Sample records for angle mapper algorithm

  1. Demonstration of angular anisotropy in the output of Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Duggin, M. J. (Principal Investigator); Lindsay, J.; Piwinski, D. J.; Schoch, L. B.

    1984-01-01

    There is a dependence of TM output (proportional to scene radiance in a manner which will be discussed) upon season, upon cover type and upon view angle. The existence of a significant systematic variation across uniform scenes in p-type (radiometrically and geometrically pre-processed) data is demonstrated. Present pre-processing does remove the effects and the problem must be addressed because the effects are large. While this is in no way attributable to any shortcomings in the thematic mapper, it is an effect which is sufficiently important to warrant more study, with a view to developing suitable pre-processing correction algorithms.

  2. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  3. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  4. Jeffries Matusita-Spectral Angle Mapper (JM-SAM) spectral matching for species level mapping at Bhitarkanika, Muthupet and Pichavaram mangroves

    NASA Astrophysics Data System (ADS)

    Padma, S.; Sanjeevi, S.

    2014-12-01

    This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and the deterministic Spectral Angle Mapper (SAM), to accurately map the species and the associated landcover types of the mangroves of east coast of India using hyperspectral satellite images. The JM-SAM algorithm signifies the combination of a qualitative distance measure (JM) and a quantitative angle measure (SAM). The spectral capabilities of both the measures are orthogonally projected using the tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram (Tamil Nadu), Muthupet (Tamil Nadu) and Bhitarkanika (Odisha) mangrove forests along the Eastern Indian coast using the Hyperion image dat asets that contain 242 bands. The developed algorithm is extended in a supervised framework for accurate classification of the Hyperion image. The pixel-level matching performance of the developed algorithm is assessed by the Relative Spectral Discriminatory Probability (RSDPB) and Relative Spectral Discriminatory Entropy (RSDE) measures. From the values of RSDPB and RSDE, it is inferred that hybrid JM-SAM matching measure results in improved discriminability of the mangrove species and the associated landcover types than the individual SAM and JM algorithms. This performance is reflected in the classification accuracies of species and landcover map of Pichavaram mangrove ecosystem. Thus, the JM-SAM (TAN) matching algorithm yielded an accuracy better than SAM and JM measures at an average difference of 13.49 %, 7.21 % respectively, followed by JM-SAM (SIN) at 12.06%, 5.78% respectively. Similarly, in the case of Muthupet, JM-SAM (TAN) yielded an increased accuracy than SAM and JM measures at an average difference of 12.5 %, 9.72 % respectively, followed by JM-SAM (SIN) at 8.34 %, 5.55% respectively. For Bhitarkanika, the combined JM-SAM (TAN) and (SIN) measures improved the performance of individual SAM by (16.1 %, 15%) and of JM by (10.3%, 9.2%) respectively.

  5. Compositional diversity of near-, far-side transitory zone around Naonobu, Webb and Sinus Successus craters: Inferences from Chandrayaan-1 Moon Mineralogy Mapper (M3) data

    NASA Astrophysics Data System (ADS)

    Bharti, Rishikesh; Ramakrishnan, D.; Singh, K. D.

    2014-02-01

    This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.

  6. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  7. Validation of the Thematic Mapper radiometric and geometric correction algorithms

    NASA Technical Reports Server (NTRS)

    Fischel, D.

    1984-01-01

    The radiometric and geometric correction algorithms for Thematic Mapper are critical to subsequent successful information extraction. Earlier Landsat scanners, known as Multispectral Scanners, produce imagery which exhibits striping due to mismatching of detector gains and biases. Thematic Mapper exhibits the same phenomenon at three levels: detector-to-detector, scan-to-scan, and multiscan striping. The cause of these variations has been traced to variations in the dark current of the detectors. An alternative formulation has been tested and shown to be very satisfactory. Unfortunately, the Thematic Mapper detectors exhibit saturation effects suffered while viewing extensive cloud areas, and is not easily correctable. The geometric correction algorithm has been shown to be remarkably reliable. Only minor and modest improvements are indicated and shown to be effective.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Sun; Yoon, Wang-Jung

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  9. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  10. Comparison of three methods for materials identification and mapping with imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg; Boardman, Joe; Kruse, Fred

    1993-01-01

    We are comparing three methods of mapping analysis tools for imaging spectroscopy data. The purpose of this comparison is to understand the advantages and disadvantages of each algorithm so others would be better able to choose the best algorithm or combinations of algorithms for a particular problem. The three algorithms are: (1) the spectralfeature modified least squares mapping algorithm of Clark et al (1990, 1991): programs mbandmap and tricorder; (2) the Spectral Angle Mapper Algorithm(Boardman, 1993) found in the CU CSES SIPS package; and (3) the Expert System of Kruse et al. (1993). The comparison uses a ground-calibrated 1990 AVIRIS scene of 400 by 410 pixels over Cuprite, Nevada. Along with the test data set is a spectral library of 38 minerals. Each algorithm is tested with the same AVIRIS data set and spectral library. Field work has confirmed the presence of many of these minerals in the AVIRIS scene (Swayze et al. 1992).

  11. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  12. Development of image mappers for hyperspectral biomedical imaging applications

    PubMed Central

    Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.

    2010-01-01

    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875

  13. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description

    USGS Publications Warehouse

    Schmidt, Gail; Jenkerson, Calli B.; Masek, Jeffrey; Vermote, Eric; Gao, Feng

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.

  14. Atmospheric modeling related to Thematic Mapper scan geometry. [atmospheric effects on satellite-borne photography of LANDSAT D

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1976-01-01

    A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands.

  15. Initial attitude determination for the hipparcos satellite

    NASA Astrophysics Data System (ADS)

    Van der Ha, Jozef C.

    The present paper described the strategy and algorithms used during the initial on-ground three-axes attitude determination of ESA's astrometry satellite HIPPARCOS. The estimation is performed using calculated crossing times of identified stars over the Star Mapper's vertical and inclined slit systems as well as outputs from a set of rate-integrating gyros. Valid star transits in either of the two fields of view are expected to occur in average about every 30 s whereas the gyros are sampled at about 1 Hz. The state vector to be estimated consists of the three angles, three rates and three gyro drift rate components. Simulations have shown that convergence of the estimator is established within about 10 min and that the accuracies achieved are in the order of a few arcsec for the angles and a few milliarcsec per s for the rates. These stringent accuracies are in fact required for initialisation of subsequent autonomous on-board real-time attitude determination.

  16. a Comprehensive Review of Pansharpening Algorithms for GÖKTÜRK-2 Satellite Images

    NASA Astrophysics Data System (ADS)

    Kahraman, S.; Ertürk, A.

    2017-11-01

    In this paper, a comprehensive review and performance evaluation of pansharpening algorithms for GÖKTÜRK-2 images is presented. GÖKTÜRK-2 is the first high resolution remote sensing satellite of Turkey which was designed and built in Turkey, by The Ministry of Defence, TUBITAK-UZAY and Turkish Aerospace Industry (TUSAŞ) collectively. GÖKTÜRK-2 was launched at 18th. December 2012 in Jinguan, China and provides 2.5 meter panchromatic (PAN) and 5 meter multispectral (MS) spatial resolution satellite images. In this study, a large number of pansharpening algorithms are implemented and evaluated for performance on multiple GÖKTÜRK-2 satellite images. Quality assessments are conducted both qualitatively through visual results and quantitatively using Root Mean Square Error (RMSE), Correlation Coefficient (CC), Spectral Angle Mapper (SAM), Erreur Relative Globale Adimensionnelle de Synthése (ERGAS), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Universal Image Quality Index (UIQI).

  17. Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5-14 μm) to discriminate vegetation species.

    PubMed

    Ullah, Saleem; Groen, Thomas A; Schlerf, Martin; Skidmore, Andrew K; Nieuwenhuis, Willem; Vaiphasa, Chaichoke

    2012-01-01

    Genetic variation between various plant species determines differences in their physio-chemical makeup and ultimately in their hyperspectral emissivity signatures. The hyperspectral emissivity signatures, on the one hand, account for the subtle physio-chemical changes in the vegetation, but on the other hand, highlight the problem of high dimensionality. The aim of this paper is to investigate the performance of genetic algorithms coupled with the spectral angle mapper (SAM) to identify a meaningful subset of wavebands sensitive enough to discriminate thirteen broadleaved vegetation species from the laboratory measured hyperspectral emissivities. The performance was evaluated using an overall classification accuracy and Jeffries Matusita distance. For the multiple plant species, the targeted bands based on genetic algorithms resulted in a high overall classification accuracy (90%). Concentrating on the pairwise comparison results, the selected wavebands based on genetic algorithms resulted in higher Jeffries Matusita (J-M) distances than randomly selected wavebands did. This study concludes that targeted wavebands from leaf emissivity spectra are able to discriminate vegetation species.

  18. Mineral Mapping Using AVIRIS Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold; Green, Robert O.; Roberts, Dar

    1998-01-01

    Imaging Spectroscopy enables the identification and mapping of surface mineralogy over large areas. This study focused on assessing the utility of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for environmental impact analysis over the Environmental Protection Agency's (EPA) high priority Superfund site Ray Mine, AZ. Using the Spectral Angle Mapper (SAM) algorithm to analyze AVIRIS data makes it possible to map surface materials that are indicative of acid generating minerals. The improved performance of the AVIRIS sensor since 1996 provides data with sufficient signal to noise ratio to characterize up to 8 image endmembers. Specifically we employed SAM to map minerals associated with mine generated acid waste, namely jarositc, goethite, and hematite, in the presence of a complex mineralogical background.

  19. Use of laser range finders and range image analysis in automated assembly tasks

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1990-01-01

    A proposition to study the effect of filtering processes on range images and to evaluate the performance of two different laser range mappers is made. Median filtering was utilized to remove noise from the range images. First and second order derivatives are then utilized to locate the similarities and dissimilarities between the processed and the original images. Range depth information is converted into spatial coordinates, and a set of coefficients which describe 3-D objects is generated using the algorithm developed in the second phase of this research. Range images of spheres and cylinders are used for experimental purposes. An algorithm was developed to compare the performance of two different laser range mappers based upon the range depth information of surfaces generated by each of the mappers. Furthermore, an approach based on 2-D analytic geometry is also proposed which serves as a basis for the recognition of regular 3-D geometric objects.

  20. Modified algorithm for mineral identification in LWIR hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin

    2017-05-01

    The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.

  1. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  2. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  3. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  4. Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.

    PubMed

    Leroy, G; Chen, H

    2001-12-01

    This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.

  5. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data

    PubMed Central

    2014-01-01

    Background The rapid evolution in high-throughput sequencing (HTS) technologies has opened up new perspectives in several research fields and led to the production of large volumes of sequence data. A fundamental step in HTS data analysis is the mapping of reads onto reference sequences. Choosing a suitable mapper for a given technology and a given application is a subtle task because of the difficulty of evaluating mapping algorithms. Results In this paper, we present a benchmark procedure to compare mapping algorithms used in HTS using both real and simulated datasets and considering four evaluation criteria: computational resource and time requirements, robustness of mapping, ability to report positions for reads in repetitive regions, and ability to retrieve true genetic variation positions. To measure robustness, we introduced a new definition for a correctly mapped read taking into account not only the expected start position of the read but also the end position and the number of indels and substitutions. We developed CuReSim, a new read simulator, that is able to generate customized benchmark data for any kind of HTS technology by adjusting parameters to the error types. CuReSim and CuReSimEval, a tool to evaluate the mapping quality of the CuReSim simulated reads, are freely available. We applied our benchmark procedure to evaluate 14 mappers in the context of whole genome sequencing of small genomes with Ion Torrent data for which such a comparison has not yet been established. Conclusions A benchmark procedure to compare HTS data mappers is introduced with a new definition for the mapping correctness as well as tools to generate simulated reads and evaluate mapping quality. The application of this procedure to Ion Torrent data from the whole genome sequencing of small genomes has allowed us to validate our benchmark procedure and demonstrate that it is helpful for selecting a mapper based on the intended application, questions to be addressed, and the technology used. This benchmark procedure can be used to evaluate existing or in-development mappers as well as to optimize parameters of a chosen mapper for any application and any sequencing platform. PMID:24708189

  6. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  7. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    NASA Astrophysics Data System (ADS)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  8. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  9. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  10. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve

    2012-01-01

    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  11. Near-infrared hyperspectral imaging of atherosclerotic tissue phantom

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Kitayabu, A.; Awazu, K.

    2013-06-01

    A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by hyperspectral imaging in near-infrared range (NIR-HSI) for an angioscopic application. In this study, NIR-HSI of atherosclerotic tissue phantoms was demonstrated under simulated angioscopic conditions. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, detections of the lipid area in the atherosclerotic tissue phantom under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode.

  12. Geostationary Lightning Mapper: Lessons Learned from Post Launch Test

    NASA Astrophysics Data System (ADS)

    Edgington, S.; Tillier, C. E.; Demroff, H.; VanBezooijen, R.; Christian, H. J., Jr.; Bitzer, P. M.

    2017-12-01

    Pre-launch calibration and algorithm design for the GOES Geostationary Lightning Mapper resulted in a successful and trouble-free on-orbit activation and post-launch test sequence. Within minutes of opening the GLM aperture door on January 4th, 2017, lightning was detected across the entire field of view. During the six-month post-launch test period, numerous processing parameters on board the instrument and in the ground processing algorithms were fine-tuned. Demonstrated on-orbit performance exceeded pre-launch predictions. We provide an overview of the ground calibration sequence, on-orbit tuning of the instrument, tuning of the ground processing algorithms (event filtering and navigation). We also touch on new insights obtained from analysis of a large and growing archive of raw GLM data, containing 3e8 flash detections derived from over 1e10 full-disk images of the Earth.

  13. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    PubMed

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.

  14. Statistical learning algorithms for identifying contrasting tillage practices with landsat thematic mapper data

    USDA-ARS?s Scientific Manuscript database

    Tillage management practices have direct impact on water holding capacity, evaporation, carbon sequestration, and water quality. This study examines the feasibility of two statistical learning algorithms, such as Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for cla...

  15. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control.

    PubMed

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-07-08

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).

  16. The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2010-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  17. A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.

    PubMed

    Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas

    2013-01-01

    Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.

  18. Mapping advanced argillic alteration zones with ASTER and Hyperion data in the Andes Mountains of Peru

    NASA Astrophysics Data System (ADS)

    Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane

    2016-04-01

    This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).

  19. Multitemporal WorldView satellites imagery for mapping chestnut trees

    NASA Astrophysics Data System (ADS)

    Marchetti, F.; Arbelo, M.; Moreno-Ruíz, J. A.; Hernández-Leal, P. A.; Alonso-Benito, A.

    2017-10-01

    Chestnuts have been part of the landscape and popular culture of the Canary Islands (Spain) since the sixteenth century. Many crops of this species are in state of abandonment and an updated mapping for its study and evaluation is needed. This work proposes the elaboration of this cartography using two satellite images of very high spatial resolution captured on two different dates and representing well-differentiated phenological states of the chestnut: a WorldView-2 image of March 10th, 2015 and a WorldView-3 image of May 12th, 2015 (without and with leaves respectively). Two study areas were selected within the municipality of La Orotava (Tenerife Island). One of the areas contains chestnut trees dispersed in an agricultural and semi-urban environment and in the other one, the specimens are grouped forming a forest merged with Canarian pines and other species of Monteverde. The Maximum Likelihood (ML), the Artificial Neural Networks (ANN) and the Spectral Angle Mapper (SAM) classification algorithms were applied to the multi-temporal image resulting from the combination of both dates. The results show the benefits of using the multi-temporal image for Pinolere with the ANN algorithm and for Chasna area with ML algorithm, in both cases providing an overall accuracy close to 95%.

  20. Applying six classifiers to airborne hyperspectral imagery for detecting giant reed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated and compared six different image classifiers, including minimum distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and support vector machine (SVM), for detecting and mapping giant reed (Arundo...

  1. EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.

    USGS Publications Warehouse

    Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.

    1984-01-01

    Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.

  2. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control

    PubMed Central

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-01-01

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720

  3. FIREX mission requirements document for nonrenewable resources

    NASA Technical Reports Server (NTRS)

    Dixon, T.; Carsey, F.

    1982-01-01

    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest.

  4. Parallel processing optimization strategy based on MapReduce model in cloud storage environment

    NASA Astrophysics Data System (ADS)

    Cui, Jianming; Liu, Jiayi; Li, Qiuyan

    2017-05-01

    Currently, a large number of documents in the cloud storage process employed the way of packaging after receiving all the packets. From the local transmitter this stored procedure to the server, packing and unpacking will consume a lot of time, and the transmission efficiency is low as well. A new parallel processing algorithm is proposed to optimize the transmission mode. According to the operation machine graphs model work, using MPI technology parallel execution Mapper and Reducer mechanism. It is good to use MPI technology to implement Mapper and Reducer parallel mechanism. After the simulation experiment of Hadoop cloud computing platform, this algorithm can not only accelerate the file transfer rate, but also shorten the waiting time of the Reducer mechanism. It will break through traditional sequential transmission constraints and reduce the storage coupling to improve the transmission efficiency.

  5. Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1984-01-01

    Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.

  6. Expanded Processing Techniques for EMI Systems

    DTIC Science & Technology

    2012-07-01

    possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and mapping...possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and...54! Figure 4.25: Plots of simulated MetalMapper data for two oblate spheroidal targets

  7. Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica

    USGS Publications Warehouse

    Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.

    1994-01-01

    Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.

  8. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.

    1981-01-01

    Supervised and cluster block training statistics were used to analyze the thematic mapper simulation MSS data (both 1979 and 1980 data sets). Cover information classes identified on SAR imagery include: hardwood, pine, mixed pine hardwood, clearcut, pasture, crops, emergent crops, bare soil, urban, and water. Preliminary analysis of the HH and HV polarized SAR data indicate a high variance associated with each information class except for water and bare soil. The large variance for most spectral classes suggests that while the means might be statistically separable, an overlap may exist between the classes which could introduce a significant classification error. The quantitative values of many cover types are much larger on the HV polarization than on the HH, thereby indicating the relative nature of the digitized data values. The mean values of the spectral classes in the areas with larger look angles are greater than the means of the same cover type in other areas having steeper look angles. Difficulty in accurately overlaying the dual polarization of the SAR data was resolved.

  9. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  10. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  11. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  12. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.

  13. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach

    PubMed Central

    Liu, Xiaofeng; Ouyang, Sisheng; Yu, Biao; Liu, Yabo; Huang, Kai; Gong, Jiayu; Zheng, Siyuan; Li, Zhihua; Li, Honglin; Jiang, Hualiang

    2010-01-01

    In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method. PharmMapper server is a freely accessed web server designed to identify potential target candidates for the given small molecules (drugs, natural products or other newly discovered compounds with unidentified binding targets) using pharmacophore mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore database (namely PharmTargetDB) annotated from all the targets information in TargetBank, BindingDB, DrugBank and potential drug target database, including over 7000 receptor-based pharmacophore models (covering over 1500 drug targets information). PharmMapper automatically finds the best mapping poses of the query molecule against all the pharmacophore models in PharmTargetDB and lists the top N best-fitted hits with appropriate target annotations, as well as respective molecule’s aligned poses are presented. Benefited from the highly efficient and robust triangle hashing mapping method, PharmMapper bears high throughput ability and only costs 1 h averagely to screen the whole PharmTargetDB. The protocol was successful in finding the proper targets among the top 300 pharmacophore candidates in the retrospective benchmarking test of tamoxifen. PharmMapper is available at http://59.78.96.61/pharmmapper. PMID:20430828

  14. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  15. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  16. Identifying and classifying water hyacinth (Eichhornia crassipes) using the HyMap sensor

    NASA Astrophysics Data System (ADS)

    Rajapakse, Sepalika S.; Khanna, Shruti; Andrew, Margaret E.; Ustin, Susan L.; Lay, Mui

    2006-08-01

    In recent years, the impact of aquatic invasive species on biodiversity has become a major global concern. In the Sacramento-San Joaquin Delta region in the Central Valley of California, USA, dense infestations of the invasive aquatic emergent weed, water hyacinth (Eichhornia crassipes) interfere with ecosystem functioning. This silent invader constantly encroaches into waterways, eventually making them unusable by people and uninhabitable to aquatic fauna. Quantifying and mapping invasive plant species in aquatic ecosystems is important for efficient management and implementation of mitigation measures. This paper evaluates the ability of hyperspectral imagery, acquired using the HyMap sensor, for mapping water hyacinth in the Sacramento-San Joaquin Delta region. Classification was performed on sixty-four flightlines acquired over the study site using a decision tree which incorporated Spectral Angle Mapper (SAM) algorithm, absorption feature parameters in the spectral region between 0.4 and 2.5μm, and spectral endmembers. The total image dataset was 130GB. Spectral signatures of other emergent aquatic species like pennywort (Hydrocotyle ranunculoides) and water primrose (Ludwigia peploides) showed close similarity with the water hyacinth spectrum, however, the decision tree successfully discriminated water hyacinth from other emergent aquatic vegetation species. The classification algorithm showed high accuracy (κ value = 0.8) in discriminating water hyacinth.

