Preferred viewing distance and screen angle of electronic paper displays.
Shieh, Kong-King; Lee, Der-Song
2007-09-01
This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.
Observation of finite-wavelength screening in high-energy-density matter
Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; ...
2015-04-23
A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less
NASA Astrophysics Data System (ADS)
Maquiling, Joel Tiu; Visaga, Shane Marie
This study investigates the dependence of the critical angle θc of stability on different mass ratios γ of layered bi-phasic granular matter mixtures and on the critical angle of its mono-disperse individual components. It also aims to investigate and explain regime transitions of granular matter flowing down a tilted rough inclined plane. Critical angles and flow regimes for a bi-phasic mixture of sago spheres and bi-phasic pepper mixture of fine powder and rough spheres were observed and measured using video analysis. The critical angles θc MD of mono-disperse granular matter and θc BP of biphasic granular matter mixtures were observed and compared. All types of flow regimes and a supramaximal critical angle of stability exist at mass ratio γ = 0.5 for all biphasic granular matter mixtures. The θc BP of sago spheres was higher than the θc MD of sago spheres. Moreover, the θc BP of the pepper mixture was in between the θc MD of fine pepper and θc MD of rough pepper spheres. Comparison of different granular material shows that θc MD is not simply a function of particle diameter but of particle roughness as well. Results point to a superposition mechanism of the critical angles of biphasic sphere mixtures.
Oetjen, Sophie; Ziefle, Martina
2009-01-01
An increasing demand to work with electronic displays and to use mobile computers emphasises the need to compare visual performance while working with different screen types. In the present study, a cathode ray tube (CRT) was compared to an external liquid crystal display (LCD) and a Notebook-LCD. The influence of screen type and viewing angle on discrimination performance was studied. Physical measurements revealed that luminance and contrast values change with varying viewing angles (anisotropy). This is most pronounced in Notebook-LCDs, followed by external LCDs and CRTs. Performance data showed that LCD's anisotropy has negative impacts on completing time critical visual tasks. The best results were achieved when a CRT was used. The largest deterioration of performance resulted when participants worked with a Notebook-LCD. When it is necessary to react quickly and accurately, LCD screens have disadvantages. The anisotropy of LCD-TFTs is therefore considered to be as a limiting factor deteriorating visual performance.
Oh, Chang Hyun; Kim, Chan Gyu; Lee, Myoung Seok; Park, Hyeong-Chun; Park, Chong Oon
2012-01-01
Purpose The purposes of this study were to evaluate the usefulness and limitations of chest radiographs in scoliosis screening and to compare these results with those of thoraco-lumbar standing radiographs (TLSR). Materials and Methods During Korean conscription, 419 males were retrospectively examined using both chest radiographs and TLSR to confirm the scoliosis and Cobb angle at the Regional Military Manpower. We compared the types of spinal curves and Cobb angles as measured from different radiographs. Results In the pattern of spinal curves, the overall matching rate of chest radiographs using TLSR was about 58.2% (244 of 419 cases). Cobb angle differences between chest radiographs and TLSR with meaningful difference was observed in 156 cases (37.2%); a relatively high proportion (9.5%) of Cobb angle differences more than 10 degrees was also observed. The matching rate of both spinal curve types and Cobb angle accuracy between chest radiographs and TLSR was 27.9% (117 among 419 cases). Chest radiographs for scoliosis screening were observed with 93.94% of sensitivity and 61.67% of specificity in thoracic curves; however, less than 40% of sensitivity (38.27%, 20.00%, and 25.80%) and more than 95% of specificity (97.34%, 99.69%, and 98.45%) were observed in thoraco-lumbar, lumbar, and double major curves, respectively. Conclusion The accuracy of chest radiographs for scoliosis screening was low. The incidence of thoracic curve scoliosis was overestimated and lumbar curve scoliosis was easily missed by chest radiography. Scoliosis screening using chest radiography has limited values, nevertheless, it is useful method for detecting thoracic curve scoliosis. PMID:23074120
Characteristics of mist 3D screen for projection type electro-holography
NASA Astrophysics Data System (ADS)
Sato, Koki; Okumura, Toshimichi; Kanaoka, Takumi; Koizumi, Shinya; Nishikawa, Satoko; Takano, Kunihiko
2006-01-01
The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel (time shared CGH of RGB three colors). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.
OPTIMUM PHYSICAL VIEWING CONDITIONS FOR A REAR PROJECTION DAYLIGHT SCREEN.
ERIC Educational Resources Information Center
ASH, PHILIP; JASPEN, NATHAN
AN EXPERIMENT DESIGNED TO DISCOVER WHETHER THERE WERE DIFFERENCES IN LEARNING WHICH COULD BE ATTRIBUTED TO DIFFERENCES IN ROOM ILLUMINATION, VIEWING ANGLE, AND DISTANCE FROM THE SCREEN AS THEY RELATED TO THE CABINET-TYPE PROJECTOR WAS PRESENTED. PARTICIPANTS WERE 721 TRAINEES AT THE GREAT LAKES NAVAL TRAINING STATION. THE TASK CHOSEN WAS THE…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.
Here, in the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino’s helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲ 8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tmore » $$-\\atop{f}$$ ≃ 5 GeV , whereas positive helicity neutrinos freeze out at T$$+\\atop{f}$$≃ 8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li problem, albeit at the very edge of the possible parameter space. A heavy sterile neutrino with a mass of a few MeV could decay into light sterile neutrinos, of a few keV in mass, that contribute to warm dark matter. In conclusion, we argue that heavy sterile neutrinos with lifetime ≤1/H 0 reach local thermodynamic equilibrium.« less
Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures
NASA Astrophysics Data System (ADS)
Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.
2017-02-01
In the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino's helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tf-≃5 GeV , whereas positive helicity neutrinos freeze out at Tf+≃8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li problem, albeit at the very edge of the possible parameter space. A heavy sterile neutrino with a mass of a few MeV could decay into light sterile neutrinos, of a few keV in mass, that contribute to warm dark matter. We argue that heavy sterile neutrinos with lifetime ≤1 /H0 reach local thermodynamic equilibrium.
Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures
Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.
2017-02-22
Here, in the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino’s helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲ 8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tmore » $$-\\atop{f}$$ ≃ 5 GeV , whereas positive helicity neutrinos freeze out at T$$+\\atop{f}$$≃ 8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li problem, albeit at the very edge of the possible parameter space. A heavy sterile neutrino with a mass of a few MeV could decay into light sterile neutrinos, of a few keV in mass, that contribute to warm dark matter. In conclusion, we argue that heavy sterile neutrinos with lifetime ≤1/H 0 reach local thermodynamic equilibrium.« less
Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...
Chaput, Jean-Philippe; Leduc, Geneviève; Boyer, Charles; Bélanger, Priscilla; LeBlanc, Allana G; Borghese, Michael M; Tremblay, Mark S
2014-07-11
To examine whether the number and type of electronic screens available in children's bedrooms matter in their relationship to adiposity, physical activity and sleep. A cross-sectional study was conducted involving 502 children aged 9-11 years from Ottawa, Ontario. The presence (yes/no) of a television (TV), computer or video game system in the child's bedroom was reported by the parents. Percentage body fat was measured using bioelectrical impedance. An accelerometer was worn over seven days to assess moderate-to-vigorous physical activity (MVPA), total sedentary time, sleep duration and sleep efficiency. Screen time was self-reported by the child. After adjustment for age, sex, ethnicity, annual household income and highest level of parental education, children with 2-3 screens in their bedroom had a significantly higher percentage of body fat than children with no screen in their bedroom. However, while children with 2-3 screens in their bedroom engaged in more screen time overall than those with no screen, total sedentary time and MVPA were not significantly different. Sleep duration was not related to the number of screens in the bedroom, but sleep efficiency was significantly lower in children with at least 2 screens in the bedroom. Finally, children having only a TV in their bedroom had significantly higher adiposity than those having no screen at all. In contrast, the presence of a computer in children's bedrooms was not associated with higher adiposity than that of children with no screen. A higher number of screens in a child's bedroom was associated with higher adiposity, more total screen time and lower sleep efficiency. Having a TV in the bedroom appears to be the type of screen presence associated with higher levels of adiposity. Given the popularity of screens among children, these findings are increasingly relevant to health promotion strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing
2015-10-12
We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of themore » technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.« less
Matter-neutrino resonance in a multiangle neutrino bulb model
NASA Astrophysics Data System (ADS)
Vlasenko, Alexey; McLaughlin, G. C.
2018-04-01
Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.
