are needed for the calculation of the point-of-gaze. In these procedures, subjects are required to fixate on a specific point or points at specific time instances. Advanced remote gaze estimation systems can estimate the optical axis of the eye without any personal calibration procedure, but use a single calibration point to estimate the angle between the optical axis and the visual axis (line-of-sight). This paper presents a novel automatic calibration procedure that does not require active user participation. To estimate the angles between the optical and visual axes of each eye, this procedure minimizes the distance between the intersections of the visual axes of the left and right eyes with the surface of a display while subjects look naturally at the display (e.g., watching a video clip). Simulation results demonstrate that the performance of the algorithm improves as the range of viewing angles increases. For a subject sitting 75 cm in front of an 80 cm x 60 cm display (40" TV) the standard deviation of the error in the estimation of the angles between the optical and visual axes is 0.5 degrees.

  10. Fast Noncircular 2D-DOA Estimation for Rectangular Planar Array

    PubMed Central

    Xu, Lingyun; Wen, Fangqing

    2017-01-01

    A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity. PMID:28417926

  11. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: modelling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco

    2013-05-01

    The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.

  12. Top-of-atmosphere radiative fluxes - Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data

    NASA Technical Reports Server (NTRS)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1992-01-01

    The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.

  13. Mars Entry Atmospheric Data System Modelling and Algorithm Development

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; OKeefe, Stephen A.; Siemers, Paul; White, Brady; Engelund, Walter C.; Munk, Michelle M.

    2009-01-01

    The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI) project. The MEADS project involves installing an array of seven pressure transducers linked to ports on the MSL forebody to record the surface pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the total pressure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary objectives are to estimate atmospheric winds by coupling the pressure measurements with the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the algorithm development, MEADS system performance based on calibration, and uncertainty analysis for the aerodynamic and atmospheric quantities of interest. The work presented here is part of the MEDLI performance pre-flight validation and will culminate with processing flight data after Mars entry in 2012.

  14. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.

    PubMed

    Borbély, Bence J; Szolgay, Péter

    2017-01-17

    Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.

  15. Methods of extending crop signatures from one area to another

    NASA Technical Reports Server (NTRS)

    Minter, T. C. (Principal Investigator)

    1979-01-01

    Efforts to develop a technology for signature extension during LACIE phases 1 and 2 are described. A number of haze and Sun angle correction procedures were developed and tested. These included the ROOSTER and OSCAR cluster-matching algorithms and their modifications, the MLEST and UHMLE maximum likelihood estimation procedures, and the ATCOR procedure. All these algorithms were tested on simulated data and consecutive-day LANDSAT imagery. The ATCOR, OSCAR, and MLEST algorithms were also tested for their capability to geographically extend signatures using LANDSAT imagery.

  16. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  17. LETTER TO THE EDITOR: Free-response operator characteristic models for visual search

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. P.

    2007-05-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) is a novel x-ray phase-contrast computed tomography which is applied to inspect weakly absorbing low-Z samples. Refraction-angle images which are extracted from a series of raw DEI images measured in different positions of the rocking curve of the analyser can be regarded as projections of DEI-CT. Based on them, the distribution of refractive index decrement in the sample can be reconstructed according to the principles of CT. How to combine extraction methods and reconstruction algorithms to obtain the most accurate reconstructed results is investigated in detail in this paper. Two kinds of comparison, the comparison of different extraction methods and the comparison between 'two-step' algorithms and the Hilbert filtered backprojection (HFBP) algorithm, draw the conclusion that the HFBP algorithm based on the maximum refraction-angle (MRA) method may be the best combination at present. Though all current extraction methods including the MRA method are approximate methods and cannot calculate very large refraction-angle values, the HFBP algorithm based on the MRA method is able to provide quite acceptable estimations of the distribution of refractive index decrement of the sample. The conclusion is proved by the experimental results at the Beijing Synchrotron Radiation Facility.

  18. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  19. Direction of Radio Finding via MUSIC (Multiple Signal Classification) Algorithm for Hardware Design System

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2017-10-01

    Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.

  20. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP

    PubMed Central

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  1. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less

  2. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters, the calibration state vector contains only two average penetration angle biases (one per each pair of opposite quadrants) since, because of the very narrow sensor FOV (+/- 2.6 degrees), differences between biases of the penetration angles measured by opposite quadrants cannot be distinguished from roll and pitch sensor misalignments. After calibration, the estimated misalignments and average penetration angle biases are converted to the four penetration angle biases and to the yaw misalignment angle. The resultant biases and the estimated scale factors are finally used to update the coefficients necessary for onboard computations of penetration angles from measured voltages.

  3. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  4. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  5. THE CHALLENGES IN THE ESTIMATION OF THE EFFECTIVE DOSE WHEN WEARING RADIOPROTECTIVE GARMENTS.

    PubMed

    Saldarriaga Vargas, C; Struelens, L; Vanhavere, F

    2018-01-01

    The performance of a single or double dosimetry (SD or DD) algorithm on estimating effective dose wearing radioprotective garments (ERPG) depends on the specific irradiation conditions. This study investigates the photon energies and angles of incidence for which the estimation of ERPG with the personal dose equivalents measured over and under the RPG (Ho and Hu) becomes more challenging. The energy and angular dependences of ERPG, Ho and Hu were Monte Carlo calculated for photon exposures. The personal dosimeter of SCK · CEN was modeled and used to determine Ho and Hu. Different SD and DD algorithms were tested and critical exposure conditions were identified. Moreover, the influence of calibration methods was investigated for the SCK · CEN dosimeter when worn over RPG. We found that the accuracy with which ERPG is calculated using SD and DD is strongly dependent on the energy and angle of incidence of photons. Also, the energy of the photon beam used to calibrate the Ho dosimeter can bias the estimation of ERPG. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.

    1998-01-01

    This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.

  7. Robust estimation of adaptive tensors of curvature by tensor voting.

    PubMed

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  8. Development and validation of a Kalman filter-based model for vehicle slip angle estimation

    NASA Astrophysics Data System (ADS)

    Gadola, M.; Chindamo, D.; Romano, M.; Padula, F.

    2014-01-01

    It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data.

  9. Solving Assembly Sequence Planning using Angle Modulated Simulated Kalman Filter

    NASA Astrophysics Data System (ADS)

    Mustapa, Ainizar; Yusof, Zulkifli Md.; Adam, Asrul; Muhammad, Badaruddin; Ibrahim, Zuwairie

    2018-03-01

    This paper presents an implementation of Simulated Kalman Filter (SKF) algorithm for optimizing an Assembly Sequence Planning (ASP) problem. The SKF search strategy contains three simple steps; predict-measure-estimate. The main objective of the ASP is to determine the sequence of component installation to shorten assembly time or save assembly costs. Initially, permutation sequence is generated to represent each agent. Each agent is then subjected to a precedence matrix constraint to produce feasible assembly sequence. Next, the Angle Modulated SKF (AMSKF) is proposed for solving ASP problem. The main idea of the angle modulated approach in solving combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The performance of the proposed AMSKF is compared against previous works in solving ASP by applying BGSA, BPSO, and MSPSO. Using a case study of ASP, the results show that AMSKF outperformed all the algorithms in obtaining the best solution.

  10. Off-nadir antenna bias correction using Amazon rain sigma(0) data

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.

    1982-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  11. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    NASA Astrophysics Data System (ADS)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  12. A simple algorithm for distance estimation without radar and stereo vision based on the bionic principle of bee eyes

    NASA Astrophysics Data System (ADS)

    Khamukhin, A. A.

    2017-02-01

    Simple navigation algorithms are needed for small autonomous unmanned aerial vehicles (UAVs). These algorithms can be implemented in a small microprocessor with low power consumption. This will help to reduce the weight of the UAVs computing equipment and to increase the flight range. The proposed algorithm uses only the number of opaque channels (ommatidia in bees) through which a target can be seen by moving an observer from location 1 to 2 toward the target. The distance estimation is given relative to the distance between locations 1 and 2. The simple scheme of an appositional compound eye to develop calculation formula is proposed. The distance estimation error analysis shows that it decreases with an increase of the total number of opaque channels to a certain limit. An acceptable error of about 2 % is achieved with the angle of view from 3 to 10° when the total number of opaque channels is 21600.

  13. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  14. X-29A Lateral-Directional Stability and Control Derivatives Extracted From High-Angle-of-Attack Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles Wang

    1996-01-01

    The lateral-directional stability and control derivatives of the X-29A number 2 are extracted from flight data over an angle-of-attack range of 4 degrees to 53 degrees using a parameter identification algorithm. The algorithm uses the linearized aircraft equations of motion and a maximum likelihood estimator in the presence of state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft at angles of attack above 15 degrees. The results supported the flight-envelope-expansion phase of the X-29A number 2 by helping to update the aerodynamic mathematical model, to improve the real-time simulator, and to revise flight control system laws. Effects of the aircraft high gain flight control system on maneuver quality and the estimated derivatives are also discussed. The derivatives are plotted as functions of angle of attack and compared with the predicted aerodynamic database. Agreement between predicted and flight values is quite good for some derivatives such as the lateral force due to sideslip, the lateral force due to rudder deflection, and the rolling moment due to roll rate. The results also show significant differences in several important derivatives such as the rolling moment due to sideslip, the yawing moment due to sideslip, the yawing moment due to aileron deflection, and the yawing moment due to rudder deflection.

  15. Development of a Closed-Loop Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Fife, Mike; Brashear, Logan

    1997-01-01

    A low-cost attitude system has been developed for an ultrahigh altitude flight experiment. The experiment uses a remotely piloted sailplane, with the wings modified for flight at altitudes greater than 100,000 ft. Mission requirements deem it necessary to measure the aircraft pitch and bank angles with accuracy better than 1.0 deg and heading with accuracy better than 5.0 deg. Vehicle cost restrictions and gross weight limits make installing a commercial inertial navigation system unfeasible. Instead, a low-cost attitude system was developed using strap down components. Monte Carlo analyses verified that two vector measurements, magnetic field and velocity, are required to completely stabilize the error equations. In the estimating algorithm, body-axis observations of the airspeed vector and the magnetic field are compared against the inertial velocity vector and a magnetic-field reference model. Residuals are fed back to stabilize integration of rate gyros. The effectiveness of the estimating algorithm was demonstrated using data from the NASA Dryden Flight Research Center Systems Research Aircraft (SRA) flight tests. The algorithm was applied with good results to a maximum 10' pitch and bank angles. Effects of wind shears were evaluated and, for most cases, can be safely ignored.

  16. Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an Iot Architecture.

    PubMed

    Garcia Guzman, Javier; Prieto Gonzalez, Lisardo; Pajares Redondo, Jonatan; Sanz Sanchez, Susana; Boada, Beatriz L

    2018-06-03

    In recent years, there have been many advances in vehicle technologies based on the efficient use of real-time data provided by embedded sensors. Some of these technologies can help you avoid or reduce the severity of a crash such as the Roll Stability Control (RSC) systems for commercial vehicles. In RSC, several critical variables to consider such as sideslip or roll angle can only be directly measured using expensive equipment. These kind of devices would increase the price of commercial vehicles. Nevertheless, sideslip or roll angle or values can be estimated using MEMS sensors in combination with data fusion algorithms. The objectives stated for this research work consist of integrating roll angle estimators based on Linear and Unscented Kalman filters to evaluate the precision of the results obtained and determining the fulfillment of the hard real-time processing constraints to embed this kind of estimators in IoT architectures based on low-cost equipment able to be deployed in commercial vehicles. An experimental testbed composed of a van with two sets of low-cost kits was set up, the first one including a Raspberry Pi 3 Model B, and the other having an Intel Edison System on Chip. This experimental environment was tested under different conditions for comparison. The results obtained from low-cost experimental kits, based on IoT architectures and including estimators based on Kalman filters, provide accurate roll angle estimation. Also, these results show that the processing time to get the data and execute the estimations based on Kalman Filters fulfill hard real time constraints.

  17. Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.

    PubMed

    Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng

    2018-05-14

    In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.

  18. The research of radar target tracking observed information linear filter method

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  19. Exploiting passive polarimetric imagery for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Vimal Thilak Krishna, Thilakam

    Polarization is a property of light or electromagnetic radiation that conveys information about the orientation of the transverse electric and magnetic fields. The polarization of reflected light complements other electromagnetic radiation attributes such as intensity, frequency, or spectral characteristics. A passive polarization based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. The polarization due to surface reflections from such objects contains information about the targets that can be exploited in remote sensing applications such as target detection, target classification, object recognition and shape extraction/recognition. In recent years, there has been renewed interest in the use of passive polarization information in remote sensing applications. The goal of our research is to design image processing algorithms for remote sensing applications by utilizing physics-based models that describe the polarization imparted by optical scattering from an object. In this dissertation, we present a method to estimate the complex index of refraction and reflection angle from multiple polarization measurements. This method employs a polarimetric bidirectional reflectance distribution function (pBRDF) that accounts for polarization due to specular scattering. The parameters of interest are derived by utilizing a nonlinear least squares estimation algorithm, and computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Furthermore, laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle. We also study the use of extracted index of refraction as a feature vector in designing two important image processing applications, namely image segmentation and material classification so that the resulting systems are largely invariant to illumination source location. This is in contrast to most passive polarization-based image processing algorithms proposed in the literature that employ quantities such as Stokes vectors and the degree of polarization and which are not robust to changes in illumination conditions. The estimated index of refraction, on the other hand, is invariant to illumination conditions and hence can be used as an input to image processing algorithms. The proposed estimation framework also is extended to the case where the position of the observer (camera) moves between measurements while that of the source remains fixed. Finally, we explore briefly the topic of parameter estimation for a generalized model that accounts for both specular and volumetric scattering. A combination of simulation and experimental results are provided to evaluate the effectiveness of the above methods.

  20. Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

    2001-01-01

    The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

  1. Multichannel Doppler Processing for an Experimental Low-Angle Tracking System

    DTIC Science & Technology

    1990-05-01

    estimation techniques at sea. Because of clutter and noise, it is necessary to use a number of different processing algorithms to extract the required...a number of different processing algorithms to extract the required information. Consequently, the ELAT radar system is composed of multiple...corresponding to RF frequencies, f, and f2. For mode 3, the ambiguities occur at vbi = 15.186 knots and vb2 = 16.96 knots. The sea clutter, with a spectrum

  2. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  3. The X-43A Flush Airdata Sensing System Flight Test Results

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Pahle, Joseph W.; Davis, Mark; White, John Terry

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has flight-tested a flush airdata sensing (FADS) system on the Hyper-X Research Vehicle (X-43A) at hypersonic speeds during the course of two successful flights. For this series of tests, the FADS system was calibrated to operate between Mach 3 and Mach 8, and flight test data was collected between Mach 1 and Mach 10. The FADS system acquired pressure data from surface-mounted ports and generated a real-time angle-of-attack (alpha) estimate on board the X-43A. The collected data were primarily intended to evaluate the FADS system performance, and the estimated alpha was used by the flight control algorithms on the X-43A for only a portion of the first successful flight. This paper provides an overview of the FADS system and alpha estimation algorithms, presents the in-flight alpha estimation algorithm performance, and provides comparisons to wind tunnel results and theory. Results indicate that the FADS system adequately estimated the alpha of the vehicle during the hypersonic portions of the two flights.

  4. Spatial aliasing for efficient direction-of-arrival estimation based on steering vector reconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Feng-Gang; Cao, Bin; Rong, Jia-Jia; Shen, Yi; Jin, Ming

    2016-12-01

    A new technique is proposed to reduce the computational complexity of the multiple signal classification (MUSIC) algorithm for direction-of-arrival (DOA) estimate using a uniform linear array (ULA). The steering vector of the ULA is reconstructed as the Kronecker product of two other steering vectors, and a new cost function with spatial aliasing at hand is derived. Thanks to the estimation ambiguity of this spatial aliasing, mirror angles mathematically relating to the true DOAs are generated, based on which the full spectral search involved in the MUSIC algorithm is highly compressed into a limited angular sector accordingly. Further complexity analysis and performance studies are conducted by computer simulations, which demonstrate that the proposed estimator requires an extremely reduced computational burden while it shows a similar accuracy to the standard MUSIC.

  5. Development of a Low-Cost Attitude Sensor for Agricultural Vehicles

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a low-cost attitude sensor for agricultural vehicles. The attitude sensor was composed of three vibratory gyroscopes and two inclinometers. A sensor fusion algorithm was developed to estimate tilt angles (roll and pitch) by least-squares method. In the a...

  6. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  7. Improved estimation of Mars ionosphere total electron content

    NASA Astrophysics Data System (ADS)

    Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.

    2018-01-01

    We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.

  8. Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)

    1981-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  9. Tracking Objects with Networked Scattered Directional Sensors

    NASA Astrophysics Data System (ADS)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  10. Inverse Flush Air Data System (FADS) for Real Time Simulations

    NASA Astrophysics Data System (ADS)

    Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan

    2017-12-01

    Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.

  11. Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design

    NASA Astrophysics Data System (ADS)

    Lee, Byungjin; Lee, Young Jae; Sung, Sangkyung

    2018-05-01

    A novel attitude determination method is investigated that is computationally efficient and implementable in low cost sensor and embedded platform. Recent result on attitude reference system design is adapted to further develop a three-dimensional attitude determination algorithm through the relative velocity incremental measurements. For this, velocity incremental vectors, computed respectively from INS and GPS with different update rate, are compared to generate filter measurement for attitude estimation. In the quaternion-based Kalman filter configuration, an Euler-like attitude perturbation angle is uniquely introduced for reducing filter states and simplifying propagation processes. Furthermore, assuming a small angle approximation between attitude update periods, it is shown that the reduced order filter greatly simplifies the propagation processes. For performance verification, both simulation and experimental studies are completed. A low cost MEMS IMU and GPS receiver are employed for system integration, and comparison with the true trajectory or a high-grade navigation system demonstrates the performance of the proposed algorithm.

  12. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  13. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  14. Effect of angle of deposition on the Fractal properties of ZnO thin film surface

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.

    2017-09-01

    Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.

  15. Assessment of satellite retrieval algorithms for chlorophyll-a concentration under high solar zenith angle

    NASA Astrophysics Data System (ADS)

    Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng

    2016-10-01

    Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.