  17. Detection of illicit substances in fingerprints by infrared spectral imaging.

    PubMed

    Ng, Ping Hei Ronnie; Walker, Sarah; Tahtouh, Mark; Reedy, Brian

    2009-08-01

    FTIR and Raman spectral imaging can be used to simultaneously image a latent fingerprint and detect exogenous substances deposited within it. These substances might include drugs of abuse or traces of explosives or gunshot residue. In this work, spectral searching algorithms were tested for their efficacy in finding targeted substances deposited within fingerprints. "Reverse" library searching, where a large number of possibly poor-quality spectra from a spectral image are searched against a small number of high-quality reference spectra, poses problems for common search algorithms as they are usually implemented. Out of a range of algorithms which included conventional Euclidean distance searching, the spectral angle mapper (SAM) and correlation algorithms gave the best results when used with second-derivative image and reference spectra. All methods tested gave poorer performances with first derivative and undifferentiated spectra. In a search against a caffeine reference, the SAM and correlation methods were able to correctly rank a set of 40 confirmed but poor-quality caffeine spectra at the top of a dataset which also contained 4,096 spectra from an image of an uncontaminated latent fingerprint. These methods also successfully and individually detected aspirin, diazepam and caffeine that had been deposited together in another fingerprint, and they did not indicate any of these substances as a match in a search for another substance which was known not to be present. The SAM was used to successfully locate explosive components in fingerprints deposited on silicon windows. The potential of other spectral searching algorithms used in the field of remote sensing is considered, and the applicability of the methods tested in this work to other modes of spectral imaging is discussed.

  18. A technique for the reduction of banding in Landsat Thematic Mapper Images

    USGS Publications Warehouse

    Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.

    1992-01-01

    The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.

  19. Blocking reduction of Landsat Thematic Mapper JPEG browse images using optimal PSNR estimated spectra adaptive postfiltering

    NASA Technical Reports Server (NTRS)

    Linares, Irving; Mersereau, Russell M.; Smith, Mark J. T.

    1994-01-01

    Two representative sample images of Band 4 of the Landsat Thematic Mapper are compressed with the JPEG algorithm at 8:1, 16:1 and 24:1 Compression Ratios for experimental browsing purposes. We then apply the Optimal PSNR Estimated Spectra Adaptive Postfiltering (ESAP) algorithm to reduce the DCT blocking distortion. ESAP reduces the blocking distortion while preserving most of the image's edge information by adaptively postfiltering the decoded image using the block's spectral information already obtainable from each block's DCT coefficients. The algorithm iteratively applied a one dimensional log-sigmoid weighting function to the separable interpolated local block estimated spectra of the decoded image until it converges to the optimal PSNR with respect to the original using a 2-D steepest ascent search. Convergence is obtained in a few iterations for integer parameters. The optimal logsig parameters are transmitted to the decoder as a negligible byte of overhead data. A unique maxima is guaranteed due to the 2-D asymptotic exponential overshoot shape of the surface generated by the algorithm. ESAP is based on a DFT analysis of the DCT basis functions. It is implemented with pixel-by-pixel spatially adaptive separable FIR postfilters. PSNR objective improvements between 0.4 to 0.8 dB are shown together with their corresponding optimal PSNR adaptive postfiltered images.

  20. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  1. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  2. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  3. EXhype: A tool for mineral classification using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Adep, Ramesh Nityanand; shetty, Amba; Ramesh, H.

    2017-02-01

    Various supervised classification algorithms have been developed to classify earth surface features using hyperspectral data. Each algorithm is modelled based on different human expertises. However, the performance of conventional algorithms is not satisfactory to map especially the minerals in view of their typical spectral responses. This study introduces a new expert system named 'EXhype (Expert system for hyperspectral data classification)' to map minerals. The system incorporates human expertise at several stages of it's implementation: (i) to deal with intra-class variation; (ii) to identify absorption features; (iii) to discriminate spectra by considering absorption features, non-absorption features and by full spectra comparison; and (iv) finally takes a decision based on learning and by emphasizing most important features. It is developed using a knowledge base consisting of an Optimal Spectral Library, Segmented Upper Hull method, Spectral Angle Mapper (SAM) and Artificial Neural Network. The performance of the EXhype is compared with a traditional, most commonly used SAM algorithm using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired over Cuprite, Nevada, USA. A virtual verification method is used to collect samples information for accuracy assessment. Further, a modified accuracy assessment method is used to get a real users accuracies in cases where only limited or desired classes are considered for classification. With the modified accuracy assessment method, SAM and EXhype yields an overall accuracy of 60.35% and 90.75% and the kappa coefficient of 0.51 and 0.89 respectively. It was also found that the virtual verification method allows to use most desired stratified random sampling method and eliminates all the difficulties associated with it. The experimental results show that EXhype is not only producing better accuracy compared to traditional SAM but, can also rightly classify the minerals. It is proficient in avoiding misclassification between target classes when applied on minerals.

  4. Evaluation of SLAR and simulated thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Dean, M. E.; Knowlton, D. J.; Latty, R. S.

    1982-01-01

    Kershaw County, South Carolina was selected as the study site for analyzing simulated thematic mapper MSS data and dual-polarized X-band synthetic aperture radar (SAR) data. The impact of the improved spatial and spectral characteristics of the LANDSAT D thematic mapper data on computer aided analysis for forest cover type mapping was examined as well as the value of synthetic aperture radar data for differentiating forest and other cover types. The utility of pattern recognition techniques for analyzing SAR data was assessed. Topics covered include: (1) collection and of TMS and reference data; (2) reformatting, geometric and radiometric rectification, and spatial resolution degradation of TMS data; (3) development of training statistics and test data sets; (4) evaluation of different numbers and combinations of wavelength bands on classification performance; (5) comparison among three classification algorithms; and (6) the effectiveness of the principal component transformation in data analysis. The collection, digitization, reformatting, and geometric adjustment of SAR data are also discussed. Image interpretation results and classification results are presented.

  5. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  6. Near-infrared hyperspectral imaging of atherosclerotic plaque in WHHLMI rabbit artery

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kitayabu, Akiko; Omiya, Kota; Honda, Norihiro; Awazu, Kunio

    2013-03-01

    Hyperspectral imaging (HSI) of rabbit atherosclerotic plaque in near-infrared (NIR) range from 1150 to 2400 nm was demonstrated. A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by NIR-HSI for an angioscopic application. In this study, we observed the hyperspectral images of the atherosclerotic plaque in WHHLMI rabbit (atherosclerotic rabbit) artery under simulated angioscopic conditions by NIR-HSI. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values (log (1/R) data) were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, the detections of atherosclerotic plaque under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode. The NIR-HSI was considered to serve as an angioscopic diagnosis technique to identify vulnerable plaques without clamping and saline injection.

  7. Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data

    NASA Astrophysics Data System (ADS)

    Abubakar, A. J.; Hashim, M.; Pour, A. B.

    2017-05-01

    In this study, the performance of ASTER data is evaluated for mapping subtle geothermal prospects in an unexplored tropical region having a number of thermal springs. The study employed a simple Decorrelation stretch with specific absorptions to highlight possible alteration zones of interest related to Geothermal (GT) systems. Hydrothermal alteration minerals are subsequently mapped using Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) algorithms to target representative minerals such as clays, carbonates and AL-OH minerals as indicators of GT activity. The results were validated through field GPS survey, rock sampling and laboratory analysis using latest smart lab X-Ray Diffractometer technology. The study indicates that ASTER broadband satellite data could be used to map subtle GT prospects with the aid of an in-situ verification. However, it also shows that ASTER could not discriminate within specie minerals especially for clays using SWIR bands. Subsequent studies are aimed at looking at both ASTER and Hyperion hyperspectral data in the same area as this could have significant implications for GT resource detection in unmapped aseismic and inaccessible tropical regions using available spaceborne data.

  8. Analysis of LANDSAT-4 TM Data for Lithologic and Image Mapping Purpose

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Salisbury, J. W.; Bender, L. V.; Jones, O. D.; Mimms, D. L.

    1984-01-01

    Lithologic mapping techniques using the near infrared bands of the Thematic Mapper onboard the LANDSAT 4 satellite are investigated. These methods are coupled with digital masking to test the capability of mapping geologic materials. Data are examined under medium to low Sun angle illumination conditions to determine the detection limits of materials with absorption features. Several detection anomalies are observed and explained.

  9. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  10. GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.

  11. Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues

    NASA Astrophysics Data System (ADS)

    Markoski, P. R.; Rolim, S. B. A.

    2012-07-01

    The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.

  12. Hadoop-MCC: Efficient Multiple Compound Comparison Algorithm Using Hadoop.

    PubMed

    Hua, Guan-Jie; Hung, Che-Lun; Tang, Chuan Yi

    2018-01-01

    In the past decade, the drug design technologies have been improved enormously. The computer-aided drug design (CADD) has played an important role in analysis and prediction in drug development, which makes the procedure more economical and efficient. However, computation with big data, such as ZINC containing more than 60 million compounds data and GDB-13 with more than 930 million small molecules, is a noticeable issue of time-consuming problem. Therefore, we propose a novel heterogeneous high performance computing method, named as Hadoop-MCC, integrating Hadoop and GPU, to copy with big chemical structure data efficiently. Hadoop-MCC gains the high availability and fault tolerance from Hadoop, as Hadoop is used to scatter input data to GPU devices and gather the results from GPU devices. Hadoop framework adopts mapper/reducer computation model. In the proposed method, mappers response for fetching SMILES data segments and perform LINGO method on GPU, then reducers collect all comparison results produced by mappers. Due to the high availability of Hadoop, all of LINGO computational jobs on mappers can be completed, even if some of the mappers encounter problems. A comparison of LINGO is performed on each the GPU device in parallel. According to the experimental results, the proposed method on multiple GPU devices can achieve better computational performance than the CUDA-MCC on a single GPU device. Hadoop-MCC is able to achieve scalability, high availability, and fault tolerance granted by Hadoop, and high performance as well by integrating computational power of both of Hadoop and GPU. It has been shown that using the heterogeneous architecture as Hadoop-MCC effectively can enhance better computational performance than on a single GPU device. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; hide

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate early on-orbit user readiness for this new capability.

  14. The GOES-R Series Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms

  15. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    USGS Publications Warehouse

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  16. Landsat thematic mapper attitude data processing

    NASA Technical Reports Server (NTRS)

    Sehn, G. J.; Miller, S. F.

    1984-01-01

    The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.

  17. Maia Mapper: high definition XRF imaging in the lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  18. Maia Mapper: high definition XRF imaging in the lab

    DOE PAGES

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...

    2018-03-13

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  19. Maia Mapper: high definition XRF imaging in the lab

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.

    2018-03-01

    Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.

  20. High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.

  1. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  2. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  3. OMPS TC EDR Algorithm: Improvement and Verification

    NASA Astrophysics Data System (ADS)

    Novicki, M.; Sen, B.; Hao, X.; Qu, J. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross track is 110 degrees to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the data analysis method being presently implemented to retrieve the total column ozone Earth Data Record (EDR) from the radiance data measured by the TC sensor. We discuss the software changes, the test data used to verify the functional performance and the test results.

  4. Lead optimization mapper: automating free energy calculations for lead optimization.

    PubMed

    Liu, Shuai; Wu, Yujie; Lin, Teng; Abel, Robert; Redmann, Jonathan P; Summa, Christopher M; Jaber, Vivian R; Lim, Nathan M; Mobley, David L

    2013-09-01

    Alchemical free energy calculations hold increasing promise as an aid to drug discovery efforts. However, applications of these techniques in discovery projects have been relatively few, partly because of the difficulty of planning and setting up calculations. Here, we introduce lead optimization mapper, LOMAP, an automated algorithm to plan efficient relative free energy calculations between potential ligands within a substantial library of perhaps hundreds of compounds. In this approach, ligands are first grouped by structural similarity primarily based on the size of a (loosely defined) maximal common substructure, and then calculations are planned within and between sets of structurally related compounds. An emphasis is placed on ensuring that relative free energies can be obtained between any pair of compounds without combining the results of too many different relative free energy calculations (to avoid accumulation of error) and by providing some redundancy to allow for the possibility of error and consistency checking and provide some insight into when results can be expected to be unreliable. The algorithm is discussed in detail and a Python implementation, based on both Schrödinger's and OpenEye's APIs, has been made available freely under the BSD license.

  5. Anaysis of the quality of image data required by the LANDSAT-4 Thematic Mapper and Multispectral Scanner. [agricultural and forest cover types in California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1984-01-01

    The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.

  6. Classification of corn and soybeans using multitemporal Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The multitemporal classification approach based on the greenness profile derived from Landsat Multispectral Scanner (MSS) spectral bands has proved successful in effectively separating and identifying corn, soybean, and other ground cover classes. Features derived from these profiles have been shown to carry virtually all the information contained in the original data and, in addition, have been shown to be stable over a large geographic area of the United States. The objective of this investigation was to determine if the same features derived from multitemporal Thematic Mapper (TM) data would also prove effective in separating these two crop types, and, in fact, if algorithms developed for MSS could be directly applied to TM. It is shown that this is indeed the case. In addition, because of greater spatial and spectral resolution, the accuracy of TM classifications is better than in MSS.

  7. Analysis of multiple incidence angle SIR-B data for determining forest stand characteristics

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Lozano-Garcia, D. F.; Gillespie, D. D.; Mueller, P. W.; Ruzek, M. J.

    1986-01-01

    For the first time in the U.S. space program, digital synthetic aperture radar (SR) data were obtained from different incidence angles during Space Shuttle Mission 41-G. Shuttle Imaging Radar-B (SIR-B) data were obtained at incidence angles of 58 deg., 45 deg., and 28 deg., on October 9, 10, and 11, 1984, respectively, for a predominantly forested study area in northern Florida. Cloud-free LANDSAT Thematic Mapper (T.M.) data were obtained over the same area on October 12. The SIR-B data were processed and then digitally registered to the LANDSAT T.M. data by scientists at the Jet Propulsion Laboratory. This is the only known digitally registered SIR-B and T.M. data set for which the data were obtained nearly simultaneously. The data analysis of this information is discussed.

  8. Improving the MODIS Global Snow-Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.

  9. Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper

    NASA Astrophysics Data System (ADS)

    Renza, Diego; Martinez, Estibaliz; Molina, Iñigo; Ballesteros L., Dora M.

    2017-04-01

    This paper presents a new unsupervised change detection methodology for multispectral images applied to specific land covers. The proposed method involves comparing each image against a reference spectrum, where the reference spectrum is obtained from the spectral signature of the type of coverage you want to detect. In this case the method has been tested using multispectral images (SPOT5) of the community of Madrid (Spain), and multispectral images (Quickbird) of an area over Indonesia that was impacted by the December 26, 2004 tsunami; here, the tests have focused on the detection of changes in vegetation. The image comparison is obtained by applying Spectral Angle Mapper between the reference spectrum and each multitemporal image. Then, a threshold to produce a single image of change is applied, which corresponds to the vegetation zones. The results for each multitemporal image are combined through an exclusive or (XOR) operation that selects vegetation zones that have changed over time. Finally, the derived results were compared against a supervised method based on classification with the Support Vector Machine. Furthermore, the NDVI-differencing and the Spectral Angle Mapper techniques were selected as unsupervised methods for comparison purposes. The main novelty of the method consists in the detection of changes in a specific land cover type (vegetation), therefore, for comparison purposes, the best scenario is to compare it with methods that aim to detect changes in a specific land cover type (vegetation). This is the main reason to select NDVI-based method and the post-classification method (SVM implemented in a standard software tool). To evaluate the improvements using a reference spectrum vector, the results are compared with the basic-SAM method. In SPOT5 image, the overall accuracy was 99.36% and the κ index was 90.11%; in Quickbird image, the overall accuracy was 97.5% and the κ index was 82.16%. Finally, the precision results of the method are comparable to those of a supervised method, supported by low detection of false positives and false negatives, along with a high overall accuracy and a high kappa index. On the other hand, the execution times were comparable to those of unsupervised methods of low computational load.

  10. The eNanoMapper database for nanomaterial safety information

    PubMed Central

    Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer” (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure–activity relationships for nanomaterials (NanoQSAR). PMID:26425413

  11. The eNanoMapper database for nanomaterial safety information.

    PubMed

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure-activity relationships for nanomaterials (NanoQSAR).

  12. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.

  13. MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification

    DTIC Science & Technology

    2011-02-01

    accelerometer  to  measure  pitch  and  roll  angles  and  a  3-­axis   fluxgate   magnetometer  that  provides   reference  heading  to  magnetic...investigations  included  a   magnetometer  transect  survey   and   an   EMI   survey   over   a   larger   area   to   assist   in   selecting   a

  14. The Goes-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.

  15. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  16. Surface reflectance retrieval from satellite and aircraft sensors: Results of sensor and algorithm comparisons during FIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, B.L.; Halthore, R.N.; Goetz, S.J.

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator,more » and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.« less

  17. Analysis of Thematic Mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea)

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Thematic Mapper data were analyzed with respect to its capability for mapping the complex structure and dynamics of suspended matter distribution in the coastal area of the German Bight (North Sea). Three independent pieces of information were found by factor analysis of all seven TM channels: suspended matter concentration, atmospheric scattering, and sea surface temperature. For the required atmospheric correction, the signal-to-noise ratios of Channels 5 and 7 have to be improved by averaging over 25 x 25 pixels, which also makes it possible to monitor the aerosol optical depth and aerosol type over cloud-free water surfaces. Near-surface suspended matter concentrations may be detected with an accuracy of factor less than 2 by using an algorithm derived from radiative transfer model calculation. The patchiness of suspended matter and its relation to underwater topography was analyzed with autocorrelation and cross-correlation.

  18. Detection of soil erosion with Thematic Mapper (TM) satellite data within Pinyon-Juniper woodlands

    NASA Technical Reports Server (NTRS)

    Price, Kevin Paul

    1987-01-01

    Pinyon-Juniper woodlands dominate approximately 24.3 million hectares (60 million acres) in the western United States. The overall objective was to test the sensitivity of the LANDSAT Thematic Mapper (TM) spectral data for detecting varying degrees of soil erosion within the Pinyon-Juniper woodlands. A second objective was to assess the potential of the spectral data for assigning the Universal Soil Loss Equation (USLE) crop management (C) factor values to varying cover types within the woodland. Thematic Mapper digital data for June 2, 1984 on channels 2, 3, 4, and 5 were used. Digital data analysis was performed using the ELAS software package. Best results were achieved using CLUS, an unsupervised clustering algorithm. Fifteen of the 40 Pinyon-Juniper signatures were identified as being relatively pure Pinyon-Juniper woodland. Final analysis resulted in the grouping of the 15 signatures into three major groups. Ten study sites were selected from each of the three groups and located on the ground. At each site the following field measurements were taken: percent tree canopy and percent understory cover, soil texture, total soil loss, and soil erosion rate estimates. A technique for measuring soil erosion within Pinyon-Juniper woodlands was developed. A theoretical model of site degradation after Pinyon-Juniper invasion is presented.

  19. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  20. Analysis methods for Thematic Mapper data of urban regions

    NASA Technical Reports Server (NTRS)

    Wang, S. C.

    1984-01-01

    Studies have indicated the difficulty in deriving a detailed land-use/land-cover classification for heterogeneous metropolitan areas with Landsat MSS and TM data. The major methodological issues of digital analysis which possibly have effected the results of classification are examined. In response to these methodological issues, a multichannel hierarchical clustering algorithm has been developed and tested for a more complete analysis of the data for urban areas.

  1. Biomedical Terminology Mapper for UML projects.

    PubMed

    Thibault, Julien C; Frey, Lewis

    2013-01-01

    As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies.

  2. Biomedical Terminology Mapper for UML projects

    PubMed Central

    Thibault, Julien C.; Frey, Lewis

    As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies. PMID:24303278

  3. Assessment of satellite retrieval algorithms for chlorophyll-a concentration under high solar zenith angle

    NASA Astrophysics Data System (ADS)

    Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng

    2016-10-01

    Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.

  4. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  5. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1980-01-01

    The column normalizing technique was used to adjust the data for variations in the amplitude of the signal due to look angle effects with respect to solar zenith angle along the scan lines (i.e., across columns). Evaluation of the data set containing the geometric and radiometric adjustments, indicates that the data set should be satisfactory for further processing and analysis. Software was developed for degrading the spatial resolution of the aircraft data to produce a total of four data sets for further analysis. The quality of LANDSAT 2 CCT data for the test site is good for channels four, five, and six. Channel seven was not present on the tape. The data received were reformatted and analysis of the test site area was initiated.

  6. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  7. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2017-10-01

    Recent developments in the application of micro-energy-dispersive X-ray fluorescence spectrometry mapping (µ-EDXRF) have opened up new opportunities for fast geoscientific analyses. Acquiring spatially resolved spectral and chemical information non-destructively for large samples of up to 20 cm length provides valuable information for geoscientific interpretation. Using supervised classification of the spectral information, mineral distribution maps can be obtained. In this work, thin sections of plutonic rocks are analyzed by µ-EDXRF and classified using the supervised classification algorithm spectral angle mapper (SAM). Based on the mineral distribution maps, it is possible to obtain quantitative mineral information, i.e., to calculate the modal mineralogy, search and locate minerals of interest, and perform image analysis. The results are compared to automated mineralogy obtained from the mineral liberation analyzer (MLA) of a scanning electron microscope (SEM) and show good accordance, revealing variation resulting mostly from the limit of spatial resolution of the µ-EDXRF instrument. Taking into account the little time needed for sample preparation and measurement, this method seems suitable for fast sample overviews with valuable chemical, mineralogical and textural information. Additionally, it enables the researcher to make better and more targeted decisions for subsequent analyses.

  8. Isograde mapping and mineral identification on the island of Naxos, Greece, using DAIS 7915 hyperspectral data

    NASA Astrophysics Data System (ADS)

    Echtler, Helmut; Segl, Karl; Dickerhof, Corinna; Chabrillat, Sabine; Kaufmann, Hermann J.