Photometric and colorimetric measurements of CRT and TFT monitors for vision research
NASA Astrophysics Data System (ADS)
Klein, Johann; Zlatkova, Margarita; Lauritzen, Jan; Pierscionek, Barbara
2013-08-01
Visual displays have various limitations that can affect the results of vision research experiments. This study compares several characteristics of CRT (Hewlett Packard 7650) and TFT (LG Flatron L227 WT and Samsung 2233 RZ) monitors, including luminance and colour spatial homogeneity, luminance changes with viewing angle, contrast linearity and warm-up characteristics. In addition, the psychophysical performance in grating contrast sensitivity test for both CRT and TFT monitors was compared. The TFT monitors demonstrated spatial non-homogeneity ('mura') with up to 50% of luminance change across the screen and a more significant luminance viewing angle dependence compared with CRT. The chromaticity of the white point showed negligible variation across the screen. Both types of monitors required a warm-up time of the order of 60 min. Despite the physical differences between monitors, visual contrast sensitivity performance measured with the two types of monitors was similar using both static and flickering gratings.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.
2017-12-01
We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.
Explaining dark matter and neutrino mass in the light of TYPE-II seesaw model
NASA Astrophysics Data System (ADS)
Biswas, Anirban; Shaw, Avirup
2018-02-01
With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra SU(2) doublet Φ. Moreover, we have imposed a Z2 parity on Φ which remains unbroken as the vacuum expectation value of Φ is zero. Consequently, the lightest neutral component of Φ becomes naturally stable and can be a viable dark matter candidate. On the other hand, light Majorana masses for neutrinos have been generated following usual Type-II seesaw mechanism. Further in this framework, for the first time we have derived the full set of vacuum stability and unitarity conditions, which must be satisfied to obtain a stable vacuum as well as to preserve the unitarity of the model respectively. Thereafter, we have performed extensive phenomenological studies of both dark matter and neutrino sectors considering all possible theoretical and current experimental constraints. Finally, we have also discussed a qualitative collider signatures of dark matter and associated odd particles at the 13 TeV Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; Mojahedi, Mojtaba Amir
2017-05-01
The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter Λ. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample source β =-\\tfrac{π }{4}, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations {θ }E(β =0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ɛ =\\tfrac{16{{Λ }}{M}2}{3}. The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x 0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001< ɛ < 0.01.
[Analysis of risk factors for dry eye syndrome in visual display terminal workers].
Zhu, Yong; Yu, Wen-lan; Xu, Ming; Han, Lei; Cao, Wen-dong; Zhang, Hong-bing; Zhang, Heng-dong
2013-08-01
To analyze the risk factors for dry eye syndrome in visual display terminal (VDT) workers and to provide a scientific basis for protecting the eye health of VDT workers. Questionnaire survey, Schirmer I test, tear break-up time test, and workshop microenvironment evaluation were performed in 185 VDT workers. Multivariate logistic regression analysis was performed to determine the risk factors for dry eye syndrome in VDT workers after adjustment for confounding factors. In the logistic regression model, the regression coefficients of daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and female gender on the results of Schirmer I test were 0.153, 0.548, 0.400, 0.796, 0.234, 0.516, 0.559, and -0.685, respectively; the regression coefficients of daily mean time of exposure to screen, parallel screen-eye angle, upward screen-eye angle, age, working years, and female gender on tear break-up time were 0.021, 0.625, 2.652, 0.749, 0.403, and 1.481, respectively. Daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and working years are risk factors for dry eye syndrome in VDT workers.
The Calibration of the Corneal Light Reflex to Estimate the Degree of an Angle of Deviation.
Tengtrisorn, Supaporn; Tangkijwongpaisarn, Sitthi; Burachokvivat, Somporn
2015-12-01
To measure the conversion factor for the size of an angle of deviation from the clinical photographs of the corneal light reflex. In this cross-sectional study, 19 normal subjects with 20/20 visual acuity were photographed with a digital camera while staring at targets placed five prism diopters (PD) apart from one another on a screen. The subjects were tested at a distance of 1 meter (m) and 4 m from a screen. Measurement of the corneal light reflex displacement for each fixed target was obtained from the photographs. The calibration of the corneal light reflex displacement in millimeters (mm) against the angle of deviation in PD was then analyzed with repeated measure linear regression analysis. At 1 m, the values of 0.047 mm/PD and 0.058 mm/PD were obtained as the conversion factor from reflex displacement to deviated angle for the nasal side and temporal side respectively. At 4 m, the values were 0.050 mm/PD and 0.064 mm/PD for the nasal side and the temporal side respectively. There were significant differences between the values obtained at the different distances, regardless of nasal or temporal side. Conversion factors were presented for estimating the strabismic angle at different distances and gazes. For clinical practice, the use of photographs to estimate the strabismic angle should use different values for different distances and strabismic types.
Addendum to "Compact Perturbative Expressions for Neutrino Oscillations in Matter"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.
2018-01-19
In this paper we rewrite the neutrino mixing angles and mass squared differences in matter given, in our original paper, in a notation that is more conventional for the reader. Replacing the usual neutrino mixing angles and mass squared differences in the expressions for the vacuum oscillation probabilities with these matter mixing angles and mass squared differences gives an excellent approximation to the oscillation probabilities in matter. Comparisons for T2K, NOvA, T2HKK and DUNE are also given for neutrinos and anti-neutrinos, disappearance and appearance channels, normal ordering and inverted ordering.
Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allahverdi, Rouzbeh; Knockel, Bradley; Dutta, Bhaskar
2015-12-01
We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.
NASA Astrophysics Data System (ADS)
Lee, Jae-Yong; Kim, Hyo-Jun; Kim, Young-Joo
2016-02-01
A semi-transparent screen with hemisphere micro-patterns was proposed and designed to enhance the brightness uniformity of the display image toward the driver for a direct-view type head-up display. The hemisphere micro-patterns were designed to consider the inclined angle of the windshield for efficient reflection and scattering toward to the driver. The density and radius of the hemisphere micro-patterns were adjusted as a function of position on the screen based on the geometrical calculation and analyzed by the commercial optical simulation tool based on a ray-tracing method. The designed hemisphere micro-patterns was fabricated by the thermal reflow method and evaluated to confirm the uniform illumination. From the results, the semi-transparent screen with variable micro-patterns shows the 91.9 % of brightness uniformity with the enhanced luminance compare to a screen without micro-patterns. A luminance of fabricated screen also shows good agreement with the simulation result to reflect the clear and bright driving information to the driver.
[Reliability of retinal imaging screening in retinopathy of prematurity].
Navarro-Blanco, C; Peralta-Calvo, J; Pastora-Salvador, N; Alvarez-Rementería, L; Chamorro, E; Sánchez-Ramos, C
2014-09-01
The retinopathy of prematurity (ROP) is a potentially avoidable cause of blindness in children. The advances in neonatal care make the survival of extremely premature infants, who show a greater incidence of the disease, possible. The aim of the study is to evaluate the reliability of ROP screening using retinography imaging with the RetCam 3 wide-angle camera and also study the variability of ROP diagnosis depending on the evaluator. The indirect ophthalmoscopy exam was performed by a Pediatric ROP-Expert Ophthalmologist. The same ophthalmologist and a technician specialized in digital image capture took retinal images using the RetCam 3 wide-angle camera. A total of 30 image sets were analyzed by 3 masked groups: group A (8 ophthalmologists), group B (5 experts in vision), and group C (2 ROP-expert ophthalmologists). According to the diagnosis using indirect ophthalmoscopy, the sensitivity (26-93), Kappa (0.24-0.80), and the percent agreement were statistically significant in group C for the diagnosis of ROP Type 1. In the diagnosis of ROP Type 1+Type 2, Kappa (0.17-0.33) and the percent agreement (58-90) were statistically significant, with higher values in group C. The diagnosis, carried out by ROP-expert ophthalmologists, using the wide-angle camera RetCam 3 has proved to be a reliable method. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Correlation between quarter-point angle and nuclear radius
NASA Astrophysics Data System (ADS)
Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan
2017-04-01
The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)
42 CFR 431.241 - Matters to be considered at the hearing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... changes in the type or amount of services; (c) A decision by a skilled nursing facility or nursing... screening and annual resident review requirements of section 1919(e)(7) of the Act. [57 FR 56505, Nov. 30...
42 CFR 431.241 - Matters to be considered at the hearing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... changes in the type or amount of services; (c) A decision by a skilled nursing facility or nursing... screening and annual resident review requirements of section 1919(e)(7) of the Act. [57 FR 56505, Nov. 30...
42 CFR 431.241 - Matters to be considered at the hearing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... changes in the type or amount of services; (c) A decision by a skilled nursing facility or nursing... screening and annual resident review requirements of section 1919(e)(7) of the Act. [57 FR 56505, Nov. 30...
42 CFR 431.241 - Matters to be considered at the hearing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... changes in the type or amount of services; (c) A decision by a skilled nursing facility or nursing... screening and annual resident review requirements of section 1919(e)(7) of the Act. [57 FR 56505, Nov. 30...
42 CFR 431.241 - Matters to be considered at the hearing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... changes in the type or amount of services; (c) A decision by a skilled nursing facility or nursing... screening and annual resident review requirements of section 1919(e)(7) of the Act. [57 FR 56505, Nov. 30...
Examining the Usability of Touch Screen Gestures for Older and Younger Adults.