  16. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  17. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4

    2015-01-15

    Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithmmore » which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a suitable GOF metric with strong correlation with the actual error of the scatter fit, S{sub F}. Fitting the scatter distribution to a limited sum of sine and cosine functions using a low-pass filtered fast Fourier transform provided a computationally efficient and accurate fit. The CMCF algorithm reduces the number of photon histories required by over four orders of magnitude. The simulated experiments showed that using a compensator reduced the computational time by a factor between 1.5 and 1.75. The scatter estimates for the simulated and measured data were computed between 35–93 s and 114–122 s, respectively, using 16 Intel Xeon cores (3.0 GHz). The CMCF scatter correction improved the contrast-to-noise ratio by 10%–50% and reduced the reconstruction error to under 3% for the simulated phantoms. Conclusions: The novel CMCF algorithm significantly reduces the computation time required to estimate the scatter distribution by reducing the statistical noise in the MC scatter estimate and limiting the number of projection angles that must be simulated. Using the scatter estimate provided by the CMCF algorithm to correct both simulated and real projection data showed improved reconstruction image quality.« less

  18. Influence of scanning parameters on the estimation accuracy of control points of B-spline surfaces

    NASA Astrophysics Data System (ADS)

    Aichinger, Julia; Schwieger, Volker

    2018-04-01

    This contribution deals with the influence of scanning parameters like scanning distance, incidence angle, surface quality and sampling width on the average estimated standard deviations of the position of control points from B-spline surfaces which are used to model surfaces from terrestrial laser scanning data. The influence of the scanning parameters is analyzed by the Monte Carlo based variance analysis. The samples were generated for non-correlated and correlated data, leading to the samples generated by Latin hypercube and replicated Latin hypercube sampling algorithms. Finally, the investigations show that the most influential scanning parameter is the distance from the laser scanner to the object. The angle of incidence shows a significant effect for distances of 50 m and longer, while the surface quality contributes only negligible effects. The sampling width has no influence. Optimal scanning parameters can be found in the smallest possible object distance at an angle of incidence close to 0° in the highest surface quality. The consideration of correlations improves the estimation accuracy and underlines the importance of complete stochastic models for TLS measurements.

  19. Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-12-01

    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

  20. Fast beampattern evaluation by polynomial rooting

    NASA Astrophysics Data System (ADS)

    Häcker, P.; Uhlich, S.; Yang, B.

    2011-07-01

    Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.

  1. Initial attitude determination for the hipparcos satellite

    NASA Astrophysics Data System (ADS)

    Van der Ha, Jozef C.

    The present paper described the strategy and algorithms used during the initial on-ground three-axes attitude determination of ESA's astrometry satellite HIPPARCOS. The estimation is performed using calculated crossing times of identified stars over the Star Mapper's vertical and inclined slit systems as well as outputs from a set of rate-integrating gyros. Valid star transits in either of the two fields of view are expected to occur in average about every 30 s whereas the gyros are sampled at about 1 Hz. The state vector to be estimated consists of the three angles, three rates and three gyro drift rate components. Simulations have shown that convergence of the estimator is established within about 10 min and that the accuracies achieved are in the order of a few arcsec for the angles and a few milliarcsec per s for the rates. These stringent accuracies are in fact required for initialisation of subsequent autonomous on-board real-time attitude determination.

  2. A New Low Complexity Angle of Arrival Algorithm for 1D and 2D Direction Estimation in MIMO Smart Antenna Systems

    PubMed Central

    Al-Sadoon, Mohammed A. G.; Zuid, Abdulkareim; Jones, Stephen M. R.; Noras, James M.

    2017-01-01

    This paper proposes a new low complexity angle of arrival (AOA) method for signal direction estimation in multi-element smart wireless communication systems. The new method estimates the AOAs of the received signals directly from the received signals with significantly reduced complexity since it does not need to construct the correlation matrix, invert the matrix or apply eigen-decomposition, which are computationally expensive. A mathematical model of the proposed method is illustrated and then verified using extensive computer simulations. Both linear and circular sensors arrays are studied using various numerical examples. The method is systematically compared with other common and recently introduced AOA methods over a wide range of scenarios. The simulated results show that the new method has several advantages in terms of reduced complexity and improved accuracy under the assumptions of correlated signals and limited numbers of snapshots. PMID:29140313

  3. A New Low Complexity Angle of Arrival Algorithm for 1D and 2D Direction Estimation in MIMO Smart Antenna Systems.

    PubMed

    Al-Sadoon, Mohammed A G; Ali, Nazar T; Dama, Yousf; Zuid, Abdulkareim; Jones, Stephen M R; Abd-Alhameed, Raed A; Noras, James M

    2017-11-15

    This paper proposes a new low complexity angle of arrival (AOA) method for signal direction estimation in multi-element smart wireless communication systems. The new method estimates the AOAs of the received signals directly from the received signals with significantly reduced complexity since it does not need to construct the correlation matrix, invert the matrix or apply eigen-decomposition, which are computationally expensive. A mathematical model of the proposed method is illustrated and then verified using extensive computer simulations. Both linear and circular sensors arrays are studied using various numerical examples. The method is systematically compared with other common and recently introduced AOA methods over a wide range of scenarios. The simulated results show that the new method has several advantages in terms of reduced complexity and improved accuracy under the assumptions of correlated signals and limited numbers of snapshots.

  4. Model-Based Estimation of Ankle Joint Stiffness

    PubMed Central

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  5. Attitude angle effects on Nimbus-7 Scanning Multichannel Microwave Radiometer radiances and geophysical parameter retrievals

    NASA Technical Reports Server (NTRS)

    Macmillan, Daniel S.; Han, Daesoo

    1989-01-01

    The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.

  6. An FPGA-Based Real-Time Maximum Likelihood 3D Position Estimation for a Continuous Crystal PET Detector

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Xiao, Yong; Cheng, Xinyi; Li, Deng; Wang, Liwei

    2016-02-01

    For the continuous crystal-based positron emission tomography (PET) detector built in our lab, a maximum likelihood algorithm adapted for implementation on a field programmable gate array (FPGA) is proposed to estimate the three-dimensional (3D) coordinate of interaction position with the single-end detected scintillation light response. The row-sum and column-sum readout scheme organizes the 64 channels of photomultiplier (PMT) into eight row signals and eight column signals to be readout for X- and Y-coordinates estimation independently. By the reference events irradiated in a known oblique angle, the probability density function (PDF) for each depth-of-interaction (DOI) segment is generated, by which the reference events in perpendicular irradiation are assigned to DOI segments for generating the PDFs for X and Y estimation in each DOI layer. Evaluated by the experimental data, the algorithm achieves an average X resolution of 1.69 mm along the central X-axis, and DOI resolution of 3.70 mm over the whole thickness (0-10 mm) of crystal. The performance improvements from 2D estimation to the 3D algorithm are also presented. Benefiting from abundant resources of FPGA and a hierarchical storage arrangement, the whole algorithm can be implemented into a middle-scale FPGA. By a parallel structure in pipelines, the 3D position estimator on the FPGA can achieve a processing throughput of 15 M events/s, which is sufficient for the requirement of real-time PET imaging.

  7. Data acquisition and path selection decision making for an autonomous roving vehicle. [laser pointing control system for vehicle guidance

    NASA Technical Reports Server (NTRS)

    Shen, C. N.; YERAZUNIS

    1979-01-01

    The feasibility of using range/pointing angle data such as might be obtained by a laser rangefinder for the purpose of terrain evaluation in the 10-40 meter range on which to base the guidance of an autonomous rover was investigated. The decision procedure of the rapid estimation scheme for the detection of discrete obstacles has been modified to reinforce the detection ability. With the introduction of the logarithmic scanning scheme and obstacle identification scheme, previously developed algorithms are combined to demonstrate the overall performance of the intergrated route designation system using laser rangefinder. In an attempt to cover a greater range, 30 m to 100 mm, the problem estimating gradients in the presence of positioning angle noise at middle range is investigated.

  8. Integration of SMAP and SMOS L-Band Observations

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Chan, Steven; Colliander, Andreas; Kerr, Yaan

    2017-01-01

    Soil Moisture Active Passive (SMAP) mission and the ESA Soil Moisture and Ocean Salinity (SMOS) missions provide brightness temperature and soil moisture estimates every 2-3 days. SMAP brightness temperature observations were compared with SMOS observations at 40 Degrees incidence angle. The brightness temperatures from the two missions are not consistent and have a bias of about 2.7K over land with respect to each other. SMAP and SMOS missions use different retrieval algorithms and ancillary datasets which result in further inconsistencies between the soil moisture products. The reprocessed constant-angle SMOS brightness temperatures were used in the SMAP soil moisture retrieval algorithm to develop a consistent multi-satellite product. The integrated product will have an increased global revisit frequency (1 day) and period of record that would be unattainable by either one of the satellites alone. Results from the development and validation of the integrated product will be presented.

  9. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    NASA Astrophysics Data System (ADS)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.

  10. Uncertainty Propagation Methods for High-Dimensional Complex Systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arpan

    Researchers are developing ever smaller aircraft called Micro Aerial Vehicles (MAVs). The Space Robotics Group has joined the field by developing a dragonfly-inspired MAV. This thesis presents two contributions to this project. The first is the development of a dynamical model of the internal MAV components to be used for tuning design parameters and as a future plant model. This model is derived using the Lagrangian method and differs from others because it accounts for the internal dynamics of the system. The second contribution of this thesis is an estimation algorithm that can be used to determine prototype performance and verify the dynamical model from the first part. Based on the Gauss-Newton Batch Estimator, this algorithm uses a single camera and known points of interest on the wing to estimate the wing kinematic angles. Unlike other single-camera methods, this method is probabilistically based rather than being geometric.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J.C.; Leahy, R.M.

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less

  12. On techniques for angle compensation in nonideal iris recognition.

    PubMed

    Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A

    2007-10-01

    The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.

  13. Evaluation of the operational SAR based Baltic sea ice concentration products

    NASA Astrophysics Data System (ADS)

    Karvonen, Juha

    Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.

  14. Wideband Direction of Arrival Estimation in the Presence of Unknown Mutual Coupling

    PubMed Central

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Guo, Rui; Chen, Zengping

    2017-01-01

    This paper investigates a subarray based algorithm for direction of arrival (DOA) estimation of wideband uniform linear array (ULA), under the presence of frequency-dependent mutual coupling effects. Based on the Toeplitz structure of mutual coupling matrices, the whole array is divided into the middle subarray and the auxiliary subarray. Then two-sided correlation transformation is applied to the correlation matrix of the middle subarray instead of the whole array. In this way, the mutual coupling effects can be eliminated. Finally, the multiple signal classification (MUSIC) method is utilized to derive the DOAs. For the condition when the blind angles exist, we refine DOA estimation by using a simple approach based on the frequency-dependent mutual coupling matrixes (MCMs). The proposed method can achieve high estimation accuracy without any calibration sources. It has a low computational complexity because iterative processing is not required. Simulation results validate the effectiveness and feasibility of the proposed algorithm. PMID:28178177

  15. Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren

    2012-01-01

    The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.

  16. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  17. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    PubMed Central

    Byun, Yeun Sub; Kim, Young Chol

    2016-01-01

    Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827

  19. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  20. Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick

    2000-01-01

    NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at Mach 3-8 and at -6 deg - 12 deg angle of attack. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.

  1. Development of a Flush Airdata Sensing System on a Sharp-Nosed Vehicle for Flight at Mach 3 to 8

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; Pahle, Joseph W.; White, John Terry; Marshall, Laurie A.; Mashburn, Michael J.; Franks, Rick

    2000-01-01

    NASA Dryden Flight Research Center has developed a flush airdata sensing (FADS) system on a sharp-nosed, wedge-shaped vehicle. This paper details the design and calibration of a real-time angle-of-attack estimation scheme developed to meet the onboard airdata measurement requirements for a research vehicle equipped with a supersonic-combustion ramjet engine. The FADS system has been designed to perform in flights at speeds between Mach 3 and Mach 8 and at angles of attack between -6 deg. and 12 deg. The description of the FADS architecture includes port layout, pneumatic design, and hardware integration. Predictive models of static and dynamic performance are compared with wind-tunnel results across the Mach and angle-of-attack range. Results indicate that static angle-of-attack accuracy and pneumatic lag can be adequately characterized and incorporated into a real-time algorithm.

  2. Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.

    PubMed

    Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla

    2009-04-01

    Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.

  3. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  4. Estimation of three-dimensional radar tracking using modified extended kalman filter

    NASA Astrophysics Data System (ADS)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  5. An optimized knife-edge method for on-orbit MTF estimation of optical sensors using powell parameter fitting

    NASA Astrophysics Data System (ADS)

    Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue

    2017-08-01

    On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.

  6. Wheel life prediction model - an alternative to the FASTSIM algorithm for RCF

    NASA Astrophysics Data System (ADS)

    Hossein-Nia, Saeed; Sichani, Matin Sh.; Stichel, Sebastian; Casanueva, Carlos

    2018-07-01

    In this article, a wheel life prediction model considering wear and rolling contact fatigue (RCF) is developed and applied to a heavy-haul locomotive. For wear calculations, a methodology based on Archard's wear calculation theory is used. The simulated wear depth is compared with profile measurements within 100,000 km. For RCF, a shakedown-based theory is applied locally, using the FaStrip algorithm to estimate the tangential stresses instead of FASTSIM. The differences between the two algorithms on damage prediction models are studied. The running distance between the two reprofiling due to RCF is estimated based on a Wöhler-like relationship developed from laboratory test results from the literature and the Palmgren-Miner rule. The simulated crack locations and their angles are compared with a five-year field study. Calculations to study the effects of electro-dynamic braking, track gauge, harder wheel material and the increase of axle load on the wheel life are also carried out.

  7. Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

    NASA Astrophysics Data System (ADS)

    Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc

    2018-05-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications.

  8. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.

  9. Space based optical staring sensor LOS determination and calibration using GCPs observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao

    2016-10-01

    Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.

  10. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz localization rates using standard CPUs

    NASA Astrophysics Data System (ADS)

    Martens, Koen J. A.; Bader, Arjen N.; Baas, Sander; Rieger, Bernd; Hohlbein, Johannes

    2018-03-01

    We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more than 3 × 106 localizations per second to be calculated on a standard multi-core central processing unit with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function to two phase vectors (phasors) by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.

  11. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  12. A Modified Triples Algorithm for Flush Air Data Systems that Allows a Variety of Pressure Port Configurations

    NASA Technical Reports Server (NTRS)

    Millman, Daniel R.

    2017-01-01

    Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.

  13. Application of Kalman filter in frequency offset estimation for coherent optical quadrature phase-shift keying communication system

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Yang, Yanfu; Zhang, Qun; Sun, Yunxu; Zhong, Kangping; Zhou, Xian; Yao, Yong

    2016-09-01

    The frequency offset estimation (FOE) schemes based on Kalman filter are proposed and investigated in detail via numerical simulation and experiment. The schemes consist of a modulation phase removing stage and Kalman filter estimation stage. In the second stage, the Kalman filters are employed for tracking either differential angles or differential data between two successive symbols. Several implementations of the proposed FOE scheme are compared by employing different modulation removing methods and two Kalman algorithms. The optimal FOE implementation is suggested for different operating conditions including optical signal-to-noise ratio and the number of the available data symbols.

  14. Rain rate range profiling from a spaceborne radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1980-01-01

    At certain frequencies and incidence angles the relative invariance of the surface scattering properites over land can be used to estimate the total attenuation and the integrated rain from a spaceborne attenuation-wavelength radar. The technique is generalized so that rain rate profiles along the radar beam can be estimated, i.e., rain rate determination at each range bin. This is done by modifying the standard algorithm for an attenuating-wavelength radar to include in it the measurement of the total attenuation. Simple error analyses of the estimates show that this type of profiling is possible if the total attenuation can be measured with a modest degree of accuracy.

  15. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  16. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    PubMed

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  17. Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle

    2013-01-01

    The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.

  18. The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite

    NASA Astrophysics Data System (ADS)

    Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He

    2004-04-01

    The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.

  19. A 2D eye gaze estimation system with low-resolution webcam images

    NASA Astrophysics Data System (ADS)

    Ince, Ibrahim Furkan; Kim, Jin Woo

    2011-12-01

    In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI) algorithm. Deformable template-based 2D gaze estimation (DTBGE) algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.

  20. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    PubMed

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data

    PubMed Central

    Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun

    2008-01-01

    On the basis of the radiative transfer theory, this paper addressed the estimate of Land Surface Temperature (LST) from the Chinese first operational geostationary meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 10.3-11.3 μm and IR2, 11.5-12.5 μm), using the Generalized Split-Window (GSW) algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithm corresponding to a series of overlapping ranging of the mean emissivity, the atmospheric Water Vapor Content (WVC), and the LST were derived using a statistical regression method from the numerical values simulated with an accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. The simulation analysis showed that the LST could be estimated by the GSW algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60° and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities (LSEs) are known. In order to determine the range for the optimum coefficients of the GSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according to the land surface classification or using the method proposed by Jiang et al. (2006); and the WVC could be obtained from MODIS total precipitable water product MOD05, or be retrieved using Li et al.' method (2003). The sensitivity and error analyses in term of the uncertainty of the LSE and WVC as well as the instrumental noise were performed. In addition, in order to compare the different formulations of the split-window algorithms, several recently proposed split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The result of the intercomparsion showed that most of the algorithms give comparable results. PMID:27879744

  2. Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy

    NASA Astrophysics Data System (ADS)

    Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.

    2018-04-01

    DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  3. A blind transform based approach for the detection of isolated astrophysical pulses

    NASA Astrophysics Data System (ADS)

    Alkhweldi, Marwan; Schmid, Natalia A.; Prestage, Richard M.

    2017-06-01

    This paper presents a blind algorithm for the automatic detection of isolated astrophysical pulses. The detection algorithm is applied to spectrograms (also known as "filter bank data" or "the (t,f) plane"). The detection algorithm comprises a sequence of three steps: (1) a Radon transform is applied to the spectrogram, (2) a Fourier transform is applied to each projection parametrized by an angle, and the total power in each projection is calculated, and (3) the total power of all projections above 90° is compared to the total power of all projections below 90° and a decision in favor of an astrophysical pulse present or absent is made. Once a pulse is detected, its Dispersion Measure (DM) is estimated by fitting an analytically developed expression for a transformed spectrogram containing a pulse, with varying value of DM, to the actual data. The performance of the proposed algorithm is numerically analyzed.

  4. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry.

    PubMed

    Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José

    2015-06-04

    In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D) images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°), 45° downwards view, front view (90°) and ground upwards view (-45°). The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis) were measured in each individual plant. The depth image models agreed well with 45°, 90° and -45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92) between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°). Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop biomass production, with several important advantages: low cost, low power needs and a high frame rate (frames per second) when dynamic measurements are required.

  5. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  6. Anisotropic scattering of discrete particle arrays.

    PubMed

    Paul, Joseph S; Fu, Wai Chong; Dokos, Socrates; Box, Michael

    2010-05-01

    Far-field intensities of light scattered from a linear centro-symmetric array illuminated by a plane wave of incident light are estimated at a series of detector angles. The intensities are computed from the superposition of E-fields scattered by the individual array elements. An average scattering phase function is used to model the scattered fields of individual array elements. The nature of scattering from the array is investigated using an image (theta-phi plot) of the far-field intensities computed at a series of locations obtained by rotating the detector angle from 0 degrees to 360 degrees, corresponding to each angle of incidence in the interval [0 degrees 360 degrees]. The diffraction patterns observed from the theta-Phi plot are compared with those for isotropic scattering. In the absence of prior information on the array geometry, the intensities corresponding to theta-Phi pairs satisfying the Bragg condition are used to estimate the phase function. An algorithmic procedure is presented for this purpose and tested using synthetic data. The relative error between estimated and theoretical values of the phase function is shown to be determined by the mean spacing factor, the number of elements, and the far-field distance. An empirical relationship is presented to calculate the optimal far-field distance for a given specification of the percentage error.

  7. Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles

    NASA Astrophysics Data System (ADS)

    Jain, Dhanesh; Lalwani, Mahendra

    2018-05-01

    The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.