    2003-03-01

    The ESF-LSF 1997 flight campaign conducted by the German Aerospace Center (DLR) recorded several transects across the island of Naxos using the airborne hyperspectral scanner DAIS. The geological targets cover all major litho-tectonic units of a metamorphic dome with the transition of metamorphic zonations from the outer meta-sedimentary greenschist envelope to the gneissic amphibolite facies and migmatitic core. Mineral identification of alternating marble-dolomite sequences and interlayered schists bearing muscovite and biotite has been accomplished using the airborne hyperspectral DAIS 7915 sensor. Data have been noise filtered based on maximum noise fraction (MNF) and fast Fourier transform (FFT) and converted from radiance to reflectance. For mineral identification, constrained linear spectral unmixing and spectral angle mapper (SAM) algorithms were tested. Due to their unsatisfying results a new approach was developed which consists of a linear mixture modeling and spectral feature fitting. This approach provides more detailed and accurate information. Results are discussed in comparison with detailed geological mapping and additional information. Calcites are clearly separated from dolomites as well as the mica-schist sequences by a good resolution of the mineral muscovite. Thereon an outstanding result represents the very good resolution of the chlorite/mica (muscovite, biotite)-transition defining a metamorphic isograde.

  9. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  10. Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale

    DOE PAGES

    Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...

    2017-01-26

    Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less

  11. Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.

    Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less

  12. BOREAS RSS-7 Regional LAI and FPAR Images From 10-Day AVHRR-LAC Composites

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Chen, Jing; Cihlar, Josef

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Remote Sensing Science (BOREAS RSS-7) team collected various data sets to develop and validate an algorithm to allow the retrieval of the spatial distribution of Leaf Area Index (LAI) from remotely sensed images. Advanced Very High Resolution Radiometer (AVHRR) level-4c 10-day composite Normalized Difference Vegetation Index (NDVI) images produced at CCRS were used to produce images of LAI and the Fraction of Photosynthetically Active Radiation (FPAR) absorbed by plant canopies for the three summer IFCs in 1994 across the BOREAS region. The algorithms were developed based on ground measurements and Landsat Thematic Mapper (TM) images. The data are stored in binary image format files.

  13. Reliability of drumlin morphometric data based on manual mapping - assessment of inter-mapper differences using a morphometrically diverse sample of relict drumlins

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.; Perkins, Andrew J.; Neudorf, Christina; Hillier, John K.; Cripps, Jonathan E.; Spagnolo, Matteo; Dinney, Meaghan; Storrar, Robert D.

    2016-04-01

    Mapper-dependent (subjective) differences in drumlin morphometry have received little attention even though over one-hundred thousand drumlins have been manually mapped and used to characterize drumlin morphometry and infer drumlin genesis, and several obstacles to objectivity in drumlin mapping can be identified. Due to uncertainty in drumlin genesis, drumlins remain putative morphogenetic landforms, yet still lack a complete single morphological definition. Additionally, post-formational degradation of relict subglacial landscapes challenges our ability: 1) to identify all drumlins in the landscape (some [potential] drumlins may be too degraded to be mapped and are thus excluded from the inventory), with implications for the analysis of field properties (e.g., spatial arrangement and autocorrelation); and 2) to accurately map the original footprint (i.e., shape and size). These issues (definitional ambiguity; degradation of original drumlin topography) are a problem for both manual and automated mapping. Automation is touted as the solution to the subjectivity of manual mapping, but the quality of any automated method directly depends on the quality of the operational definition (ruleset) it draws upon; if drumlin definitions are subjective (expert-dependent), so will be the automated algorithms relying on them. Additionally, recognizing highly degraded drumlins is, arguably, more difficult automatedly than manually (visually). Because a single morphologic definition is missing, mapping is expert-dependent. Therefore, quantifying the magnitude of inter-mapper differences is important for fully understanding the morphology of drumlins, constraining the robustness of drumlin morphometric inventories and assisting in the development of stricter operational definitions/mapping guidelines. We present the results of an experiment to quantify inter-mapper differences in mapped drumlin morphometry. All participants mapped 42 morphologically diverse drumlins in the Puget Lowland, WA at 2 spatial resolutions (1.8 m and 10.8 m cell size DEMs) in a GIS, using exactly the same base maps (analytical hillshade; semi-transparent elevation; contours) and informed by the same loose operational definition (e.g., drumlins delimited at their base by concave breaks in slope). Preliminary results (3 mappers) indicate that differences between manual mappers are substantial. For example, for the footprints mapped from the 10.8 m terrain data: average length ranges from 4603 m to 5454 m, and the mean absolute difference in length from 693 m to 1101 m; average elongation ratio (ER) ranges from 5.0 to 6.1; average footprint area ranges from 0.39 km2 to 0.50 km2.

  14. Drought Impacts on Agricultural Production and Land Fallowing in California's Central Valley in 2015

    NASA Technical Reports Server (NTRS)

    Rosevelt, Carolyn; Melton, Forrest S.; Johnson, Lee; Guzman, Alberto; Verdin, James P.; Thenkabail, Prasad S.; Mueller, Rick; Jones, Jeanine; Willis, Patrick

    2016-01-01

    The ongoing drought in California substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to mitigation of drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in fallow acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to time-series data from Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus), OLI (Operational Land Imager), and MODIS (Moderate Resolution Imaging Spectroradiometer). Our effort has been focused on development of indicators of drought impacts in the March-August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 650 fields from March-September in 2014 and 2015. We present the algorithm along with updated results from the accuracy assessment, and data and maps of land fallowing in the Central Valley in 2015.

  15. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)

  16. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  17. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  18. Novel angle estimation for bistatic MIMO radar using an improved MUSIC

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Zhang, Xiaofei; Chen, Han

    2014-09-01

    In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.

  19. Hyperspectral and Hypertemporal Longwave Infrared Data Characterization

    NASA Astrophysics Data System (ADS)

    Jeganathan, Nirmalan

    The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer's specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classification were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classification than spectral target signature for unsupervised classification. Supervised classification yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification.

  20. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  1. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornado activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications.

  2. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William; Petersen, Walt; Buechler, Dennis; Krehbiel, Paul; Gatlin, Patrick; Zubrick, Steven

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational.The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) sate]lite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications. Abstract for the 3 rd Conference on Meteorological

  3. Endmember identification from EO-1 Hyperion L1_R hyperspectral data to build saltmarsh spectral library in Hunter Wetland, NSW, Australia

    NASA Astrophysics Data System (ADS)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Ralph, Tim; Saintilan, Neil

    2015-10-01

    Saltmarsh is one of the important communities of wetlands, however, due to a range of pressures, it has been declared as an EEC (Ecological Endangered Community) in Australia. In order to correctly identify different saltmarsh species, development of spectral libraries of saltmarsh species is essential to monitor this EEC. Hyperspectral remote sensing, can explore the area of wetland monitoring and mapping. The benefits of Hyperion data to wetland monitoring have been studied at Hunter Wetland Park, NSW, Australia. After exclusion of bad bands from the original data, an atmospheric correction model was applied to minimize atmospheric effect and to retrieve apparent surface reflectance for different land cover. Large data dimensionality was reduced by Forward Minimum Noise Fraction (MNF) algorithm. It was found that first 32 MNF band contains more than 80% information of the image. Pixel Purity Index (PPI) algorithm worked properly to extract pure pixel for water, builtup area and three vegetation Casuarina sp., Phragmitis sp. and green grass. The result showed it was challenging to extract extreme pure pixel for Sporobolus and Sarcocornia from the data due to coarse resolution (30 m) and small patch size (<3 m) of those vegetation on the ground . Spectral Angle Mapper, classified the image into five classes: Casuarina, Saltmarsh (Phragmitis), Green grass, Water and Builtup area with 43.55 % accuracy. This classification also failed to classify Sporobolus as a distinct group due to the same reason. A high spatial resolution airborne hyperspectral data and a new study site with a bigger patch of Sporobolus and Sarcocornia is proposed to overcome the issue.

  4. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation.

    PubMed

    Tan, Jun; Nie, Zaiping

    2018-05-12

    Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.

  5. A Comparison of Lightning Flashes as Observed by the Lightning Imaging Sensor and the North Alabama Lightning Mapping Array

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Mach, D. M.; McCaul, M. G.; Bailey, J. C.; Christian, H. J.

    2008-01-01

    The Lightning Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical lightning data since November 1997. A Lightning Mapping Array (LMA) that senses VHF impulses from lightning was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into lightning flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global Lightning Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.

  6. Normalization of satellite imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  7. Internet protocol network mapper

    DOEpatents

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  8. Geological mapping of the Schuppen belt of north-east India using geospatial technology

    NASA Astrophysics Data System (ADS)

    Ghosh, Tanaya; Basu, Surajit; Hazra, Sugata

    2014-01-01

    A revised geologic map of the Schuppen belt of northeast India has been prepared based on interpretation of digitally enhanced satellite images. The satellite image interpretation is supported by limited field work and existing geologic maps. Available geological maps of this fold thrust belt are discontinuous and multi-scaled. The authors are of multiple opinions regarding the trajectory of formation boundaries and fault contacts. Digital image processing of satellite images and limited field surveys have been used to reinterpret and modify the existing geological maps of this fold thrust belt. Optical data of Landsat Thematic Mapper, Enhanced Thematic Mapper and elevation data of ASTER have been used to prepare this revised geological map. The study area extends from Hajadisa in south to Digboi oilfield in north, bounded by Naga thrust in the west and Disang thrust in the east. PCA, Image fusion, Linear Contrast stretch, Histogram Equalization and Painted relief algorithms have been used for the delineation of major geological lineaments like lithological boundary, thrust and strike slip faults. Digital elevation maps have enabled in the discrimination between thrust contacts and lithological boundaries, with the former being located mostly in the valleys. Textural enhancements of PCA, colour composites and Painted relief algorithm have been used to discriminate between different rock types. Few geological concepts about the terrain have been revisited and modified. It is assumed that this revised map should be of practical use as this terrain promises unexploited hydrocarbon reserves.

  9. Estimation of TOA based MUSIC algorithm and cross correlation algorithm of appropriate interval

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Liu, Jun; Zhou, Yineng; Huang, Jiyan

    2017-03-01

    Localization of mobile station (MS) has now gained considerable attention due to its wide applications in military, environmental, health and commercial systems. Phrase angle and encode data of MSK system model are two critical parameters in time-of-arrival (TOA) localization technique; nevertheless, precise value of phrase angle and encode data are not easy to achieved in general. In order to meet the actual situation, we should consider the condition that phase angle and encode data is unknown. In this paper, a novel TOA localization method, which combine MUSIC algorithm and cross correlation algorithm in an appropriate interval, is proposed. Simulations show that the proposed method has better performance than music algorithm and cross correlation algorithm of the whole interval.

  10. Local search for optimal global map generation using mid-decadal landsat images

    USGS Publications Warehouse

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  11. Metadata Mapper: a web service for mapping data between independent visual analysis components, guided by perceptual rules

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Matasci, Naim

    2011-03-01

    The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.

  12. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  13. a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas

    NASA Astrophysics Data System (ADS)

    Houmi, M.; Mohamadi, B.; Balz, T.

    2018-04-01

    The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.

  14. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  15. The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite

    NASA Astrophysics Data System (ADS)

    Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He

    2004-04-01

    The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.

  16. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  17. A comparison of four different lens mappers.

    PubMed

    Larrue, Denis; Legeard, Morgane

    2014-11-01

    Recently, a number of lens mappers have become available for measuring the detailed optical properties of progressive addition lenses (PALs). The goal of this study was to compare the results obtained from several different lens mappers for a range of different lenses. The optical power maps of six lenses-two single-vision lenses, a parallel-sided slide, a flat prism, and two progressive lenses-were measured using four different lens mappers: the Dual Lens Mapper, the Nimo TR4005, the Rotlex Class Plus, and the Visionix VM2500. The repeatability of the instruments was also evaluated. All lens mappers gave very repeatable measurements; however, measurements among the lens mappers varied considerably. Differences appeared to be above the tolerance at the optical center for measurements of single-vision lenses, and these differences increase in the periphery up to 1.00 diopter. Similar differences were observed for the PALs, even increased by prism and base curve effect, with figures greater than 1 diopter in the periphery. The measurements made on the prism and lenses with different base curves suggest that base curve, thickness, and prismatic effect can all contribute to the differences among instruments. Measurements of a given lens taken with different lens mappers can vary substantially. Particular caution should be exercised when interpreting power maps for PALs taken with different instruments.

  18. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  19. Correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students.

    PubMed

    Cho, Misuk

    2015-06-01

    [Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.

  20. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  1. Operon-mapper: A Web Server for Precise Operon Identification in Bacterial and Archaeal Genomes.

    PubMed

    Taboada, Blanca; Estrada, Karel; Ciria, Ricardo; Merino, Enrique

    2018-06-19

    Operon-mapper is a web server that accurately, easily, and directly predicts the operons of any bacterial or archaeal genome sequence. The operon predictions are based on the intergenic distance of neighboring genes as well as the functional relationships of their protein-coding products. To this end, Operon-mapper finds all the ORFs within a given nucleotide sequence, along with their genomic coordinates, orthology groups, and functional relationships. We believe that Operon-mapper, due to its accuracy, simplicity and speed, as well as the relevant information that it generates, will be a useful tool for annotating and characterizing genomic sequences. http://biocomputo.ibt.unam.mx/operon_mapper/.

  2. Sparse array angle estimation using reduced-dimension ESPRIT-MUSIC in MIMO radar.

    PubMed

    Zhang, Chaozhu; Pang, Yucai

    2013-01-01

    Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.

  3. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  4. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  5. Evaluation of corn/soybeans separability using Thematic Mapper and Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G. D.; Thompson, D. R.; Henderson, K. E.; Shen, S. S.; Sorensen, C. T.; Carnes, J. G.

    1984-01-01

    Multitemporal Thematic Mapper, Thematic Mapper Simulator, and detailed ground truth data were collected for a 9- by 11-km sample segment in Webster County, IA, in the summer of 1982. Three dates were acquired each with Thematic Mapper Simulator (June 7, June 23, and July 31) and Thematic Mapper (August 2, September 3, and October 21). The Thematic Mapper Simulator data were converted to equivalent TM count values using TM and TMS calibration data and model based estimates of atmospheric effects. The July 31, TMS image was compared to the August 2, TM image to verify the conversion process. A quantitative measure of proportion estimation variance (Fisher information) was used to evaluate the corn/soybeans separability for each TM band as a function of time during the growing season. The additional bands in the middle infrared allowed corn and soybeans to be separated much earlier than was possible with the visible and near-infrared bands alone. Using the TM and TMS data, temporal profiles of the TM principal components were developed. The greenness and brightness exhibited behavior similar to MSS greenness and brightness for corn and soybeans.

  6. Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-05-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  7. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  8. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  9. Highlights from the 11-Year Record of Tropospheric Ozone from OMI/MLS and Continuation of that Long Record Using OMPS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Kramarova, N. A.; Bhartia, P. K.; Degenstein, D. A.; Deland, M. T.

    2016-01-01

    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the University of Saskatchewan (USask) Algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of approximately 10 DU over Indonesia and decreases approximately 5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific.

  10. Geostationary Lightning Mapper for GOES-R

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William

    2007-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new applications (e.g., multi-sensor precipitation algorithms blending the GLM with the Advanced Baseline Imager, convective cloud initiation and identification, early warnings of lightning threat, storm tracking, and data assimilation).

  11. Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) forecast offices in Southern and Eastern Region. This effort is designed to help improve our understanding of the application of these data in operational settings.

  12. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.

  13. Initial Navigation Alignment of Optical Instruments on GOES-R

    NASA Technical Reports Server (NTRS)

    Isaacson, Peter J.; DeLuccia, Frank J.; Reth, Alan D.; Igli, David A.; Carter, Delano R.

    2016-01-01

    Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended.

  14. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  15. Satellite change detection of forest damage near the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClellan, G.E.; Anno, G.H.

    1992-01-01

    A substantial amount of forest within a few kilometers of the Chernobyl nuclear reactor station was badly contaminated with radionuclides by the April 26, 1986, explosion and ensuing fire at reactor No. 4. Radiation doses to conifers in some areas were sufficient to cause discoloration of needles within a few weeks. Other areas, receiving smaller doses, showed foliage changes beginning 6 months to a year later. Multispectral imagery available from Landsat sensors is especially suited for monitoring such changes in vegetation. A series of Landsat Thematic Mapper images was developed that span the 2 yr following the accident. Quantitative dosemore » estimation for the exposed conifers requires an objective change detection algorithm and knowledge of the dose-time response of conifers to ionizing radiation. Pacific-Sierra Research Corporation's Hyperscout{trademark} algorithm is based on an advanced, sensitive technique for change detection particularly suited for multispectral images. The Hyperscout algorithm has been used to assess radiation damage to the forested areas around the Chernobyl nuclear power plant.« less

  16. A low-cost GPS/INS integrated vehicle heading angle measurement system

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Gao, Tongyue; Ding, Yi

    2018-04-01

    GPS can provide continuous heading information, but the accuracy is easily affected by the velocity and shelter from buildings or trees. For vehicle systems, we propose a low-cost heading angle update algorithm. Based on the GPS/INS integrated navigation kalman filter, we add the GPS heading angle to the measurement vector, and establish its error model. The experiment results show that this algorithm can effectively improve the accuracy of GPS heading angle.

  17. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  18. Simulation of Thematic Mapper performance as a function of sensor scanning parameters

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.; Shah, N. J.; Schmidt, N. F.

    1975-01-01

    The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana.

  19. Optimal reconstruction angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to bemore » preferred in several contexts. 15 figures, 6 tables.« less

  20. Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Dousti, M. J.; Shafaei, A.; Pedram, M.

    2014-05-01

    This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.

  1. Minimap2: pairwise alignment for nucleotide sequences.

    PubMed

    Li, Heng

    2018-05-10

    Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.

  2. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  3. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1983-01-01

    A series of experiments were initiated to determine the feasibility of using thematic mapper spectral data to estimate wetlands biomass. The experiments were conducted using hand-held radiometers simulating thematic mapper wavebands 3, 4 and 5. Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual thematic mapper data for biomass estimation in wetland plant communities. In addition, radiative transfer models describing volume reflectance of eight water column containing submerged aquatic vegetation were refined.

  4. Angle-of-Attack-Modulated Terminal Point Control for Neptune Aerocapture

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.

    2004-01-01

    An aerocapture guidance algorithm based on a calculus of variations approach is developed, using angle of attack as the primary control variable. Bank angle is used as a secondary control to alleviate angle of attack extremes and to control inclination. The guidance equations are derived in detail. The controller has very small onboard computational requirements and is robust to atmospheric and aerodynamic dispersions. The algorithm is applied to aerocapture at Neptune. Three versions of the controller are considered with varying angle of attack authority. The three versions of the controller are evaluated using Monte Carlo simulations with expected dispersions.

  5. An analysis of a candidate control algorithm for a ride quality augmentation system

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent; Downing, David R.

    1987-01-01

    This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.

  6. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  7. Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor

    NASA Astrophysics Data System (ADS)

    Bae, Eun-Hyon; Lee, Kyun-Kyung

    A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.

  8. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1979-01-01

    The spatial characteristics of the data were evaluated. A program was developed to reduce the spatial distortions resulting from variable viewing distance, and geometrically adjusted data sets were generated. The potential need for some level of radiometric adjustment was evidenced by an along track band of high reflectance across different cover types in the Varian imagery. A multiple regression analysis was employed to explore the viewing angle effect on measured reflectance. Areas in the data set which appeared to have no across track stratification of cover type were identified. A program was developed which computed the average reflectance by column for each channel, over all of the scan lines in the designated areas. A regression analysis was then run using the first, second, and third degree polynomials, for each channel. An atmospheric effect as a component of the viewing angle source of variance is discussed. Cover type maps were completed and training and test field selection was initiated.

  9. Hyperspectral Soil Mapper (HYSOMA) software interface: Review and future plans

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Guillaso, Stephane; Eisele, Andreas; Rogass, Christian

    2014-05-01

    With the upcoming launch of the next generation of hyperspectral satellites that will routinely deliver high spectral resolution images for the entire globe (e.g. EnMAP, HISUI, HyspIRI, HypXIM, PRISMA), an increasing demand for the availability/accessibility of hyperspectral soil products is coming from the geoscience community. Indeed, many robust methods for the prediction of soil properties based on imaging spectroscopy already exist and have been successfully used for a wide range of soil mapping airborne applications. Nevertheless, these methods require expert know-how and fine-tuning, which makes them used sparingly. More developments are needed toward easy-to-access soil toolboxes as a major step toward the operational use of hyperspectral soil products for Earth's surface processes monitoring and modelling, to allow non-experienced users to obtain new information based on non-expensive software packages where repeatability of the results is an important prerequisite. In this frame, based on the EU-FP7 EUFAR (European Facility for Airborne Research) project and EnMAP satellite science program, higher performing soil algorithms were developed at the GFZ German Research Center for Geosciences as demonstrators for end-to-end processing chains with harmonized quality measures. The algorithms were built-in into the HYSOMA (Hyperspectral SOil MApper) software interface, providing an experimental platform for soil mapping applications of hyperspectral imagery that gives the choice of multiple algorithms for each soil parameter. The software interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. Additionally, a field calibration option calculates fully quantitative soil maps provided ground truth soil data are available. Implemented soil algorithms have been tested and validated using extensive in-situ ground truth data sets. The source of the HYSOMA code was developed as standalone IDL software to allow easy implementation in the hyperspectral and non-hyperspectral communities. Indeed, within the hyperspectral community, IDL language is very widely used, and for non-expert users that do not have an ENVI license, such software can be executed as a binary version using the free IDL virtual machine under various operating systems. Based on the growing interest of users in the software interface, the experimental software was adapted for public release version in 2012, and since then ~80 users of hyperspectral soil products downloaded the soil algorithms at www.gfz-potsdam.de/hysoma. The software interface was distributed for free as IDL plug-ins under the IDL-virtual machine. Up-to-now distribution of HYSOMA was based on a close source license model, for non-commercial and educational purposes. Currently, the HYSOMA is being under further development in the context of the EnMAP satellite mission, for extension and implementation in the EnMAP Box as EnSoMAP (EnMAP SOil MAPper). The EnMAP Box is a freely available, platform-independent software distributed under an open source license. In the presentation we will focus on an update of the HYSOMA software interface status and upcoming implementation in the EnMAP Box. Scientific software validation, associated publication record and users responses as well as software management and transition to open source will be discussed.