Gao, Qin; Sun, Qiqi
2015-08-01
We examined the usability issues associated with four touch screen gestures (clicking, dragging, zooming, and rotating) among older and younger users. It is especially important to accommodate older users' characteristics to ensure the accessibility of information and services that are important to their quality of life. Forty older and 40 younger participants completed four experiments, each of which focused on one gesture. The effects of age, type of touch screen (surface acoustic wave vs. optical), inclination angle (30°, 45°, 60°, and 75°), and user interface factors (clicking: button size and spacing; dragging: dragging direction and distance; zooming: design of zooming gesture; rotating: design of rotating gesture) on user performance and satisfaction were examined. Button sizes that are larger than 15.9 × 9.0 mm led to better performance and higher satisfaction. The effect of spacing was significant only when the button size was notably small or large. Rightward and downward dragging were preferred to leftward and upward dragging, respectively. The younger participants favored direct manipulation gestures using multiple fingers, whereas the older participants preferred the click-to design. The older participants working with large inclination angles of 60° to 75° reported a higher level of satisfaction than the older participants working with smaller angles. We proposed a set of design guidelines for touch screen user interfaces and discussed implications for the selection of appropriate technology and the configuration of the workspace. The implications are useful for the design of large touch screen applications, such as desktop computers, information kiosks, and health care support systems. © 2015, Human Factors and Ergonomics Society.
Neutron Scattering Studies of Vortex Matter in Type-II Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xinsheng Ling
2012-02-02
The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.« less
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
Nishimura, T; Doi, K; Fujimoto, H
2015-08-01
Touch-sensitive screen terminals enabling intuitive operation are used as input interfaces in a wide range of fields. Tablet terminals are one of the most common devices with a touch-sensitive screen. They have a feature of good portability, enabling use under various conditions. On the other hand, they require a GUI designed to prevent decrease of usability under various conditions. For example, the angle of fingertip contact with the display changes according to finger posture during operation and how the case is held. When a human fingertip makes contact with an object, the contact area between the fingertip and contact object increases or decreases as the contact angle changes. A touch-sensitive screen detects positions using the change in capacitance of the area touched by the fingertip; hence, differences in contact area between the touch-sensitive screen and fingertip resulting from different forefinger angles during operation could possibly affect operability. However, this effect has never been studied. We therefore conducted an experiment to investigate the relationship between size/spacing and operability, while taking the effect of fingertip contact angle into account. As a result, we have been able to specify the button size and spacing conditions that enable accurate and fast operation regardless of the forefinger contact angle.
In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI
Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.
2009-01-01
Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168
Projection-type see-through holographic three-dimensional display
NASA Astrophysics Data System (ADS)
Wakunami, Koki; Hsieh, Po-Yuan; Oi, Ryutaro; Senoh, Takanori; Sasaki, Hisayuki; Ichihashi, Yasuyuki; Okui, Makoto; Huang, Yi-Pai; Yamamoto, Kenji
2016-10-01
Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Melanie; Miller, Stuart; Tang, Katherine
Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values. Methods: Relative light output values and high-resolution PRFs have been experimentally measured with a custom setup. A corresponding set ofmore » simulated light output values and PRFs have also been produced, where detailed knowledge of the experimental setup and CsI:Tl screen structures are accounted for in the simulations. Four different screens were investigated with different thicknesses, column tilt angles, and substrate types. A quantitative comparison between the experimental and simulated PRFs was performed for four different incidence angles (0 deg., 15 deg., 30 deg., and 45 deg.) and two different x-ray spectra (40 and 70 kVp). The figure of merit (FOM) used measures the normalized differences between the simulated and experimental data averaged over a region of interest. Results: Experimental relative light output values ranged from 1.456 to 1.650 and were in approximate agreement for aluminum substrates, but poor agreement for graphite substrates. The FOMs for all screen types, incidence angles, and energies ranged from 0.1929 to 0.4775. To put these FOMs in context, the same FOM was computed for 2D symmetric Gaussians fit to the same experimental data. These FOMs ranged from 0.2068 to 0.8029. Our analysis demonstrates that MANTIS reproduces experimental PRFs with higher accuracy than a symmetric 2D Gaussian fit to the experimental data in the majority of cases. Examination of the spatial distribution of differences between the PRFs shows that the main reason for errors between MANTIS and the experimental data is that MANTIS-generated PRFs are sharper than the experimental PRFs. Conclusions: The experimental validation of MANTIS performed in this study demonstrates that MANTIS is able to reliably predict experimental PRFs, especially for thinner screens, and can reproduce the highly asymmetric shape seen in the experimental data. As a result, optimizations and reconstructions carried out using MANTIS should yield results indicative of actual detector performance. Better characterization of screen properties is necessary to reconcile the simulated light output values with experimental data.« less
Description of a landing site indicator (LASI) for light aircraft operation
NASA Technical Reports Server (NTRS)
Fuller, H. V.; Outlaw, B. K. E.
1976-01-01
An experimental cockpit mounted head-up type display system was developed and evaluated by LaRC pilots during the landing phase of light aircraft operations. The Landing Site Indicator (LASI) system display consists of angle of attack, angle of sideslip, and indicated airspeed images superimposed on the pilot's view through the windshield. The information is made visible to the pilot by means of a partially reflective viewing screen which is suspended directly in frot of the pilot's eyes. Synchro transmitters are operated by vanes, located at the left wing tip, which sense angle of attack and sideslip angle. Information is presented near the center of the display in the form of a moving index on a fixed grid. The airspeed is sensed by a pitot-static pressure transducer and is presented in numerical form at the top center of the display.
Larson, Christopher M; Sikka, Robby S; Sardelli, Matthew C; Byrd, J W Thomas; Kelly, Bryan T; Jain, Rahul K; Giveans, M Russell
2013-03-01
The first purpose was to evaluate radiographic pathomorphology/abnormalities in a cohort of high-level collegiate football players screened with hip radiographs. The second purpose was to define the radiographic predictors of athletic-related "hip" and "groin" symptoms in this cohort of high-level athletes. The study population included all male collegiate football players undergoing evaluation and hip radiography at the National Football League (NFL) Scouting Combine in 2009 and 2010. All radiographs were evaluated with a detailed evaluation for hip pathomorphology. Symptoms were recorded as symptomatic or asymptomatic with respect to athletic-related groin/hip pain for comparative purposes. There were 125 players (239 hips) who had hip radiographs and were included in the final cohort. Ninety percent of players (87% of hips) in this cohort had at least 1 finding consistent with cam-type and/or pincer-type femoroacetabular impingement (FAI). There were 75 hips in the symptomatic group and 164 hips in the asymptomatic group. Although the symptomatic group had a greater prevalence of cam-type FAI (P = .009), combined-type FAI (P < .001), and osteitis pubis (P = .014), increasing alpha angle (larger cam deformities) was the only independent predictor of athletic-related groin pain (P = .01). There was no correlation, however, between FAI and body mass index (P = .659), player position (P = .166), or whether a player was drafted by an NFL team (P = .430). Radiographic signs of FAI were frequently seen in collegiate NFL prospects who were screened with hip radiographs. Although patients with radiographic evidence of osteitis pubis, cam- and combined-type FAI, and larger cam deformities showed a statistically higher prevalence of symptoms, increasing alpha angle (larger cam deformity) was the only independent predictor of athletic-related hip/groin pain. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
The Clinical Effectiveness of School Screening Programme for Idiopathic Scoliosis in Malaysia.
Deepak, A S; Ong, J Y; Choon, Dsk; Lee, C K; Chiu, C K; Chan, Cyw; Kwan, M K
2017-03-01
There is no large population size study on school screening for scoliosis in Malaysia. This study is aimed to determine the prevalence rate and positive predictive value (PPV) of screening programme for adolescent idiopathic scoliosis. A total of 8966 voluntary school students aged 13-15 years old were recruited for scoliosis screening. Screening was done by measuring the angle of trunk rotation (ATR) on forward bending test (FBT) using a scoliometer. ATR of 5 degrees or more was considered positive. Positively screened students had standard radiographs done for measurement of the Cobb angle. Cobb angle of >10° was used to diagnose scoliosis. The percentage of radiological assessment referral, prevalence rate and PPV of scoliosis were then calculated. Percentage of radiological assessment referral (ATR >5°) was 4.2% (182/4381) for male and 5.0% (228/4585) for female. Only 38.0% of those with ATR >5° presented for further radiological assessment. The adjusted prevalence rate was 2.55% for Cobb angle >10°, 0.59% for >20° and 0.12% for >40°. The PPV is 55.8% for Cobb angle >10°, 12.8% for >20° and 2.6% for > 40°. This is the largest study of school scoliosis screening in Malaysia. The prevalence rate of scoliosis was 2.55%. The positive predictive value was 55.8%, which is adequate to suggest that the school scoliosis screening programme did play a role in early detection of scoliosis. However, a cost effectiveness analysis will be needed to firmly determine its efficacy.