  8. Performance of resonant radar target identification algorithms using intra-class weighting functions

    NASA Astrophysics Data System (ADS)

    Mustafa, A.

    The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.

  9. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  10. Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean

    NASA Astrophysics Data System (ADS)

    Breunig, Fábio Marcelo; Galvão, Lênio Soares; Formaggio, Antônio Roberto; Epiphanio, José Carlos Neves

    2011-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is largely used to estimate Leaf Area Index (LAI) using radiative transfer modeling (the "main" algorithm). When this algorithm fails for a pixel, which frequently occurs over Brazilian soybean areas, an empirical model (the "backup" algorithm) based on the relationship between the Normalized Difference Vegetation Index (NDVI) and LAI is utilized. The objective of this study is to evaluate directional effects on NDVI and subsequent LAI estimates using global (biome 3) and local empirical models, as a function of the soybean development in two growing seasons (2004-2005 and 2005-2006). The local model was derived from the pixels that had LAI values retrieved from the main algorithm. In order to keep the reproductive stage for a given cultivar as a constant factor while varying the viewing geometry, pairs of MODIS images acquired in close dates from opposite directions (backscattering and forward scattering) were selected. Linear regression relationships between the NDVI values calculated from these two directions were evaluated for different view angles (0-25°; 25-45°; 45-60°) and development stages (<45; 45-90; >90 days after planting). Impacts on LAI retrievals were analyzed. Results showed higher reflectance values in backscattering direction due to the predominance of sunlit soybean canopy components towards the sensor and higher NDVI values in forward scattering direction due to stronger shadow effects in the red waveband. NDVI differences between the two directions were statistically significant for view angles larger than 25°. The main algorithm for LAI estimation failed in the two growing seasons with gradual crop development. As a result, up to 94% of the pixels had LAI values calculated from the backup algorithm at the peak of canopy closure. Most of the pixels selected to compose the 8-day MODIS LAI product came from the forward scattering view because it displayed larger LAI values than the backscattering. Directional effects on the subsequent LAI retrievals were stronger at the peak of the soybean development (NDVI values between 0.70 and 0.85). When the global empirical model was used, LAI differences up to 3.2 for consecutive days and opposite viewing directions were observed. Such differences were reduced to values up to 1.5 with the local model. Because of the predominance of LAI retrievals from the MODIS backup algorithm during the Brazilian soybean development, care is necessary if one considers using these data in agronomic growing/yield models.

  11. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  12. Estimation of effective wind speed

    NASA Astrophysics Data System (ADS)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  13. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  14. [A method of measuring presampled modulation transfer function using a rationalized approximation of geometrical edge slope].

    PubMed

    Honda, Michitaka

    2014-04-01

    Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.

  15. A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinghe; Welch, Greg; Bishop, Gary

    2014-04-01

    As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practicemore » the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.« less

  16. A low-cost GPS/INS integrated vehicle heading angle measurement system

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Gao, Tongyue; Ding, Yi

    2018-04-01

    GPS can provide continuous heading information, but the accuracy is easily affected by the velocity and shelter from buildings or trees. For vehicle systems, we propose a low-cost heading angle update algorithm. Based on the GPS/INS integrated navigation kalman filter, we add the GPS heading angle to the measurement vector, and establish its error model. The experiment results show that this algorithm can effectively improve the accuracy of GPS heading angle.

  17. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    NASA Technical Reports Server (NTRS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data. from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. and meet the levels of accuracy needed for aerosol monitoring.

  18. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET

    NASA Astrophysics Data System (ADS)

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2017-03-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and unmatched seasonally gridded data, are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with Aerosol Robotic Network level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however, there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products' capability over the Western Hemisphere.

  19. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET

    PubMed Central

    Superczynski, Stephen D.; Kondragunta, Shobha; Lyapustin, Alexei I.

    2018-01-01

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of −0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. PMID:29796366

  20. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm through Intercomparison with VIIRS Aerosol Products and AERONET.

    PubMed

    Superczynski, Stephen D; Kondragunta, Shobha; Lyapustin, Alexei I

    2017-03-16

    The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere.

  1. Adaptive algorithm of magnetic heading detection

    NASA Astrophysics Data System (ADS)

    Liu, Gong-Xu; Shi, Ling-Feng

    2017-11-01

    Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.

  2. In-flight demonstration of a Real-Time Flush Airdata Sensing (RT-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Davis, Roy J.; Fife, John Michael

    1995-01-01

    A prototype real-time flush airdata sensing (RT-FADS) system has been developed and flight tested at the NASA Dryden Flight Research Center. This system uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters in real time using nonlinear regression. The algorithm is robust to sensor failures and noise in the measured pressures. The RT-FADS system has been calibrated using inertial trajectory measurements that were bootstrapped for atmospheric conditions using meteorological data. Mach numbers as high as 1.6 and angles of attack greater than 45 deg have been tested. The system performance has been evaluated by comparing the RT-FADS to the ship system airdata computer measurements to give a quantitative evaluation relative to an accepted measurement standard. Nominal agreements of approximately 0.003 in Mach number and 0.20 deg in angle of attack and angle of sideslip have been achieved.

  3. Optimal reconstruction angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to bemore » preferred in several contexts. 15 figures, 6 tables.« less

  4. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  5. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  6. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  7. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  8. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic systemmore » leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.« less

  9. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  10. Angle-of-Attack-Modulated Terminal Point Control for Neptune Aerocapture

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.

    2004-01-01

    An aerocapture guidance algorithm based on a calculus of variations approach is developed, using angle of attack as the primary control variable. Bank angle is used as a secondary control to alleviate angle of attack extremes and to control inclination. The guidance equations are derived in detail. The controller has very small onboard computational requirements and is robust to atmospheric and aerodynamic dispersions. The algorithm is applied to aerocapture at Neptune. Three versions of the controller are considered with varying angle of attack authority. The three versions of the controller are evaluated using Monte Carlo simulations with expected dispersions.

  11. Delay-and-sum beamforming for direction of arrival estimation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2011-06-01

    Sniper positioning systems described in the literature use a two-step algorithm to estimate the sniper's location. First, the shockwave and the muzzle blast acoustic signatures must be detected and recognized, followed by an estimation of their respective direction-of-arrival (DOA). Second, the actual sniper's position is calculated based on the estimated DOA via an iterative algorithm that varies from system to system. The overall performance of such a system, however, is highly compromised when the first step is not carried out successfully. Currently available systems rely on a simple calculation of differences of time-of-arrival to estimate angles-of-arrival. This approach, however, lacks robustness by not taking full advantage of the array of sensors. This paper shows how the delay-and-sum beamforming technique can be applied to estimate the DOA for both the shockwave and the muzzle blast. The method has the twofold advantage of 1) adding an array gain of 10 logM, i.e., an increased SNR of 6 dB for a 4-microphone array, which is equivalent to doubling the detection range assuming free-field propagation; and 2) offering improved robustness in handling single- and multi-shots events as well as reflections by taking advantage of the spatial filtering capability.

  12. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds using multi-angle polarized satellite measurements. 17. Developed 4 advanced light scattering models including the three-dimensional (3D) uniaxial perfectly matched layer (UPML) finite-difference time-domain (FDTD) model. 18. Develop sunglint in situ measurement and study reflectance distribution in the sunglint area. 19. Lead a balloon-borne radiometer TOA albedo validation effort. 20. Developed a CERES surface UVB, UVA, and UV index product.

  13. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    PubMed Central

    Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.

    2013-01-01

    Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602

  14. Implementation of the Rauch-Tung-Striebel Smoother for Sensor Compatibility Correction of a Fixed-Wing Unmanned Air Vehicle

    PubMed Central

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly. PMID:22163819

  15. Femoral anatomical frame: assessment of various definitions.

    PubMed

    Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A

    2003-06-01

    The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.

  16. Implementation of the Rauch-Tung-Striebel smoother for sensor compatibility correction of a fixed-wing unmanned air vehicle.

    PubMed

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.

  17. Development of Analytical Algorithm for the Performance Analysis of Power Train System of an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon

    Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.

  18. Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR-PSO algorithm

    NASA Astrophysics Data System (ADS)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Wang, Wei; Tan, He-Ping

    2015-11-01

    A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed. Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.

  19. Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.

    PubMed

    Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu

    2017-07-22

    GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.

  20. Estimation of the object orientation and location with the use of MEMS sensors

    NASA Astrophysics Data System (ADS)

    Sawicki, Aleksander; Walendziuk, Wojciech; Idzkowski, Adam

    2015-09-01

    The article presents the implementation of the estimation algorithms of orientation in 3D space and the displacement of an object in a 2D space. Moreover, a general orientation storage methods using Euler angles, quaternion and rotation matrix are presented. The experimental part presents the results of the complementary filter implementation. In the study experimental microprocessor module based on STM32f4 Discovery system and myRIO hardware platform equipped with FPGA were used. The attempt to track an object in two-dimensional space, which are showed in the final part of this article, were made with the use of the equipment mentioned above.

  1. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence). Therefore, the approach is applicable to the combination of SMAP and Sentinel-1A/B data for active-passive and high-resolution soil moisture estimation.

  2. Experimental Comparison Between Mahoney and Complementary Sensor Fusion Algorithm for Attitude Determination by Raw Sensor Data of Xsens Imu on Buoy

    NASA Astrophysics Data System (ADS)

    Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.

    2017-09-01

    The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.

  3. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-01-01

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313

  4. A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-02-25

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  5. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  6. An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.; Stewart, Eric C.

    1996-01-01

    Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error.

  7. Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data

    NASA Astrophysics Data System (ADS)

    Gioia, Christopher J.

    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft's attitude is unknown. In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm. A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry Pi computer. It was mounted on a tripod, used to target stars with the scope and measure the rotation between them using the IMU. The raw measurements were then post-processed using the MOAR algorithm, and attitude estimates were determined. Two different constellations---the Big Dipper and Orion---were used for experimental data collection. The results suggest that the novel method of estimating gyro bias independently from attitude in this document is credible for use onboard a spacecraft.

  8. Characterization of iris pattern stretches and application to the measurement of roll axis eye movements.

    PubMed

    Nishiyama, Junpei; Hashimoto, Tsutomu; Sakashita, Yusuke; Fujiyoshi, Hironobu; Hirata, Yutaka

    2008-01-01

    Eye movements are utilized in many scientific studies as a probe that reflects the neural representation of 3 dimensional extrapersonal space. This study proposes a method to accurately measure the roll component of eye movements under the conditions in which the pupil diameter changes. Generally, the iris pattern matching between a reference and a test iris image is performed to estimate roll angle of the test image. However, iris patterns are subject to change when the pupil size changes, thus resulting in less accurate roll angle estimation if the pupil sizes in the test and reference images are different. We characterized non-uniform iris pattern contraction/expansion caused by pupil dilation/constriction, and developed an algorithm to convert an iris pattern with an arbitrary pupil size into that with the same pupil size as the reference iris pattern. It was demonstrated that the proposed method improved the accuracy of the measurement of roll eye movement by up to 76.9%.

  9. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  10. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer

    PubMed Central

    Anderson, Kirstie N.; Denton, Sarah J.; Oliver, James; Catt, Michael; Abell, Jessica G.; Kivimäki, Mika; Trenell, Michael I.; Singh-Manoux, Archana

    2015-01-01

    Wrist-worn accelerometers are increasingly being used for the assessment of physical activity in population studies, but little is known about their value for sleep assessment. We developed a novel method of assessing sleep duration using data from 4,094 Whitehall II Study (United Kingdom, 2012–2013) participants aged 60–83 who wore the accelerometer for 9 consecutive days, filled in a sleep log and reported sleep duration via questionnaire. Our sleep detection algorithm defined (nocturnal) sleep as a period of sustained inactivity, itself detected as the absence of change in arm angle greater than 5 degrees for 5 minutes or more, during a period recorded as sleep by the participant in their sleep log. The resulting estimate of sleep duration had a moderate (but similar to previous findings) agreement with questionnaire based measures for time in bed, defined as the difference between sleep onset and waking time (kappa = 0.32, 95%CI:0.29,0.34) and total sleep duration (kappa = 0.39, 0.36,0.42). This estimate was lower for time in bed for women, depressed participants, those reporting more insomnia symptoms, and on weekend days. No such group differences were found for total sleep duration. Our algorithm was validated against data from a polysomnography study on 28 persons which found a longer time window and lower angle threshold to have better sensitivity to wakefulness, while the reverse was true for sensitivity to sleep. The novelty of our method is the use of a generic algorithm that will allow comparison between studies rather than a “count” based, device specific method. PMID:26569414

  11. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  12. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  13. An analytical study of composite laminate lay-up using search algorithms for maximization of flexural stiffness and minimization of springback angle

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan Kumar; Rinawa, Moti Lal

    2018-04-01

    The residual stresses arising in fiber-reinforced laminates during their curing in closed molds lead to changes in the composites after their removal from the molds and cooling. One of these dimensional changes of angle sections is called springback. The parameters such as lay-up, stacking sequence, material system, cure temperature, thickness etc play important role in it. In present work, it is attempted to optimize lay-up and stacking sequence for maximization of flexural stiffness and minimization of springback angle. The search algorithms are employed to obtain best sequence through repair strategy such as swap. A new search algorithm, termed as lay-up search algorithm (LSA) is also proposed, which is an extension of permutation search algorithm (PSA). The efficacy of PSA and LSA is tested on the laminates with a range of lay-ups. A computer code is developed on MATLAB implementing the above schemes. Also, the strategies for multi objective optimization using search algorithms are suggested and tested.

  14. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  15. Comparative Study on a Solving Model and Algorithm for a Flush Air Data Sensing System

    PubMed Central

    Liu, Yanbin; Xiao, Dibo; Lu, Yuping

    2014-01-01

    With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research. PMID:24859025

  16. Comparative study on a solving model and algorithm for a flush air data sensing system.

    PubMed

    Liu, Yanbin; Xiao, Dibo; Lu, Yuping

    2014-05-23

    With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.

  17. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  18. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less

  19. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  20. Field Programmable Gate Array (FPGA) Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    NASA Astrophysics Data System (ADS)

    Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien

    2017-04-01

    This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  1. Invariant Tori in the Secular Motions of the Three-body Planetary Systems

    NASA Astrophysics Data System (ADS)

    Locatelli, Ugo; Giorgilli, Antonio

    We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

  2. New Operational Algorithms for Particle Data from Low-Altitude Polar-Orbiting Satellites

    NASA Astrophysics Data System (ADS)

    Machol, J. L.; Green, J. C.; Rodriguez, J. V.; Onsager, T. G.; Denig, W. F.

    2010-12-01

    As part of the algorithm development effort started under the former National Polar-orbiting Operational Environmental Satellite System (NPOESS) program, the NOAA Space Weather Prediction Center (SWPC) is developing operational algorithms for the next generation of low-altitude polar-orbiting weather satellites. This presentation reviews the two new algorithms on which SWPC has focused: Energetic Ions (EI) and Auroral Energy Deposition (AED). Both algorithms take advantage of the improved performance of the Space Environment Monitor - Next (SEM-N) sensors over earlier SEM instruments flown on NOAA Polar Orbiting Environmental Satellites (POES). The EI algorithm iterates a piecewise power law fit in order to derive a differential energy flux spectrum for protons with energies from 10-250 MeV. The algorithm provides the data in physical units (MeV/cm2-s-str-keV) instead of just counts/s as was done in the past, making the data generally more useful and easier to integrate into higher level products. The AED algorithm estimates the energy flux deposited into the atmosphere by precipitating low- and medium-energy charged particles. The AED calculations include particle pitch-angle distributions, information that was not available from POES. This presentation also describes methods that we are evaluating for creating higher level products that would specify the global particle environment based on real time measurements.

  3. Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.

    PubMed

    Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D

    2018-04-07

    We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer

    PubMed Central

    Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo

    2014-01-01

    A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method. PMID:24831110

  5. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  6. Efficient least angle regression for identification of linear-in-the-parameters models

    PubMed Central

    Beach, Thomas H.; Rezgui, Yacine

    2017-01-01

    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140

  7. Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua

    2018-05-01

    This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.

  8. Human location estimation using thermopile array sensor

    NASA Astrophysics Data System (ADS)

    Parnin, S.; Rahman, M. M.

    2017-11-01

    Utilization of Thermopile sensor at an early stage of human detection is challenging as there are many things that produce thermal heat other than human such as electrical appliances and animals. Therefrom, an algorithm for early presence detection has been developed through the study of human body temperature behaviour with respect to the room temperature. The change in non-contact detected temperature of human varied according to body parts. In an indoor room, upper parts of human body change up to 3°C whereas lower part ranging from 0.58°C to 1.71°C. The average changes in temperature of human is used as a conditional set-point value in the program algorithm to detect human presence. The current position of human and its respective angle is gained when human is presence at certain pixels of Thermopile’s sensor array. Human position is estimated successfully as the developed sensory system is tested to the actuator of a stand fan.

  9. Detection and Length Estimation of Linear Scratch on Solid Surfaces Using an Angle Constrained Ant Colony Technique

    NASA Astrophysics Data System (ADS)

    Pal, Siddharth; Basak, Aniruddha; Das, Swagatam

    In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.

  10. Kinoform design with an optimal-rotation-angle method.

    PubMed

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  11. An autoregressive model-based particle filtering algorithms for extraction of respiratory rates as high as 90 breaths per minute from pulse oximeter.

    PubMed

    Lee, Jinseok; Chon, Ki H

    2010-09-01

    We present particle filtering (PF) algorithms for an accurate respiratory rate extraction from pulse oximeter recordings over a broad range: 12-90 breaths/min. These methods are based on an autoregressive (AR) model, where the aim is to find the pole angle with the highest magnitude as it corresponds to the respiratory rate. However, when SNR is low, the pole angle with the highest magnitude may not always lead to accurate estimation of the respiratory rate. To circumvent this limitation, we propose a probabilistic approach, using a sequential Monte Carlo method, named PF, which is combined with the optimal parameter search (OPS) criterion for an accurate AR model-based respiratory rate extraction. The PF technique has been widely adopted in many tracking applications, especially for nonlinear and/or non-Gaussian problems. We examine the performances of five different likelihood functions of the PF algorithm: the strongest neighbor, nearest neighbor (NN), weighted nearest neighbor (WNN), probability data association (PDA), and weighted probability data association (WPDA). The performance of these five combined OPS-PF algorithms was measured against a solely OPS-based AR algorithm for respiratory rate extraction from pulse oximeter recordings. The pulse oximeter data were collected from 33 healthy subjects with breathing rates ranging from 12 to 90 breaths/ min. It was found that significant improvement in accuracy can be achieved by employing particle filters, and that the combined OPS-PF employing either the NN or WNN likelihood function achieved the best results for all respiratory rates considered in this paper. The main advantage of the combined OPS-PF with either the NN or WNN likelihood function is that for the first time, respiratory rates as high as 90 breaths/min can be accurately extracted from pulse oximeter recordings.

  12. Application of AI techniques to infer vegetation characteristics from directional reflectance(s)

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Harrison, P. A.; Harrison, P. R.