  10. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  11. Thematic mapper design parameter investigation

    NASA Technical Reports Server (NTRS)

    Colby, C. P., Jr.; Wheeler, S. G.

    1978-01-01

    This study simulated the multispectral data sets to be expected from three different Thematic Mapper configurations, and the ground processing of these data sets by three different resampling techniques. The simulated data sets were then evaluated by processing them for multispectral classification, and the Thematic Mapper configuration, and resampling technique which provided the best classification accuracy were identified.

  12. Resource and environmental surveys from space with the thematic mapper in the 1980's

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The selection of observation of vegetation is the primary optimization objective of the thematic mapper. The following are aspects of plans for the thematic mapper: (1) to include an appropriately modified first generation MSS in the thematic mapper mission; (2) to provide assured coverage for a minimum of six years to give agencies and other users an opportunity to justify the necessary commitment of resources for the transition into a completely valid operational phase; (3) to provide for global, direct data read-out, without the necessity for on-board data storage or dependence on foreign receiving stations; (4) to recognize the operational character of the thematic mapper after successful completion of its experimental evaluation; and (5) to combine future experimental packages with compatible orbits as part of the operational LANDSAT follow-on payloads.

  13. A mobile, web-based system can improve positive airway pressure adherence.

    PubMed

    Hostler, Jordanna M; Sheikh, Karen L; Andrada, Teotimo F; Khramtsov, Andrei; Holley, Paul R; Holley, Aaron B

    2017-04-01

    SleepMapper is a mobile, web-based system that allows patients to self-monitor their positive airway pressure therapy, and provides feedback and education in real time. In addition to the usual, comprehensive support provided at our clinic, we gave the SleepMapper to 30 patients initiating positive airway pressure. They were compared with patients initiating positive airway pressure at our clinic without SleepMapper (controls) to determine whether SleepMapper affected adherence. A total of 61 patients had polysomnographic and adherence data analysed, 30 were given SleepMapper and 31 received our standard of care. The two groups were well matched at baseline to include no significant differences in age, apnea-hypopnea index, percentage receiving split-night polysomnographs and starting pressures. Patients in the control group received significantly more non-benzodiazepine sedative hypnotics the night of their polysomnography and during positive airway pressure initiation. At 11 weeks, patients in the SleepMapper group had a greater percentage of nights with any use (78.0 ± 22.0 versus 55.5 ± 24.0%; P < 0.001) and >4 h positive airway pressure use (78.0 ± 22.0 versus 55.5 ± 24.0%; P = 0.02). There was a trend toward more patients in the SleepMapper group achieving >4 h of use for at least 70% of nights [9/30 (30%) versus 3/31 (9.7%); P = 0.06]. In multivariate linear regression, the SleepMapper remained significantly associated with percentage of nights >4 h positive airway pressure use (β coefficient = 0.18; P = 0.02). Added to our usual, comprehensive programme to maximize positive airway pressure adherence in new users, the SleepMapper was independently associated with an 18% increase in nights >4 h of use. © 2016 European Sleep Research Society.

  14. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  15. Lineage mapper: A versatile cell and particle tracker

    NASA Astrophysics Data System (ADS)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-11-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.

  16. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  17. An analytical study of composite laminate lay-up using search algorithms for maximization of flexural stiffness and minimization of springback angle

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan Kumar; Rinawa, Moti Lal

    2018-04-01

    The residual stresses arising in fiber-reinforced laminates during their curing in closed molds lead to changes in the composites after their removal from the molds and cooling. One of these dimensional changes of angle sections is called springback. The parameters such as lay-up, stacking sequence, material system, cure temperature, thickness etc play important role in it. In present work, it is attempted to optimize lay-up and stacking sequence for maximization of flexural stiffness and minimization of springback angle. The search algorithms are employed to obtain best sequence through repair strategy such as swap. A new search algorithm, termed as lay-up search algorithm (LSA) is also proposed, which is an extension of permutation search algorithm (PSA). The efficacy of PSA and LSA is tested on the laminates with a range of lay-ups. A computer code is developed on MATLAB implementing the above schemes. Also, the strategies for multi objective optimization using search algorithms are suggested and tested.

  18. HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships

    PubMed Central

    Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean

    2012-01-01

    Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set. PMID:23189146

  19. HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships.

    PubMed

    Magalhães, Tiago R; Casey, Jillian P; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J; Shah, Naisha; Sobral, João; Ennis, Sean

    2012-01-01

    Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.

  20. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  1. Comparative Study on a Solving Model and Algorithm for a Flush Air Data Sensing System

    PubMed Central

    Liu, Yanbin; Xiao, Dibo; Lu, Yuping

    2014-01-01

    With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research. PMID:24859025

  2. Comparative study on a solving model and algorithm for a flush air data sensing system.

    PubMed

    Liu, Yanbin; Xiao, Dibo; Lu, Yuping

    2014-05-23

    With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.

  3. CheS-Mapper 2.0 for visual validation of (Q)SAR models

    PubMed Central

    2014-01-01

    Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.

  4. Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.

    2009-01-01

    The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or new products.

  5. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  6. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  7. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  8. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  9. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    NASA Technical Reports Server (NTRS)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  10. cMapper: gene-centric connectivity mapper for EBI-RDF platform.

    PubMed

    Shoaib, Muhammad; Ansari, Adnan Ahmad; Ahn, Sung-Min

    2017-01-15

    In this era of biological big data, data integration has become a common task and a challenge for biologists. The Resource Description Framework (RDF) was developed to enable interoperability of heterogeneous datasets. The EBI-RDF platform enables an efficient data integration of six independent biological databases using RDF technologies and shared ontologies. However, to take advantage of this platform, biologists need to be familiar with RDF technologies and SPARQL query language. To overcome this practical limitation of the EBI-RDF platform, we developed cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in a gene-centric manner without a thorough knowledge of RDF and SPARQL. cMapper allows biologists to search data entities in the EBI-RDF platform that are connected to genes or small molecules of interest in multiple biological contexts. The input to cMapper consists of a set of genes or small molecules, and the output are data entities in six independent EBI-RDF databases connected with the given genes or small molecules in the user's query. cMapper provides output to users in the form of a graph in which nodes represent data entities and the edges represent connections between data entities and inputted set of genes or small molecules. Furthermore, users can apply filters based on database, taxonomy, organ and pathways in order to focus on a core connectivity graph of their interest. Data entities from multiple databases are differentiated based on background colors. cMapper also enables users to investigate shared connections between genes or small molecules of interest. Users can view the output graph on a web browser or download it in either GraphML or JSON formats. cMapper is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on Tomcat server. We developed the user interface using HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at http://cmapper.ewostech.net Readers can download the development manual from the website http://cmapper.ewostech.net/docs/cMapperDocumentation.pdf. Source Code is available at https://github.com/muhammadshoaib/cmapperContact:smahn@gachon.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  12. Efficient least angle regression for identification of linear-in-the-parameters models

    PubMed Central

    Beach, Thomas H.; Rezgui, Yacine

    2017-01-01

    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140

  13. Kinoform design with an optimal-rotation-angle method.

    PubMed

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  14. Atmospheric electricity/meteorology analysis

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Buechler, Dennis

    1993-01-01

    This activity focuses on Lightning Imaging Sensor (LIS)/Lightning Mapper Sensor (LMS) algorithm development and applied research. Specifically we are exploring the relationships between (1) global and regional lightning activity and rainfall, and (2) storm electrical development, physics, and the role of the environment. U.S. composite radar-rainfall maps and ground strike lightning maps are used to understand lightning-rainfall relationships at the regional scale. These observations are then compared to SSM/I brightness temperatures to simulate LIS/TRMM multi-sensor algorithm data sets. These data sets are supplied to the WETNET project archive. WSR88-D (NEXRAD) data are also used as it becomes available. The results of this study allow us to examine the information content from lightning imaging sensors in low-earth and geostationary orbits. Analysis of tropical and U.S. data sets continues. A neural network/sensor fusion algorithm is being refined for objectively associating lightning and rainfall with their parent storm systems. Total lightning data from interferometers are being used in conjunction with data from the national lightning network. A 6-year lightning/rainfall climatology has been assembled for LIS sampling studies.

  15. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  16. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  17. A Ground Flash Fraction Retrieval Algorithm for GLM

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.

  18. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  19. A comparison between the first four thematic mapper reflective bands and other satellite sensor systems for vegetational monitoring

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    The first four Landsat-D thematic mapper sensors were evaluated and compared to the RBV and MSS sensors from Landsats-1, 2, and 3, Colvocoresses' proposed 'operational Landsat' three band system, and the French SPOT three band system using simulation/integration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for vegetational analyses from Landsat-D thematic mapper and SPOT imagery over MSS and RBV imagery.

  20. A multi-characteristic based algorithm for classifying vegetation in a plateau area: Qinghai Lake watershed, northwestern China

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng

    2015-10-01

    Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.

  1. Verification studies of Seasat-A satellite scatterometer /SASS/ measurements

    NASA Technical Reports Server (NTRS)

    Halberstam, I.

    1981-01-01

    Two comparisons between Seasat-A satellite scatterometer (SASS) data and surface truth, obtained from the Gulf of Alaska Seasat Experiment and the Joint Air-Sea Interaction program, have been made to determine the behavior of SASS and its algorithms. The performance of SASS was first evaluated irrespective of the algorithms employed to convert the SASS data to geophysical parameters, which was done by separating the backscatter measurements into small bins of incidence and azimuth angles and polarity and regression against wind speed measurements. The algorithms were then tested by comparing their predicted slopes and y intercepts with those derived from the regressions, and by comparing each SASS backscatter measurement with the backscatter derived from the algorithms, and the given wind velocity from the observations. It was shown that SASS was insensitive to winds at high incidence angles for horizontal polarizations. Fairly high correlations were found between backscatter and wind speeds. The algorithms functioned well at mid-ranges of incidence angle and backscattering coefficient.

  2. Novel Automated Approach to Predict the Outcome of Laser Peripheral Iridotomy for Primary Angle Closure Suspect Eyes Using Anterior Segment Optical Coherence Tomography.

    PubMed

    Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin

    2018-04-27

    Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.

  3. SkyMapper Southern Survey: First Data Release (DR1)

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang

    2018-02-01

    We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.

  4. Software used with the flux mapper at the solar parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  5. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran.

    PubMed

    Aslami, Farnoosh; Ghorbani, Ardavan

    2018-06-03

    In this study, land-use/land-cover (LULC) change in the Ardabil, Namin, and Nir counties, in the Ardabil province in the northwest of Iran, was detected using an object-based method. Landsat images including Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM + ), and Operational Land Imager (OLI) were used. Preprocessing methods, including geometric and radiometric correction, and topographic normalization were performed. Image processing was conducted according to object-based image analysis using the nearest neighbor algorithm. An accuracy assessment was conducted using overall accuracy and Kappa statistics. Results show that maps obtained from images for 1987, 2002, and 2013 had an overall accuracy of 91.76, 91.06, and 93.00%, and a Kappa coefficient of 0.90, 0.83, and 0.91, respectively. Change detection between 1987 and 2013 shows that most of the rangelands (97,156.6 ha) have been converted to dry farming; moreover, residential and other urban land uses have also increased. The largest change in land use has occurred for irrigated farming, rangelands, and dry farming, of which approximately 3539.8, 3086.9, and 2271.9 ha, respectively, have given way to urban land use for each of the studied years.

  6. HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.

    PubMed

    Seelow, Dominik; Schuelke, Markus

    2012-07-01

    Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.

  7. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    PubMed Central

    2018-01-01

    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze. PMID:29304120

  8. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography.

    PubMed

    Hládek, Ľuboš; Porr, Bernd; Brimijoin, W Owen

    2018-01-01

    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for light-weight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user's eye gaze.

  9. Overview of Suomi National Polar-Orbiting Partnership (NPP) Satellite Instrument Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Weng, F.

    2015-12-01

    The Suomi National Polar-Orbiting Partnership (SNPP) satellite carries five instruments on board including ATMS, CrIS, VIIRS, OMPS and CERES. During the SNPP intensive calval, ATMS was pitched over to observe the cold space radiation. This unique data set was used for diagnostics of the ATMS scan-angle dependent bias and a scan-to-scan variation. A new algorithm is proposed to correct the ATMS scan angle dependent bias related to the reflector emission. ATMS radiometric calibration is also revised in IDPS with the full radiance processing (FRP). CrIS is the first Fourier transform Michelson interferometer and measures three infrared spectral bands from 650 to 1095, 1210 to 1750 and 2155 to 2550 cm-1 with spectral resolutions of 0.625 cm-1, respectively. Its spectral calibration is with an accuracy of better than 2 ppm and its noise is also well characterized with the Allan variance. Since CrIS was switched to the transmission of full spectral resolution (FSR) of RDR data to the ground in January 2015. The CrIS FSR SDR data are also produced offline at NOAA STAR. VIIRS has 22 spectral bands covering the spectrum between 0.412 μm and 12.01 μm, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, five imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and one day-night band (DNB) with a nearly-constant 750 m spatial resolution throughout the scan. The calibration of VIIRS reflective solar bands (RSB) requires a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). Using the SNPP yaw maneuver data, SDSM screen transmission function can be updated to better capture the fine structures of the vignetting function. For OMPS nadir mapper (NM) and nadir profiler (NP), the detector signal-to-noise ratio, and sensor signal-to-noise ratio meet the system requirement. Detector gain and bias performance trends are generally stable. System linearity performance is stable and highly consistent with the prelaunch values. The recent updates on OMPS wavelength, solar flux and radiance coefficients have resulted in viewing angle dependent bias in the earth view observations. OMPS dark currents are updated weekly and monitored for further improving the radiometric calibration.

  10. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    NASA Technical Reports Server (NTRS)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  11. Understanding and utilization of Thematic Mapper and other remotely sensed data for vegetation monitoring

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Cicone, R. C.; Metzler, M. D.; Parris, T. M.; Rice, D. P.; Sampson, R. E.

    1983-01-01

    The TM Tasseled Cap transformation, which provides both a 50% reduction in data volume with little or no loss of important information and spectral features with direct physical association, is presented and discussed. Using both simulated and actual TM data, some important characteristics of vegetation and soils in this feature space are described, as are the effects of solar elevation angle and atmospheric haze. A preliminary spectral haze diagnostic feature, based on only simulated data, is also examined. The characteristics of the TM thermal band are discussed, as is a demonstration of the use of TM data in energy balance studies. Some characteristics of AVHRR data are described, as are the sensitivities to scene content of several LANDSAT-MSS preprocessing techniques.

  12. Response of some Thematic Mapper band ratios to variation in soil water content

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Pelletier, Ramona E.

    1986-01-01

    Bidirectional reflectance to nadir in the reflective TM bands and the 1.15-1.3-micron band was measured in the laboratory as moisture content was varied in ten soils. Stronger absorption by water in TM5 and TM7 was expected to cause ratios of other bands to TM5 and TM7 to increase with water content, but in most cases these ratios were constant or decreased at low to intermediate water content and increased only at high moisture levels. Because these ratios were found to decrease as illumination elevation angle decreased, it was suggested that increased roughness resulting from the methods of moistening and mixing the soil may have tended to counteract the expected ratio increases.

  13. Automatic anterior chamber angle assessment for HD-OCT images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  14. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    NASA Technical Reports Server (NTRS)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.

  15. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey

    2013-05-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and checkout of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  16. Assessment of landscape change associated with tropical cyclone phenomena in Baja California Sur, Mexico, using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Genaro

    Baja California Sur (Mexico), as well as mainland Mexico, is affected by tropical cyclone storms, which originate in the eastern north Pacific. Historical records show that Baja has been damaged by intense summer storms. An arid to semiarid climate characterizes the study area, where precipitation mainly occurs during the summer and winter seasons. Natural and anthropogenic changes have impacted the landscape of southern Baja. The present research documents the effects of tropical storms over the southern region of Baja California for a period of approximately twenty-six years. The goal of the research is to demonstrate how remote sensing can be used to detect the important effects of tropical storms including: (a) evaluation of change detection algorithms, and (b) delineating changes to the landscape including coastal modification, fluvial erosion and deposition, vegetation change, river avulsion using change detection algorithms. Digital image processing methods with temporal Landsat satellite remotely sensed data from the North America Landscape Characterization archive (NALC), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) images were used to document the landscape change. Two image processing methods were tested including Image differencing (ID), and Principal Component Analysis (PCA). Landscape changes identified with the NALC archive and TM images showed that the major changes included a rapid change of land use in the towns of San Jose del Cabo and Cabo San Lucas between 1973 and 1986. The features detected using the algorithms included flood deposits within the channels of active streams, erosion banks, and new channels caused by channel avulsion. Despite the 19 year period covered by the NALC data and approximately 10 year intervals between acquisition dates, there were changed features that could be identified in the images. The TM images showed that flooding from Hurricane Isis (1998) produced new large deposits within the stream channels. This research has shown that remote sensing based change detection can delineate the effects of flooding on the landscape at scales down to the nominal resolution of the sensor. These findings indicate that many other applications for change detection are both viable and important. These include disaster response, flood hazard planning, geomorphic studies, water supply management in deserts.

  17. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles.

    PubMed

    Wang, Wei; Chen, Xiyuan

    2018-02-23

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.

  18. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  19. Cyclic coordinate descent: A robotics algorithm for protein loop closure.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2003-05-01

    In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.

  20. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear-view image in all-weather conditions.

  1. MAPPER: A personal computer map projection tool

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1993-01-01

    MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.

  2. MetalMapper Demonstration at the Former Camp Beale, CA

    DTIC Science & Technology

    2012-03-01

    2012 2 . REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE MetalMapper Demonstration at the Former Camp Beale, CA 5a...SUMMARY REPORT MetalMapper Demonstration at the Former Camp Beale, CA March 2012 Herb Nelson Anne Andrews SERDP & ESTCP...advanced electromagnetic sensor was demonstrated at the former Camp Beale, CA in 2011. Camp Beale was also the site of the first demonstrations of

  3. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  4. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  5. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.

    2015-03-15

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less

  6. Rapid turn-around mapping of wildfires and disasters with airborne infrared imagery fro the new FireMapper® 2.0 and Oilmapper systems

    Treesearch

    James W. Hoffman; Lloyd L. Coulter; Philip J Riggan

    2005-01-01

    The new FireMapper® 2.0 and OilMapper airborne, infrared imaging systems operate in a "snapshot" mode. Both systems feature the real time display of single image frames, in any selected spectral band, on a daylight readable tablet PC. These single frames are displayed to the operator with full temperature calibration in color or grayscale renditions. A rapid...

  7. CosmoQuest MoonMappers: Citizen Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  8. Moon Mapper Looks Homeward

    NASA Image and Video Library

    2009-08-03

    NASA Moon Minerology Mapper, a guest instrument onboard the Indian Space Research Organization Chandrayaan-1 mission to the moon, looks homeward. Australia is visible in the lower center of the image.

  9. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  10. Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  11. An evaluation of the first four LANDSAT-D thematic mapper reflective sensors for monitoring vegetation: A comparison with other satellite sensor systems

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    The first four LANDSAT-D thematic mapper sensors were evaluated and compared to: the return beam vidicon (RBV) and multispectral scanners (MSS) sensors from LANDSATS 1, 2, and 3; Colvocoresses' proposed 'operational LANDSAT' three band system; and the French SPOT three band system using simulation/intergration techniques and in situ collected spectral reflectance data. Sensors were evaluated by their ability to discriminate vegetation biomass, chlorophyll concentration, and leaf water content. The thematic mapper and SPOT bands were found to be superior in a spectral resolution context to the other three sensor systems for vegetational applications. Significant improvements are expected for most vegetational analyses from LANDSAT-D thematic mapper and SPOT imagery over MSS and RBV imagery.

  12. About Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions.

  13. Muon tomography imaging improvement using optimized limited angle data

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  14. Geometric error characterization and error budgets. [thematic mapper

    NASA Technical Reports Server (NTRS)

    Beyer, E.

    1982-01-01

    Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.

  15. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less

  16. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  17. Registratiom of TM data to digital elevation models

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several problems arise when attempting to register LANDSAT thematic mapper data to U.S. B Geological Survey digital elevation models (DEMs). The TM data are currently available only in a rotated variant of the Space Oblique Mercator (SOM) map projection. Geometric transforms are thus; required to access TM data in the geodetic coordinates used by the DEMs. Due to positional errors in the TM data, these transforms require some sort of external control. The spatial resolution of TM data exceeds that of the most commonly DEM data. Oversampling DEM data to TM resolution introduces systematic noise. Common terrain processing algorithms (e.g., close computation) compound this problem by acting as high-pass filters.