Lee-side flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Miller, D. S.; Wood, R. M.
1985-01-01
An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.
Using voids to unscreen modified gravity
NASA Astrophysics Data System (ADS)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius
2018-04-01
The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.
Cosmological axion and a quark nugget dark matter model
NASA Astrophysics Data System (ADS)
Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel
2018-02-01
We study a dark matter (DM) model offering a very natural explanation of two (naively unrelated) problems in cosmology: the observed relation ΩDM˜Ωvisible and the observed asymmetry between matter and antimatter in the Universe, known as the "baryogenesis" problem. In this framework, both types of matter (dark and visible) have the same QCD origin, form at the same QCD epoch, and are proportional to one and the same dimensional parameter of the system, ΛQCD, which explains how these two naively distinct problems could be intimately related, and could be solved simultaneously within the same framework. More specifically, the DM in this model is composed by two different ingredients: the (well-studied) DM axions and the (less-studied) quark nuggets made of matter or antimatter. We focus on the quantitative analysis of the relation between these two distinct components contributing to the dark sector of the theory determined by ΩDM≡[ΩDM(nuggets)+ΩDM(axion)] . We argue that the nuggets' DM component always traces the visible matter density, i.e., ΩDM(nuggets)˜Ωvisible , and this feature is not sensitive to the parameters of the system such as the axion mass ma or the misalignment angle θ0. It should be contrasted with conventional axion production mechanisms due to the misalignment when ΩDM(axion) is highly sensitive to the axion mass ma and the initial misalignment angle θ0. We also discuss the constraints on this model related to the inflationary scale HI, nonobservation of the isocurvature perturbations and the tensor modes. We also comment on some constraints related to various axion search experiments.
Effect of screens in wide-angle diffusers
NASA Technical Reports Server (NTRS)
Schubauer, G B; Spangenberg, W G
1949-01-01
An experimental investigation at low airspeeds was made of the filling effect observed when a screen or similar resistance is placed across a diffuser. The filling effect is found to be real in that screens can prevent separation or restore separated flow in diffusers even of extreme divergence and to depend principally on screen location and pressure-drop coefficient of the screen. Results are given for three different diffusers of circular cross section with a variety of screen arrangements. Effects of single screens and multiple screens are shown. The mechanics of the filling effect is explained, and possible efficiencies are discussed. Results of arrangements of multiple screens in wide-angle diffusers are given to show a possible application to damping screens as used in wind tunnels to reduce turbulence. (author)
Gramer, Gwendolyn; Gramer, Eugen
2018-04-01
To compare stage of visual field loss (VFL) and age at diagnosis between patients with different types of glaucoma with regard to glaucoma screening and driving ability. In a cross-sectional study of 1988 consecutive patients with different types of glaucoma VFL at diagnosis and age at diagnosis were assessed. Patients with binocular advanced or severe VFL were classified unable, patients with no VFL in one eye and VFL I-V (Aulhorn classification) in the other eye able, all other constellations questionably able to drive. There were significant differences in age at diagnosis between different glaucomas and between patients with different stages of VFL at diagnosis. Age-related assessment of VFL at diagnosis in normal tension glaucoma (NTG) compared to primary open-angle glaucoma (POAG) showed that NTG is not a disease of the elderly but a disease with late diagnosis at severe VFL. In POAG a solely age-related glaucoma screening, e.g. from the age of 50 years, does not sufficiently lead to diagnosis at an early stage of the disease. In POAG solely based on binocular VFL 11.5% of patients were judged unable, 29.2% questionably able to drive, in NTG 19.6%/43.1%, pigmentary glaucoma 16%/22%, pseudoexfoliation glaucoma 9.1%/16.7%, and in primary angle-closure glaucoma 14.6%/30%. Depending on type of glaucoma more than 50% of patients require counselling regarding safe driving as part of clinical care. A disease-specific, age-related perimetric examination considering additional risk factors like family history of glaucoma is essential for early detection of glaucoma and road safety.
Color image generation for screen-scanning holographic display.
Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi
2015-10-19
Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.
Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find thatmore » the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.« less
Nanthavanij, Suebsak; Jalil, Sakib; Ammarapala, Veeris
2008-12-01
Factors which are likely to affect recommended workstation and notebook computer (NBC) adjustments to obtain ergonomic work posture during NBC operation are investigated. They are: (1) body height, (2) NBC size, and (3) workstation height (i.e., seat and work surface heights). Six recommended adjustments which are evaluated include: (1) footrest height, (2) seat support height, (3) NBC base support height, (4) distance between the user's body and NBC (or user-NBC distance), (5) tilt angle of NBC base, and (6) screen angle. It is found that body height has a significant effect on footrest height and user-NBC distance while NBC size has a significant effect on user-NBC distance, tilt angle of NBC base, and screen angle. Workstation height, on the other hand, does not show any effect on the six recommended adjustments. However, the results suggest that there are interactions between body height and NBC size, and between body height and workstation height when evaluating their effects on footrest height, tilt angle of NBC base, and screen angle.
NASA Astrophysics Data System (ADS)
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
Observation of topological nodal fermion semimetal phase in ZrSiS
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; ...
2016-05-11
We present that unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ) point, the M point, and the X point of the BZ, respectively. We experimentally establish themore » spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.« less
Environmental screening of dark matter haloes in f(R) gravity
NASA Astrophysics Data System (ADS)
Shi, Difu; Li, Baojiu; Han, Jiaxin
2017-07-01
In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.
Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens
NASA Astrophysics Data System (ADS)
Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua
2017-12-01
A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Denlinger, Jonathan; Fedorov, Alexei; Yang, Haitao; Duan, Wenhui; Yao, Hong; Wu, Yang; Fan, Shoushan; Zhang, Haijun; Chen, Xi; Zhou, Shuyun
2016-12-01
Weyl semimetal is a new quantum state of matter hosting the condensed matter physics counterpart of the relativistic Weyl fermions originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance and possibly emergent supersymmetry. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs ,,). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.
Predicting motor outcomes with 3 month prone hip angles in premature infants.
Shehee, Lindsey; Coker-Bolt, Patty; Barbour, Andrew; Moss, Hunter; Brown, Truman; Jenkins, Dorothea
2016-09-02
This study used kinematic analysis to identify a reliable and rapid assessment method for abnormal patterns of motor development in preterm infants. In a retrospective analysis, we examined video of n= 35 preterm infants at 3mo corrected age (CA) who had concurrent Test of Infant Motor Performance (TIMP) scores. Hyperflexion at the hip produces common gait anomalies seen in children with CP, therefore we analyzed hip angle in the prone head lift position at 3 months CA. Magnetic Resonance Spectroscopy (MRS) was performed at term equivalent (n= 23) and Bayley-III neurodevelopmental tests were performed at 1 year (n= 28). We correlated hip angles with TIMP and Bayley-III scores, and MRS neuronal metabolites. Hip angle positively correlated with TIMP at 3 months (r= 0.642, p≤ 0.001), but not with Bayley-III at 1 year (r= 0.122, p= 0.529). Hip angle correlated negatively with myo-inositol (mI) ratios in frontal white matter tracts (mI/Cr r= -0.520, p= 0.011). These results suggest prone hip angle may be a quantitative proxy for the 42-item TIMP at 3 months, and that hypertonicity in the hip flexor musculature is a manifestation of white matter metabolic abnormalities (elevated mI ratios) that may indicate occult white matter injury.
Cost-effectiveness of community screening for glaucoma in rural India: a decision analytical model.
John, D; Parikh, R
2018-02-01
Studies in several countries have demonstrated the cost-effectiveness of population-based screening for glaucoma when targeted at high-risk groups such as older adults and with familial history of disease. This study conducts a cost-effective analysis of a hypothetical community screening and subsequent treatment programme in comparison to opportunistic case finding for glaucoma in rural India. A hypothetical screening programme for both primary open-angle glaucoma and angle-closure disease was built for a population aged between 40 and 69 years in rural areas of India. A decision analytical model was built to model events, costs and treatment pathways with and without a hypothetical screening programme for glaucoma for a rural-based population aged between 40 and 69 years in India. The treatment pathway included both primary open-angle glaucoma and angle-closure disease. The data on costs of screening and treatment were provided by an administrator of a tertiary eye hospital in Eastern India. The probabilities for the screening and treatment pathway were derived from published literature and a glaucoma specialist. The glaucoma prevalence rates were adapted from the Chennai Glaucoma Study findings. An incremental cost-effectiveness ratio value of ₹7292.30 per quality-adjusted life-year was calculated for a community-screening programme for glaucoma in rural India. The community screening for glaucoma would treat an additional 2872 cases and prevent 2190 person-years of blindness over a 10-year period. Community screening for glaucoma in rural India appears to be cost-effective when judged by a ratio of willingness-to-pay thresholds as per WHO-CHOICE guidelines. For community screening to be cost-effective, adequate resources, such as trained medical personnel and equipment would need to be made available. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
1997-10-01
This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Zoorob, R; Anderson, R; Cefalu, C; Sidani, M
2001-03-15
Numerous medical organizations have developed cancer screening guidelines. Faced with the broad, and sometimes conflicting, range of recommendations for cancer screening, family physicians must determine the most reasonable and up-to-date method of screening. Major medical organizations have generally achieved consensus on screening guidelines for breast, cervical and colorectal cancer. For breast cancer screening in women ages 50 to 70, clinical breast examination and mammography are generally recommended every one or two years, depending on the medical organization. For cervical cancer screening, most organizations recommend a Papanicolaou test and pelvic examination at least every three years in patients between 20 and 65 years of age. Annual fecal occult blood testing along with flexible sigmoidoscopy at five-year to 10-year intervals is the standard recommendation for colorectal cancer screening in patients older than 50 years. Screening for prostate cancer remains a matter of debate. Some organizations recommend digital rectal examination and a serum prostate-specific antigen test for men older than 50 years, while others do not. In the absence of compelling evidence to indicate a high risk of endometrial cancer, lung cancer, oral cancer and ovarian cancer, almost no medical organizations have developed cancer screening guidelines for these types of cancer.