    1994-01-01

    Traditionally, the remote sensing community has relied totally on spectral knowledge to extract vegetation characteristics. However, there are other knowledge bases (KB's) that can be used to significantly improve the accuracy and robustness of inference techniques. Using AI (artificial intelligence) techniques a KB system (VEG) was developed that integrates input spectral measurements with diverse KB's. These KB's consist of data sets of directional reflectance measurements, knowledge from literature, and knowledge from experts which are combined into an intelligent and efficient system for making vegetation inferences. VEG accepts spectral data of an unknown target as input, determines the best techniques for inferring the desired vegetation characteristic(s), applies the techniques to the target data, and provides a rigorous estimate of the accuracy of the inference. VEG was developed to: infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; infer percent ground cover from any combination of nadir and/or off-nadir view angles; infer unknown view angle(s) from known view angle(s) (known as view angle extension); and discriminate between user defined vegetation classes using spectral and directional reflectance relationships developed from an automated learning algorithm. The errors for these techniques were generally very good ranging between 2 to 15% (proportional root mean square). The system is designed to aid scientists in developing, testing, and applying new inference techniques using directional reflectance data.

  13. Acoustical Direction Finding with Time-Modulated Arrays

    PubMed Central

    Clark, Ben; Flint, James A.

    2016-01-01

    Time-Modulated Linear Arrays (TMLAs) offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS) sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ±1∘ within an angular range of approximately ±50∘. In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA) estimation within ±2.5∘ of the target signal is readily achieved inside a ±45∘ range using a single switched input stage and a simple hardware setup. PMID:27973432

  14. Limited data tomographic image reconstruction via dual formulation of total variation minimization

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong

    2011-03-01

    The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.

  15. Localization and separation of acoustic sources by using a 2.5-dimensional circular microphone array.

    PubMed

    Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen

    2017-07-01

    Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.

  16. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  17. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  18. Verification studies of Seasat-A satellite scatterometer /SASS/ measurements

    NASA Technical Reports Server (NTRS)

    Halberstam, I.

    1981-01-01

    Two comparisons between Seasat-A satellite scatterometer (SASS) data and surface truth, obtained from the Gulf of Alaska Seasat Experiment and the Joint Air-Sea Interaction program, have been made to determine the behavior of SASS and its algorithms. The performance of SASS was first evaluated irrespective of the algorithms employed to convert the SASS data to geophysical parameters, which was done by separating the backscatter measurements into small bins of incidence and azimuth angles and polarity and regression against wind speed measurements. The algorithms were then tested by comparing their predicted slopes and y intercepts with those derived from the regressions, and by comparing each SASS backscatter measurement with the backscatter derived from the algorithms, and the given wind velocity from the observations. It was shown that SASS was insensitive to winds at high incidence angles for horizontal polarizations. Fairly high correlations were found between backscatter and wind speeds. The algorithms functioned well at mid-ranges of incidence angle and backscattering coefficient.

  19. Novel Automated Approach to Predict the Outcome of Laser Peripheral Iridotomy for Primary Angle Closure Suspect Eyes Using Anterior Segment Optical Coherence Tomography.

    PubMed

    Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin

    2018-04-27

    Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.

  20. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    NASA Technical Reports Server (NTRS)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically to efforts using the NPOL radar dataset. The initial portions of the "process" involved dual-polarimetric quality control procedures which employed standard phase and correlation-based approaches to removal of clutter and non-meteorological echo. Calculation of a scale-adaptive KDP was accomplished using the method of Wang and Chandrasekar (2009; J. Atmos. Oceanic Tech.). A dual-polarimetric blockage algorithm based on Lang et al. (2009; J. Atmos. Oceanic Tech.) was then implemented to correct radar reflectivity and differential reflectivity at low elevation angles. Next, hydrometeor identification algorithms were run to identify liquid and ice hydrometeors. After the quality control and data preparation steps were completed several different dual-polarimetric rain estimation algorithms were employed to estimate rainfall rates using rainfall scans collected approximately every two to three minutes throughout the campaign. These algorithms included a polarimetrically-tuned Z-R algorithm that adjusts for drop oscillations (via Bringi et al., 2004, J. Atmos. Oceanic Tech.), and several different hybrid polarimetric variable approaches, including one that made use of parameters tuned to IFloodS 2D Video Disdrometer measurements. Finally, a hybrid scan algorithm was designed to merge the rain rate estimates from multiple low level elevation angle scans (where blockages could not be appropriately corrected) in order to create individual low-level rain maps. Individual rain maps at each time step were subsequently accumulated over multiple time scales for comparison to gauge network data. The comparison results and overall error character depended strongly on rain event type, polarimetric estimator applied, and range from the radar. We will present the outcome of these comparisons and their impact on constructing composited "reference" rainfall maps at select time and space scales.

  1. Highlights of TOMS Version 9 Total Ozone Algorithm

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.

  2. Automatic anterior chamber angle assessment for HD-OCT images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  3. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles.

    PubMed

    Wang, Wei; Chen, Xiyuan

    2018-02-23

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.

  4. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  5. Cyclic coordinate descent: A robotics algorithm for protein loop closure.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2003-05-01

    In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.

  6. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear-view image in all-weather conditions.

  7. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data.

    PubMed

    Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun

    2008-02-14

    On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST) from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m ), using the Generalized Split-Window (GSW)algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC), and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm² provided that the Land Surface Emissivities(LSEs) are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006); and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.' method (2003). The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give comparable results.

  8. A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1981-01-01

    For an estimation of the concentration of phytoplankton pigments in the oceans on the basis of Nimbus-7 CZCS imagery, it is necessary to remove the effects of the intervening atmosphere from the satellite imagery. The principle effect of the atmosphere is a loss in contrast caused by the addition of a substantial amount of radiance (path radiance) to that scatttered out of the water. Gordon (1978) has developed a technique which shows considerable promise for removal of these atmospheric effects. Attention is given to the correction algorithm, and its application to CZCS imagery. An alternate method under study for affecting the atmospheric correction requires a knowledge of 'clear water' subsurface upwelled radiance as a function of solar angle and pigment concentration.

  9. Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images

    PubMed Central

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies. PMID:27295428

  10. Vehicle detection and orientation estimation using the radon transform

    NASA Astrophysics Data System (ADS)

    Pelapur, Rengarajan; Bunyak, Filiz; Palaniappan, Kannappan; Seetharaman, Gunasekaran

    2013-05-01

    Determining the location and orientation of vehicles in satellite and airborne imagery is a challenging task given the density of cars and other vehicles and complexity of the environment in urban scenes almost anywhere in the world. We have developed a robust and accurate method for detecting vehicles using a template-based directional chamfer matching, combined with vehicle orientation estimation based on a refined segmentation, followed by a Radon transform based profile variance peak analysis approach. The same algorithm was applied to both high resolution satellite imagery and wide area aerial imagery and initial results show robustness to illumination changes and geometric appearance distortions. Nearly 80% of the orientation angle estimates for 1585 vehicles across both satellite and aerial imagery were accurate to within 15? of the ground truth. In the case of satellite imagery alone, nearly 90% of the objects have an estimated error within +/-1.0° of the ground truth.

  11. A New Continuous Rotation IMU Alignment Algorithm Based on Stochastic Modeling for Cost Effective North-Finding Applications

    PubMed Central

    Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling

    2016-01-01

    Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585

  12. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  13. Proceedings of the Meeting of the Coordinating Group on Modern Control Theory (4th) Held at Rochester, Michigan on 27-28 October 1982. Part 1

    DTIC Science & Technology

    1982-10-01

    and time-to-go (T60) are provided from the Estimation Algorithm. The gimbal angle commands used in the first two phases are applied to the gimbal...lighting techniques are also used to simplify image understanding or to extract additional information about position, range, or shape of objects in the...motion or firing dis- turbances. Since useful muzzle position and rate information is difficult to obtain, conventional feedback techniques 447 cannot

  14. Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.

    PubMed

    Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin

    2017-09-01

    Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.

  15. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.

    PubMed

    Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A

    2011-11-01

    Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.

  16. Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Tongda; Cheng, Jianhua; Guan, Dongxue; Kang, Yingyao; Zhang, Wei

    2017-09-01

    Due to the lever-arm effect and flexural deformation in the practical application of transfer alignment (TA), the TA performance is decreased. The existing polar TA algorithm only compensates a fixed lever-arm without considering the dynamic lever-arm caused by flexural deformation; traditional non-polar TA algorithms also have some limitations. Thus, the performance of existing compensation algorithms is unsatisfactory. In this paper, a modified compensation algorithm of the lever-arm effect and flexural deformation is proposed to promote the accuracy and speed of the polar TA. On the basis of a dynamic lever-arm model and a noise compensation method for flexural deformation, polar TA equations are derived in grid frames. Based on the velocity-plus-attitude matching method, the filter models of polar TA are designed. An adaptive Kalman filter (AKF) is improved to promote the robustness and accuracy of the system, and then applied to the estimation of the misalignment angles. Simulation and experiment results have demonstrated that the modified compensation algorithm based on the improved AKF for polar TA can effectively compensate the lever-arm effect and flexural deformation, and then improve the accuracy and speed of TA in the polar region.

  17. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2. [Oklahoma and Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass.

  18. Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan

    A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less

  19. Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

    DOE PAGES

    Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan; ...

    2016-08-30

    A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less

  20. No-search algorithm for direction of arrival estimation

    NASA Astrophysics Data System (ADS)

    Tuncer, T. Engin; Ã-Zgen, M. Tankut

    2009-10-01

    Direction of arrival estimation (DOA) is an important problem in ionospheric research and electromagnetics as well as many other fields. When superresolution techniques are used, a computationally expensive search should be performed in general. In this paper, a no-search algorithm is presented. The idea is to separate the source signals in the time-frequency plane by using the Short-Time Fourier Transform. The direction vector for each source is found by coherent summation over the instantaneous frequency (IF) tracks of the individual sources which are found automatically by employing morphological image processing. Both overlapping and nonoverlapping source IF tracks can be processed and identified by the proposed approach. The CLEAN algorithm is adopted in order to isolate the IF tracks of the overlapping sources with different powers. The proposed method is very effective in finding the IF tracks and can be applied for signals with arbitrary IF characteristics. While the proposed method can be applied to any sensor geometry, planar uniform circular arrays (UCA) bring additional advantages. Different properties of the UCA are presented, and it is shown that the DOA angles can be found as the mean-square error optimum solution of a linear matrix equation. Several simulations are done, and it is shown that the proposed approach performs significantly better than the conventional methods.

  1. Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: Sampling of propagation directions in polarising media

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2015-01-01

    Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector radiative transport equation (VRTE). Monte Carlo integration of the VRTE is a valuable approach for its flexible treatment of complex viewing and/or illumination geometries, and it can intuitively incorporate elaborate physics. Aims: We present a novel pre-conditioned backward Monte Carlo (PBMC) algorithm for solving the VRTE and apply it to planetary atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. Methods: We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms leads to unstable and biased solutions for conservative, optically-thick, strongly polarising media such as Rayleigh atmospheres. The numerical difficulty is avoided by pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions. Pre-conditioning introduces a sense of history in the photon polarisation states through the simulated trajectories. Results: The PBMC algorithm is robust, and its accuracy is extensively demonstrated via comparisons with examples drawn from the literature for scattering in diverse media. Since the convergence rate for MC integration is independent of the integral's dimension, the scheme is a valuable option for estimating the disk-integrated signal of stellar radiation reflected from planets. Such a tool is relevant in the prospective investigation of exoplanetary phase curves. We lay out two frameworks for disk integration and, as an application, explore the impact of atmospheric stratification on planetary phase curves for large star-planet-observer phase angles. By construction, backward integration provides a better control than forward integration over the planet region contributing to the solution, and this presents a clear advantage when estimating the disk-integrated signal at moderate and large phase angles. A one-slab, plane-parallel version of the PBMC algorithm is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A72

  2. Muon tomography imaging improvement using optimized limited angle data

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  3. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of this algorithm. The two visible channels of SEVIRI are used to find the COT and the near infra red channel to estimate the effective radius of droplets. Estimation of COT using a semi analytical scheme, which doesn't involve the conventional look-up table approach, is the aim of this work and henceforth, vertically integrated liquid water (w) or ice water content will be retrieved. The COT estimated and w obtained, will be compared with the values obtained from other approaches and will be validated with in situ measurements. Corresponding author address: Praveen Pandey, VITO - Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium. E-mail: praveen.pandey@vito.be

  4. Rotation elastogram: a novel method to visualize local rigid body rotation under quasi-static compression

    NASA Astrophysics Data System (ADS)

    Sowmiya, C.; Kothawala, Ali Arshad; Thittai, Arun K.

    2016-04-01

    During manual palpation of breast masses, the perception of its stiffness and slipperiness are the two commonly used information by the physician. In order to reliably and quantitatively obtain this information several non-invasive elastography techniques have been developed that seek to provide an image of the underlying mechanical properties, mostly stiffness-related. Very few approaches have visualized the "slip" at the lesion-background boundary that only occurs for a loosely-bonded benign lesion. It has been shown that axial-shear strain distribution provides information about underlying slip. One such feature, referred to as "fill-in" was interpreted as a surrogate of the rotation undergone by an asymmetrically-oriented-loosely bonded-benign-lesion under quasi-static compression. However, imaging and direct visualization of the rotation itself has not been addressed yet. In order to accomplish this, the quality of lateral displacement estimation needs to be improved. In this simulation study, we utilize spatial compounding approach and assess the feasibility to obtain good quality rotation elastogram. The angular axial and lateral displacement estimates were obtained at different insonification angles from a phantom containing an elliptical inclusion oriented at 45°, subjected to 1% compression from the top. A multilevel 2D-block matching algorithm was used for displacement tracking and 2D-least square compounding of angular axial and lateral displacement estimates was employed. By varying the maximum steering angle and incremental angle, the improvement in the lateral motion tracking accuracy and its effects on the quality of rotational elastogram were evaluated. Results demonstrate significantly-improved rotation elastogram using this technique.

  5. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model.

    PubMed

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Shi, Chao

    2018-02-01

    Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.

  6. Computation of mass-density images from x-ray refraction-angle images.

    PubMed

    Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong

    2006-04-07

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  7. Application of wavefield imaging to characterize scattering from artificial and impact damage in composite laminate panels

    NASA Astrophysics Data System (ADS)

    Williams, Westin B.; Michaels, Thomas E.; Michaels, Jennifer E.

    2018-04-01

    Composite materials used for aerospace applications are highly susceptible to impacts, which can result in barely visible delaminations. Reliable and fast detection of such damage is needed before structural failures occur. One approach is to use ultrasonic guided waves generated from a sparse array consisting of permanently mounted or embedded transducers for performing structural health monitoring. This array can detect introduction of damage after baseline subtraction, and also provide localization and characterization information via the minimum variance imaging algorithm. Imaging performance can vary considerably depending upon where damage is located with respect to the array; however, prior work has shown that knowledge of expected scattering can improve imaging consistency for artificial damage at various locations. In this study, anisotropic material attenuation and wave speed are estimated as a function of propagation angle using wavefield data recorded along radial lines at multiple angles with respect to an omnidirectional guided wave source. Additionally, full wavefield data are recorded before and after the introduction of artificial and impact damage so that wavefield baseline subtraction may be applied. 3-D filtering techniques are then used to reduce noise and isolate scattered waves. A model for estimating scattering of a circular defect is developed and scattering estimates for both artificial and impact damage are presented and compared.

  8. Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu

    2018-05-01

    A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.

  9. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles

    PubMed Central

    Wang, Wei; Chen, Xiyuan

    2018-01-01

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm. PMID:29473912

  10. Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.

    1999-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.

  11. Preliminary comparison between real-time in-vivo spectral and transverse oscillation velocity estimates

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per; Hansen, Jens Munk; Lindskov Hansen, Kristoffer; Bachmann Nielsen, Michael; Jensen, Jørgen Arendt

    2011-03-01

    Spectral velocity estimation is considered the gold standard in medical ultrasound. Peak systole (PS), end diastole (ED), and resistive index (RI) are used clinically. Angle correction is performed using a flow angle set manually. With Transverse Oscillation (TO) velocity estimates the flow angle, peak systole (PSTO), end diastole (EDTO), and resistive index (RITO) are estimated. This study investigates if these clinical parameters are estimated equally good using spectral and TO data. The right common carotid arteries of three healthy volunteers were scanned longitudinally. Average TO flow angles and std were calculated { 52+/-18 ; 55+/-23 ; 60+/-16 }°. Spectral angles { 52 ; 56 ; 52 }° were obtained from the B-mode images. Obtained values are: PSTO { 76+/-15 ; 89+/-28 ; 77+/-7 } cm/s, spectral PS { 77 ; 110 ; 76 } cm/s, EDTO { 10+/-3 ; 14+/-8 ; 15+/-3 } cm/s, spectral ED { 18 ; 13 ; 20 } cm/s, RITO { 0.87+/-0.05 ; 0.79+/-0.21 ; 0.79+/-0.06 }, and spectral RI { 0.77 ; 0.88 ; 0.73 }. Vector angles are within +/-two std of the spectral angle. TO velocity estimates are within +/-three std of the spectral estimates. RITO are within +/-two std of the spectral estimates. Preliminary data indicates that the TO and spectral velocity estimates are equally good. With TO there is no manual angle setting and no flow angle limitation. TO velocity estimation can also automatically handle situations where the angle varies over the cardiac cycle. More detailed temporal and spatial vector estimates with diagnostic potential are available with the TO velocity estimation.

  12. Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique

    NASA Astrophysics Data System (ADS)

    Park, Jun Kwon; Kang, Kwan Hyoung

    2012-04-01

    Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.

  13. Evolutionary Initial Poses of Reduced D.O.F’s Quadruped Robot

    NASA Astrophysics Data System (ADS)

    Iida, Ken-Ichi; Nakata, Yoshitaka; Hira, Toshio; Kamano, Takuya; Suzuki, Takayuki

    In this paper, an application of genetic algorithm for generation of evolutionary initial poses of a quadrupedal robot which reduced degrees of freedom is described. To reduce degree of freedom, each leg of the robot has a slider-crank mechanism and is driven by an actuator. Furthermore we introduced the forward movement mode and the rotating mode because the omnidirection movement should be made possible. To generate the suitable initial pose, the initial angle of four legs are coded under gray code and tuned by an estimation function in each mode with the genetic algorithm. As a result of generation, the cooperation of the legs is realized to move toward the omnidirection. The experimental results demonstrate that the proposed scheme is effective for generation of the suitable initial poses and the robot can walk smoothly with the generated patterns.

  14. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  15. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    NASA Technical Reports Server (NTRS)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  16. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  17. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, D; Nguyen, D; Voronenko, Y

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less

  18. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    NASA Astrophysics Data System (ADS)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  19. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    NASA Astrophysics Data System (ADS)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.

    2018-02-01

    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  20. An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-08-01

    As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.

  1. Monte Carlo calculation of large and small-angle electron scattering in air

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.

    2017-11-01

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  2. Miniature Rotorcraft Flight Control Stabilization System

    DTIC Science & Technology

    2008-05-30

    The first algorithm is based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a pseudo...for spacecraft and satellites. Due to large vibration in sensors a pseudo-measurement is developed from gyroscope measurements and rotational...using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common alternative to Euler angles is a quaternion

  3. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  4. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  5. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture.

    PubMed

    Jits, Roman Y; Walberg, Gerald D

    2004-03-01

    A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.