  18. Efficient algorithms for single-axis attitude estimation

    NASA Technical Reports Server (NTRS)

    Shuster, M. D.

    1981-01-01

    The computationally efficient algorithms determine attitude from the measurement of art lengths and dihedral angles. The dependence of these algorithms on the solution of trigonometric equations was reduced. Both single time and batch estimators are presented along with the covariance analysis of each algorithm.

  19. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.

    PubMed

    Borbély, Bence J; Szolgay, Péter

    2017-01-17

    Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.

  20. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model.

    PubMed

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Shi, Chao

    2018-02-01

    Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.

  1. Downloading and Installing Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  2. Frequent Questions about Estuary Data Mapper (EDM)

    EPA Pesticide Factsheets

    Estuary Data Mapper is a tool for geospatial data discovery, visualization, and data download for any of the approximately 2,000 estuaries and associated watersheds in along the five US coastal regions

  3. Detecting Uniform Areas for Vicarious Calibration using Landsat TM Imagery: A Study using the Arabian and Saharan Deserts

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki

    2002-01-01

    This paper discusses a method for detecting spatially uniform sites need for radiometric characterization of remote sensing satellites. Such information is critical for scientific research applications of imagery having moderate to high resolutions (<30-m ground sampling distance (GSD)). Previously published literature indicated that areas with the African Saharan and Arabian deserts contained extremely uniform sites with respect to spatial characteristics. We developed an algorithm for detecting site uniformity and applied it to orthorectified Landsat Thematic Mapper (TM) imagery over eight uniform regions of interest. The algorithm's results were assessed using both medium-resolution (30-m GSD) Landsat 7 ETM+ and fine-resolution (<5-m GSD) IKONOS multispectral data collected over sites in Libya and Mali. Fine-resolution imagery over a Libyan site exhibited less than 1 percent nonuniformity. The research shows that Landsat TM products appear highly useful for detecting potential calibration sites for system characterization. In particular, the approach detected spatially uniform regions that frequently occur at multiple scales of observation.

  4. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles

    PubMed Central

    Wang, Wei; Chen, Xiyuan

    2018-01-01

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm. PMID:29473912

  5. NASA Moon Mineralogy Mapper

    NASA Image and Video Library

    2008-12-17

    Different wavelengths of light provide new information about the Orientale Basin region of the moon in a composite image taken by NASA Moon Mineralogy Mapper, a guest instrument aboard the Indian Space Research Organization Chandrayaan-1 spacecraft.

  6. Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.

    1999-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.

  7. Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique

    NASA Astrophysics Data System (ADS)

    Park, Jun Kwon; Kang, Kwan Hyoung

    2012-04-01

    Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.

  8. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  9. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  10. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  11. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    NASA Technical Reports Server (NTRS)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  12. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, D; Nguyen, D; Voronenko, Y

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less

  13. Seasonal and inter-annual variability in velocity and frontal position of Siachen Glacier (Eastern Karakorum) using multi-satellite data

    NASA Astrophysics Data System (ADS)

    Usman, M.; Furuya, M.; Sakakibara, D.; Abe, T.

    2017-12-01

    The anomalous behavior of Karakorum glaciers is a hot topic of discussion in the scientific community. Siachen Glacier is one of the longest glaciers ( 75km) in Karakorum Range. This glacier is supposed to be a surge type but so far no studies have confirmed this claim. Detailed velocity mapping of this glacier can possibly provide some clues about intra/inter-annual changes in velocity and observed terminus. Using L-band SAR data of ALOS-1/2, we applied the feature tracking technique (search patch of 128x128 pixels (range x azimuth) , sampling interval of 12x36 pixels) to derive velocity changes; we used GAMMA software. The velocity was calculated by following the parallel flow assumption. To calculate the local topographic gradient unit vector, we used ASTER-GDEM. We also used optical images acquired by Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) to derive surface velocity. The algorithm we used is Cross-Correlation in Frequency domain on Orientation images (CCF-O). The velocity was finally calculated by setting a flow line and averaging over the area of 200x200m2. The results indicate seasonal speed up signals that modulate inter-annually from 1999 to 2011, with slight or no change in the observed frontal position. However, in ALOS-2 data, the `observed terminus' seems to have been advancing.

  14. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    NASA Astrophysics Data System (ADS)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  15. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    NASA Astrophysics Data System (ADS)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  16. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    PubMed Central

    Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-01-01

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588

  17. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    PubMed

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  18. The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis

    NASA Technical Reports Server (NTRS)

    Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.

    1993-01-01

    Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud results. Significantly improved results are obtained after applying a smoothing operator, suggesting the eliminating subresolution scale variations with higher spatial resolution may yield even better shape analyses.

  19. Multispectral scanner data applications evaluation. Volume 2: Sensor system study. [thematic mapper for earth resources application

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The optimization of a thematic mapper for earth resources application is discussed in terms of cost versus performance. Performance tradeoffs and the cost impact are analyzed. The instrument design and radiometric performance are also described. The feasibility of a radiative cooler design for a scanning spectral radiometer is evaluated along with the charge coupled multiplex operation. Criteria for balancing the cost and complexity of data acquisition instruments against the requirements of the user, and a pushbroom scanner version of the thematic mapper are presented.

  20. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  1. GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.

    PubMed

    Alser, Mohammed; Hassan, Hasan; Xin, Hongyi; Ergin, Oguz; Mutlu, Onur; Alkan, Can

    2017-11-01

    High throughput DNA sequencing (HTS) technologies generate an excessive number of small DNA segments -called short reads- that cause significant computational burden. To analyze the entire genome, each of the billions of short reads must be mapped to a reference genome based on the similarity between a read and 'candidate' locations in that reference genome. The similarity measurement, called alignment, formulated as an approximate string matching problem, is the computational bottleneck because: (i) it is implemented using quadratic-time dynamic programming algorithms and (ii) the majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candidate locations consumes an overwhelming majority of a modern read mapper's execution time. Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate locations and eliminate them before invoking computationally costly alignment algorithms. We propose GateKeeper, a new hardware accelerator that functions as a pre-alignment step that quickly filters out most incorrect candidate locations. GateKeeper is the first design to accelerate pre-alignment using Field-Programmable Gate Arrays (FPGAs), which can perform pre-alignment much faster than software. When implemented on a single FPGA chip, GateKeeper maintains high accuracy (on average >96%) while providing, on average, 90-fold and 130-fold speedup over the state-of-the-art software pre-alignment techniques, Adjacency Filter and Shifted Hamming Distance (SHD), respectively. The addition of GateKeeper as a pre-alignment step can reduce the verification time of the mrFAST mapper by a factor of 10. https://github.com/BilkentCompGen/GateKeeper. mohammedalser@bilkent.edu.tr or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Monte Carlo calculation of large and small-angle electron scattering in air

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.

    2017-11-01

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  3. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part G: Miscellaneous system data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.

  4. INPE LANDSAT-D thematic mapper computer compatible tape format specification

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Desouza, R. C. M.

    1982-01-01

    The format of the computer compatible tapes (CCT) which contain Thematic Mapper (TM) imagery data acquired from the LANDSAT D and D Prime satellites by the INSTITUTO DE PERSQUISAS ESPACIALS (CNPq-INPE/BRAZIL) is defined.

  5. MyEnviroMapper

    EPA Pesticide Factsheets

    EnviroMapper for Envirofacts is a single point of access to select U.S. EPA environmental data. This Web site provides access to several EPA databases to provide you with information about environmental activities that may affect air, water, and l

  6. Miniature Rotorcraft Flight Control Stabilization System

    DTIC Science & Technology

    2008-05-30

    The first algorithm is based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a pseudo...for spacecraft and satellites. Due to large vibration in sensors a pseudo-measurement is developed from gyroscope measurements and rotational...using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common alternative to Euler angles is a quaternion

  7. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  8. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture.

    PubMed

    Jits, Roman Y; Walberg, Gerald D

    2004-03-01

    A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.

  9. Implementation of trigonometric function using CORDIC algorithms

    NASA Astrophysics Data System (ADS)

    Mokhtar, A. S. N.; Ayub, M. I.; Ismail, N.; Daud, N. G. Nik

    2018-02-01

    In 1959, Jack E. Volder presents a brand new formula to the real-time solution of the equation raised in navigation system. This new algorithm was the most beneficial replacement of analog navigation system by the digital. The CORDIC (Coordinate Rotation Digital Computer) algorithm are used for the rapid calculation associated with elementary operates like trigonometric function, multiplication, division and logarithm function, and also various conversions such as conversion of rectangular to polar coordinate including the conversion between binary coded information. In this current time CORDIC formula have many applications in the field of communication, signal processing, 3-D graphics, and others. This paper would be presents the trigonometric function implementation by using CORDIC algorithm in rotation mode for circular coordinate system. The CORDIC technique is used in order to generating the output angle between range 0o to 90o and error analysis is concern. The result showed that the average percentage error is about 0.042% at angles between ranges 00 to 900. But the average percentage error rose up to 45% at angle 90o and above. So, this method is very accurate at the 1st quadrant. The mirror properties method is used to find out an angle at 2nd, 3rd and 4th quadrant.

  10. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  11. Theoretical and experimental study of DOA estimation using AML algorithm for an isotropic and non-isotropic 3D array

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz; Ali, Andreas M.; Collier, Travis C.; Yao, Yuan; Hudson, Ralph E.; Yao, Kung; Taylor, Charles E.

    2007-09-01

    The focus of most direction-of-arrival (DOA) estimation problems has been based mainly on a two-dimensional (2D) scenario where we only need to estimate the azimuth angle. But in various practical situations we have to deal with a three-dimensional scenario. The importance of being able to estimate both azimuth and elevation angles with high accuracy and low complexity is of interest. We present the theoretical and the practical issues of DOA estimation using the Approximate-Maximum-Likelihood (AML) algorithm in a 3D scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which can be used for DOA estimation with non-isotropic arrays. Various numerical results are presented. We use two acoustic arrays each consisting of 8 microphones to do some field measurements. The processing of the measured data from the acoustic arrays for different azimuth and elevation angles confirms the effectiveness of the proposed methods.

  12. Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    NASA Technical Reports Server (NTRS)

    Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)

    2012-01-01

    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.

  13. Thematic Mapper. Volume 1: Calibration report flight model, LANDSAT 5

    NASA Technical Reports Server (NTRS)

    Cooley, R. C.; Lansing, J. C.

    1984-01-01

    The calibration of the Flight 1 Model Thematic Mapper is discussed. Spectral response, scan profile, coherent noise, line spread profiles and white light leaks, square wave response, radiometric calibration, and commands and telemetry are specifically addressed.

  14. Thematic mapper flight model preshipment review data package. Volume 2, part C: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Reference lists are provided to acceptance data for each of the major subsystems of the thematic mapper. Configuration reports, lists and copies of all failure reports, and requests for deviation/waiver are included.

  15. Robust head pose estimation via supervised manifold learning.

    PubMed

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Monte Carlo calculation of large and small-angle electron scattering in air

    DOE PAGES

    Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...

    2017-08-12

    A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.

  17. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  18. An overview of the thematic mapper geometric correction system

    NASA Technical Reports Server (NTRS)

    Beyer, E. P.

    1983-01-01

    Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.

  19. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Ackleson, S. G.; Hardisky, M. A.

    1985-01-01

    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.

  20. Specificity control for read alignments using an artificial reference genome-guided false discovery rate.

    PubMed

    Giese, Sven H; Zickmann, Franziska; Renard, Bernhard Y

    2014-01-01

    Accurate estimation, comparison and evaluation of read mapping error rates is a crucial step in the processing of next-generation sequencing data, as further analysis steps and interpretation assume the correctness of the mapping results. Current approaches are either focused on sensitivity estimation and thereby disregard specificity or are based on read simulations. Although continuously improving, read simulations are still prone to introduce a bias into the mapping error quantitation and cannot capture all characteristics of an individual dataset. We introduce ARDEN (artificial reference driven estimation of false positives in next-generation sequencing data), a novel benchmark method that estimates error rates of read mappers based on real experimental reads, using an additionally generated artificial reference genome. It allows a dataset-specific computation of error rates and the construction of a receiver operating characteristic curve. Thereby, it can be used for optimization of parameters for read mappers, selection of read mappers for a specific problem or for filtering alignments based on quality estimation. The use of ARDEN is demonstrated in a general read mapper comparison, a parameter optimization for one read mapper and an application example in single-nucleotide polymorphism discovery with a significant reduction in the number of false positive identifications. The ARDEN source code is freely available at http://sourceforge.net/projects/arden/.

  1. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  2. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection

    PubMed Central

    O’Halloran, Damien M.

    2016-01-01

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558

  3. A classification-based assessment of the optimal spatial and spectral resolution of coastal wetland imagery

    NASA Astrophysics Data System (ADS)

    Becker, Brian L.

    Great Lakes wetlands are increasingly being recognized as vital ecosystem components that provide valuable functions such as sediment retention, wildlife habitat, and nutrient removal. Aerial photography has traditionally provided a cost effective means to inventory and monitor coastal wetlands, but is limited by its broad spectral sensitivity and non-digital format. Airborne sensor advancements have now made the acquisition of digital imagery with high spatial and spectral resolution a reality. In this investigation, we selected two Lake Huron coastal wetlands, each from a distinct eco-region, over which, digital, airborne imagery (AISA or CASI-II) was acquired. The 1-meter images contain approximately twenty, 10-nanometer-wide spectral bands strategically located throughout the visible and near-infrared. The 4-meter hyperspectral imagery contains 48 contiguous bands across the visible and short-wavelength near-infrared. Extensive, in-situ, reflectance spectra (SE-590) and sub-meter GPS locations were acquired for the dominant botanical and substrate classes field-delineated at each location. Normalized in-situ spectral signatures were subjected to Principal Components and 2nd Derivative analyses in order to identify the most botanically explanative image bands. Three image-based investigations were implemented in order to evaluate the ability of three classification algorithms (ISODATA, Spectral Angle Mapper and Maximum-Likelihood) to differentiate botanical regions-of-interest. Two additional investigations were completed in order to assess classification changes associated with the independent manipulation of both spatial and spectral resolution. Of the three algorithms tested, the Maximum-Likelihood classifier best differentiated (89%) the regions-of-interest in both study sites. Covariance-based PCA rotation consistently enhanced the performance of the Maximum-Likelihood classifier. Seven non-overlapping bands (425.4, 514.9, 560.1, 685.5, 731.5, 812.3 and 916.7 nanometers) were identified that represented the best performing bands with respect to classification performance. A spatial resolution of 2 meters or less was determined to be the as being most appropriate in Great Lakes coastal wetland environments. This research represents the first step in evaluating the effectiveness of applying high-resolution, narrow-band imagery to the detailed mapping of coastal wetlands in the Great Lakes region.

  4. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.

  5. jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints

    PubMed Central

    2011-01-01

    Background The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats. Results We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al. Conclusions jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining. PMID:21219648

  6. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part D: Focal plane assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The data obtained for the Band 1 thematic mapper flight full band assembly (P/N 50797) are summarized. The data were collected from half band, post amplifier, and full band acceptance test data records.

  7. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. (Principal Investigator); Slater, P.

    1984-01-01

    Results of an analysis that relates TM saturation level to ground reflectance, calendar date, latitude, and atmospheric conditions are reported. The determination of the spectral reflectance at the entrance pupil of the LANDSAT 4 pupil of the thematic mapper is described.

  8. LANDSAT-4 Science Characterization Early Results. Volume 3, Part 2: Thematic Mapper (TM)

    NASA Technical Reports Server (NTRS)

    Barker, J. L. (Editor)

    1985-01-01

    The calibration of the LANDSAT 4 thematic mapper is discussed as well as the atmospheric, radiometric, and geometric accuracy and correction of data obtained with this sensor. Methods are given for assessing TM band to band registration.

  9. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.

  10. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less

  11. Using Landsat ETM+ and ASTER Sensors to Aid the Mineral Assessment of the Desert National Wildlife Refuge, Clark and Lincoln Counties, Nevada

    NASA Astrophysics Data System (ADS)

    Cramer, Timothy F.

    The Desert National Wildlife Refuge in southern Nevada has been selected for remote sensing analysis as part of a mineral assessment required for renewal of mineral withdrawal. The area of interest is nearly 3,000 km2 and covers portions of 5 different ranges with little to no infrastructure. Assessing such a large area using traditional field methods is very time intensive and expensive. The study described here serves as a pilot study, testing the capability of Landsat ETM+ and ASTER satellite imagery to remotely identify areas of potentially mineralized lithologies. This is done by generating a number of band ratio, band index, and mineral likelihood maps identifying 5 key mineral classes (silica, clay, iron oxide, dolomite and calcite), which commonly have patterned zonation around ore deposits. When compiled with available geologic and geochemical data sets, these intermediate products can provide guidance for targeted field evaluation and exploration. Field observations and spectral data collected in the laboratory can then be integrated with ASTER imagery to guide a Spectral Angle Mapper algorithm to generate a distribution map of the five mineral classes. The methods presented found the ASTER platform to be capable of remotely assessing the distribution of various lithologies and the mineral potential of large, remote areas. Furthermore areas of both high and low potential for ore deposits can be identified and used to guide field evaluation and exploration. Remote sensing studies of this caliber can be performed relatively quickly and inexpensively resulting in datasets, which can result in more accurate mapping and the identification of both lithologic boundaries and previously unidentified alteration associated with mineralization. Future mineral assessments and exploration activity should consider similar studies prior to field work.

  12. Characterizing pigments with hyperspectral imaging variable false-color composites

    NASA Astrophysics Data System (ADS)

    Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy

    2015-11-01

    Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.

  13. Forest cover from Landsat Thematic Mapper data for use in the Catahoula anger District geographic information system.

    Treesearch

    David L. Evans

    1994-01-01

    A forest cover classification of the Kisatchie National Forest, Catahoula Ranger district, was performed with Landsat Thematic Mapper data. Data base retrievals and map products from this analysis demonstrated use of Landsat for forest management decisions.

  14. Nitrogen Source and Loading Data for EPA Estuary Data Mapper

    EPA Science Inventory

    Nitrogen source and loading data have been compiled and aggregated at the scale of estuaries and associated watersheds of the conterminous United States, using the spatial framework in EPA's Estuary Data Mapper (EDM) to provide system boundaries. Original sources of data include...

  15. Development of the Lunar Polar Hydrogen Mapper Mission

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Bell, J. F.; Starr, R.; Colaprete, A.; Drake, D.; Lazbin, I.; West, S.; Johnson, E. B.; Christian, J.; Heffern, L.; Genova, A.; Dunham, D.; Williams, B.; Nelson, D.; Puckett, S.; Babuscia, A.; Scowen, P.; Kerner, H.; Amzler, R. J.

    2018-04-01

    The Lunar Polar Hydrogen Mapper is a 6U CubeSat mission launching on SLS EM-1. The spacecraft will orbit at a low altitude perlune over the lunar south pole and carries a miniature neutron spectrometer to map small scale hydrogen enrichments in PSRs.

  16. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data, book 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the final performance tests of the thematic mapper flight model multiplexer at ambient temperature are presented. Results cover the power supply, the input buffer, and the A/D threshold for bands 1 through 4.

  17. Star sensor/mapper with a self deployable, high-attenuation light shade for SAS-B

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Finkel, A.

    1972-01-01

    A star sensor/mapper to determine positional data for the small astronomy satellites was tested to detect stars of plus 4 visual magnitude. It utilizes two information channels with memory so that it can be used with a low-data-rate telemetry system. One channel yields star amplitude information; the other yields the time of star occurrence as the star passes across an N-slit reticle/photomultiplier detector system. Some of the features of the star sensor/mapper are its low weight of 6.5 pounds, low power consumption of 0.4 watt, bandwidth switching to match the satellite spin rate, optical equalization of sensitivity over the 5-by-10 deg field of view, and self-deployable sunshade. The attitude determination accuracy is 3 arc minutes. This is determined by such parameters as the reticle configuration, optical train, and telemetry readout. The optical and electronic design of the star sensor/mapper, its expansion capabilities, and its features are discussed.

  18. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  19. LETTER TO THE EDITOR: Free-response operator characteristic models for visual search

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. P.

    2007-05-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) is a novel x-ray phase-contrast computed tomography which is applied to inspect weakly absorbing low-Z samples. Refraction-angle images which are extracted from a series of raw DEI images measured in different positions of the rocking curve of the analyser can be regarded as projections of DEI-CT. Based on them, the distribution of refractive index decrement in the sample can be reconstructed according to the principles of CT. How to combine extraction methods and reconstruction algorithms to obtain the most accurate reconstructed results is investigated in detail in this paper. Two kinds of comparison, the comparison of different extraction methods and the comparison between 'two-step' algorithms and the Hilbert filtered backprojection (HFBP) algorithm, draw the conclusion that the HFBP algorithm based on the maximum refraction-angle (MRA) method may be the best combination at present. Though all current extraction methods including the MRA method are approximate methods and cannot calculate very large refraction-angle values, the HFBP algorithm based on the MRA method is able to provide quite acceptable estimations of the distribution of refractive index decrement of the sample. The conclusion is proved by the experimental results at the Beijing Synchrotron Radiation Facility.

  20. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    NASA Technical Reports Server (NTRS)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  1. Estuary Data Mapper: A virtual portal to coastal data informing environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive graphical application under development at the US EPA that allows environmental researchers and managers to quickly and easily retrieve, view and save subsets of online US coastal estuary-related data. Accessible data include ...