NASA Astrophysics Data System (ADS)
Batic, D.; Nelson, S.; Nowakowski, M.
2015-05-01
We consider the motion of light on different spacetime manifolds by calculating the deflection angle, lensing properties and by probing into the possibility of bound states. The metrics in which we examine the light motion include, among other items, a general relativistic dark matter metric, a dirty black hole, and a worm hole metric, the last two inspired by noncommutative geometry. The lensing in a holographic screen metric is discussed in detail. We study also the bending of light around naked singularities like, e.g., the Janis-Newman-Winicour metric and include other cases. A generic property of light behavior in these exotic metrics is pointed out. For the standard metric like the Schwarzschild and Schwarzschild-de Sitter cases, we improve the accuracy of the lensing results for the weak and strong regimes.
NASA Astrophysics Data System (ADS)
Butler, J. P.; Kneip, T. J.; Daisey, J. M.
Previous investigations in this laboratory have demonstrated that the mutagenic activities of extractable particulate organic matter (EOM) from cities which differ in their principal fuels and meteorology can vary significantly. To gain a better understanding of these interurban variations, an Integrated Chemical Class/Biological Screening System was developed and used for a more detailed examination of differences in the chemical composition and mutagenic activity of EOM. The screening system involved coupling in situ Ames mutagenicity determinations on high performance thin layer chromatography (HPTLC) plates with class specific chemical analyses on a second set of plates. The system was used to screen for mutagenic activity and selected chemical classes (including PAH, nitro-PAH, phenols, carboxylic acids, carbonyls, aza-arenes and alkylating agents) in EOM from the following sites: New York City; Elizabeth, N.J.; Mexico City; Beijing, China; Philadelphia, PA; and the Caldecott Tunnel (CA). The results of this study demonstrated mutagenic activity and chemical compositional differences in HPTLC subfractions of particulate organic matter from these cities and from the Caldecott Tunnel. The greatest interurban differences in chemical classes were observed for the phenols, carbonyl compounds and alkylating agents. Interurban variations in mutagenic activities were greatest for EOM subfractions of intermediate polarity. These differences are probably related to interurban differences in the fuels used, types of sources and atmospheric conditions. The relationships between these variables are not well understood at present.
Display screen and method of manufacture therefor
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)
2002-01-01
A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. Compatible screen structures, along with methods for fabricating high resolution prescreens and methods and devices for maintaining the desired relationship between the prescreen and the diffusion screen are contemplated.
Flow-separation patterns on symmetric forebodies
NASA Technical Reports Server (NTRS)
Keener, Earl R.
1986-01-01
Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.
Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center
NASA Technical Reports Server (NTRS)
1997-01-01
This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks
NASA Astrophysics Data System (ADS)
Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin
2014-07-01
Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.
Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas
NASA Astrophysics Data System (ADS)
Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.
2017-11-01
Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.
Yamada, Hirotaka; Moriyasu, Kengo; Sato, Hiroto; Hatanaka, Hidekazu
2017-12-11
The speckle reduction for laser projectors has been vigorously studied because speckle causes a serious deterioration in image quality. Most speckle reduction methods can be categorized into wavelength diversity, angular diversity and polarization diversity, which are usually treated independently. In this paper, it is shown that the effect of wavelength diversity and angular diversity on speckle reduction is not independent, and that the effect of wavelength also depends on incidence and observation angles on screen. The speckle reduction effect by wavelength diversity is smaller when the angular diversity is larger. Also, the speckle reduction effect is investigated on various screens including matte and silver screens, and it is shown that the effect of wavelength diversity is larger on matte screen than on silver screen.
Lee, Hee Yun; Ju, Eunsu; Vang, Pa Der; Lundquist, Melissa
2010-10-01
Ethnic minorities are frequently considered as one homogeneous group in research, and this trend is particularly true for Asian Americans. This article seeks to uncover the intragroup differences in cancer screening behavior among subgroups of Asian American women by disaggregating them into six subgroups. The subgroups were compared with non-Latina white women to examine differences in breast and cancer screening rates and relevant factors associated with receiving these screenings. Three-year merged data from the 2001, 2003, and 2005 California Health Interview Survey (CHIS) were used to investigate the subgroup differences. Samples for the current study were restricted to non-Latina white and Asian American women whose age was ≥ 18 years (n = 58,000) for cervical cancer screening and ≥ 40 years (n = 43,518) for breast cancer screening at the time of the interview. Results showed marked differences in cancer screening rates among Asian American subgroups and between cancer types. Cervical cancer screening rates were noticeably higher than breast cancer screening rates in all groups. The Korean group consistently showed the lowest rates of both cancer screenings. Japanese ranked the highest (79.5%) in breast cancer screening but the second lowest (79.7%) in cervical cancer screening. Enabling factors, such as having private health insurance and a usual source of care, were found to be the strongest predictors of receiving both breast and cervical cancer screening. Screenings for both types of cancer increased if a woman was married or was born in the United States. The findings of this study illustrate the heterogeneity that exists among Asian American subgroups in their cancer screening behaviors. Further development of culturally relevant and ethnic-specific cancer prevention strategies and policies that address the subgroup differences within the larger racial/ethnic population are needed. Public health outreach and cancer education should be prioritized to the Asian American women who are more recent arrivals in the United States and have minimal access to healthcare.
Over-the-wing model thrust reverser noise tests
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Gutierrez, O.
1977-01-01
Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.
Visual Costs of the Inhomogeneity of Luminance and Contrast by Viewing LCD-TFT Screens Off-Axis.
Ziefle, Martina; Groeger, Thomas; Sommer, Dietmar
2003-01-01
In this study the anisotropic characteristics of TFT-LCD (Thin-Film-Transistor-Liquid Crystal Display) screens were examined. Anisotropy occurs as the distribution of luminance and contrast changes over the screen surface due to different viewing angles. On the basis of detailed photometric measurements the detection performance in a visual reaction task was measured in different viewing conditions. Viewing angle (0 degrees, frontal view; 30 degrees, off-axis; 50 degrees, off-axis) as well as ambient lighting (a dark or illuminated room) were varied. Reaction times and accuracy of detection performance were recorded. Results showed TFT's anisotropy to be a crucial factor deteriorating performance. With an increasing viewing angle performance decreased. It is concluded that TFT's anisotropy is a limiting factor for overall suitability and usefulness of this new display technology.
Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.
Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A
2011-04-01
The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics
The vectorial control of magnetization by light.
Kanda, Natsuki; Higuchi, Takuya; Shimizu, Hirokatsu; Konishi, Kuniaki; Yoshioka, Kosuke; Kuwata-Gonokami, Makoto
2011-06-21
Application of coherent light-matter interactions has recently been extended to the ultrafast control of magnetization. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multidimensional trajectory. Here we demonstrate a full manipulation of two-dimensional magnetic oscillations in antiferromagnetic NiO with a pair of polarization-twisted femtosecond laser pulses. We employ Raman-type nonlinear optical processes, wherein magnetic oscillations are impulsively induced with a controlled initial phase. Their azimuthal angle follows well-defined selection rules that have been determined by the symmetries of the materials. We emphasize that the temporal variation of the laser-pulse polarization angle enables us to control the phase and amplitude of the two degenerate modes, independently. These results lead to a new concept of the vectorial control of magnetization by light.
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.
1997-01-01
At the end of three days' spirited discussion of the type 2 Seyfert galaxy NGC 1068, what do we think we understand about this object? New observations, particularly in the infrared and radio are helping to resolve old problems, while drawing attention to new ones. It appears that NGC 1068 is a relatively normal spiral galaxy in which large-scale gravitational disturbances are funneling matter into the nucleus. A collimated outflow disturbs the interstellar medium out to kiloparsec scales, but the nucleus itself is hidden behind an opaque screen. Radio observations have now pierced the screen, and suggest that at the center of it all, a 10-20 million solar mass black hole is accreting at close to its Eddington limit.