  6. Implementation of trigonometric function using CORDIC algorithms

    NASA Astrophysics Data System (ADS)

    Mokhtar, A. S. N.; Ayub, M. I.; Ismail, N.; Daud, N. G. Nik

    2018-02-01

    In 1959, Jack E. Volder presents a brand new formula to the real-time solution of the equation raised in navigation system. This new algorithm was the most beneficial replacement of analog navigation system by the digital. The CORDIC (Coordinate Rotation Digital Computer) algorithm are used for the rapid calculation associated with elementary operates like trigonometric function, multiplication, division and logarithm function, and also various conversions such as conversion of rectangular to polar coordinate including the conversion between binary coded information. In this current time CORDIC formula have many applications in the field of communication, signal processing, 3-D graphics, and others. This paper would be presents the trigonometric function implementation by using CORDIC algorithm in rotation mode for circular coordinate system. The CORDIC technique is used in order to generating the output angle between range 0o to 90o and error analysis is concern. The result showed that the average percentage error is about 0.042% at angles between ranges 00 to 900. But the average percentage error rose up to 45% at angle 90o and above. So, this method is very accurate at the 1st quadrant. The mirror properties method is used to find out an angle at 2nd, 3rd and 4th quadrant.

  7. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  8. Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    NASA Technical Reports Server (NTRS)

    Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)

    2012-01-01

    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.

  9. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.

    PubMed

    Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-09-09

    Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.

  10. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosma, S; Sanders, M; Aryal, P

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were deliveredmore » for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.« less

  11. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  12. Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.

    2017-12-01

    Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.

  13. Autonomous Vision-Based Tethered-Assisted Rover Docking

    NASA Technical Reports Server (NTRS)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  14. Equations for determining aircraft motions for accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.; Wingrove, R. C.

    1980-01-01

    Procedures for determining a comprehensive accident scenario from a limited data set are reported. The analysis techniques accept and process data from either an Air Traffic Control radar tracking system or a foil flight data recorder. Local meteorological information at the time of the accident and aircraft performance data are also utilized. Equations for the desired aircraft motions and forces are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made is that aircraft side force and side-slip angle are negligible. An estimation procedure is outlined for use with each data source. For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least squares smoothing is provided.

  15. LAI inversion algorithm based on directional reflectance kernels.

    PubMed

    Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D

    2007-11-01

    Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.

  16. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p < 0.001). The overestimations in tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the horizontal displacement equal to the crown radius. Errors in location are seen to be greater for spherical than conical trees on slopes where crown angles of conical trees are less than the terrain angle. The results are especially relevant for biomass and carbon stock estimations in tropical forests where there are trees with large crown radii on slopes.

  17. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  18. Monte Carlo calculation of large and small-angle electron scattering in air

    DOE PAGES

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...

    2017-08-12

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  19. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms. [Guyton, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) are considered in an effort to estimate biomass at Guymon, Oklahoma Dalhart, Texas. Both grounds truth and aerial data were used. Results indicate that inclusion of C, L, and P band active microwave data, from look angles greater than 35 deg from nadir, with visible and infrared data improve crop discrimination and biomass estimates compared to results using only visible and infrared data. The microwave frequencies were sensitive to different biomass levels. The K and C band were sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels. Two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass. It is implied that inclusion of active microwave sensors with visible and infrared sensors on future satellites could aid in crop discrimination and biomass estimation.

  20. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.

    PubMed

    Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios

    2017-03-01

    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.

  1. Three-dimensional reconstruction of vessels with stenoses and aneurysms from dual biplane angiograms

    NASA Astrophysics Data System (ADS)

    Fessler, Jeffrey A.; Macovski, Albert

    1989-05-01

    Parametric model-based approaches to 3-D reconstruction of vessels overcome the inherent problem of underdeterminancy in reconstruction from limited views by incorporating a priori knowledge about the structure of vessels and about the measurement statistics. In this paper, we describe two extensions to the parametric approach. First, we consider the problem of reconstruction from a pair of bi-plane angiograms that are acquired at different projection angles. Since bi-plane angiography systems are widely available, this is a practical measurement geometry. The patient may move between acquisitions, so we have extended our model to allow for object translation between the first and second pair of projections. Second, we describe how to accurately estimate the dimensions of a aneurysm from the dual-biplane angiogram. We applied the new algorithm to four synthetic angiograms (projection angles 0°, 20°, 90°, and 110°) of a vessel with a small aneurysm and an eccentric stenosis. The angiograms were corrupted by additive noise and background structure. Except near the top and bottom of the aneurysm, the estimated cross sections of the aneurysm and stenosis agree very well with the true cross sections.

  2. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  3. Intraocular scattering compensation in retinal imaging

    PubMed Central

    Christaras, Dimitrios; Ginis, Harilaos; Pennos, Alexandros; Artal, Pablo

    2016-01-01

    Intraocular scattering affects fundus imaging in a similar way that affects vision; it causes a decrease in contrast which depends on both the intrinsic scattering of the eye but also on the dynamic range of the image. Consequently, in cases where the absolute intensity in the fundus image is important, scattering can lead to a wrong estimation. In this paper, a setup capable of acquiring fundus images and estimating objectively intraocular scattering was built, and the acquired images were then used for scattering compensation in fundus imaging. The method consists of two parts: first, reconstruct the individual’s wide-angle Point Spread Function (PSF) at a specific wavelength to be used within an enhancement algorithm on an acquired fundus image to compensate for scattering. As a proof of concept, a single pass measurement with a scatter filter was carried out first and the complete algorithm of the PSF reconstruction and the scattering compensation was applied. The advantage of the single pass test is that one can compare the reconstructed image with the original one and see the validity, thus testing the efficiency of the method. Following the test, the algorithm was applied in actual fundus images in human eyes and the effect on the contrast of the image before and after the compensation was compared. The comparison showed that depending on the wavelength, contrast can be reduced by 8.6% under certain conditions. PMID:27867710

  4. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  5. Radarclinometry

    USGS Publications Warehouse

    Wildey, R.L.

    1986-01-01

    A mathematical theory and a corresponding algorithm have been developed to derive topographic maps from radar images as photometric arrays. Thus, as radargrammetry is to photogrammetry, so radarclinometry is to photoclinometry. Photoclinometry is endowed with a fundamental indeterminacy principle even for terrain homogeneous in normal albedo. This arises from the fact that the geometric locus of orientations of the local surface normal that is consistent with a given reflected specific-intensity of radiation is more complicated than a fixed line in space. For a radar image, the locus is a cone whose half-angle is the incidence angle and whose axis contains the radar. The indeterminacy is removed throughout a region if one possesses a control profile as a boundary-condition. In the absence of such ground-truth, a point-boundary-condition will suffice only in conjunction with a heuristic assumption, such as that the strike-line runs perpendicularly to the line-of-sight. In the present study I have implemented a more reasonable assumption which I call 'the hypothesis of local cylindricity'. Firstly, a general theory is derived, based solely on the implicit mathematical determinacy. This theory would be directly indicative of procedure if images were completely devoid of systematic error and noise. The theory produces topography by an area integration of radar brightness, starting from a control profile, without need of additional idealistic assumptions. But we have also theorized separately a method of forming this control profile, which method does require an additional assumption about the terrain. That assumption is that the curvature properties of the terrain are locally those of a cylinder of inferable orientation, within a second-order mathematical neighborhood of every point of the terrain. While local strike-and-dip completely determine the radar brightness itself, the terrain curvature determines the brightness-gradient in the radar image. Therefore, the control profile is formed as a line integration of brightness and its local gradient starting from a single point of the terrain where the local orientation of the strike-line is estimated by eye. Secondly, and independently, the calibration curve for pixel brightness versus incidence-angle is produced. I assume that an applicable curve can be found from the literature or elsewhere so that our problem is condensed to that of properly scaling the brightness-axis of the calibration curve. A first estimate is found by equating the average image brightness to the point on the brightness axis corresponding to the complement of the effective radar depression-angle, an angle assumed given. A statistical analysis is then used to correct, on the one hand, for the fact that the average brightness is not the brightness that corresponds to the average incidence angle, as a result of the non-linearity of the calibration curve; and on the other hand, we correct for the fact that the average incidence angle is not the same for a rough surface as it is for a flat surface (and therefore not the complement of the depression angle). Lastly, the practical modifications that were interactively evolved to produce an operational algorithm for treating real data are developed. They are by no means considered optimized at present. Such a possibility is thus far precluded by excessive computer-time. Most noteworthy in this respect is the abandonment of area integration away from a control profile. Instead, the topography is produced as a set of independent line integrations down each of the parallel range lines of the image, using the theory for control-profile formation. An adaptive technique, which now appears excessive, was also employed so that SEASAT images of sand dunes could be processed. In this, the radiometric calibration was iterated to force the endpoints of each profile to zero elevation. A secondary algorithm then employed line-averages of appropriate quantities to adjust the mean t

  6. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.

  7. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less

  8. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  9. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  10. Remote sensing of wetland parameters related to carbon cycling

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  11. Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis

    PubMed Central

    Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael

    2015-01-01

    Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789

  12. VEHIOT: Design and Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in Production Vehicles.

    PubMed

    Redondo, Jonatan Pajares; González, Lisardo Prieto; Guzman, Javier García; Boada, Beatriz L; Díaz, Vicente

    2018-02-06

    Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.

  13. VEHIOT: Design and Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in Production Vehicles

    PubMed Central

    Díaz, Vicente

    2018-01-01

    Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices. PMID:29415507

  14. Fat fraction bias correction using T1 estimates and flip angle mapping.

    PubMed

    Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A

    2014-01-01

    To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.

  15. The Effect of Training on Accuracy of Angle Estimation.

    ERIC Educational Resources Information Center

    Waller, T. Gary; Wright, Robert H.

    This report describes a study to determine the effect of training on accuracy in estimating angles. The study was part of a research program directed toward improving navigation techniques for low-level flight in Army aircraft and was made to assess the feasibility of visually estimating angles on a map in order to determine angles of drift.…

  16. PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures

    NASA Astrophysics Data System (ADS)

    Essa, Khalid S.; Elhussein, Mahmoud

    2018-04-01

    A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.

  17. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    PubMed

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  18. Impact of Surface Roughness on AMSR-E Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew

    2006-01-01

    This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and 18.7 GHz to these factors to improve snow depth retrievals from spaceborne passive microwave sensors.

  19. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions.

  20. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  1. QMRPF-UKF Master-Slave Filtering for the Attitude Determination of Micro-Nano Satellites Using Gyro and Magnetometer

    PubMed Central

    Cui, Peiling; Zhang, Huijuan

    2010-01-01

    In this paper, the problem of estimating the attitude of a micro-nano satellite, obtaining geomagnetic field measurements via a three-axis magnetometer and obtaining angle rate via gyro, is considered. For this application, a QMRPF-UKF master-slave filtering method is proposed, which uses the QMRPF and UKF algorithms to estimate the rotation quaternion and the gyro bias parameters, respectively. The computational complexicity related to the particle filtering technique is eliminated by introducing a multiresolution approach that permits a significant reduction in the number of particles. This renders QMRPF-UKF master-slave filter computationally efficient and enables its implementation with a remarkably small number of particles. Simulation results by using QMRPF-UKF are given, which demonstrate the validity of the QMRPF-UKF nonlinear filter. PMID:22163448

  2. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array.

    PubMed

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-03-11

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.

  3. Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).

  4. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  5. Diagnosis of pneumothorax using a microwave-based detector

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Riechers, Ronald G., Sr.; Pasala, Krishna M.; Blanchard, Jeremy; Nozaki, Masako; Ramage, Anthony; Jackson, William; Rosner, Michael; Garcia-Pinto, Patricia; Yun, Catherine; Butler, Nathan; Riechers, Ronald G., Jr.; Williams, Daniel; Zeidman, Seth M.; Rhee, Peter; Ecklund, James M.; Fitzpatrick, Thomas; Lockhart, Stephen

    2001-08-01

    A novel method for identifying pneumothorax is presented. This method is based on a novel device that uses electromagnetic waves in the microwave radio frequency (RF) region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. In this study, we employ this radio frequency triage tool (RAFT) to the clinical condition of pneumothorax, which is a collapsed lung. In anesthetized pigs, RAFT can detect changes in the RF signature from a lung that is 20 percent or greater collapsed. These results are compared to chest x-ray. Both studies are equivalent in their ability to detect pneumothorax in pigs.

  6. General methodology for simultaneous representation and discrimination of multiple object classes

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.

  7. Restoration of motion blurred image with Lucy-Richardson algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Zhao Hui; Zhou, Liang

    2015-10-01

    Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.

  8. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  9. A Fast Algorithm to Compute Conical Pockets in Proteins. Application to the Structural Characterization of γ-Carbonic Anhydrases.

    PubMed

    Petitjean, Michel

    2017-10-01

    Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  11. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect.

    PubMed

    Castillo-Ruiz, Francisco J; Castro-Garcia, Sergio; Blanco-Roldan, Gregorio L; Sola-Guirado, Rafael R; Gil-Ribes, Jesus A

    2016-05-19

    Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.

  12. Indoor positioning algorithm combined with angular vibration compensation and the trust region technique based on received signal strength-visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong

    2017-05-01

    Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.

  13. Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artifical neural network angle generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filho, Faete J; Tolbert, Leon M; Ozpineci, Burak

    2012-01-01

    The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memorymore » storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.« less

  14. Real part of refractive index measurement approach for absorbing liquid.

    PubMed

    Liu, Hao; Ye, Junwei; Yang, Kecheng; Xia, Min; Guo, Wenping; Li, Wei

    2015-07-01

    An algorithm based on use of a reflected refractometer to measure the real part of the refractive index (RI) for an absorbing liquid is presented. The absorption of liquid will blur the division between bright and dark regions on a Fresnel reflective curve. However, the reflective ratio at some incident angles that are less than the critical angle have little sensitivity to absorbability. Unlike common methods that extract RI from reflectivity in critical angle vicinity, the presented method acquires the real RI from reflective ratio at a subcritical angle. Supported by the theoretical analysis and experimental results on a reflected refractometer, we have achieved accuracy better than 3×10(-4) RIU on ink samples with absorption coefficient around 300  cm(-1). Additional tests on Alizarin yellow GG solutions prove that the subcritical algorithm is feasible and of high accuracy.

  15. Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control

    NASA Astrophysics Data System (ADS)

    Sperber, E.; Fu, B.; Eke, F. O.

    2016-06-01

    This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.

  16. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field

    PubMed Central

    Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056

  17. A soft computing scheme incorporating ANN and MOV energy in fault detection, classification and distance estimation of EHV transmission line with FSC.

    PubMed

    Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab

    2016-01-01

    In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.

  18. High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms

    NASA Astrophysics Data System (ADS)

    Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong

    2017-10-01

    An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.

  19. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  20. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  1. Mars Relay Lander and Orbiter Overflight Profile Estimation

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Peterson, Corey L.

    2012-01-01

    This software allows science and mission operations to view graphs of geometric overflights of satellites and landers within the Mars (or other planetary) networks. It improves on the MaROS Web interface within any modern Web browser, in that it adds new capabilities to the MaROS suite. The profile for an overflight is an important element for selecting communication/ overflight opportunities between the landers and orbiters within the Mars network. Unfortunately, determining these estimates is very computationally expensive and difficult to compute by hand. This software allows the user to select different overflights (via the existing MaROS Web interface) and specify the smoothness of the estimation. Estimates for the geometric relationship between a lander and an orbiter are determined based upon the orbital conditions of the orbiter at the moment the orbiter rises above the horizon from the perspective of the lander. It utilizes 2-body orbital equations to propagate the trajectory through the duration of the view period, and returns profiles that represent the range between the two vehicles, and the elevation and azimuth angles of the orbiter as measured from the lander s position. The algorithms assume a 2-body relationship with an ideal, spherical planetary body, so therefore can see errors less than 2% at polar landing sites on Mars. These algorithms are being implemented to provide rough estimates rapidly for the geometry of a geometric view period where more complete data is unavailable, such as for planning purposes. While other software for this task exists, each at the time of this reporting has been contained within a much more complicated package. This tool allows science and mission operations to view the estimates with a few clicks of the mouse.

  2. Intervention criterion and control research for active front steering with consideration of road adhesion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojian; Zhou, Bing; Wen, Guilin; Long, Lefei; Cui, Qingjia

    2018-04-01

    A multi-objective active front steering (AFS) control system considering the road adhesion constraint on vehicle stability is developed using the sliding mode control (SMC) method. First, an identification function combined with the relationship between the yaw rate and the steering angle is developed to determine whether the tyre state is linear or nonlinear. On this basis, an intervention criterion for the AFS system is proposed to improve vehicle handling and stability in emergent conditions. A sideslip angle stability domain enveloped by the upper, lower, left, and right boundaries, as well as the constraint of road adhesion coefficient, is constructed based on the ? phase-plane method. A dynamic weighting coefficient to coordinate the control of yaw rate and sideslip angle, and a control strategy that considers changing control objectives based on the desired yaw rate, the desired sideslip angle, and their proportional weights, are proposed for the SMC controller. Because road adhesion has a significant effect on vehicle stability and to meet the control algorithm's requirement of real-time access to vehicle states, a unscented Kalman filter-based state observer is proposed to estimate the adhesion coefficient and the required states. Finally, simulations are performed using high and low road adhesion conditions in a Matlab/Simulink environment, and the results show that the proposed AFS control system promptly intervenes according to the intervention criterion, effectively improving vehicle handling and stability.

  3. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  4. A software package for evaluating the performance of a star sensor operation

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2017-02-01

    We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.

  5. Directional MTF measurement using sphere phantoms for a digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Baek, Jongduk

    2015-03-01

    The digital breast tomosynthesis (DBT) has been widely used as a diagnosis imaging modality of breast cancer because of potential for structure noise reduction, better detectability, and less breast compression. Since 3D modulation transfer function (MTF) is one of the quantitative metrics to assess the spatial resolution of medical imaging systems, it is very important to measure 3D MTF of the DBT system to evaluate the resolution performance. In order to do that, Samei et al. used sphere phantoms and applied Thornton's method to the DBT system. However, due to the limitation of Thornton's method, the low frequency drop, caused by the limited data acquisition angle and reconstruction filters, was not measured correctly. To overcome this limitation, we propose a Richardson-Lucy (RL) deconvolution based estimation method to measure the directional MTF. We reconstructed point and sphere objects using FDK algorithm within a 40⁰ data acquisition angle. The ideal 3D MTF is obtained by taking Fourier transform of the reconstructed point object, and three directions (i.e., fx-direction, fy-direction, and fxy-direction) of the ideal 3D MTF are used as a reference. To estimate the directional MTF, the plane integrals of the reconstructed and ideal sphere object were calculated and used to estimate the directional PSF using RL deconvolution technique. Finally, the directional MTF was calculated by taking Fourier transform of the estimated PSF. Compared to the previous method, the proposed method showed a good agreement with the ideal directional MTF, especially at low frequency regions.

  6. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  7. Molar axis estimation from computed tomography images.