  2. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  3. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  4. EPA Recovery Mapper

    EPA Pesticide Factsheets

    The EPA Recovery Mapper is an Internet interactive mapping application that allows users to discover information about every American Recovery and Reinvestment Act (ARRA) award that EPA has funded for six programs. By integrating data reported by the recipients of Recovery Act funding and data created by EPA, this application delivers a level of transparency and public accessibility to users interested in EPA's use of Recovery Act monies. The application is relatively easy to use and builds on the same mapping model as Google, Bing, MapQuest and other commonly used mapping interfaces. EPA Recovery Mapper tracks each award made by each program and gives basic Quick Facts information for each award including award name, location, award date, dollar amounts and more. Data Summaries for each EPA program or for each state are provided displaying dollars for Total Awarded, Total Received (Paid), and Total Jobs This Quarter by Recovery for the latest quarter of data released by Recovery.gov. The data are reported to the government and EPA four times a year by the award recipients. The latest quarterly report will always be displayed in the EPA Recovery Mapper. In addition, the application provides many details about each award. Users will learn more about how to access and interpret these data later in this document. Data shown in the EPA Recovery Mapper are derived from information reported back to FederalReporting.gov from the recipients of Recovery Act funding. EPA

  5. Impact of Surface Roughness on AMSR-E Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew

    2006-01-01

    This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and 18.7 GHz to these factors to improve snow depth retrievals from spaceborne passive microwave sensors.

  6. Cloud detection algorithm comparison and validation for operational Landsat data products

    USGS Publications Warehouse

    Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady

    2017-01-01

    Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.

  7. Analyzing spatial and temporal trends in Aboveground Biomass within the Acadian New England Forests using the complete Landsat Archive

    NASA Astrophysics Data System (ADS)

    Kilbride, J. B.; Fraver, S.; Ayrey, E.; Weiskittel, A.; Braaten, J.; Hughes, J. M.; Hayes, D. J.

    2017-12-01

    Forests within the New England states and Canadian Maritime provinces, here described as the Acadian New England (ANE) forests, have undergone substantial disturbances due to insect, fire, and anthropogenic factors. Through repeated satellite observations captures by USGS's Landsat program, 45 years of disturbance information can be incorporated into modeling efforts to better understand the spatial and temporal trends in forest above ground biomass (AGB). Using Google's Earth Engine, annual mosaics were developed for the ANE study area and then disturbance and recovery metrics were developed using the temporal segmentation algorithm VeRDET. Normalization procedures were developed to incorporate the Landsat Multispectral Scanner (MSS, 1972 - 1985) data alongside the modern era of Landsat Thematic Mapper (TM, 1984-2013), Enhanced Thematic Mapper plus (ETM+, 1999 - present), and Operational Land Imager (OLI, 2013- present) data products. This has enabled the creation of a dataset with an unprecedented spatial and temporal view of forest landscape change. Model training was performed using was the Forest Inventory Analysis (FIA) and New Brunswick Permanent Sample Plot data datasets. Modeling was performed using parametric techniques such as mixed effects models and non-parametric techniques such as k-NN imputation and generalized boosted regression. We compare the biomass estimate and model accuracy to other inventory and modeling studies produced within this study area. The spatial and temporal patterns of stock changes are analyzed against resource policy, land ownership changes, and forest management.

  8. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  9. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    PubMed Central

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  10. Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.

    1994-01-01

    It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.

  11. Wisconsin H-Alpha Mapper | UW-Madison Astronomy

    Science.gov Websites

    Department of Astronomy Wisconsin H-Alpha Mapper Overview Description About WHAM Fabry-Perot Spectroscopy National Science Foundation Astronomy and... 02.20.2012 | Continue Reading » WHAM featured at Natural Astronomy Galactic Structure GALFA GLIMPSE GLIMPSE360 WHAM Extragalactic Astronomy & Cosmology Local

  12. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N.

    1983-01-01

    The results of an analysis that relates thematic mapper (TM) saturation level to ground reflectance, calendar date, latitude, and atmospheric condition is provided. A revised version of the preprint included with the last quarterly report is also provided for publication in the IEEE Transactions on Geoscience and Remote Sensing.

  13. Can Visualizing Document Space Improve Users' Information Foraging?

    ERIC Educational Resources Information Center

    Song, Min

    1998-01-01

    This study shows how users access relevant information in a visualized document space and determine whether BiblioMapper, a visualization tool, strengthens an information retrieval (IR) system and makes it more usable. BiblioMapper, developed for a CISI collection, was evaluated by accuracy, time, and user satisfaction. Users' navigation…

  14. Information content of data from the LANDSAT-4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    The progress of an investigation to quantify the increased information content of thematic mapper (TM) data as compared to that from the LANDSAT 4 multispectral scanner (MSS) is reported. Two night infrared images were examined and compared with Heat Capacity Mapping Mission data.

  15. Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).

  16. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  17. A novel ULA-based geometry for improving AOA estimation

    NASA Astrophysics Data System (ADS)

    Shirvani-Moghaddam, Shahriar; Akbari, Farida

    2011-12-01

    Due to relatively simple implementation, Uniform Linear Array (ULA) is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA) estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA) configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE) of the detected angles descends as the input Signal to Noise Ratio (SNR) increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.

  18. A Fast Algorithm to Compute Conical Pockets in Proteins. Application to the Structural Characterization of γ-Carbonic Anhydrases.

    PubMed

    Petitjean, Michel

    2017-10-01

    Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  20. Olive Crown Porosity Measurement Based on Radiation Transmittance: An Assessment of Pruning Effect.

    PubMed

    Castillo-Ruiz, Francisco J; Castro-Garcia, Sergio; Blanco-Roldan, Gregorio L; Sola-Guirado, Rafael R; Gil-Ribes, Jesus A

    2016-05-19

    Crown porosity influences radiation interception, air movement through the fruit orchard, spray penetration, and harvesting operation in fruit crops. The aim of the present study was to develop an accurate and reliable methodology based on transmitted radiation measurements to assess the porosity of traditional olive trees under different pruning treatments. Transmitted radiation was employed as an indirect method to measure crown porosity in two olive orchards of the Picual and Hojiblanca cultivars. Additionally, three different pruning treatments were considered to determine if the pruning system influences crown porosity. This study evaluated the accuracy and repeatability of four algorithms in measuring crown porosity under different solar zenith angles. From a 14° to 30° solar zenith angle, the selected algorithm produced an absolute error of less than 5% and a repeatability higher than 0.9. The described method and selected algorithm proved satisfactory in field results, making it possible to measure crown porosity at different solar zenith angles. However, pruning fresh weight did not show any relationship with crown porosity due to the great differences between removed branches. A robust and accurate algorithm was selected for crown porosity measurements in traditional olive trees, making it possible to discern between different pruning treatments.

  1. Indoor positioning algorithm combined with angular vibration compensation and the trust region technique based on received signal strength-visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong

    2017-05-01

    Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.

  2. Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artifical neural network angle generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filho, Faete J; Tolbert, Leon M; Ozpineci, Burak

    2012-01-01

    The work developed here proposes a methodology for calculating switching angles for varying DC sources in a multilevel cascaded H-bridges converter. In this approach the required fundamental is achieved, the lower harmonics are minimized, and the system can be implemented in real time with low memory requirements. Genetic algorithm (GA) is the stochastic search method to find the solution for the set of equations where the input voltages are the known variables and the switching angles are the unknown variables. With the dataset generated by GA, an artificial neural network (ANN) is trained to store the solutions without excessive memorymore » storage requirements. This trained ANN then senses the voltage of each cell and produces the switching angles in order to regulate the fundamental at 120 V and eliminate or minimize the low order harmonics while operating in real time.« less

  3. Real part of refractive index measurement approach for absorbing liquid.

    PubMed

    Liu, Hao; Ye, Junwei; Yang, Kecheng; Xia, Min; Guo, Wenping; Li, Wei

    2015-07-01

    An algorithm based on use of a reflected refractometer to measure the real part of the refractive index (RI) for an absorbing liquid is presented. The absorption of liquid will blur the division between bright and dark regions on a Fresnel reflective curve. However, the reflective ratio at some incident angles that are less than the critical angle have little sensitivity to absorbability. Unlike common methods that extract RI from reflectivity in critical angle vicinity, the presented method acquires the real RI from reflective ratio at a subcritical angle. Supported by the theoretical analysis and experimental results on a reflected refractometer, we have achieved accuracy better than 3×10(-4) RIU on ink samples with absorption coefficient around 300  cm(-1). Additional tests on Alizarin yellow GG solutions prove that the subcritical algorithm is feasible and of high accuracy.

  4. Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control

    NASA Astrophysics Data System (ADS)

    Sperber, E.; Fu, B.; Eke, F. O.

    2016-06-01

    This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.

  5. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  6. Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM

    NASA Technical Reports Server (NTRS)

    Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip

    2017-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.

  7. Landsat TM memory effect characterization and correction

    USGS Publications Warehouse

    Helder, D.; Boncyk, W.; Morfitt, R.

    1997-01-01

    Before radiometric calibration of Landsat Thematic Mapper (TM) data can be done accurately, it is necessary to minimize the effects of artifacts present in the data that originate in the instrument's signal processing path. These artifacts have been observed in downlinked image data since shortly after launch of Landsat 4 and 5. However, no comprehensive work has been done to characterize all the artifacts and develop methods for their correction. In this paper, the most problematic artifact is discussed: memory effect (ME). Characterization of this artifact is presented, including the parameters necessary for its correction. In addition, a correction algorithm is described that removes the artifact from TM imagery. It will be shown that this artifact causes significant radiometry errors, but the effect can be removed in a straightforward manner.

  8. Design and Implementation of an Experimental Cataloging Advisor--Mapper.

    ERIC Educational Resources Information Center

    Ercegovac, Zorana; Borko, Harold

    1992-01-01

    Describes the design of an experimental computer-aided cataloging advisor, Mapper, that was developed to help novice users with the descriptive cataloging of single-sheet maps from U.S. publishers. The human-computer interface is considered, the use of HyperCard is discussed, the knowledge base is explained, and assistance screens are described.…

  9. LANDSAT-D data format control book. Volume 6, appendix D: Thematic mapper Computer Compatible Tape (CCT-AT/PT)

    NASA Technical Reports Server (NTRS)

    Ahmed, H.

    1981-01-01

    The format of computer compatible tapes which contain LANDSAT 4 and D Prime thematic mapper data is defined. A complete specification of the CCT-AT (radiometric corrections applied and geometric matrices appended) and the CCT-PT (radiometric and geometric corrections) data formats is provided.

  10. Estuary Data Mapper: A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  11. Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data

    Treesearch

    William H. Cooke

    2000-01-01

    Geographically accurate Forest Inventory and Analysis (FIA) data may be useful for training, classification, and accuracy assessment of Landsat Thematic Mapper (TM) data. Minimum expectation for maps derived from Landsat data is accurate discrimination of several land cover classes. Landsat TM costs have decreased dramatically, but acquiring cloud-free scenes at...

  12. Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.

  13. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2009-04-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  14. CheS-Mapper - Chemical Space Mapping and Visualization in 3D.

    PubMed

    Gütlein, Martin; Karwath, Andreas; Kramer, Stefan

    2012-03-17

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis.

  15. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  16. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    PubMed Central

    Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2008-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121

  17. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  18. Spectral Unmixing Based Construction of Lunar Mineral Abundance Maps

    NASA Astrophysics Data System (ADS)

    Bernhardt, V.; Grumpe, A.; Wöhler, C.

    2017-07-01

    In this study we apply a nonlinear spectral unmixing algorithm to a nearly global lunar spectral reflectance mosaic derived from hyper-spectral image data acquired by the Moon Mineralogy Mapper (M3) instrument. Corrections for topographic effects and for thermal emission were performed. A set of 19 laboratory-based reflectance spectra of lunar samples published by the Lunar Soil Characterization Consortium (LSCC) were used as a catalog of potential endmember spectra. For a given spectrum, the multi-population population-based incremental learning (MPBIL) algorithm was used to determine the subset of endmembers actually contained in it. However, as the MPBIL algorithm is computationally expensive, it cannot be applied to all pixels of the reflectance mosaic. Hence, the reflectance mosaic was clustered into a set of 64 prototype spectra, and the MPBIL algorithm was applied to each prototype spectrum. Each pixel of the mosaic was assigned to the most similar prototype, and the set of endmembers previously determined for that prototype was used for pixel-wise nonlinear spectral unmixing using the Hapke model, implemented as linear unmixing of the single-scattering albedo spectrum. This procedure yields maps of the fractional abundances of the 19 endmembers. Based on the known modal abundances of a variety of mineral species in the LSCC samples, a conversion from endmember abundances to mineral abundances was performed. We present maps of the fractional abundances of plagioclase, pyroxene and olivine and compare our results with previously published lunar mineral abundance maps.

  19. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  20. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.

  1. The MAP Spacecraft Angular State Estimation After Sensor Failure

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, the conclusions have a far reaching consequence.

  2. The Effect of Sensor Failure on the Attitude and Rate Estimation of MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, its conclusions are more general.

  3. Research and implementation of finger-vein recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin

    2017-06-01

    In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.

  4. A Direction of Arrival Estimation Algorithm Based on Orthogonal Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Cao, Fei; Liu, Lipeng

    2018-02-01

    The results show that the modified DSM is able to predict local buckling capacity of hot-rolled RHS and SHS accurately. In order to solve the problem of the weak ability of anti-radiation missile against active decoy in modern electronic warfare, a direction of arrival estimation algorithm based on orthogonal matching pursuit is proposed in this paper. The algorithm adopts the compression sensing technology. This paper uses array antennas to receive signals, gets the sparse representation of signals, and then designs the corresponding perception matrix. The signal is reconstructed by orthogonal matching pursuit algorithm to estimate the optimal solution. At the same time, the error of the whole measurement system is analyzed and simulated, and the validity of this algorithm is verified. The algorithm greatly reduces the measurement time, the quantity of equipment and the total amount of the calculation, and accurately estimates the angle and strength of the incoming signal. This technology can effectively improve the angle resolution of the missile, which is of reference significance to the research of anti-active decoy.

  5. Robust iterative closest point algorithm based on global reference point for rotation invariant registration.

    PubMed

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.

  6. Robust iterative closest point algorithm based on global reference point for rotation invariant registration

    PubMed Central

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780

  7. Variation of directional reflectance factors with structural changes of a developing alfalfa canopy

    NASA Technical Reports Server (NTRS)

    Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III

    1982-01-01

    Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.

  8. Abstracts of the annual meeting of Planetary Geologic Mappers: June 21-22, 2002, Tempe, Arizona

    USGS Publications Warehouse

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual meeting of planetary geologic mappers allows mappers the opportunity to exchange ideas, experiences, victories, and problems. In addition, presentations are reviewed by the Geologic Mapping Subcommittee (GEMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GEMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips that offer Earth analogs and parallels to planetary mapping problems or workshops that provide information and status of current missions. The 2002 meeting of planetary geologic mappers was held June 21-22 at the Mars Flight Facility, Arizona State University, Tempe, Arizona. Dr. Phil Christensen graciously offered the use of the newly renovated facility, and Ms. Kelly Bender not only proved to be a courteous hostess, but also arranged a short workshop on June 23 regarding TES and THEMIS data. Approximately 30 people attended each day of the 2-day meeting, although not the same 30—some attended only on Thursday and others only on Friday. On Thursday, eight mappers gave oral presentations of Mars mapping, and an additional two presentations were presented as posters only. Eight oral presentations on Venus mapping were given on Friday, and an additional four presentations were posters only. Twelve people attended the TES/THEMIS workshop. Presentations of Ganymede mapping and Europa mapping (the latter not yet financially sponsored by PG&G mapping program) were also given on Friday. Aside from the regular presentations of maps-in-progress, there were some additional talks. Lisa Gaddis (USGS) presented a proposal seeking support for a new lunar mapping program in light of all the new data available; she made a good case that the GEMS panel discussed. Jim Skinner (USGS) gave a short presentation on free (or nearly so) software available for 3D viewing of planetary surfaces. Healthy discussions focused on the review time for some maps and the use of different styles of correlation charts observed on the presented maps. Next year’s meeting will be held June 19-20 at Brown University, Providence, RI.

  9. All-quad meshing without cleanup

    DOE PAGES

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.; ...

    2016-08-22

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  10. Algorithm for Controlling a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  11. All-quad meshing without cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  12. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Daniel; Hansen, Clifford W.

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  13. Algorithm for fuel conservative horizontal capture trajectories

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1981-01-01

    A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.

  14. Harmonic Optimization in Voltage Source Inverter for PV Application using Heuristic Algorithms

    NASA Astrophysics Data System (ADS)

    Kandil, Shaimaa A.; Ali, A. A.; El Samahy, Adel; Wasfi, Sherif M.; Malik, O. P.

    2016-12-01

    Selective Harmonic Elimination (SHE) technique is the fundamental switching frequency scheme that is used to eliminate specific order harmonics. Its application to minimize low order harmonics in a three level inverter is proposed in this paper. The modulation strategy used here is SHEPWM and the nonlinear equations, that characterize the low order harmonics, are solved using Harmony Search Algorithm (HSA) to obtain the optimal switching angles that minimize the required harmonics and maintain the fundamental at the desired value. Total Harmonic Distortion (THD) of the output voltage is minimized maintaining selected harmonics within allowable limits. A comparison has been drawn between HSA, Genetic Algorithm (GA) and Newton Raphson (NR) technique using MATLAB software to determine the effectiveness of getting optimized switching angles.

  15. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  16. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  17. Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  18. Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California

    Treesearch

    Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert

    1991-01-01

    Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....

  19. Thematic mapper flight model preshipment review data package. Volume 3, part A: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of vibration, acoustical noise, and thermal vacuum are described as well as tests studies of EMI/EMC and mass properties conducted for thematic mapper systems integration. Liens are summarized and the engineering change proposal status is presented. Requests for deviation/waiver are included along with failure and nonforming material reports.

  20. Collection of endmembers and their separability for spectral unmixing in rangeland applications

    NASA Astrophysics Data System (ADS)

    Rolfson, David

    Rangelands are an important resource to Alberta. Due to their size, mapping rangeland features is difficult. However, the use of aerial and satellite data for mapping has increased the area that can be studied at one time. The recent success in applying hyperspectral data to vegetation mapping has shown promise in rangeland classification. However, classification mapping of hyperspectral data requires existing data for input into classification algorithms. The research reported in this thesis focused on acquiring a seasonal inventory of in-situ reflectance spectra of rangeland plant species (endmembers) and comparing them to evaluate their separability as an indicator of their suitability for hyperspectral image classification analysis. The goals of this research also included determining the separability of species endmembers at different times of the growing season. In 2008, reflectance spectra were collected for three shrub species ( Artemisia cana, Symphoricarpos occidentalis, and Rosa acicularis ), five rangeland grass species native to southern Alberta ( Koeleria gracilis, Stipa comata, Bouteloua gracilis, Agropyron smithii, Festuca idahoensis) and one invasive grass species (Agropyron cristatum ). A spectral library, built using the SPECCHIO spectral database software, was populated using these spectroradiometric measurements with a focus on vegetation spectra. Average endmembers of plant spectra acquired during the peak of sample greenness were compared using three separability measures -- normalized Euclidean distance (NED), correlation separability measure (CSM) and Modified Spectral Angle Mapper (MSAM) -- to establish the degree to which the species were separable. Results were normalized to values between 0 and 1 and values above the established thresholds indicate that the species were not separable. The endmembers for Agropyron cristatum, Agropyron smithii, and Rosa acicularis were not separable using CSM (threshold = 0.992) or MSAM (threshold = 0.970). NED (threshold = 0.950) was best able to separate species endmembers. Using reflectance data collected throughout the summer and fall, species endmembers obtained within two-week periods were analyzed using NED to plot their separability. As expected, separability of sample species changed as they progressed through their individual phenological patterns. Spectra collected during different solar zenith angles were compared to see if they affected the separability measures. Sample species endmembers were generally separable using NED during the periods in which they were measured and compared. However, Koeleria gracilis and Festuca idahoensis endmembers were inseparable from June to mid-August when measurements were taken at solar zenith angles between 25° -- 30° and 45° -- 60°. However, between 30° and 45°, Bouteloua gracilis and Festuca idahoensis endmembers, normally separable during other solar zenith angles, became spectrally similar during the same sampling period. Findings suggest that the choice of separability measures is an important factor when analyzing hyperspectral data. The differences observed in the separability results over time also suggest that the consideration of phenological patterns in planning data acquisition for rangeland classification mapping has a high level of importance.

  1. The Use of Thematic Mapper Data for Land Cover Discrimination: Preliminary Results from the UK Satmap Programme

    NASA Technical Reports Server (NTRS)

    Jackson, M. J.; Baker, J. R.; Townshend, J. R. G.; Gayler, J. E.; Hardy, J. R.

    1984-01-01

    In assessing the accuracy of classification techniques for Thematic Mapper data the consistency of the detector-to-detector response is critical. Preliminary studies were undertaken, therefore, to assess the significance of this factor for the TM. The overall structure of the band relationships can be examined by principal component analysis. In order to examine the utility of the Thematic Mapper data more carefully, six different land cover classes approximately Anderson level 1 were selected. These included an area of water from the sediment-laden Mississippi, woodland, agricultural land and urban land. A plume class was also selected which includes the plume of smoke emanating from the power station and drifting over the Mississippi river.

  2. The SkyMapper Transient Survey

    NASA Astrophysics Data System (ADS)

    Scalzo, R. A.; Yuan, F.; Childress, M. J.; Möller, A.; Schmidt, B. P.; Tucker, B. E.; Zhang, B. R.; Onken, C. A.; Wolf, C.; Astier, P.; Betoule, M.; Regnault, N.