Signature of type-II Weyl semimetal phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.
2017-01-01
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
Apparatus and methods for filtering granular solid material
NASA Technical Reports Server (NTRS)
Backes, Douglas J. (Inventor); Poulter, Clay B. (Inventor); Godfrey, Max R. (Inventor); Tolman, Dennis K. (Inventor); Dutton, Melinda S. (Inventor)
2011-01-01
Apparatuses for screening granular solid particulate material include a generally planar first screen and a second screen. A plurality of apertures extends through the first screen. At least a portion of the second screen is oriented at an angle to the first screen, and apertures extend through a perforated region of the second screen. The second screen includes at least one region configured to prevent at least some particles of solid material from passing through the second screen.
Acquiring information about neutrino parameters by detecting supernova neutrinos
NASA Astrophysics Data System (ADS)
Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin
2010-08-01
We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.
Design of a projection display screen with vanishing color shift for rear-projection HDTV
NASA Astrophysics Data System (ADS)
Liu, Xiu; Zhu, Jin-lin
1996-09-01
Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.
O'Donovan, Gary; Chudasama, Yogini; Grocock, Samuel; Leigh, Roland; Dalton, Alice M; Gray, Laura J; Yates, Thomas; Edwardson, Charlotte; Hill, Sian; Henson, Joe; Webb, David; Khunti, Kamlesh; Davies, Melanie J; Jones, Andrew P; Bodicoat, Danielle H; Wells, Alan
2017-07-01
Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1×1km area at the participant's home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk; College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073; Hu, Zhirun
2014-11-15
This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of themore » screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.« less
Selection of Rear Projection Screens for Learning Carrels.
ERIC Educational Resources Information Center
Smith, Edgar A.
The selection of a rear projection screen for a learning carrel should take into account the viewing angle involved. In some carrels, the viewer can be seated in front of the screen (i.e., on the normal axis) since the screen is used primarily to present information. In these cases, where the screen will be viewed only from a restricted range, a…
Prevention of Blindness: Chronic Glaucoma
ERIC Educational Resources Information Center
Richardson, Kenneth T.
1970-01-01
An evaluation of present screening procedures for chronic open-angle glaucoma includes suggestions for improvement: greater distribution of screening and education, conversion from monophasic to multiphasic screen, and examination of visual fields, optic nerve, and medical history in addition to the tonometry currently done. (KW)
Litwin, Howard
2011-08-01
Although social network relationships are linked to mental health in late life, it is still unclear whether it is the structure of social networks or their perceived quality that matters. The current study regressed a dichotomous 8-item version of the Center for Epidemiological Studies Depression Scale (CESD-8) score on measures of social network relationships among Americans, aged 65-85 years, from the first wave of the National Social Life, Health and Aging Project. The network indicators included a structural variable - social network type - and a series of relationship quality indicators: perceived positive and negative ties with family, friends and spouse/ partner. Multivariate logistic regression analyses controlled for age, gender, education, income, race/ethnicity, religious affiliation, functional health and physical health. The perceived social network quality variables were unrelated to the presence of a high level of depressive symptoms, but social network type maintained an association with this mental health outcome even after controlling for confounders. Respondents embedded in resourceful social network types in terms of social capital--"diverse," "friend" and "congregant" networks--reported less presence of depressive symptoms, to varying degrees. The results show that the structure of the network seems to matter more than the perceived quality of the ties as an indicator of depressive symptoms. Moreover, the composite network type variable stands out in capturing the differences in mental state. The construct of network type should be incorporated in mental health screening among older people who reside in the community. One's social network type can be an important initial indicator that one is at risk.
Does wastewater from olive mills induce toxicity and water repellency in soil?
NASA Astrophysics Data System (ADS)
Peikert, B.; Bandow, N.; Schaumann, G. E.
2012-04-01
Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.
Applications of Biophysics in High-Throughput Screening Hit Validation.
Genick, Christine Clougherty; Barlier, Danielle; Monna, Dominique; Brunner, Reto; Bé, Céline; Scheufler, Clemens; Ottl, Johannes
2014-06-01
For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article. © 2014 Society for Laboratory Automation and Screening.
Apparatus for removal of particulate matter from gas streams
Smith, Peyton L.; Morse, John C.
2000-01-01
An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.
Anterior Segment Imaging for Angle Closure.
Chansangpetch, Sunee; Rojanapongpun, Prin; Lin, Shan C
2018-04-01
To summarize the role of anterior segment imaging (AS-imaging) in angle closure diagnosis and management, and the possible advantages over the current standard of gonioscopy. Literature review and perspective. Review of the pertinent publications with interpretation and perspective in relation to the use of AS-imaging in angle closure assessment focusing on anterior segment optical coherence tomography and ultrasound biomicroscopy. Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. AS-imaging has been shown to have performance in angle closure detection compared to gonioscopy. Also, imaging has greater reproducibility and serves as better documentation for long-term follow-up than conventional gonioscopy. The qualitative and quantitative information obtained from AS-imaging enables better understanding of the underlying mechanisms of angle closure and provides useful parameters for risk assessment and possible prediction of the response to laser and surgical intervention. The latest technologies-including 3-dimensional imaging-have allowed for the assessment of the angle that simulates the gonioscopic view. These advantages suggest that AS-imaging has a potential to be a reference standard for the diagnosis and monitoring of angle closure disease in the future. Although gonioscopy remains the primary method of angle assessment, AS-imaging has an increasing role in angle closure screening and management. The test should be integrated into clinical practice as an adjunctive tool for angle assessment. It is arguable that AS-imaging should be considered first-line screening for patients at risk for angle closure. Copyright © 2018 Elsevier Inc. All rights reserved.
Characteristics of white LED transmission through a smoke screen
NASA Astrophysics Data System (ADS)
Zheng, Yunfei; Yang, Aiying; Feng, Lihui; Guo, Peng
2018-01-01
The characteristics of white LED transmission through a smoke screen is critical for visible light communication through a smoke screen. Based on the Mie scattering theory, the Monte Carlo transmission model is established. Based on the probability density function, the white LED sampling model is established according to the measured spectrum of a white LED and the distribution angle of the lambert model. The sampling model of smoke screen particle diameter is also established according to its distribution. We simulate numerically the influence the smoke thickness, the smoke concentration and the angle of irradiance of white LED on transmittance of the white LED. We construct a white LED smoke transmission experiment system. The measured result on the light transmittance and the smoke concentration agreed with the simulated result, and demonstrated the validity of simulation model for visible light transmission channel through a smoke screen.
Decision making and counseling around mammography screening for women aged 80 or older.
Schonberg, Mara A; Ramanan, Radhika A; McCarthy, Ellen P; Marcantonio, Edward R
2006-09-01
Despite uncertain benefit, many women over age 80 (oldest-old) receive screening mammography. To explore decision-making and physician counseling of oldest-old women around mammography screening. Qualitative research using in-depth semi-structured interviews. Twenty-three women aged 80 or older who received care at a large academic primary care practice (13 had undergone mammography screening in the past 2 years) and 16 physicians at the same center. We asked patients and physicians to describe factors influencing mammography screening decisions of oldest-old women. We asked physicians to describe their counseling about screening to the oldest-old. Patients and/or physicians identified the importance of physician influence, patient preferences, system factors, and social influences on screening decisions. Although physicians felt that patient's health affected screening decisions, few patients felt that health mattered. Three types of elderly patients were identified: (1) women enthusiastic about screening mammography; (2) women opposed to screening mammography; and (3) women without a preference who followed their physician's recommendation. However, physician counseling about mammography screening to elderly women varies; some individualize discussions; others encourage screening; few discourage screening. Physicians report that discussions about stopping screening can be uncomfortable and time consuming. Physicians suggest that more data could facilitate these discussions. Some oldest-old women have strong opinions about screening mammography while others are influenced by physicians. Discussions about stopping screening are challenging for physicians. More data about the benefits and risks of mammography screening for women aged 80 or older could inform patients and improve provider counseling to lead to more rational use of mammography.
NASA Astrophysics Data System (ADS)
Nastan, A.; Diner, D. J.
2017-12-01
Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.
New possibilities in supernova accretion phase from dense matter effect
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Mirizzi, A.; Saviano, N.
2012-07-01
We carry out a detailed analysis of the supernova (SN) neutrino flavor evolution during the accretion phase (at post-bounce times tpb <= 500 ms), characterizing the SN ν signal by recent hydrodynamical simulations. We find that trajectory-dependent multi-angle effects, associated with the dense ordinary matter suppress collective oscillations, that would have been induced by ν-ν interactions in the deepest SN regions. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the likely case that the mixing angle θ13 is not very small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Liu, Z. K.; Sun, Y.