    PubMed

    Dongxia Zhang; Yangzhou Gan; Zeyang Xia; Xinwen Zhou; Shoubin Liu; Jing Xiong; Guanglin Li

    2016-08-01

    Estimation of tooth axis is needed for some clinical dental treatment. Existing methods require to segment the tooth volume from Computed Tomography (CT) images, and then estimate the axis from the tooth volume. However, they may fail during estimating molar axis due to that the tooth segmentation from CT images is challenging and current segmentation methods may get poor segmentation results especially for these molars with angle which will result in the failure of axis estimation. To resolve this problem, this paper proposes a new method for molar axis estimation from CT images. The key innovation point is that: instead of estimating the 3D axis of each molar from the segmented volume, the method estimates the 3D axis from two projection images. The method includes three steps. (1) The 3D images of each molar are projected to two 2D image planes. (2) The molar contour are segmented and the contour's 2D axis are extracted in each 2D projection image. Principal Component Analysis (PCA) and a modified symmetry axis detection algorithm are employed to extract the 2D axis from the segmented molar contour. (3) A 3D molar axis is obtained by combining the two 2D axes. Experimental results verified that the proposed method was effective to estimate the axis of molar from CT images.

  8. Systematic evaluation of NASA precipitation radar estimates using NOAA/NSSL National Mosaic QPE products

    NASA Astrophysics Data System (ADS)

    Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.

    2011-12-01

    Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.

  9. Estimation of the gravitational wave polarizations from a nontemplate search

    NASA Astrophysics Data System (ADS)

    Di Palma, Irene; Drago, Marco

    2018-01-01

    Gravitational wave astronomy is just beginning, after the recent success of the four direct detections of binary black hole (BBH) mergers and the first observation from a binary neutron star inspiral, with the expectation of many more events to come. Given the possibility to detect waves from not exactly modeled astrophysical processes, it is fundamental to be ready to calculate the polarization waveforms in the case of searches using nontemplate algorithms. In such a case, the waveform polarizations are the only quantities that contain direct information about the generating process. We present the performance of a new valuable tool to estimate the inverse solution of gravitational wave transient signals, starting from the analysis of the signal properties of a nontemplate algorithm that is open to a wider class of gravitational signals not covered by template algorithms. We highlight the contributions to the wave polarization associated with the detector response, the sky localization, and the polarization angle of the source. In this paper we present the performances of such a method and its implications by using two main classes of transient signals, resembling the limiting case for most simple and complicated morphologies. The performances are encouraging for the tested waveforms: the correlation between the original and the reconstructed waveforms spans from better than 80% for simple morphologies to better than 50% for complicated ones. For a nontemplate search these results can be considered satisfactory to reconstruct the astrophysical progenitor.

  10. Research and implementation of finger-vein recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin

    2017-06-01

    In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.

  11. Robust iterative closest point algorithm based on global reference point for rotation invariant registration.

    PubMed

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.

  12. Robust iterative closest point algorithm based on global reference point for rotation invariant registration

    PubMed Central

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780

  13. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.

    PubMed

    Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu

    2017-09-01

    An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.

  14. GEONEX: Land Monitoring From a New Generation of Geostationary Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna; Lyapustin, Alexei; Wang, Weile; Wang, Yujie; Hashimoto, Hirofumi; Li, Shuang; Ganguly, Sangram; Michaelis, Andrew; Higuchi, Atsushi; Takaneka, Hideaki; hide

    2017-01-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.

  15. GEONEX: Land monitoring from a new generation of geostationary satellite sensors

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Lyapustin, A.; Wang, W.; Ganguly, S.; Wang, Y.; Michaelis, A.; Hashimoto, H.; Li, S.; Higuchi, A.; Huete, A. R.; Yeom, J. M.; camacho De Coca, F.; Lee, T. J.; Takenaka, H.

    2017-12-01

    The latest generation of geostationary satellites carry sensors such as ABI (Advanced Baseline Imager on GOES-16) and the AHI (Advanced Himawari Imager on Himawari) that closely mimic the spatial and spectral characteristics of Earth Observing System flagship MODIS for monitoring land surface conditions. More importantly they provide observations at 5-15 minute intervals. Such high frequency data offer exciting possibilities for producing robust estimates of land surface conditions by overcoming cloud cover, enabling studies of diurnally varying local-to-regional biosphere-atmosphere interactions, and operational decision-making in agriculture, forestry and disaster management. But the data come with challenges that need special attention. For instance, geostationary data feature changing sun angle at constant view for each pixel, which is reciprocal to sun-synchronous observations, and thus require careful adaptation of EOS algorithms. Our goal is to produce a set of land surface products from geostationary sensors by leveraging NASA's investments in EOS algorithms and in the data/compute facility NEX. The land surface variables of interest include atmospherically corrected surface reflectances, snow cover, vegetation indices and leaf area index (LAI)/fraction of photosynthetically absorbed radiation (FPAR), as well as land surface temperature and fires. In order to get ready to produce operational products over the US from GOES-16 starting 2018, we have utilized 18 months of data from Himawari AHI over Australia to test the production pipeline and the performance of various algorithms for our initial tests. The end-to-end processing pipeline consists of a suite of modules to (a) perform calibration and automatic georeference correction of the AHI L1b data, (b) adopt the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce surface spectral reflectances along with compositing schemes and QA, and (c) modify relevant EOS retrieval algorithms (e.g., LAI and FPAR, GPP, etc.) for subsequent science product generation. Initial evaluation of Himawari AHI products against standard MODIS products indicate general agreement, suggesting that data from geostationary sensors can augment low earth orbit (LEO) satellite observations.

  16. Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics

    DOE PAGES

    Scott, S. D.; Mumgaard, R. T.

    2016-07-20

    A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less

  17. Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S. D.; Mumgaard, R. T.

    A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less

  18. Analysis and Results from a Flush Airdata Sensing System in Close Proximity to Firing Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Ali, Aliyah N.; Borrer, Jerry L.

    2013-01-01

    This paper presents information regarding the nosecap Flush Airdata Sensing (FADS) system on Orion’s Pad Abort 1 (PA-1) vehicle. The purpose of the nosecap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rocket nozzles like the Attitude Control Motor (ACM) nozzles on the PA-1 Launch Abort System. The nosecap FADS system used pressure measurements from a series of pressure ports which were arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of sideslip, Mach number, impact pressure, and freestream static pressure. This paper will present the algorithms employed by the FADS system along with the development of the calibration datasets and a comparison of the final results to the Best Estimated Trajectory (BET) data for PA-1. Also presented in this paper is a Computational Fluid Dynamics (CFD) study to explore the impact of the ACM on the nosecap FADS system. The comparison of the nosecap FADS system results to the BET and the CFD study showed that more investigation is needed to quantify the impact of the firing rocket motors on the FADS system.

  19. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  20. Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy.

    PubMed

    Kaushik, Sushmita; Jain, Rajeev; Pandav, Surinder Singh; Gupta, Amod

    2006-09-01

    To compare the ultrasound biomicroscopic measurement of the anterior chamber angle in Asian Indian eyes, with the angle width estimated by gonioscopy. Patients with open and closed angles attending a glaucoma clinic were recruited for the study. Temporal quadrants of the angles of patients were categorized by gonioscopy as Grade 0 to Grade 4, using Shaffer's classification. These angles were quantified by ultrasound biomicroscopy (UBM) using the following biometric characteristics: Angle opening distance at 250 micro (AOD 250) and 500 micro (AOD 500) from the scleral spur and trabecular meshwork-ciliary process distance (TCPD). The angles were further segregated as "narrow angles" (Schaffer's Grade 2 or less) and "open angles" (Schaffer's Grade 3 and 4). The UBM measurements were computed in each case and analyzed in relation to the gonioscopic angle evaluation. One hundred and sixty three eyes of 163 patients were analyzed. One hundred and six eyes had "narrow angles" and 57 eyes had "open angles" on gonioscopy. There was a significant difference among the mean UBM measurements of each angle grade estimated by gonioscopy (P < 0.001). The Pearson correlation coefficient between all UBM parameters and gonioscopy grades was significant at the 0.01 level. The mean AOD 250, AOD 500 and TCPD in narrow angles were 58+/-49 micro, 102+/-84 micro and 653+/-124 respectively, while it was 176+/-47 micro, 291+/-62 micro and 883+/-94 micro in eyes with open angles (P < 0.001) respectively. The angle width estimated by gonioscopy correlated significantly with the angle dimensions measured by UBM. Gonioscopy, though a subjective test, is a reliable method for estimation of the angle width.

  1. All-quad meshing without cleanup

    DOE PAGES

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.; ...

    2016-08-22

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  2. Algorithm for Controlling a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  3. All-quad meshing without cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  4. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Daniel; Hansen, Clifford W.

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  5. Algorithm for fuel conservative horizontal capture trajectories

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1981-01-01

    A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.

  6. Harmonic Optimization in Voltage Source Inverter for PV Application using Heuristic Algorithms

    NASA Astrophysics Data System (ADS)

    Kandil, Shaimaa A.; Ali, A. A.; El Samahy, Adel; Wasfi, Sherif M.; Malik, O. P.

    2016-12-01

    Selective Harmonic Elimination (SHE) technique is the fundamental switching frequency scheme that is used to eliminate specific order harmonics. Its application to minimize low order harmonics in a three level inverter is proposed in this paper. The modulation strategy used here is SHEPWM and the nonlinear equations, that characterize the low order harmonics, are solved using Harmony Search Algorithm (HSA) to obtain the optimal switching angles that minimize the required harmonics and maintain the fundamental at the desired value. Total Harmonic Distortion (THD) of the output voltage is minimized maintaining selected harmonics within allowable limits. A comparison has been drawn between HSA, Genetic Algorithm (GA) and Newton Raphson (NR) technique using MATLAB software to determine the effectiveness of getting optimized switching angles.

  7. Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images

    NASA Astrophysics Data System (ADS)

    Ely, G.; Malcolm, A. E.; Poliannikov, O. V.

    2017-12-01

    Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.

  8. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach

    PubMed Central

    Alexakis, Dimitrios D.; Mexis, Filippos-Dimitrios K.; Vozinaki, Anthi-Eirini K.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2017-01-01

    A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R2 values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies. PMID:28635625

  9. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach.

    PubMed

    Alexakis, Dimitrios D; Mexis, Filippos-Dimitrios K; Vozinaki, Anthi-Eirini K; Daliakopoulos, Ioannis N; Tsanis, Ioannis K

    2017-06-21

    A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R² values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies.

  10. Radar signatures of road vehicles: airborne SAR experiments

    NASA Astrophysics Data System (ADS)

    Palubinskas, G.; Runge, H.; Reinartz, P.

    2005-10-01

    The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.

  11. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  12. Development of accurate potentials to explore the structure of water on 2D materials

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Singh, Samrendra; Deshmukh, Sanket; Deshmkuh Group Team; Samrendra Group Collaboration

    Water play an important role in many biological and non-biological process. Thus structure of water at various interfaces and under confinement has always been the topic of immense interest. 2-D materials have shown great potential in surface coating applications and nanofluidic devices. However, the exact atomic level understanding of the wettability of single layer of these 2-D materials is still lacking mainly due to lack of experimental techniques and computational methodologies including accurate force-field potentials and algorithms to measure the contact angle of water. In the present study, we have developed a new algorithm to measure the accurate contact angle between water and 2-D materials. The algorithm is based on fitting the best sphere to the shape of the droplet. This novel spherical fitting method accounts for every individual molecule of the droplet, rather than those at the surface only. We employ this method of contact angle measurements to develop the accurate non-bonded potentials between water and 2-D materials including graphene and boron nitride (BN) to reproduce the experimentally observed contact angle of water on these 2-D materials. Different water models such as SPC, SPC/Fw, and TIP3P were used to study the structure of water at the interfaces.

  13. A new computerized diagnostic algorithm for quantitative evaluation of binocular misalignment in patients with strabismus

    NASA Astrophysics Data System (ADS)

    Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi

    2012-10-01

    Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.

  14. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary.

    PubMed

    Yilmaz, Emel Maden; Güntert, Peter

    2015-09-01

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  15. 3D-Subspace-Based Auto-Paired Azimuth Angle, Elevation Angle, and Range Estimation for 24G FMCW Radar with an L-Shaped Array

    PubMed Central

    Nam, HyungSoo; Choi, ByungGil; Oh, Daegun

    2018-01-01

    In this paper, a three-dimensional (3D)-subspace-based azimuth angle, elevation angle, and range estimation method with auto-pairing is proposed for frequency-modulated continuous waveform (FMCW) radar with an L-shaped array. The proposed method is designed to exploit the 3D shift-invariant structure of the stacked Hankel snapshot matrix for auto-paired azimuth angle, elevation angle, and range estimation. The effectiveness of the proposed method is verified through a variety of experiments conducted in a chamber. For the realization of the proposed method, K-band FMCW radar is implemented with an L-shaped antenna. PMID:29621193

  16. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation

    PubMed Central

    Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente

    2016-01-01

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763

  17. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality

    NASA Astrophysics Data System (ADS)

    Cheung, KW; So, HC; Ma, W.-K.; Chan, YT

    2006-12-01

    The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.

  18. Monaural Sound Localization Based on Structure-Induced Acoustic Resonance

    PubMed Central

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  19. Design optimization for a wearable, gamma-ray and neutron sensitive, detector array with directionality estimation

    NASA Astrophysics Data System (ADS)

    Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.

    2017-10-01

    In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.

  20. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array

    PubMed Central

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-01-01

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372

  1. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.

    PubMed

    Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M

    2017-06-01

    Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

  2. Autonomous Motion Planning Using a Predictive Temporal Method

    DTIC Science & Technology

    2009-01-01

    interception test. ......150 5-20 Target and solution path heading angles for target interception test. ..............................151 10 LIST...environment as a series of distances and angles . Regardless of the technique, this knowledge of the surrounding area is crucial for the issue of...to, the rather simplistic vector driver algorithms which compute the angle between the current vehicle heading and the heading to the goal and

  3. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  4. Remote logo detection using angle-distance histograms

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.

  5. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  6. A novel teaching system for industrial robots.

    PubMed

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  7. A Novel Teaching System for Industrial Robots

    PubMed Central

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-01-01

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669

  8. Application of differential evolution algorithm on self-potential data.

    PubMed

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  9. Application of Differential Evolution Algorithm on Self-Potential Data

    PubMed Central

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods. PMID:23240004

  10. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  11. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas

    2015-03-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.

  12. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2017-12-01

    Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.

  13. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm.

    PubMed

    Shao, Jiaxin; Rapacchi, Stanislas; Nguyen, Kim-Lien; Hu, Peng

    2016-02-01

    To develop an accurate and precise myocardial T1 mapping technique using an inversion recovery spoiled gradient echo readout at 3.0 Tesla (T). The modified Look-Locker inversion-recovery (MOLLI) sequence was modified to use fast low angle shot (FLASH) readout, incorporating a BLESSPC (Bloch Equation Simulation with Slice Profile Correction) T1 estimation algorithm, for accurate myocardial T1 mapping. The FLASH-MOLLI with BLESSPC fitting was compared with different approaches and sequences with regards to T1 estimation accuracy, precision and image artifact based on simulation, phantom studies, and in vivo studies of 10 healthy volunteers and three patients at 3.0 Tesla. The FLASH-MOLLI with BLESSPC fitting yields accurate T1 estimation (average error = -5.4 ± 15.1 ms, percentage error = -0.5% ± 1.2%) for T1 from 236-1852 ms and heart rate from 40-100 bpm in phantom studies. The FLASH-MOLLI sequence prevented off-resonance artifacts in all 10 healthy volunteers at 3.0T. In vivo, there was no significant difference between FLASH-MOLLI-derived myocardial T1 values and "ShMOLLI+IE" derived values (1458.9 ± 20.9 ms versus 1464.1 ± 6.8 ms, P = 0.50); However, the average precision by FLASH-MOLLI was significantly better than that generated by "ShMOLLI+IE" (1.84 ± 0.36% variance versus 3.57 ± 0.94%, P < 0.001). The FLASH-MOLLI with BLESSPC fitting yields accurate and precise T1 estimation, and eliminates banding artifacts associated with bSSFP at 3.0T. © 2015 Wiley Periodicals, Inc.

  14. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

    PubMed Central

    Choi, Kyuwan

    2013-01-01

    In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469

  15. Estimating Aircraft Heading Based on Laserscanner Derived Point Clouds

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Toth, C., K.

    2015-03-01

    Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.

  16. Limited angle CT reconstruction by simultaneous spatial and Radon domain regularization based on TV and data-driven tight frame

    NASA Astrophysics Data System (ADS)

    Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin

    2018-02-01

    Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model

  17. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  18. Ship heading and velocity analysis by wake detection in SAR images

    NASA Astrophysics Data System (ADS)

    Graziano, Maria Daniela; D'Errico, Marco; Rufino, Giancarlo

    2016-11-01

    With the aim of ship-route estimation, a wake detection method is developed and applied to COSMO/SkyMed and TerraSAR-X Stripmap SAR images over the Gulf of Naples, Italy. In order to mitigate the intrinsic limitations of the threshold logic, the algorithm identifies the wake features according to the hydrodynamic theory. A post-detection validation phase is performed to classify the features as real wake structures by means of merit indexes defined in the intensity domain. After wake reconstruction, ship heading is evaluated on the basis of turbulent wake direction and ship velocity is estimated by both techniques of azimuth shift and Kelvin pattern wavelength. The method is tested over 34 ship wakes identified by visual inspection in both HH and VV images at different incidence angles. For all wakes, no missed detections are reported and at least the turbulent and one narrow-V wakes are correctly identified, with ship heading successfully estimated. Also, the azimuth shift method is applied to estimate velocity for the 10 ships having route with sufficient angular separation from the satellite ground track. In one case ship velocity is successfully estimated with both methods, showing agreement within 14%.

  19. Development of a score and probability estimate for detecting angle closure based on anterior segment optical coherence tomography.

    PubMed

    Nongpiur, Monisha E; Haaland, Benjamin A; Perera, Shamira A; Friedman, David S; He, Mingguang; Sakata, Lisandro M; Baskaran, Mani; Aung, Tin

    2014-01-01

    To develop a score along with an estimated probability of disease for detecting angle closure based on anterior segment optical coherence tomography (AS OCT) imaging. Cross-sectional study. A total of 2047 subjects 50 years of age and older were recruited from a community polyclinic in Singapore. All subjects underwent standardized ocular examination including gonioscopy and imaging by AS OCT (Carl Zeiss Meditec). Customized software (Zhongshan Angle Assessment Program) was used to measure AS OCT parameters. Complete data were available for 1368 subjects. Data from the right eyes were used for analysis. A stepwise logistic regression model with Akaike information criterion was used to generate a score that then was converted to an estimated probability of the presence of gonioscopic angle closure, defined as the inability to visualize the posterior trabecular meshwork for at least 180 degrees on nonindentation gonioscopy. Of the 1368 subjects, 295 (21.6%) had gonioscopic angle closure. The angle closure score was calculated from the shifted linear combination of the AS OCT parameters. The score can be converted to an estimated probability of having angle closure using the relationship: estimated probability = e(score)/(1 + e(score)), where e is the natural exponential. The score performed well in a second independent sample of 178 angle-closure subjects and 301 normal controls, with an area under the receiver operating characteristic curve of 0.94. A score derived from a single AS OCT image, coupled with an estimated probability, provides an objective platform for detection of angle closure. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. From bicycle chain ring shape to gear ratio: algorithm and examples.