    2017-07-01

    The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. The search strategy, covering a total footprint area of 2 000 deg2 with a cadence of ⩽5 d, is optimised for discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic expansion and peculiar velocities. We describe the search operations and infrastructure, including a parallelised software pipeline to discover variable objects in difference imaging; simulations of the performance of the survey over its lifetime; public access to discovered transients; and some first results from the Science Verification data.

  3. The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.

    1980-01-01

    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.

  4. Landsat-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Bartolucci, L. A.; Dean, M. E.; Lozano, D. F.; Malaret, E.; Mcgillem, C. D.; Valdes, J. A.; Valenzuela, C. R.

    1984-01-01

    Landsat-4 Thematic Mapper and Multispectral Scanner data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic Mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and numerous supervised classifiers on data from Iowa and Illinois. A detailed spectral class analysis (multispectral classification) was carried out on data from the Des Moines, IA area to compare the information content of the MSS and TM for a large number of scene classes.

  5. Development of accurate potentials to explore the structure of water on 2D materials

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Singh, Samrendra; Deshmukh, Sanket; Deshmkuh Group Team; Samrendra Group Collaboration

    Water play an important role in many biological and non-biological process. Thus structure of water at various interfaces and under confinement has always been the topic of immense interest. 2-D materials have shown great potential in surface coating applications and nanofluidic devices. However, the exact atomic level understanding of the wettability of single layer of these 2-D materials is still lacking mainly due to lack of experimental techniques and computational methodologies including accurate force-field potentials and algorithms to measure the contact angle of water. In the present study, we have developed a new algorithm to measure the accurate contact angle between water and 2-D materials. The algorithm is based on fitting the best sphere to the shape of the droplet. This novel spherical fitting method accounts for every individual molecule of the droplet, rather than those at the surface only. We employ this method of contact angle measurements to develop the accurate non-bonded potentials between water and 2-D materials including graphene and boron nitride (BN) to reproduce the experimentally observed contact angle of water on these 2-D materials. Different water models such as SPC, SPC/Fw, and TIP3P were used to study the structure of water at the interfaces.

  6. A new computerized diagnostic algorithm for quantitative evaluation of binocular misalignment in patients with strabismus

    NASA Astrophysics Data System (ADS)

    Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi

    2012-10-01

    Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.

  7. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary.

    PubMed

    Yilmaz, Emel Maden; Güntert, Peter

    2015-09-01

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  8. A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.

    PubMed

    Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J

    2014-01-01

    Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.

  9. Autonomous Motion Planning Using a Predictive Temporal Method

    DTIC Science & Technology

    2009-01-01

    interception test. ......150 5-20 Target and solution path heading angles for target interception test. ..............................151 10 LIST...environment as a series of distances and angles . Regardless of the technique, this knowledge of the surrounding area is crucial for the issue of...to, the rather simplistic vector driver algorithms which compute the angle between the current vehicle heading and the heading to the goal and

  10. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  11. Remote logo detection using angle-distance histograms

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.

  12. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  13. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas

    2015-03-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.

  14. Limited angle CT reconstruction by simultaneous spatial and Radon domain regularization based on TV and data-driven tight frame

    NASA Astrophysics Data System (ADS)

    Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin

    2018-02-01

    Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model

  15. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters, the calibration state vector contains only two average penetration angle biases (one per each pair of opposite quadrants) since, because of the very narrow sensor FOV (+/- 2.6 degrees), differences between biases of the penetration angles measured by opposite quadrants cannot be distinguished from roll and pitch sensor misalignments. After calibration, the estimated misalignments and average penetration angle biases are converted to the four penetration angle biases and to the yaw misalignment angle. The resultant biases and the estimated scale factors are finally used to update the coefficients necessary for onboard computations of penetration angles from measured voltages.

  16. From bicycle chain ring shape to gear ratio: algorithm and examples.

    PubMed

    van Soest, A J

    2014-01-03

    A simple model of the bicycle drive system with a non-circular front chain ring is proposed and an algorithm is devised for calculation of the corresponding Gear Ratio As a Function Of Crank Angle (GRAFOCA). It is shown that the true effective radius of the chain ring is always the perpendicular distance between the crank axis and the line through the chain segment between the chain ring and the cog. It is illustrated that the true effective radius of the chain ring at any crank angle may differ substantially from the maximum vertical distance between the crank axis and the chain ring circumference that is used as a proxy for the effective chain ring radius in several studies; in particular, the crank angle at which the effective chain ring radius is maximal as predicted from the latter approach may deviate by as much as 0.30 rad from the true value. The algorithm proposed may help in designing chain rings that achieve the desired GRAFOCA. © 2013 Published by Elsevier Ltd. All rights reserved.

  17. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  18. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  19. Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin

    2017-02-01

    In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.

  20. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  1. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part E: Electronics module data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.

  2. Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data

    Treesearch

    James E. Vogelmann; Jay R. Kost; Brian Tolk; Stephen Howard; Karen Short; Xuexia Chen; Chengquan Huang; Kari Pabst; Matthew G. Rollins

    2011-01-01

    LANDFIRE is a large interagency project designed to provide nationwide spatial data for fire management applications. As part of the effort, many 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used in conjunction with a large volume of field information to generate detailed vegetation type and structure data sets for the entire...

  3. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  4. Thematic mapper flight model preshipment review data package. Volume 3, part C: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Failure reports for flight model-1 of the thematic mapper are summarized showing the symptom and cause of failure as well as the corrective action taken. Each report is keyed to the major subsystem against which the failure occurred. Requests for deviation/waiver are listed by number, description, and current status. Copies of engineering proposals are included.

  5. The OakMapper WebGIS: improved access to sudden oak death spatial data

    Treesearch

    K. Tuxen; M. Kelly

    2008-01-01

    Access to timely and accurate sudden oak death (SOD) location data is critical for SOD monitoring, management and research. Several websites (hereafter called the OakMapper sites) associated with sudden oak death monitoring efforts have been maintained with up-todate SOD location information for over five years, providing information and maps of the most current...

  6. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The eleventh quarterly report on Spectroradiometric Calibration of the Thematic Mapper (Contract NAS5-27832) discusses calibrations made at White Sands on 24 May 1985. An attempt is made to standardize test results. Critical values used in the final steps of the data reduction and the comparison of the results of the pre-flight and internal calibration (IC) data are summarized.

  7. Using Landsat Thematic Mapper and SPOT Satellite Imagery to inventory wetland plants of the Coeur d'Alene Floodplain

    Treesearch

    F. M. Roberts; P. E. Gessler

    2000-01-01

    Landsat Thematic Mapper (TM) and SPOT Satellite Imagery were used to map wetland plant species in thc Coeur d'Alene floodplain in northern Idaho. This paper discusses the methodology used to create a wetland plant species map for the floodplain. Species mapped included common cattail (Typha latifolia); water horse-tail (Equisetum...

  8. Landsat and Thermal Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  9. Distributing FIA Information onto Segmented Landsat Thematic Mapper Images Stratified with Industrial Ground Data

    Treesearch

    Tripp Lowe; Chris Cieszewski; Michael Zasada; Jarek Zawadzki

    2005-01-01

    The ability to evaluate the ecological and economical effects of proposed modifications to Georgia's best management practices is an important issue in the State. We have incorporated tabular FIA data with Landsat Thematic Mapper satellite images and other spatial data to model Georgia's forested land and assess the area, volume, age, and site quality...

  10. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  11. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States. (UNH)

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  12. AN ACCURACY ASSESSMENT OF 1997 LANDSAT THEMATIC MAPPER DERIVED LAND COVER FOR THE UPPER SAN PEDRO WATERSHED (U.S./MEXICO)

    EPA Science Inventory

    High-Resolution airborne color video data were used to evaluate the accuracy of a land cover map of the upper San Pedro River watershed, derived from June 1997 Landsat Thematic Mapper data. The land cover map was interpreted and generated by Instituto del Medio Ambiente y el Bes...

  13. Thematic mapper flight model preshipment review data package. Volume 2, part B: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Summarized performance data are presented for the following major subsystems of the thematic mapper: the focal plane assembly, the radiative cooler, the radiative cooler door assembly, the top optical assembly, and the telescope assembly. Reference lists of the configurations status and of nonconforming material reports, failure reports, and requests for deviation/waiver are included.

  14. 1985 ACSM-ASPRS Fall Convention, Indianapolis, IN, September 8-13, 1985, Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Papers are presented on Landsat image data quality analysis, primary data acquisition, cartography, geodesy, land surveying, and the applications of satellite remote sensing data. Topics discussed include optical scanning and interactive color graphics; the determination of astrolatitudes and astrolongitudes using x, y, z-coordinates on the celestial sphere; raster-based contour plotting from digital elevation models using minicomputers or microcomputers; the operational techniques of the GPS when utilized as a survey instrument; public land surveying and high technology; the use of multitemporal Landsat MSS data for studying forest cover types; interpretation of satellite and aircraft L-band synthetic aperture radar imagery; geological analysismore » of Landsat MSS data; and an interactive real time digital image processing system. Consideration is given to a large format reconnaissance camera; creating an optimized color balance for TM and MSS imagery; band combination selection for visual interpretation of thematic mapper data for resource management; the effect of spatial filtering on scene noise and boundary detail in thematic mapper imagery; the evaluation of the geometric quality of thematic mapper photographic data; and the analysis and correction of Landsat 4 and 5 thematic mapper sensor data.« less

  15. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

    PubMed

    Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin

    2017-07-03

    The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Partitioning Pythagorean Triangles Using Pythagorean Angles

    ERIC Educational Resources Information Center

    Swenson, Carl E.; Yandl, Andre L.

    2012-01-01

    Inside any Pythagorean right triangle, it is possible to find a point M so that drawing segments from M to each vertex of the triangle yields angles whose sines and cosines are all rational. This article describes an algorithm that generates an infinite number of such points.

  17. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  18. Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    NASA Technical Reports Server (NTRS)

    Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David

    1993-01-01

    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.

  19. Angle-of-Arrival Assisted GNSS Collaborative Positioning.

    PubMed

    Huang, Bin; Yao, Zheng; Cui, Xiaowei; Lu, Mingquan

    2016-06-20

    For outdoor and global navigation satellite system (GNSS) challenged scenarios, collaborative positioning algorithms are proposed to fuse information from GNSS satellites and terrestrial wireless systems. This paper derives the Cramer-Rao lower bound (CRLB) and algorithms for the angle-of-arrival (AOA)-assisted GNSS collaborative positioning. Based on the CRLB model and collaborative positioning algorithms, theoretical analysis are performed to specify the effects of various factors on the accuracy of collaborative positioning, including the number of users, their distribution and AOA measurements accuracy. Besides, the influences of the relative location of the collaborative users are also discussed in order to choose appropriate neighboring users, which is in favor of reducing computational complexity. Simulations and actual experiment are carried out with several GNSS receivers in different scenarios, and the results are consistent with theoretical analysis.

  20. An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1984-01-01

    An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.

  1. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  3. Learning Algorithms for Human–Machine Interfaces

    PubMed Central

    Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886

  4. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1986-01-01

    The relationship between spectral radiance and plant canopy biomass was studied in wetlands. Spectroradiometer data was gathered on Thematic Mapper wavebands 3, 4, and 5, and correlated with canopy and edaphic factors determined by harvesting. The relationship between spectral radiance and plant canopy biomass for major salt and brackish canopy types was determined. Algorithms were developed for biomass measurement in mangrove swamps. The influence of latitudinal variability in canopy structure on biomass assessment of selected plants was investigated. Brackish marsh biomass estimates were obtained from low altitude aircraft and compared with ground measurements. Annual net aerial primary productivity estimates computed from spectral radiance data were compiled for a Spartina alterniflora marsh. Spectral radiance data were expressed as vegetation or infrared index values. Biomass estimates computed from models were in close agreement with biomass estimates determined from harvests.

  5. Generation and evaluation of Cryosat-2 SARIn L1b Interferometric elevation

    NASA Astrophysics Data System (ADS)

    DONG, Y.; Zhang, K.; Liu, Q.; MA, J.; WANG, J.

    2016-12-01

    CryoSat-2 radar altimeter data have successfully used in mapping surface elevations of ice caps and ice sheets, finding the change of surface height in polar area. The SARIn mode of Synthetic Aperture Interferometric Altimeter (SIRAL), which working similar with the traditional Interferometric Synthetic Aperture Radar (IFSAR) method, can improve the across- and along-track resolution by IFSAR processing algorithm. In this study, three L1b Baseline-C SARIn tracks over the Filchner ice shelf are used to generate the location and height of ground points in sloping glacial terrain. The elevation data is mapped and validated with IceBridge Airborne Topographic Mapper (ATM) data acquired at Nov. 2, 2012. The comparison with ATM data shows a mean difference of -1.91 m with a stand deviation of 4.04 m.

  6. Aerocapture Guidance Performance for the Neptune Orbiter

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.

    2004-01-01

    A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.

  7. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  8. DOA estimation of noncircular signals for coprime linear array via locally reduced-dimensional Capon

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhang, Xiaofei; Zheng, Wang

    2018-05-01

    We investigate the issue of direction of arrival (DOA) estimation of noncircular signals for coprime linear array (CLA). The noncircular property enhances the degree of freedom and improves angle estimation performance, but it leads to a more complex angle ambiguity problem. To eliminate ambiguity, we theoretically prove that the actual DOAs of noncircular signals can be uniquely estimated by finding the coincide results from the two decomposed subarrays based on the coprimeness. We propose a locally reduced-dimensional (RD) Capon algorithm for DOA estimation of noncircular signals for CLA. The RD processing is used in the proposed algorithm to avoid two dimensional (2D) spectral peak search, and coprimeness is employed to avoid the global spectral peak search. The proposed algorithm requires one-dimensional locally spectral peak search, and it has very low computational complexity. Furthermore, the proposed algorithm needs no prior knowledge of the number of sources. We also derive the Crámer-Rao bound of DOA estimation of noncircular signals in CLA. Numerical simulation results demonstrate the effectiveness and superiority of the algorithm.

  9. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  10. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    USGS Publications Warehouse

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission. Copyright 2011 by the American Geophysical Union.

  11. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    USGS Publications Warehouse

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission.

  12. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  13. PFGE MAPPER and PFGE READER: two tools to aid in the analysis and data input of pulse field gel electrophoresis maps.

    PubMed Central

    Shifman, M. A.; Nadkarni, P.; Miller, P. L.

    1992-01-01

    Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898

  14. Results of 17 Independent Geopositional Accuracy Assessments of Earth Satellite Corporation's GeoCover Landsat Thematic Mapper Imagery. Geopositional Accuracy Validation of Orthorectified Landsat TM Imagery: Northeast Asia

    NASA Technical Reports Server (NTRS)

    Smith, Charles M.

    2003-01-01

    This report provides results of an independent assessment of the geopositional accuracy of the Earth Satellite (EarthSat) Corporation's GeoCover, Orthorectified Landsat Thematic Mapper (TM) imagery over Northeast Asia. This imagery was purchased through NASA's Earth Science Enterprise (ESE) Scientific Data Purchase (SDP) program.

  15. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part C: Power supply data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The acceptance test data package for the thematic mapper flight model power supply was reviewed and the data compared to the relevant specification. The power supply was found to be within specification. Final test data for outut voltage regulation and ripple, efficiency, over and undervoltage protection, telemetry, impedances, turn-on requirements, and input current limits are presented.

  16. Multitemporal spatial pattern analysis of Tulum's tropical coastal landscape

    NASA Astrophysics Data System (ADS)

    Ramírez-Forero, Sandra Carolina; López-Caloca, Alejandra; Silván-Cárdenas, José Luis

    2011-11-01

    The tropical coastal landscape of Tulum in Quintana Roo, Mexico has a high ecological, economical, social and cultural value, it provides environmental and tourism services at global, national, regional and local levels. The landscape of the area is heterogeneous and presents random fragmentation patterns. In recent years, tourist services of the region has been increased promoting an accelerate expansion of hotels, transportation and recreation infrastructure altering the complex landscape. It is important to understand the environmental dynamics through temporal changes on the spatial patterns and to propose a better management of this ecological area to the authorities. This paper addresses a multi-temporal analysis of land cover changes from 1993 to 2000 in Tulum using Thematic Mapper data acquired by Landsat-5. Two independent methodologies were applied for the analysis of changes in the landscape and for the definition of fragmentation patterns. First, an Iteratively Multivariate Alteration Detection (IR-MAD) algorithm was used to detect and localize land cover change/no-change areas. Second, the post-classification change detection evaluated using the Support Vector Machine (SVM) algorithm. Landscape metrics were calculated from the results of IR-MAD and SVM. The analysis of the metrics indicated, among other things, a higher fragmentation pattern along roadways.

  17. Detection of Olea europaea subsp. cuspidata and Juniperus procera in the dry Afromontane forest of northern Ethiopia using subpixel analysis of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Hishe, Hadgu; Giday, Kidane; Neka, Mulugeta; Soromessa, Teshome; Van Orshoven, Jos; Muys, Bart

    2015-01-01

    Comprehensive and less costly forest inventory approaches are required to monitor the spatiotemporal dynamics of key species in forest ecosystems. Subpixel analysis using the earth resources data analysis system imagine subpixel classification procedure was tested to extract Olea europaea subsp. cuspidata and Juniperus procera canopies from Landsat 7 enhanced thematic mapper plus imagery. Control points with various canopy area fractions of the target species were collected to develop signatures for each of the species. With these signatures, the imagine subpixel classification procedure was run for each species independently. The subpixel process enabled the detection of O. europaea subsp. cuspidata and J. procera trees in pure and mixed pixels. Total of 100 pixels each were field verified for both species. An overall accuracy of 85% was achieved for O. europaea subsp. cuspidata and 89% for J. procera. A high overall accuracy level of detecting species at a natural forest was achieved, which encourages using the algorithm for future species monitoring activities. We recommend that the algorithm has to be validated in similar environment to enrich the knowledge on its capability to ensure its wider usage.

  18. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  19. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  20. Compensation method of cloud infrared radiation interference based on a spinning projectile's attitude measurement

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-01-01

    Based on the study of earth infrared radiation and further requirement of anticloud interference ability for a spinning projectile's infrared attitude measurement, a compensation method of cloud infrared radiation interference is proposed. First, the theoretical model of infrared radiation interference is established by analyzing the generation mechanism and interference characteristics of cloud infrared radiation. Then, the influence of cloud infrared radiation on attitude angle is calculated in the following two situations. The first situation is the projectile in cloud, and the maximum of roll angle error can reach ± 20 deg. The second situation is the projectile outside of cloud, and it results in the inability to measure the projectile's attitude angle. Finally, a multisensor weighted fusion algorithm is proposed based on trust function method to reduce the influence of cloud infrared radiation. The results of semiphysical experiments show that the error of roll angle with a weighted fusion algorithm can be kept within ± 0.5 deg in the presence of cloud infrared radiation interference. This proposed method improves the accuracy of roll angle by nearly four times in attitude measurement and also solves the problem of low accuracy of infrared radiation attitude measurement in navigation and guidance field.

  1. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  2. Development of a teaching system for an industrial robot using stereo vision

    NASA Astrophysics Data System (ADS)

    Ikezawa, Kazuya; Konishi, Yasuo; Ishigaki, Hiroyuki

    1997-12-01

    The teaching and playback method is mainly a teaching technique for industrial robots. However, this technique takes time and effort in order to teach. In this study, a new teaching algorithm using stereo vision based on human demonstrations in front of two cameras is proposed. In the proposed teaching algorithm, a robot is controlled repetitively according to angles determined by the fuzzy sets theory until it reaches an instructed teaching point, which is relayed through cameras by an operator. The angles are recorded and used later in playback. The major advantage of this algorithm is that no calibrations are needed. This is because the fuzzy sets theory, which is able to express qualitatively the control commands to the robot, is used instead of conventional kinematic equations. Thus, a simple and easy teaching operation is realized with this teaching algorithm. Simulations and experiments have been performed on the proposed teaching system, and data from testing has confirmed the usefulness of our design.

  3. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  4. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    PubMed Central

    Li, Zong-Tao; Wu, Tie-Jun; Lin, Can-Long; Ma, Long-Hua

    2011-01-01

    A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform. PMID:22164058

  5. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors

    PubMed Central

    Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.

    2012-01-01

    The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089

  6. Analysis of the multigroup model for muon tomography based threat detection

    NASA Astrophysics Data System (ADS)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-01

    We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  7. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data book 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final performance test data for the thematic mapper flight model multiplexer are presented in tables. Aspects covered include A/D thresholds for bands 5, 6, and 7; cross talk; the thermistor; bilevel commands signal parameters; A/D threshold ambient, voltage margin low bus; serial data and bit clock parameters; and the wire check. Tests were conducted at ambient temperature.

  8. Quality Control Methodologies for Advanced EMI Sensor Data Acquisition and Anomaly Classification - Former Southwestern Proving Ground, Arkansas

    DTIC Science & Technology

    2015-07-01

    concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former

  9. An Object-Oriented View of Backend Databases in a Mobile Environment for Navy and Marine Corps Applications

    DTIC Science & Technology

    2006-09-01

    Each of these layers will be described in more detail to include relevant technologies ( Java , PDA, Hibernate , and PostgreSQL) used to implement...Logic Layer -Object-Relational Mapper ( Hibernate ) Data 35 capable in order to interface with Java applications. Based on meeting the selection...further discussed. Query List Application Logic Layer HibernateApache - Java Servlet - Hibernate Interface -OR Mapper -RDBMS Interface

  10. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  11. Thematic mapper flight model preshipment review data package. Volume 3, part B: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Procedures and results are presented for performance and systems integration tests of flight model-1 thematic mapper. Aspects considered cover electronic module integration, radiometric calibration, spectral matching, spatial coverage, radiometric calibration of the calibrator, coherent noise, dynamic square wave response, band to band registration, geometric accuracy, and self induced vibration. Thermal vacuum tests, EMI/EMS, and mass properties are included. Liens are summarized.