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less
Signature of Type-II Weyl Semimetal Phase in MoTe2
NASA Astrophysics Data System (ADS)
Jiang, Juan; Liu, Zhongkai; Yang, Haifeng; Yang, Lexian; Chen, Cheng; Peng, Han; Hwang, Chan-Cuk; Mo, Sung-Kwan; Chen, Yulin; ShanghaiTech University Collaboration; Oxford University Collaboration; Lawrence Berkeley National Lab Collaboration; Pohang University of Science; Technology Collaboration
Topological Weyl semimetal (TWS) is a new state of quantum matter, which has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. Here, by using angle-resolved photoemission spectroscopy, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS, which do not respect Lorentz symmetry compared with type-I TWS. Furthermore, we unravel the unique surface Fermi arcs, in good agreement with our ab-initio calculations, which have non-trivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity and their topological order.
Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids
2016-01-01
The mechanical properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The substantial changes in the strength of these capillary suspensions arise due to the capillary force inducing a percolating particle network. Spatial information on the structure of the particle networks is obtained using confocal microscopy. It is possible, for the first time, to visualize the different types of percolating structures of capillary suspensions in situ. These capillary networks are unique from other types of particulate networks due to the nature of the capillary attraction. We investigate the influence of the three-phase contact angle on the structure of an oil-based capillary suspension with silica microspheres. Contact angles smaller than 90° lead to pendular networks of particles connected with single capillary bridges or clusters comparable to the funicular state in wet granular matter, whereas a different clustered structure, the capillary state, forms for angles larger than 90°. Particle pair distribution functions are obtained by image analysis, which demonstrate differences in the network microstructures. When porous particles are used, the pendular conformation also appears for apparent contact angles larger than 90°. The complex shear modulus can be correlated to these microstructural changes. When the percolating structure is formed, the complex shear modulus increases by nearly three decades. Pendular bridges lead to stronger networks than the capillary state network conformations, but the capillary state clusters are nevertheless much stronger than pure suspensions without the added liquid. PMID:26807651
Gravitational lensing by a smoothly variable three-dimensional mass distribution
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Paczynski, Bohdan
1990-01-01
A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.
Comparing approaches to screening for angle closure in older Chinese adults
Andrews, J; Chang, D S; Jiang, Y; He, M; Foster, P J; Munoz, B; Kashiwagi, K; Friedman, D S
2012-01-01
Aims Primary angle-closure glaucoma is expected to account for nearly 50% of bilateral glaucoma blindness by 2020. This study was conducted to assess the performance of the scanning peripheral anterior chamber depth analyzer (SPAC) and limbal anterior chamber depth (LACD) as screening methods for angle closure. Methods This study assessed two clinical populations to compare SPAC, LACD, and gonioscopy: the Zhongshan Angle-closure Prevention Trial, from which 370 patients were eligible as closed-angle participants and the Liwan Eye Study, from which 72 patients were selected as open-angle controls. Eligible participants were assessed by SPAC, LACD, and gonioscopy. Results Angle status was defined by gonioscopy. Area under the receiver operating characteristic curve (AUROC) for SPAC was 0.92 (0.89–0.95) whereas AUROC for LACD was 0.94 (0.92–0.97). Using conventional cutoff points, sensitivity/specificity was 93.0%/70.8% for SPAC and 94.1%/87.5% for LACD. Sequential testing using both SPAC and LACD increased the specificity to 94.4% and decreased the sensitivity to 87.0%. Conclusion SPAC has significantly lower specificity than LACD measurement using conventional cutoffs but interpretation of the findings can be performed by modestly trained personnel. PMID:21997356
Screening for colorectal cancer: medical and economic aspects.
Sanduleanu, S; Stockbrügger, R W
2003-01-01
Colorectal cancer (CRC) is the second commonest cause of cancer death in the Western world. In The Netherlands, CRC causes about 4400 deaths per year, and its diagnosis and treatment make up for a large share of health-care costs. Review and discussioN. Experts in the field presently assume that screening for CRC and its precursor lesions, colorectal adenomas (CRAs), could prevent death from colorectal neoplasia by more than 80%. Additionally, there is increasing acknowledgement that CRC screening programmes can save lives at a cost similar to, or even less than, the generally accepted breast cancer or cervical cancer screening programmes. Nonetheless, while neighbouring countries have taken vigorous measures to fight CRC, the Dutch are still hesitating in this matter. This is partly due to some yet unanswered questions concerning the acceptability of screening for CRC in the general population, the starting age and the frequency of screening, the type of screening tests to be used, and the programme organization. In this commentary, general epidemiological and pathogenetic aspects of CRC are addressed. In addition, some frequently asked questions (FAQ) and (very subjective) answers about screening for CRC are offered, as potential substrate for further in-depth discussions. The emerging message for the community is that an effective national screening programme is urgently required to reduce the substantial morbidity and mortality from this disease.
Impact of general practitioners' sex and age on systematic recommendation for cancer screening.
Eisinger, François; Pivot, Xavier; Coscas, Yvan; Viguier, Jérôme; Calazel-Benque, Anne; Blay, Jean-Yves; Roussel, Claire; Morère, Jean-François
2011-01-01
Characteristics of primary-care providers have been associated with their patients' participation in breast cancer screening. A nationwide observational survey, 'EDIFICE', was conducted by telephone from December 2007 to January 2008 on a representative sample of 600 general practitioners (GPs) working in France, to investigate how a GP's characteristics may influence patient participation in screening for breast, colorectal and prostate cancer. For breast cancer screening, systematic recommendation was associated with female physicians [odds ratio (OR) =1.9; 95% confidence interval (CI) 1.2-3.1]. This systematic recommendation was also correlated with systematic referral for colorectal cancer (OR=1.5; 95% CI=1.0-2.5) and prostate cancer screening (OR=2.7; 95% CI=1.8-4.1). For colorectal cancer screening, the sex of the GP had no significant impact. However, systematic recommendation for both breast and prostate cancer screening was shown to be associated with systematic recommendation for colorectal cancer screening (OR=2.7; 95% CI=1.6-4.7 and OR=1.8; 95% CI=1.1-3.0, respectively). For prostate cancer screening, there was no significant sex specificity. However, systematic recommendation for both breast and colorectal cancer screening was associated with an advice on prostate cancer screening (OR=2.9; 95% CI=2.0-4.4 and OR=2.0; 95% CI=1.3-3.2, respectively). The age of the GP was not associated with a higher rate of systematic recommendation for screening for the three types of cancer. Male GPs were more likely than female GPs to perform digital rectal examinations on male patients (69 vs. 54%; OR=1.86; 95% CI=1.31-2.63). There is a global pattern of physicians being screening-prone (as suggested by the cross impact of recommendations from one cancer type to another). Although the frequency of systematic recommendation for breast cancer screening is higher with female GPs, systematic recommendation for prostate cancer is not higher among male GPs. The factors associated with systematic recommendation for screening are both a matter of concern and a target for action, to improve adherence of individuals through GP commitment.
Trunk imbalance in adolescent idiopathic scoliosis.