    PubMed

    van Soest, A J

    2014-01-03

    A simple model of the bicycle drive system with a non-circular front chain ring is proposed and an algorithm is devised for calculation of the corresponding Gear Ratio As a Function Of Crank Angle (GRAFOCA). It is shown that the true effective radius of the chain ring is always the perpendicular distance between the crank axis and the line through the chain segment between the chain ring and the cog. It is illustrated that the true effective radius of the chain ring at any crank angle may differ substantially from the maximum vertical distance between the crank axis and the chain ring circumference that is used as a proxy for the effective chain ring radius in several studies; in particular, the crank angle at which the effective chain ring radius is maximal as predicted from the latter approach may deviate by as much as 0.30 rad from the true value. The algorithm proposed may help in designing chain rings that achieve the desired GRAFOCA. © 2013 Published by Elsevier Ltd. All rights reserved.

  1. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  2. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  3. Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin

    2017-02-01

    In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.

  4. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  5. Partitioning Pythagorean Triangles Using Pythagorean Angles

    ERIC Educational Resources Information Center

    Swenson, Carl E.; Yandl, Andre L.

    2012-01-01

    Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.

  6. An alternative subspace approach to EEG dipole source localization

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  7. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  8. Angle-of-Arrival Assisted GNSS Collaborative Positioning.

    PubMed

    Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan

    2016-06-20

    For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.

  9. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  11. Learning Algorithms for Human–Machine Interfaces

    PubMed Central

    Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886

  12. Aerocapture Guidance Performance for the Neptune Orbiter

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.

    2004-01-01

    A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.

  13. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  14. An enhanced inertial navigation system based on a low-cost IMU and laser scanner

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok

    2012-06-01

    This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.

  15. Visual navigation of the UAVs on the basis of 3D natural landmarks

    NASA Astrophysics Data System (ADS)

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-12-01

    This work considers the tracking of the UAV (unmanned aviation vehicle) on the basis of onboard observations of natural landmarks including azimuth and elevation angles. It is assumed that UAV's cameras are able to capture the angular position of reference points and to measure the angles of the sight line. Such measurements involve the real position of UAV in implicit form, and therefore some of nonlinear filters such as Extended Kalman filter (EKF) or others must be used in order to implement these measurements for UAV control. Recently it was shown that modified pseudomeasurement method may be used to control UAV on the basis of the observation of reference points assigned along the UAV path in advance. However, the use of such set of points needs the cumbersome recognition procedure with the huge volume of on-board memory. The natural landmarks serving as such reference points which may be determined on-line can significantly reduce the on-board memory and the computational difficulties. The principal difference of this work is the usage of the 3D reference points coordinates which permits to determine the position of the UAV more precisely and thereby to guide along the path with higher accuracy which is extremely important for successful performance of the autonomous missions. The article suggests the new RANSAC for ISOMETRY algorithm and the use of recently developed estimation and control algorithms for tracking of given reference path under external perturbation and noised angular measurements.

  16. A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations

    NASA Astrophysics Data System (ADS)

    Whittaker, Lee; Brown, Michael L.; Battye, Richard A.

    2015-12-01

    We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.

  17. Characterization of snowfall properties at high-latitude sites through use of a combined Multi-Angle Snow Camera (MASC) and radar approach

    NASA Astrophysics Data System (ADS)

    Cooper, S.; Wood, N.; Garrett, T. J.; L'Ecuyer, T. S.; Pettersen, C.

    2016-12-01

    Estimates of snowfall rate derived from radar reflectivities alone are non-unique, as different combinations of snowfall rates and snowflake microphysical properties can conspire to produce nearly identical radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100-200% for individual events. Here, we use observations of snowflake particle size distribution, fallspeed, and habit from the Multi-Angle Snow Camera (MASC) to constrain estimates of snowfall derived from radar reflectivities. MASC measurements of microphysical properties and uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Initial results focus on the MASC and Ka-band Zenith Radar (KaZR) measurements at the ARM NSA Barrow Climate Facility site. Use of MASC fallspeed, MASC PSD, and a CloudSat particle model as base assumptions resulted in retrieved total accumulations with a -17% difference relative to nearby National Weather Service observations averaged over five snow events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -63% to + 86% for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fallspeed and habit, suggesting that MASC measurements may provide a path forward in reducing the non-uniqueness of the snowfall retrieval problem. Preliminary results also will be presented for the deployment of the MASC, MicroRain Radar (MRR), and Precipitation Imaging Package (PIP) to Haukeliseter, Norway during winter season 2016-17. These instruments will then be deployed to northern Sweden for winter 2017-18. It is hoped more accurate knowledge of snowfall properties dependent upon location and meteorological conditions will be useful for both weather and climate applications.

  18. Slope angle estimation method based on sparse subspace clustering for probe safe landing

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui

    2018-06-01

    To avoid planetary probes landing on steep slopes where they may slip or tip over, a new method of slope angle estimation based on sparse subspace clustering is proposed to improve accuracy. First, a coordinate system is defined and established to describe the measured data of light detection and ranging (LIDAR). Second, this data is processed and expressed with a sparse representation. Third, on this basis, the data is made to cluster to determine which subspace it belongs to. Fourth, eliminating outliers in subspace, the correct data points are used for the fitting planes. Finally, the vectors normal to the planes are obtained using the plane model, and the angle between the normal vectors is obtained through calculation. Based on the geometric relationship, this angle is equal in value to the slope angle. The proposed method was tested in a series of experiments. The experimental results show that this method can effectively estimate the slope angle, can overcome the influence of noise and obtain an exact slope angle. Compared with other methods, this method can minimize the measuring errors and further improve the estimation accuracy of the slope angle.

  19. Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Pang; Yu, Yue

    2017-05-01

    This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..

  20. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  1. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.

    PubMed

    Allen, Marcus; Zhong, Qiang; Kirsch, Nicholas; Dani, Ashwin; Clark, William W; Sharma, Nitin

    2017-12-01

    Miniature inertial measurement units (IMUs) are wearable sensors that measure limb segment or joint angles during dynamic movements. However, IMUs are generally prone to drift, external magnetic interference, and measurement noise. This paper presents a new class of nonlinear state estimation technique called state-dependent coefficient (SDC) estimation to accurately predict joint angles from IMU measurements. The SDC estimation method uses limb dynamics, instead of limb kinematics, to estimate the limb state. Importantly, the nonlinear limb dynamic model is formulated into state-dependent matrices that facilitate the estimator design without performing a Jacobian linearization. The estimation method is experimentally demonstrated to predict knee joint angle measurements during functional electrical stimulation of the quadriceps muscle. The nonlinear knee musculoskeletal model was identified through a series of experiments. The SDC estimator was then compared with an extended kalman filter (EKF), which uses a Jacobian linearization and a rotation matrix method, which uses a kinematic model instead of the dynamic model. Each estimator's performance was evaluated against the true value of the joint angle, which was measured through a rotary encoder. The experimental results showed that the SDC estimator, the rotation matrix method, and EKF had root mean square errors of 2.70°, 2.86°, and 4.42°, respectively. Our preliminary experimental results show the new estimator's advantage over the EKF method but a slight advantage over the rotation matrix method. However, the information from the dynamic model allows the SDC method to use only one IMU to measure the knee angle compared with the rotation matrix method that uses two IMUs to estimate the angle.

  2. Quantification of LiDAR measurement uncertainty through propagation of errors due to sensor sub-systems and terrain morphology

    NASA Astrophysics Data System (ADS)

    Goulden, T.; Hopkinson, C.

    2013-12-01

    The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.

  3. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.

    PubMed

    Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip

    2005-06-01

    A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.

  4. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm was very high ranging from 0.96 to 0.98 (spectrally flat), indicative of dominant smoldering phase combustion which produces very little black carbon. Additionally, we have analyzed measured (pyranometer) and modeled total solar flux at ground level for these extremely high aerosol loadings that resulted in significant attenuation of downwelling solar energy.

  5. Compensation method of cloud infrared radiation interference based on a spinning projectile's attitude measurement

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-01-01

    Based on the study of earth infrared radiation and further requirement of anticloud interference ability for a spinning projectile's infrared attitude measurement, a compensation method of cloud infrared radiation interference is proposed. First, the theoretical model of infrared radiation interference is established by analyzing the generation mechanism and interference characteristics of cloud infrared radiation. Then, the influence of cloud infrared radiation on attitude angle is calculated in the following two situations. The first situation is the projectile in cloud, and the maximum of roll angle error can reach ± 20 deg. The second situation is the projectile outside of cloud, and it results in the inability to measure the projectile's attitude angle. Finally, a multisensor weighted fusion algorithm is proposed based on trust function method to reduce the influence of cloud infrared radiation. The results of semiphysical experiments show that the error of roll angle with a weighted fusion algorithm can be kept within ± 0.5 deg in the presence of cloud infrared radiation interference. This proposed method improves the accuracy of roll angle by nearly four times in attitude measurement and also solves the problem of low accuracy of infrared radiation attitude measurement in navigation and guidance field.

  6. Development of a teaching system for an industrial robot using stereo vision

    NASA Astrophysics Data System (ADS)

    Ikezawa, Kazuya; Konishi, Yasuo; Ishigaki, Hiroyuki

    1997-12-01

    The teaching and playback method is mainly a teaching technique for industrial robots. However, this technique takes time and effort in order to teach. In this study, a new teaching algorithm using stereo vision based on human demonstrations in front of two cameras is proposed. In the proposed teaching algorithm, a robot is controlled repetitively according to angles determined by the fuzzy sets theory until it reaches an instructed teaching point, which is relayed through cameras by an operator. The angles are recorded and used later in playback. The major advantage of this algorithm is that no calibrations are needed. This is because the fuzzy sets theory, which is able to express qualitatively the control commands to the robot, is used instead of conventional kinematic equations. Thus, a simple and easy teaching operation is realized with this teaching algorithm. Simulations and experiments have been performed on the proposed teaching system, and data from testing has confirmed the usefulness of our design.

  7. Minimalistic optic flow sensors applied to indoor and outdoor visual guidance and odometry on a car-like robot.

    PubMed

    Mafrica, Stefano; Servel, Alain; Ruffier, Franck

    2016-11-10

    Here we present a novel bio-inspired optic flow (OF) sensor and its application to visual  guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its M 2 APIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor experiments were carried out in which the robot was driven in the closed-loop mode based on the velocity and steering angle estimates. The experimental results obtained show that our novel OF sensor can deliver high-frequency measurements ([Formula: see text]) in a wide OF range (1.5-[Formula: see text]) and in a 7-decade high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up to [Formula: see text]), and the OF precision obtained was relatively high (standard deviation of [Formula: see text] with an average OF of [Formula: see text], under the most demanding lighting conditions). An EKF-based algorithm gave the robot's position and orientation with a relatively high accuracy (maximum errors outdoors at a very low light level: [Formula: see text] and [Formula: see text] over about [Formula: see text] and [Formula: see text]) despite the low-resolution control systems of the steering servo and the DC motor, as well as a simplified model identification and calibration. Finally, the minimalistic OF-based odometry results were compared to those obtained using measurements based on an inertial measurement unit (IMU) and a motor's speed sensor.

  8. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  9. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  10. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    PubMed Central

    Li, Zong-Tao; Wu, Tie-Jun; Lin, Can-Long; Ma, Long-Hua

    2011-01-01

    A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform. PMID:22164058

  11. Localization and cooperative communication methods for cognitive radio

    NASA Astrophysics Data System (ADS)

    Duval, Olivier

    We study localization of nearby nodes and cooperative communication for cognitive radios. Cognitive radios sensing their environment to estimate the channel gain between nodes can cooperate and adapt their transmission power to maximize the capacity of the communication between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using orthogonal frequency-division modulation (OFDM) modulation, under power constraints for both the base station and the relay station. The relay uses amplify-and-forward and decode-and-forward cooperative relaying techniques to retransmit messages on a subset of the available subcarriers. The power used in the base station and the relay station transmitters is allocated to maximize the overall system capacity. The subcarrier selection and power allocation are obtained based on convex optimization formulations and an iterative algorithm. Additionally, decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to increase further the capacity of the system. The proposed techniques outperforms non-selective relaying schemes over a range of relay power budgets. Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spectrum holes left unused by licensed primary users. We introduce a spectrum holes detection approach, which combines blind modulation classification, angle of arrival estimation and number of sources detection. We perform eigenspace analysis to determine the number of sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity features. Extensive simulations carried out indicate that the proposed system identifies and locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR). In environments with a high density of scatterers, several wireless channels experience nonline-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls and compare its performance with classical TOA trilateration localization methods. Extensive simulations and field trials for indoor environments show that our method increases the coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We implemented our ray tracing model in C++ using the CGAL computational geometry algorithm library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in a preprocessing phase with time and space complexity analyses and profiling of our software.

  12. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors

    PubMed Central

    Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.

    2012-01-01

    The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089

  14. Analysis of the multigroup model for muon tomography based threat detection

    NASA Astrophysics Data System (ADS)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-01

    We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  15. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  16. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  17. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery

    2016-10-01

    This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  18. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  19. Total variation iterative constraint algorithm for limited-angle tomographic reconstruction of non-piecewise-constant structures

    NASA Astrophysics Data System (ADS)

    Krauze, W.; Makowski, P.; Kujawińska, M.

    2015-06-01

    Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.

  20. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.

  1. Kinematic algorithm to determine the energy cost of running with changes of direction.

    PubMed

    Zago, Matteo; Esposito, Fabio; Rausa, Giulia; Limonta, Eloisa; Corrado, Felice; Rampichini, Susanna; Sforza, Chiarella

    2018-06-15

    Changes of direction (CoDs) have a high metabolic and mechanical impact in field and court team sports, but the estimation of the associated workload is still inaccurate. This study aims at validating an algorithm based on kinematic data to estimate the energy cost of running with frequent 180°-CoDs. Twenty-six physically active male subjects (22.4 ± 3.2 years) participated in two sessions: (1) maximum oxygen uptake (V̇O 2,max ) and maximal aerobic speed (MAS) test; (2) 5-m continuous shuttle run (two 5-min trials at 50% and 75% MAS, 6-min recovery). In (2), full-body 3D-kinematics and V̇O 2 were simultaneously recorded. Actual cost of shuttle running (C meas ) was obtained from the aerobic, anaerobic alactic and lactic components. The proposed algorithm detects "braking phases", periods of mostly negative (eccentric) work occurring at concurrent knee flexion and ground contact, and estimates energy cost (C est ) considering negative mechanical work in braking phases, and positive elsewhere. At the speed of, respectively, 1.54 ± 0.17 and 1.90 ± 0.15 m s -1 (rate of perceived exertion: 9.1 ± 1.8 and 15.8 ± 1.9), C meas was 8.06 ± 0.49 and 9.04 ± 0.73 J kg -1  m -1 . C est was more accurate than regression models found in literature (p < 0.01), and not significantly different from C meas (p > 0.05; average error: 8.3%, root-mean-square error: 0.86 J kg -1  m -1 ). The proposed algorithm improved existing techniques based on CoM kinematics, integrating data of ground contacts and joint angles that allowed to separate propulsive from braking phases. This work constitutes the basis to extend the model from the laboratory to the field, providing a reliable measure of training and matches workload. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A study of pilot modeling in multi-controller tasks

    NASA Technical Reports Server (NTRS)

    Whitbeck, R. F.; Knight, J. R.

    1972-01-01

    A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem.

  3. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can bemore » decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.« less

  4. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  5. First stereo video dataset with ground truth for remote car pose estimation using satellite markers

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Pierini, Marco

    2018-04-01

    Leading causes of PTW (Powered Two-Wheeler) crashes and near misses in urban areas are on the part of a failure or delayed prediction of the changing trajectories of other vehicles. Regrettably, misperception from both car drivers and motorcycle riders results in fatal or serious consequences for riders. Intelligent vehicles could provide early warning about possible collisions, helping to avoid the crash. There is evidence that stereo cameras can be used for estimating the heading angle of other vehicles, which is key to anticipate their imminent location, but there is limited heading ground truth data available in the public domain. Consequently, we employed a marker-based technique for creating ground truth of car pose and create a dataset∗ for computer vision benchmarking purposes. This dataset of a moving vehicle collected from a static mounted stereo camera is a simplification of a complex and dynamic reality, which serves as a test bed for car pose estimation algorithms. The dataset contains the accurate pose of the moving obstacle, and realistic imagery including texture-less and non-lambertian surfaces (e.g. reflectance and transparency).

  6. Online technique for detecting state of onboard fiber optic gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation ismore » painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.« less

  7. A proposed method to estimate premorbid full scale intelligence quotient (FSIQ) for the Canadian Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) using demographic and combined estimation procedures.

    PubMed

    Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H

    2007-11-01

    Establishing a comparison standard in neuropsychological assessment is crucial to determining change in function. There is no available method to estimate premorbid intellectual functioning for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The WISC-IV provided normative data for both American and Canadian children aged 6 to 16 years old. This study developed regression algorithms as a proposed method to estimate full-scale intelligence quotient (FSIQ) for the Canadian WISC-IV. Participants were the Canadian WISC-IV standardization sample (n = 1,100). The sample was randomly divided into two groups (development and validation groups). The development group was used to generate regression algorithms; 1 algorithm only included demographics, and 11 combined demographic variables with WISC-IV subtest raw scores. The algorithms accounted for 18% to 70% of the variance in FSIQ (standard error of estimate, SEE = 8.6 to 14.2). Estimated FSIQ significantly correlated with actual FSIQ (r = .30 to .80), and the majority of individual FSIQ estimates were within +/-10 points of actual FSIQ. The demographic-only algorithm was less accurate than algorithms combining demographic variables with subtest raw scores. The current algorithms yielded accurate estimates of current FSIQ for Canadian individuals aged 6-16 years old. The potential application of the algorithms to estimate premorbid FSIQ is reviewed. While promising, clinical validation of the algorithms in a sample of children and/or adolescents with known neurological dysfunction is needed to establish these algorithms as a premorbid estimation procedure.

  8. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  9. 1km Soil Moisture from Downsampled Sentinel-1 SAR Data: Harnessing Assets and Overcoming Obstacles.