  12. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  13. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs.

    PubMed

    Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.

  14. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs

    PubMed Central

    Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207

  15. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.

    PubMed

    Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang

    2012-01-01

    Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/

  16. Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow

    PubMed Central

    Levin, Alex; Reich, David; Patterson, Nick; Berger, Bonnie

    2013-01-01

    The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations—including previously undetected admixture in Sardinians and Basques—involving a proportion of 20–40% ancient northern Eurasian ancestry. PMID:23709261

  17. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  18. Total variation iterative constraint algorithm for limited-angle tomographic reconstruction of non-piecewise-constant structures

    NASA Astrophysics Data System (ADS)

    Krauze, W.; Makowski, P.; Kujawińska, M.

    2015-06-01

    Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.

  19. Automated quasi-3D spine curvature quantification and classification

    NASA Astrophysics Data System (ADS)

    Khilari, Rupal; Puchin, Juris; Okada, Kazunori

    2018-02-01

    Scoliosis is a highly prevalent spine deformity that has traditionally been diagnosed through measurement of the Cobb angle on radiographs. More recent technology such as the commercial EOS imaging system, although more accurate, also require manual intervention for selecting the extremes of the vertebrae forming the Cobb angle. This results in a high degree of inter and intra observer error in determining the extent of spine deformity. Our primary focus is to eliminate the need for manual intervention by robustly quantifying the curvature of the spine in three dimensions, making it consistent across multiple observers. Given the vertebrae centroids, the proposed Vertebrae Sequence Angle (VSA) estimation and segmentation algorithm finds the largest angle between consecutive pairs of centroids within multiple inflection points on the curve. To exploit existing clinical diagnostic standards, the algorithm uses a quasi-3-dimensional approach considering the curvature in the coronal and sagittal projection planes of the spine. Experiments were performed with manuallyannotated ground-truth classification of publicly available, centroid-annotated CT spine datasets. This was compared with the results obtained from manual Cobb and Centroid angle estimation methods. Using the VSA, we then automatically classify the occurrence and the severity of spine curvature based on Lenke's classification for idiopathic scoliosis. We observe that the results appear promising with a scoliotic angle lying within +/- 9° of the Cobb and Centroid angle, and vertebrae positions differing by at the most one position. Our system also resulted in perfect classification of scoliotic from healthy spines with our dataset with six cases.

  20. Solving Assembly Sequence Planning using Angle Modulated Simulated Kalman Filter

    NASA Astrophysics Data System (ADS)

    Mustapa, Ainizar; Yusof, Zulkifli Md.; Adam, Asrul; Muhammad, Badaruddin; Ibrahim, Zuwairie

    2018-03-01

    This paper presents an implementation of Simulated Kalman Filter (SKF) algorithm for optimizing an Assembly Sequence Planning (ASP) problem. The SKF search strategy contains three simple steps; predict-measure-estimate. The main objective of the ASP is to determine the sequence of component installation to shorten assembly time or save assembly costs. Initially, permutation sequence is generated to represent each agent. Each agent is then subjected to a precedence matrix constraint to produce feasible assembly sequence. Next, the Angle Modulated SKF (AMSKF) is proposed for solving ASP problem. The main idea of the angle modulated approach in solving combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The performance of the proposed AMSKF is compared against previous works in solving ASP by applying BGSA, BPSO, and MSPSO. Using a case study of ASP, the results show that AMSKF outperformed all the algorithms in obtaining the best solution.

  1. Off-nadir antenna bias correction using Amazon rain sigma(0) data

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.

    1982-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  2. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  3. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  4. A wide-angle high Mach number modal expansion for infrasound propagation.

    PubMed

    Assink, Jelle; Waxler, Roger; Velea, Doru

    2017-03-01

    The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.

  5. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements.

  6. Integration of the Total Lightning Jump Algorithm into Current Operational Warning Environment Conceptual Models

    NASA Technical Reports Server (NTRS)

    Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end to end physical and dynamical basis for relating lightning rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.

  7. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  8. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  9. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men Chunhua; Romeijn, H. Edwin; Jia Xun

    2010-11-15

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less

  10. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    PubMed

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  11. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  12. Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U.S.S.R.

    USGS Publications Warehouse

    Sadowski, Franklin G.; Covington, Steven J.

    1987-01-01

    Advanced digital processing techniques were applied to Landsat-5 Thematic Mapper (TM) data and SPOT highresolution visible (HRV) panchromatic data to maximize the utility of images of a nuclear powerplant emergency at Chernobyl in the Soviet Ukraine. The images demonstrate the unique interpretive capabilities provided by the numerous spectral bands of the Thematic Mapper and the high spatial resolution of the SPOT HRV sensor.

  13. A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HRV multispectral data for estimating coniferous forest volume

    NASA Technical Reports Server (NTRS)

    Ripple, W. J.; Wang, S.; Isaacson, D. L.; Paine, D. P.

    1991-01-01

    Digital Landsat Thematic Mapper (TM) and SPOT high-resolution visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands.

  14. LANDSAT D to test thematic mapper, inaugurate operational system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.

  15. Thematic Mapper: Design through flight evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LANDSAT 4 and 5, launched in 1982 and 1984, not only carried the Thematic Mapper, but were redesigned to handle the increased data rates associated with it, and to communicate that data to Earth via geosynchronous orbiting Tracking and Data Relay Satellites (TDRS). The TM development program is summarized. A brief historical perspective is presented of the evolution of design requirements and hardware development. The basic performance parameters that serve as sensor design guidelines are presented.

  16. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  17. Table Rock Lake Water-Clarity Assessment Using Landsat Thematic Mapper Satellite Data

    USGS Publications Warehouse

    Krizanich, Gary; Finn, Michael P.

    2009-01-01

    Water quality of Table Rock Lake in southwestern Missouri is assessed using Landsat Thematic Mapper satellite data. A pilot study uses multidate satellite image scenes in conjunction with physical measurements of secchi disk transparency collected by the Lakes of Missouri Volunteer Program to construct a regression model used to estimate water clarity. The natural log of secchi disk transparency is the dependent variable in the regression and the independent variables are Thematic Mapper band 1 (blue) reflectance and a ratio of the band 1 and band 3 (red) reflectance. The regression model can be used to reliably predict water clarity anywhere within the lake. A pixel-level lake map of predicted water clarity or computed trophic state can be produced from the model output. Information derived from this model can be used by water-resource managers to assess water quality and evaluate effects of changes in the watershed on water quality.

  18. Analysis of thematic mapper simulator data collected over eastern North Dakota

    NASA Technical Reports Server (NTRS)

    Anderson, J. E. (Principal Investigator)

    1982-01-01

    The results of the analysis of aircraft-acquired thematic mapper simulator (TMS) data, collected to investigate the utility of thematic mapper data in crop area and land cover estimates, are discussed. Results of the analysis indicate that the seven-channel TMS data are capable of delineating the 13 crop types included in the study to an overall pixel classification accuracy of 80.97% correct, with relative efficiencies for four crop types examined between 1.62 and 26.61. Both supervised and unsupervised spectral signature development techniques were evaluated. The unsupervised methods proved to be inferior (based on analysis of variance) for the majority of crop types considered. Given the ground truth data set used for spectral signature development as well as evaluation of performance, it is possible to demonstrate which signature development technique would produce the highest percent correct classification for each crop type.

  19. Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1985-01-01

    The main emphasis of the research was to determine what effect different wetland plant canopies would have upon observed reflectance in Thematic Mapper bands. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. In other words, the spectral biomass estimate of a broadleaf canopy was most similar to the harvest biomass estimate when a broadleaf canopy radiance model was used. Work is continuing to more precisely determine regression coefficients for each canopy type and to model the change in the coefficients with various combinations of canopy types. Researchers suspect that textural and spatial considerations can be used to identify canopy types and improve biomass estimates from Thematic Mapper data.

  20. LANDSAT-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P.; Bartolucci, L.; Dean, E.; Lozano, F.; Malaret, E.; Mcgillem, C. D.; Valdes, J.; Valenzuela, C.

    1984-01-01

    LANDSAT-4 thematic mapper (TM) and multispectral scanner (MSS) data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and supervised classifiers on test data. A detailed spectral class analysis (multispectral classification) was carried out to compare the information content of the MSS and TM for a large number of scene classes. A temperature-mapping experiment was carried out for a cooling pond to test the quality of thermal-band calibration. Overall TM data quality is very good. The MSS data are noisier than previous LANDSAT results.

  1. Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.

  2. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium

    PubMed Central

    Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam

    2015-01-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  3. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  4. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  5. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less

  6. Direction of Radio Finding via MUSIC (Multiple Signal Classification) Algorithm for Hardware Design System

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2017-10-01

    Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.

  7. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  8. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  9. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  10. Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  11. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration. [Southern Ontario, Lawton, Oklahoma; Owl Creek, Wyoming; Washington, D.C.; and Death Valley California

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Improved delineation of known oil and gas fields in southern Ontario and a spectacularly high amount of structural information on the Owl Creek, Wyoming scene were obtained from analysis of TM data. The use of hue, saturation, and value image processing techniques on a Death Valley, California scene permitted direct comparison of TM processed imagery with existing 1:250,000 scale geological maps of the area and revealed small outcrops of Tertiary volcanic material overlying Paleozoic sections. Analysis of TM data over Lawton, Oklahoma suggests that the reducing chemical environment associated with hydrocarbon seepage change ferric iron to soluble ferrous iron, allowing it to be leached. Results of the band selection algorithm show a suprising consistency, with the 1,4,5 combination selected as optimal in most cases.

  12. SDAV Viz July Progress Update: LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer

    2012-07-30

    SDAV Viz July Progress Update: (1) VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code - (a) Implemented first version of an in-situ adapter based on Paraview CoProcessing Library, (b) Three pipelines: vtkDataSetMapper, vtkContourFilter, vtkPistonContour, (c) Next, resolve issue at boundaries of processor domains; add more advanced viz/analysis pipelines; (2) Halo finding/merger trees - (a) Summer student Wathsala W. from University of Utah is working on data-parallel halo finder algorithm using PISTON, (b) Timo Bremer (LLNL), Valerio Pascucci (Utah), George Zagaris (Kitware), and LANL people are interested in using merger trees for tracking the evolution of halos in cosmo simulations;more » discussed possible overlap with work by Salman Habib and Katrin Heitmann (Argonne) during their visit to LANL 7/11; (3) PISTON integration in ParaView - Now available from ParaView github.« less

  13. The Importance of Measurement Errors for Deriving Accurate Reference Leaf Area Index Maps for Validation of Moderate-Resolution Satellite LAI Products

    NASA Technical Reports Server (NTRS)

    Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.

    2006-01-01

    The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.

  14. Image navigation and registration for the geostationary lightning mapper (GLM)

    NASA Astrophysics Data System (ADS)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  15. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan

    2015-03-01

    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  16. Off-Angle Iris Correction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not accountmore » for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.« less

  17. Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.

  18. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    PubMed

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  19. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  20. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  1. Research on Mechanical Fault Prediction Algorithm for Circuit Breaker Based on Sliding Time Window and ANN

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Rong, Mingzhe; Qiu, Juan; Liu, Dingxin; Su, Biao; Wu, Yi

    A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.

  2. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  3. A New Normalized Difference Cloud Retrieval Technique Applied to Landsat Radiances Over the Oklahoma ARM Site

    NASA Technical Reports Server (NTRS)

    Orepoulos, Lazaros; Cahalan, Robert; Marshak, Alexander; Wen, Guoyong

    1999-01-01

    We suggest a new approach to cloud retrieval, using a normalized difference of nadir reflectivities (NDNR) constructed from a non-absorbing and absorbing (with respect to liquid water) wavelength. Using Monte Carlo simulations we show that this quantity has the potential of removing first order scattering effects caused by cloud side illumination and shadowing at oblique Sun angles. Application of the technique to TM (Thematic Mapper) radiance observations from Landsat-5 over the Southern Great Plains site of the ARM (Atmospheric Radiation Measurement) program gives very similar regional statistics and histograms, but significant differences at the pixel level. NDNR can be also combined with the inverse NIPA (Nonlocal Independent Pixel Approximation) of Marshak (1998) which is applied for the first time on overcast Landsat scene subscenes. We demonstrate the sensitivity of the NIPA-retrieved cloud fields on the parameters of the method and discuss practical issues related to the optimal choice of these parameters.

  4. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  5. Landsat-7 long-term acquisition plan radiometry - evolution over time

    USGS Publications Warehouse

    Markham, Brian L; Goward, Samuel; Arvidson, Terry; Barsi, Julia A.; Scaramuzza, Pat

    2006-01-01

    The Landsat-7 Enhanced Thematic Mapper Plus instrument has two selectable gains for each spectral band. In the acquisition plan, the gains were initially set to maximize the entropy in each scene. One unintended consequence of this strategy was that, at times, dense vegetation saturated band 4 and deserts saturated all bands. A revised strategy, based on a land-cover classification and sun angle thresholds, reduced saturation, but resulted in gain changes occurring within the same scene on multiple overpasses. As the gain changes cause some loss of data and difficulties for some ground processing systems, a procedure was devised to shift the gain changes to the nearest predicted cloudy scenes. The results are still not totally satisfactory as gain changes still impact some scenes and saturation still occurs, particularly in ephemerally snow-covered regions. A primary conclusion of our experience with variable gain on Landsat-7 is that such an approach should not be employed on future global monitoring missions.

  6. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator); Latty, R. S.; Dean, E.; Knowlton, D. J.

    1980-01-01

    Separate holograms of horizontally (HH) and vertically (HV) polarized responses obtained by the APQ-102 side-looking radar were processed through an optical correlator and the resulting image was recorded on positive film from which black and white negative and positive prints were made. Visual comparison of the HH and HV images reveals a distinct dark band in the imagery which covers about 30% of the radar strip. Preliminary evaluaton of the flight line 1 date indicates that various features on the HH and HV images seem to have different response levels. The amount of sidelap due to the look angle between flight lines 1 and 2 is negligible. NASA mission #425 to obtain flightlines of NS-001 MSS data and supporting aerial photography was successfully flown. Flight line 3 data are of very good quality and virtually cloud-free. Results of data analysis for selection of test fields and for evaluation of waveband combination and spatial resolution are presented.

  7. Mapping Hydrothermal Alterations in the Muteh Gold Mining Area in Iran by using ASTER satellite Imagery data

    NASA Astrophysics Data System (ADS)

    Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed

    2016-04-01

    Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.

  8. Hyperspectral Mapping of the Invasive Species Pepperweed and the Development of a Habitat Suitability Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Andrew; Gole, Alexander; Randall, Jarom; Dlott, Glade; Zhang, Sylvia; Alfaro, Brian; Schmidt, Cindy; Skiles, J. W.

    2011-01-01

    Mapping and predicting the spatial distribution of invasive plant species is central to habitat management, however difficult to implement at landscape and regional scales. Remote sensing techniques can reduce the impact field campaigns have on these ecologically sensitive areas and can provide a regional and multi-temporal view of invasive species spread. Invasive perennial pepperweed (Lepidium latifolium) is now widespread in fragmented estuaries of the South San Francisco Bay, and is shown to degrade native vegetation in estuaries and adjacent habitats, thereby reducing forage and shelter for wildlife. The purpose of this study is to map the present distribution of pepperweed in estuarine areas of the South San Francisco Bay Salt Pond Restoration Project (Alviso, CA), and create a habitat suitability model to predict future spread. Pepperweed reflectance data were collected in-situ with a GER 1500 spectroradiometer along with 88 corresponding pepperweed presence and absence points used for building the statistical models. The spectral angle mapper (SAM) classification algorithm was used to distinguish the reflectance spectrum of pepperweed and map its distribution using an image from EO-1 Hyperion. To map pepperweed, we performed a supervised classification on an ASTER image with a resulting classification accuracy of 71.8%. We generated a weighted overlay analysis model within a geographic information system (GIS) framework to predict areas in the study site most susceptible to pepperweed colonization. Variables for the model included propensity for disturbance, status of pond restoration, proximity to water channels, and terrain curvature. A Generalized Additive Model (GAM) was also used to generate a probability map and investigate the statistical probability that each variable contributed to predict pepperweed spread. Results from the GAM revealed distance to channels, distance to ponds and curvature were statistically significant (p < 0.01) in determining the locations of suitable pepperweed habitats.

  9. Spectral signature verification using statistical analysis and text mining

    NASA Astrophysics Data System (ADS)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is present for comparison. The spectral validation method proposed is described from a practical application and analytical perspective.

  10. Abstracts of the annual Planetary Geologic Mappers Meeting, June 18-19, 2001, Albuquerque, New Mexico

    USGS Publications Warehouse

    Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at lander (outcrop) scales. Trips to the top of the rift-flanking mountains (Sandia Peak, 10,600 ft) and the Valles Caldera, as well as various active spring deposits highlighted the day. After welcoming remarks from the host, Larry Crumpler, opening remarks by Tim Parker and Dave Senske and a report on mapping program status by Ken Tanaka, the mappers’ oral presentations began the morning of June 18, with a session on Venus Geologic Mapping. The afternoon continued with an exciting USGS Planetary GIS on the Web (PIGWAD) demonstration and ended with an open discussion of issues in planetary mapping. Posted maps of Venus quadrangles were viewed during the morning break. Tuesday’s Mars Geologic Mapping session began with a pep talk from Tim Parker encouraging mapping community input to the MER landing site selection committee and continued with Steve Saunders describing the potential contribution of Odyssey Mission data to the geologic mapping of Mars. A Mars map poster session was held during the morning break, and the meeting was adjourned mid-afternoon. After the mappers meeting on Tuesday, attendants were treated to a "Field trip to Mars." The Institute of Meteoritics at the University of New Mexico houses an outstanding collection of meteorites, including those that have been identified as originating from Mars. The Institute tour featured examples of most of the different lithologies exhibited by martian meteorites identified to date, as well as some of the analytical tests (scanning electron microscope) they are conducting on specimens from ALH84001. Wednesday, June 20, featured an optional post-meeting field trip to see a travertine quarry and nearby sites of travertine deposition, the Very Large Array near Socorro, and other volcanic features within the Rio Grande Rift.

  11. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  12. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  13. MR 201104: Evaluation of Discrimination Technologies and Classification Results and MR 201157: Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2016-09-23

    Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s

  14. Evidence for dust transport in Viking IR thermal mapper opacity data

    NASA Technical Reports Server (NTRS)

    Martin, Terry Z.

    1993-01-01

    Global maps of 9-micron dust opacity derived from radiometric observations made by the Viking Orbiter IR Thermal Mapper instruments have revealed a wealth of new information about the distribution of airborne dust over 1.36 Mars years from 1976-1979. In particular, the changing dust distribution during major dust storms is of interest since the data provide a point of contact with both Earth-based observations of storm growth and with global circulation models.

  15. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  16. Moon Zoo - Examples of Interesting Lunar Morphology

    NASA Astrophysics Data System (ADS)

    Cook, A. C.; Wilkinson, J.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  17. Thematic mapper critical elements breadboard program

    NASA Technical Reports Server (NTRS)

    Dale, C. H., Jr.; Engel, J. L.; Harney, E. D.

    1976-01-01

    A 40.6 cm bidirectional scan mirror assembly, a scan line corrector and a silicon photodiode array with integral preamplifier input stages were designed, fabricated, and tested to demonstrate performance consistent with requirements of the Hughes thematic mapper system. The measured performance met or exceeded the original design goals in all cases with the qualification that well defined and well understood deficiencies in the design of the photodiode array package will require the prescribed corrections before flight use.

  18. SAR Processing Based On Two-Dimensional Transfer Function

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  19. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    PubMed Central

    Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye

    2014-01-01

    This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109

  20. SLO blind data set inversion and classification using physically complete models

    NASA Astrophysics Data System (ADS)

    Shamatava, I.; Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.; Grzegorczyk, T. M.; Bijamov, A.

    2010-04-01

    Discrimination studies carried out on TEMTADS and Metal Mapper blind data sets collected at the San Luis Obispo UXO site are presented. The data sets included four types of targets of interest: 2.36" rockets, 60-mm mortar shells, 81-mm projectiles, and 4.2" mortar items. The total parameterized normalized magnetic source (NSMS) amplitudes were used to discriminate TOI from metallic clutter and among the different hazardous UXO. First, in object's frame coordinate, the total NSMS were determined for each TOI along three orthogonal axes from the training data provided by the Strategic Environmental Research and Development Program (SERDP) along with the referred blind data sets. Then the inverted total NSMS were used to extract the time-decay classification features. Once our inversion and classification algorithms were tested on the calibration data sets then we applied the same procedure to all blind data sets. The combined NSMS and differential evolution algorithm is utilized for determine the NSMS strengths for each cell. The obtained total NSMS time-decay curves were used to extract the discrimination features and perform classification using the training data as reference. In addition, for cross validation, the inverted locations and orientations from NSMS-DE algorithm were compared against the inverted data that obtained via the magnetic field, vector and scalar potentials (HAP) method and the combined dipole and Gauss-Newton approach technique. We examined the entire time decay history of the total NSMS case-by-case for classification purposes. Also, we use different multi-class statistical classification algorithms for separating the dangerous objects from non hazardous items. The inverted targets were ranked by target ID and submitted to SERDP for independent scoring. The independent scoring results are presented.

Top