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Bernhard; Cao, Senmao; Schaufler, Stefan; Paulik, Christoph; Naeimi, Vahid; Wagner, Wolfgang

    2017-04-01

    Radars onboard Earth observing satellites allow estimating Surface Soil Moisture (SSM) regularly and globally. The use of coarse-scale measurements from active or passive radars for SSM retrieval is well established and in operational use. Thanks to the Sentinel-1 mission, launched in 2014 and deploying Synthetic Aperture Radars (SAR), high-resolution radar imagery is routinely available at the scale of 20 meters, with a high revisit frequency of 3-6 days and with unprecedented radiometric accuracy. However, the direct exploitation of high-resolution SAR data for SSM retrieval is complicated by several problems: Small-scaled contributions to the radar backscatter from individual ground features often obscure the soil moisture signal, rendering common algorithms insensitive to SSM. Furthermore, the influence of vegetation dynamics on the radar signal is less understood than in the coarse-scale case, leading to biases during the vegetation period. Finally, the large data volumes of high-resolution remote sensing data present a great load on hardware systems. Consequently, a spatial resampling of the high-resolution SAR data to a 500 meters sampling is done, allowing the exploitation of information at 10 meter sampling, but reducing effectively the inherent uncertainties. The thereof retrieved 1km SSM product aims to describe the soil moisture dynamics at medium scale with high quality. We adopted the TU-Wien Change Detection algorithm to the Sentinel-1 data, which was already successfully used for retrieving SSM from ERS-1/2 and Envisat-ASAR observations. The adoption entails a new method for SAR image resampling, including a masking for pixels that do not carry soil moisture signals, preventing them to spread during downsampling. Furthermore, the observation angle between the radar sensors and the ground is treated in a different way, as Sentinel-1 sensors observe from fixed orbit paths (in contrast to other radar sensors). Here, a regression model is developed that successfully estimates the dependency of radar backscatter to observation angle with statistical parameters from the Sentinel-1 SAR time series archive. We present the Sentinel-1 1km-SSM product generated by the adopted change detection algorithm. The dataset covers the European continent and holds data from October 2014 ongoing. In addition to a validation of the SSM product, the statistical SAR parameters used during SSM retrieval are examined.

  10. Monaural Sound Localization Based on Reflective Structure and Homomorphic Deconvolution

    PubMed Central

    Park, Yeonseok; Choi, Anthony

    2017-01-01

    The asymmetric structure around the receiver provides a particular time delay for the specific incoming propagation. This paper designs a monaural sound localization system based on the reflective structure around the microphone. The reflective plates are placed to present the direction-wise time delay, which is naturally processed by convolutional operation with a sound source. The received signal is separated for estimating the dominant time delay by using homomorphic deconvolution, which utilizes the real cepstrum and inverse cepstrum sequentially to derive the propagation response’s autocorrelation. Once the localization system accurately estimates the information, the time delay model computes the corresponding reflection for localization. Because of the structure limitation, two stages of the localization process perform the estimation procedure as range and angle. The software toolchain from propagation physics and algorithm simulation realizes the optimal 3D-printed structure. The acoustic experiments in the anechoic chamber denote that 79.0% of the study range data from the isotropic signal is properly detected by the response value, and 87.5% of the specific direction data from the study range signal is properly estimated by the response time. The product of both rates shows the overall hit rate to be 69.1%. PMID:28946625

  11. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  12. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  13. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  14. A wide-angle high Mach number modal expansion for infrasound propagation.

    PubMed

    Assink, Jelle; Waxler, Roger; Velea, Doru

    2017-03-01

    The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.

  15. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  16. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw

    NASA Astrophysics Data System (ADS)

    Liu, Binbin; Bruni, Stefano; Vollebregt, Edwin

    2016-09-01

    A novel approach is proposed in this paper to deal with non-Hertzian normal contact in wheel-rail interface, extending the widely used Kik-Piotrowski method. The new approach is able to consider the effect of the yaw angle of the wheelset against the rail on the shape of the contact patch and on pressure distribution. Furthermore, the method considers the variation of profile curvature across the contact patch, enhancing the correspondence to CONTACT for highly non-Hertzian contact conditions. The simulation results show that the proposed method can provide more accurate estimation than the original algorithm compared to Kalker's CONTACT, and that the influence of yaw on the contact results is significant under certain circumstances.

  17. Annual Symposium on Machine Processing of Remotely Sensed Data, 4th, Purdue University, West Lafayette, Ind., June 21-23, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Morrison, D. B. (Editor); Scherer, D. J.

    1977-01-01

    Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.

  18. Space shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.

  19. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men Chunhua; Romeijn, H. Edwin; Jia Xun

    2010-11-15

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less

  20. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    PubMed

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  1. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium

    PubMed Central

    Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam

    2015-01-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  2. Digital tomosynthesis (DTS) with a Circular X-ray tube: Its image reconstruction based on total-variation minimization and the image characteristics

    NASA Astrophysics Data System (ADS)

    Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.

  3. Detection and correction of patient movement in prostate brachytherapy seed reconstruction

    NASA Astrophysics Data System (ADS)

    Lam, Steve T.; Cho, Paul S.; Marks, Robert J., II; Narayanan, Sreeram

    2005-05-01

    Intraoperative dosimetry of prostate brachytherapy can help optimize the dose distribution and potentially improve clinical outcome. Evaluation of dose distribution during the seed implant procedure requires the knowledge of 3D seed coordinates. Fluoroscopy-based seed localization is a viable option. From three x-ray projections obtained at different gantry angles, 3D seed positions can be determined. However, when local anaesthesia is used for prostate brachytherapy, the patient movement during fluoroscopy image capture becomes a practical problem. If uncorrected, the errors introduced by patient motion between image captures would cause seed mismatches. Subsequently, the seed reconstruction algorithm would either fail to reconstruct or yield erroneous results. We have developed an algorithm that permits detection and correction of patient movement that may occur between fluoroscopy image captures. The patient movement is decomposed into translational shifts along the tabletop and rotation about an axis perpendicular to the tabletop. The property of spatial invariance of the co-planar imaging geometry is used for lateral movement correction. Cranio-caudal movement is corrected by analysing the perspective invariance along the x-ray axis. Rotation is estimated by an iterative method. The method can detect and correct for the range of patient movement commonly seen in the clinical environment. The algorithm has been implemented for routine clinical use as the preprocessing step for seed reconstruction.

  4. Intelligent vehicle safety control strategy in various driving situations

    NASA Astrophysics Data System (ADS)

    Moon, Seungwuk; Cho, Wanki; Yi, Kyongsu

    2010-12-01

    This paper describes a safety control strategy for intelligent vehicles with the objective of optimally coordinating the throttle, brake, and active front steering actuator inputs to obtain both lateral stability and longitudinal safety. The control system consists of a supervisor, control algorithms, and a coordinator. From the measurement and estimation signals, the supervisor determines the active control modes among normal driving, longitudinal safety, lateral stability, and integrated safety control mode. The control algorithms consist of longitudinal and lateral stability controllers. The longitudinal controller is designed to improve the driver's comfort during normal, safe-driving situations, and to avoid rear-end collision in vehicle-following situations. The lateral stability controller is designed to obtain the required manoeuvrability and to limit the vehicle body's side-slip angle. To obtain both longitudinal safety and lateral stability control in various driving situations, the coordinator optimally determines the throttle, brake, and active front steering inputs based on the current status of the subject vehicle. Closed-loop simulations with the driver-vehicle-controller system are conducted to investigate the performance of the proposed control strategy. From these simulation results, it is shown that the proposed control algorithm assists the driver in combined severe braking/large steering manoeuvring so that the driver can maintain good manoeuvrability and prevent the vehicle from crashing in vehicle-following situations.

  5. Maximum-likelihood-based extended-source spatial acquisition and tracking for planetary optical communications

    NASA Astrophysics Data System (ADS)

    Tsou, Haiping; Yan, Tsun-Yee

    1999-04-01

    This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.

  6. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  7. Concerns about a variance approach to the X-ray diffractometric estimation of microfibril angle in wood

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian; Michael Wiemann; Harry A. Alden

    2010-01-01

    In this paper we raise three technical concerns about Evans’s 1999 Appita Journal “variance approach” to estimating microfibril angle. The first concern is associated with the approximation of the variance of an X-ray intensity half-profile by a function of the microfibril angle and the natural variability of the microfibril angle, S2...

  8. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontenla, J. M.; Codrescu, M.; Fedrizzi, M.

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm ismore » used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.« less

  9. Estimation of Static Longitudinal Stability of Aircraft Configurations at High Mach Numbers and at Angles of Attack Between 0 deg and +/-180 deg

    NASA Technical Reports Server (NTRS)

    Dugan, Duane W.

    1959-01-01

    The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.

  10. Synthetic Air Data Estimation: A case study of model-aided estimation

    NASA Astrophysics Data System (ADS)

    Lie, F. Adhika Pradipta

    A method for estimating airspeed, angle of attack, and sideslip without using conventional, pitot-static airdata system is presented. The method relies on measurements from GPS, an inertial measurement unit (IMU) and a low-fidelity model of the aircraft's dynamics which are fused using two, cascaded Extended Kalman Filters. In the cascaded architecture, the first filter uses information from the IMU and GPS to estimate the aircraft's absolute velocity and attitude. These estimates are used as the measurement updates for the second filter where they are fused with the aircraft dynamics model to generate estimates of airspeed, angle of attack and sideslip. Methods for dealing with the time and inter-state correlation in the measurements coming from the first filter are discussed. Simulation and flight test results of the method are presented. Simulation results using high fidelity nonlinear model show that airspeed, angle of attack, and sideslip angle estimation errors are less than 0.5 m/s, 0.1 deg, and 0.2 deg RMS, respectively. Factors that affect the accuracy including the implication and impact of using a low fidelity aircraft model are discussed. It is shown using flight tests that a single linearized aircraft model can be used in lieu of a high-fidelity, non-linear model to provide reasonably accurate estimates of airspeed (less than 2 m/s error), angle of attack (less than 3 deg error), and sideslip angle (less than 5 deg error). This performance is shown to be relatively insensitive to off-trim attitudes but very sensitive to off-trim velocity.

  11. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  12. On-Orbit Lunar Modulation Transfer Function Measurements for the Moderate Resolution Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng

    2013-01-01

    Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.

  13. System identification and the modeling of sailing yachts

    NASA Astrophysics Data System (ADS)

    Legursky, Katrina

    This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and yaw. Existing aerodynamic models for sailing yachts are unsuitable for control system design as they do not include a physical description of the sails' dynamic effect on the system. A new aerodynamic model is developed and validated using the full-scale sailing data which includes sail deflection as a control input to the system. The Maximum Likelihood Estimation (MLE) algorithm is used with non-linear simulation data to successfully estimate a set of hydrodynamic derivatives for a sailing yacht. It is shown that all sailing yacht models will contain a second order mode (referred to herein as Mode 1A.S or 4B.S) which is dependent upon trimmed roll angle. For the test yacht it is concluded that for this mode when the trimmed roll angle is, roll rate and roll angle are the dominant motion variables, and for surge velocity and yaw rate dominate. This second order mode is dynamically stable for . It transitions from stability in the higher values of to instability in the region defined by. These conclusions align with other work which has also found roll angle to be a driving factor in the dynamic behavior of a tall-ship (Johnson, Miles, Lasher, & Womack, 2009). It is also shown that all linear models also contain a first order mode, (referred to herein as Mode 3A.F or 1B.F), which lies very close to the origin of the complex plane indicating a long time constant. Measured models have indicated this mode can be stable or unstable. The eigenvector analysis reveals that the mode is stable if the surge contribution is < 40% and the sway contribution is > 20%. The small set of maneuvers necessary for model identification, quick OSLS estimation method, and detailed modal analysis of estimated models outlined in this work are immediately applicable to existing autonomous mono-hull sailing yachts, and could readily be adapted for use with other wind-powered vessel configurations such as wing-sails, catamarans, and tri-marans. (Abstract shortened by UMI.)

  14. Jeffries Matusita-Spectral Angle Mapper (JM-SAM) spectral matching for species level mapping at Bhitarkanika, Muthupet and Pichavaram mangroves

    NASA Astrophysics Data System (ADS)

    Padma, S.; Sanjeevi, S.

    2014-12-01

    This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and the deterministic Spectral Angle Mapper (SAM), to accurately map the species and the associated landcover types of the mangroves of east coast of India using hyperspectral satellite images. The JM-SAM algorithm signifies the combination of a qualitative distance measure (JM) and a quantitative angle measure (SAM). The spectral capabilities of both the measures are orthogonally projected using the tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram (Tamil Nadu), Muthupet (Tamil Nadu) and Bhitarkanika (Odisha) mangrove forests along the Eastern Indian coast using the Hyperion image dat asets that contain 242 bands. The developed algorithm is extended in a supervised framework for accurate classification of the Hyperion image. The pixel-level matching performance of the developed algorithm is assessed by the Relative Spectral Discriminatory Probability (RSDPB) and Relative Spectral Discriminatory Entropy (RSDE) measures. From the values of RSDPB and RSDE, it is inferred that hybrid JM-SAM matching measure results in improved discriminability of the mangrove species and the associated landcover types than the individual SAM and JM algorithms. This performance is reflected in the classification accuracies of species and landcover map of Pichavaram mangrove ecosystem. Thus, the JM-SAM (TAN) matching algorithm yielded an accuracy better than SAM and JM measures at an average difference of 13.49 %, 7.21 % respectively, followed by JM-SAM (SIN) at 12.06%, 5.78% respectively. Similarly, in the case of Muthupet, JM-SAM (TAN) yielded an increased accuracy than SAM and JM measures at an average difference of 12.5 %, 9.72 % respectively, followed by JM-SAM (SIN) at 8.34 %, 5.55% respectively. For Bhitarkanika, the combined JM-SAM (TAN) and (SIN) measures improved the performance of individual SAM by (16.1 %, 15%) and of JM by (10.3%, 9.2%) respectively.

  15. Off-Angle Iris Correction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not accountmore » for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.« less

  16. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    PubMed

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  17. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  18. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  19. Research on Mechanical Fault Prediction Algorithm for Circuit Breaker Based on Sliding Time Window and ANN

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi

    A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.

  20. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  1. Application of independent component analysis for speech-music separation using an efficient score function estimation

    NASA Astrophysics Data System (ADS)

    Pishravian, Arash; Aghabozorgi Sahaf, Masoud Reza

    2012-12-01

    In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time

  2. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  3. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

  4. Variable is better than invariable: sparse VSS-NLMS algorithms with application to adaptive MIMO channel estimation.

    PubMed

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.

  5. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  6. [Toward exploration of morphological diversity of measurable traits of mammalian skull. 2. Scalar and vector parameters of the forms of group variation].

    PubMed

    Lisovskiĭ, A A; Pavlinov, I Ia

    2008-01-01

    Any morphospace is partitioned by the forms of group variation, its structure is described by a set of scalar (range, overlap) and vector (direction) characteristics. They are analyzed quantitatively for the sex and age variations in the sample of 200 skulls of the pine marten described by 14 measurable traits. Standard dispersion and variance components analyses are employed, accompanied with several resampling methods (randomization and bootstrep); effects of changes in the analysis design on results of the above methods are also considered. Maximum likelihood algorithm of variance components analysis is shown to give an adequate estimates of portions of particular forms of group variation within the overall disparity. It is quite stable in respect to changes of the analysis design and therefore could be used in the explorations of the real data with variously unbalanced designs. A new algorithm of estimation of co-directionality of particular forms of group variation within the overall disparity is elaborated, which includes angle measures between eigenvectors of covariation matrices of effects of group variations calculated by dispersion analysis. A null hypothesis of random portion of a given group variation could be tested by means of randomization of the respective grouping variable. A null hypothesis of equality of both portions and directionalities of different forms of group variation could be tested by means of the bootstrep procedure.

  7. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    NASA Astrophysics Data System (ADS)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  8. A Tunable Terahertz Detector based on Self-Assembled Plasmonic Structure on a GaAs 2-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Biradar, Anandrao Shesherao

    The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in the field of Unmanned Aerial Systems (UAVs), various aerial platforms and corresponding; autonomous systems for them. This technology has advanced to such a stage that UAVs can be used for specific designed missions and deployed with reliability. But in some areas like missions requiring high maneuverability with greater efficiency is still under research area. This would help in increasing reliability and augmenting range of UAVs significantly. One of the problems addressed through this thesis work is, current autopilot systems have algorithm that handles wind by attitude correction with appropriate Crab angle. But the real time wind vector (direction) and its calculated velocity is based on geometrical and algebraic transformation between ground speed and air speed vectors. This method of wind estimation and prediction, many a times leads to inaccuracy in attitude correction. The same has been proved in the following report with simulation and actual field testing. In later part, new ways to tackle while flying windy conditions have been proposed.

  9. Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Wigneron, J.-P.; Jackson, T. J.; O'Neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J. P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. P.; hide

    2017-01-01

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40deg, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010-2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.

  10. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  11. Research on an estimation method of DOA for wireless location based on TD-SCDMA

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Luo, Yuan; Cheng, Shi-xin

    2004-03-01

    To meet the urgent need of personal communication and hign-speed data services,the standardization and products development for International Mobile Telecommunication-2000 (IMT-2000) have become a hot point in wordwide. The wireless location for mobile terminals has been an important research project. Unlike GPS which is located by 24 artificial satellities, it is based on the base-station of wireless cell network, and the research and development of it are correlative with IMT-2000. While the standard for the third generation mobile telecommunication (3G)-TD-SCDMA, which is proposed by China and the intellective property right of which is possessed by Chinese, is adopted by ITU-T at the first time, the research for wireless location based on TD-SCDMA has theoretic meaning, applied value and marketable foreground. First,the basic principle and method for wireless location, i.e. Direction of Angle(DOA), Time of Arrival(TOA) or Time Difference of Arrival(TDOA), hybridized location(TOA/DOA,TDOA/DOA,TDOA/DOA),etc. is introduced in the paper. So the research of DOA is very important in wireless location. Next, Main estimation methods of DOA for wireless location, i.e. ESPRIT, MUSIC, WSF, Min-norm, etc. are researched in the paper. In the end, the performances of DOA estimation for wireless location based on mobile telecommunication network are analyzed by the research of theory and simulation experiment and the contrast algorithms between and Cramer-Rao Bound. Its research results aren't only propitious to the choice of algorithms for wireless location, but also to the realization of new service of wireless location .

  12. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-01-01

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change. PMID:27706064

  13. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-09-30

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change.

  14. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Loyola, D.; Gimeno García, S.; Romahn, F.

    2015-12-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH), cloud top pressure (CTP), cloud top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007-June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of -0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs).

  15. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  16. Mismatch removal via coherent spatial relations

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen

    2014-07-01

    We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.

  17. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Astrophysics Data System (ADS)

    Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  18. Application of database methods to the prediction of B3LYP-optimized polyhedral water cluster geometries and electronic energies

    NASA Astrophysics Data System (ADS)

    Anick, David J.

    2003-12-01

    A method is described for a rapid prediction of B3LYP-optimized geometries for polyhedral water clusters (PWCs). Starting with a database of 121 B3LYP-optimized PWCs containing 2277 H-bonds, linear regressions yield formulas correlating O-O distances, O-O-O angles, and H-O-H orientation parameters, with local and global cluster descriptors. The formulas predict O-O distances with a rms error of 0.85 pm to 1.29 pm and predict O-O-O angles with a rms error of 0.6° to 2.2°. An algorithm is given which uses the O-O and O-O-O formulas to determine coordinates for the oxygen nuclei of a PWC. The H-O-H formulas then determine positions for two H's at each O. For 15 test clusters, the gap between the electronic energy of the predicted geometry and the true B3LYP optimum ranges from 0.11 to 0.54 kcal/mol or 4 to 18 cal/mol per H-bond. Linear regression also identifies 14 parameters that strongly correlate with PWC electronic energy. These descriptors include the number of H-bonds in which both oxygens carry a non-H-bonding H, the number of quadrilateral faces, the number of symmetric angles in 5- and in 6-sided faces, and the square of the cluster's estimated dipole moment.

  19. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  20. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

Top