Fortin, Carole; Grunstein, Erin; Labelle, Hubert; Parent, Stefan; Ehrmann Feldman, Debbie
2016-06-01
Trunk imbalance (ie, frontal trunk shift measured with a plumb line from C7 to S1) is part of the clinical evaluation in adolescent idiopathic scoliosis (AIS), but its prevalence and relationship with scoliosis, back pain, and health-related factors are not well documented. The principal objectives are to document trunk imbalance prevalence and to explore the association between trunk imbalance and the following factors: Cobb angle, type of scoliosis, back pain, function, mental health, and self-image. The secondary objective is to determine back pain prevalence and the relationship between back pain and each of the following: Cobb angle, function, mental health, and self-image. This is a cross-sectional study in a scoliosis clinic of a tertiary university hospital center. The sample includes youth with AIS (N=55). The outcome measures were trunk imbalance prevalence and magnitude, and back pain prevalence and intensity using the Numeric Pain Rating Scale (NPRS) and the Scoliosis Research Society-22 (SRS-22) pain score, and the function, self-image, and mental health domains of the SRS-22. Trunk imbalance and back pain were assessed in 55 patients with AIS (Cobb angle: 10-60°). Patients completed the SRS-22 questionnaire and the NPRS. Correlations were done between trunk imbalance and scoliosis (Cobb angle, type of scoliosis), back pain (NPRS and SRS-22 pain score), and health-related factors using Pearson correlation coefficients (r) and logistic regression models. Trunk imbalance prevalence is 85% and back pain prevalence is 73%. We found fair to moderate significant positive correlation between trunk imbalance and Cobb angle (r=0.32-0.66, p<.05) but not with back pain, function, mental health, self-image, or type of scoliosis. Lower self-reported pain significantly correlated with lower Cobb angles (r=0.29, p=.03), higher function (r=0.55, p=.000), higher self-image (r=0.44, p=.001), and better mental health (r=0.48, p=.000). There was a trend for trunk imbalance to be related with lower pain in logistic regression models. The high prevalence of trunk imbalance in AIS highlights the importance of screening for this clinical sign in growing adolescents. Further research should be done with regard to the treatment of trunk imbalance and its implication on both Cobb angle and back pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Xie, Zuo-ping; Zhao, Bo-wen; Yuan, Hua; Hua, Qi-qi; Jin, She-hong; Shen, Xiao-yan; Han, Xin-hong; Zhou, Jia-mei; Fang, Min; Chen, Jin-hong
2013-01-01
Background: To establish the reference range of the angle between ascending aorta and main pulmonary artery of fetus in the second and third trimester using spatiotemporal image correlation (STIC), and to investigate the value of this angle in prenatal screening of conotruncal defects (CTDs). Materials and Methods: Volume images of 311 normal fetuses along with 20 fetuses with congenital heart diseases were recruited in this cross-sectional study. An offline analysis of acquired volume datasets was carried out with multiplanar mode. The angle between aorta and pulmonary artery was measured by navigating the pivot point and rotating axes and the reference range was established. The images of ascending aorta and main pulmonary artery in fetuses with congenital heart diseases were observed by rotating the axes within the normal angle reference range. Results: The angle between ascending aorta and main pulmonary artery of the normal fetus (range: 59.1˚~97.0˚, mean ± SD: 78.0˚ ± 9.7˚) was negatively correlated with gestational age (r = -0.52; p<0.01). By rotating the normal angle range corresponding to gestational age, the fetuses with CTD could not display views of their left ventricular long axis and main pulmonary trunk correctly. Conclusion: The left ventricular long axis and main pulmonary trunk views can be displayed using STIC so that the echocardiographic protocol of the cardiovascular joint could be standardized. The reference range of the angle between ascending aorta and main pulmonary artery is clinically useful in prenatal screening of CTD and provides a reliable quantitative standard to estimate the spatial relationship of the large arteries of fetus. PMID:24520485
Gangwani, Rita A; McGhee, Sarah M; Lai, Jimmy S M; Chan, Christina K W; Wong, David
2016-01-01
To determine the type of glaucoma in subjects with diabetes mellitus detected during a diabetic retinopathy screening program and to determine any association between diabetic retinopathy (DR) and glaucoma. This is a population-based prospective cross-sectional study, in which subjects with diabetes mellitus underwent screening for DR in a primary care outpatient clinic. Digital fundus photographs were taken and graded for presence/absence and severity of DR. During this grading, those fundus photographs showing increased cup-to-disc ratio (CDR) (≥0.6) were identified and these patients were referred to the specialist ophthalmology clinic for detailed examination. The presence of glaucoma was established based on CDR and abnormal visual field (VF) defects according to Hodapp-Parrish-Anderson's criteria. An elevation of intraocular pressure was not required for the diagnosis of glaucoma. The patients said to have definite glaucoma were those with vertical CDR>/=0.6, glaucomatous defects on VF examination, or retinal nerve fiber thinning if VF was unreliable. Of the 2182 subjects who underwent screening, 81 subjects (3.7%) had increased CDR and 40 subjects (1.8%) had confirmed glaucoma. Normal-tension variant of primary open-angle glaucoma was the most prevalent type (1.2%) We did not find any evidence that DR is a risk factor for glaucoma [odds ratio for DR vs. no DR=1.22 (95% confidence interval, 0.59-2.51)]. The overall prevalence of glaucoma in this diabetic population, based on finding increased cupping of optic disc in a teleretinal screening program was 1.8% (95% confidence interval, 1.0-3.0).
Accommodation measurements of horizontally scanning holographic display.
Takaki, Yasuhiro; Yokouchi, Masahito
2012-02-13
Eye accommodation is considered to function properly for three-dimensional (3D) images generated by holography. We developed a horizontally scanning holographic display technique that enlarges both the screen size and viewing zone angle. A 3D image generated by this technique can be easily seen by both eyes. In this study, we measured the accommodation responses to a 3D image generated by the horizontally scanning holographic display technique that has a horizontal viewing zone angle of 14.6° and screen size of 4.3 in. We found that the accommodation responses to a 3D image displayed within 400 mm from the display screen were similar to those of a real object.
Epstein, F H; Mugler, J P; Brookeman, J R
1994-02-01
A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.
Light rays and the tidal gravitational pendulum
NASA Astrophysics Data System (ADS)
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null congruence.
Small Angle X-Ray Scattering Detector
Hessler, Jan P.
2004-06-15
A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.
A novel screen design for anti-ambient light front projection display with angle-selective absorber
NASA Astrophysics Data System (ADS)
Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu
2016-03-01
Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.
Powder agglomeration in a microgravity environment
NASA Technical Reports Server (NTRS)
Cawley, James D.
1994-01-01
This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.
NASA Technical Reports Server (NTRS)
Wu, Te-Kao (Inventor)
1996-01-01
The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.
Promising outcomes in glutaric aciduria type I patients detected by newborn screening.
Lee, Chee-Seng; Chien, Yin-Hsiu; Peng, Shinn-Forng; Cheng, Pin-Wen; Chang, Lih-Maan; Huang, Ai-Chu; Hwu, Wuh-Liang; Lee, Ni-Chung
2013-03-01
Glutaric aciduria type I (GA-I) is an inborn error of lysine and tryptophan metabolism. Clinical manifestations of GA-I include dystonic or dyskinetic cerebral palsy, but when the symptoms occur, treatment is not effective. In Taiwan, newborn screening for GA-I started in 2001; we wish to evaluate the outcomes of patients detected through newborn screening. Newborns diagnosed with GA-I by abnormal dried blood spot glutarylcarnitine (C5DC) levels followed in our hospital were included in this study. They were treated with special diets, carnitine supplements, and immediate stress avoidance. Six patients were included in this study. All patients were treated prior to reaching 1 month of age. They were followed up with for 4 to 9 years. One patient had encephalopathic crisis episodes prior to turning 1 year old that caused pallidal lesions. Another patient had a chronic progressive disease during infancy that caused bilateral putamen lesions. These two patients had delayed development, but their brain lesions were resolved. The other four patients ran uneventful courses. They had normal intelligenece, ranged between average to low average level and their brain magnetic resonance imaging showed only high intensity over deep white matter. Patients with GA-I diagnosed by newborn screening have promising outcomes, though the risks of disease progression prior to 1 year of age remain significant.
Signature of type-II Weyl semimetal phase in MoTe 2
Jiang, J.; Liu, Z. K.; Sun, Y.; ...
2017-01-13
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less
Characterization of crosstalk in stereoscopic display devices.
Zafar, Fahad; Badano, Aldo
2014-12-01
Many different types of stereoscopic display devices are used for commercial and research applications. Stereoscopic displays offer the potential to improve performance in detection tasks for medical imaging diagnostic systems. Due to the variety of stereoscopic display technologies, it remains unclear how these compare with each other for detection and estimation tasks. Different stereo devices have different performance trade-offs due to their display characteristics. Among them, crosstalk is known to affect observer perception of 3D content and might affect detection performance. We measured and report the detailed luminance output and crosstalk characteristics for three different types of stereoscopic display devices. We recorded the effect of other issues on recorded luminance profiles such as viewing angle, use of different eye wear, and screen location. Our results show that the crosstalk signature for viewing 3D content can vary considerably when using different types of 3D glasses for active stereo displays. We also show that significant differences are present in crosstalk signatures when varying the viewing angle from 0 degrees to 20 degrees for a stereo mirror 3D display device. Our detailed characterization can help emulate the effect of crosstalk in conducting computational observer image quality assessment evaluations that minimize costly and time-consuming human reader studies.
Worksheets for computing recommended notebook computer and workstation adjustments.
Nanthavanij, Suebsak; Udomratana, Chatkate; Hansawad, Saowalak; Thepkanjana, Jayaporn; Tantasuwan, Wanchalerm
2013-01-01
This paper discusses the design and development of worksheets for helping notebook computer (NBC) users to compute NBC and workstation adjustments so as to assume an appropriate seated posture. The worksheets (one for male users, the other for female ones) require the following information: body height, NBC screen size, work surface height, and seat height. The worksheets contain tables for estimating recommended NBC base angle, NBC screen angle, body-NBC distance, work surface height, and seat height. Additionally, they include flow charts to help NBC users to determine necessary adjustment accessories and their settings.
Evaluation of the Microsoft Kinect for screening ACL injury.
Stone, Erik E; Butler, Michael; McRuer, Aaron; Gray, Aaron; Marks, Jeffrey; Skubic, Marjorie
2013-01-01
A study was conducted to evaluate the use of the skeletal model generated by the Microsoft Kinect SDK in capturing four biomechanical measures during the Drop Vertical Jump test. These measures, which include: knee valgus motion from initial contact to peak flexion, frontal plane knee angle at initial contact, frontal plane knee angle at peak flexion, and knee-to-ankle separation ratio at peak flexion, have proven to be useful in screening for future knee anterior cruciate ligament (ACL) injuries among female athletes. A marker-based Vicon motion capture system was used for ground truth. Results indicate that the Kinect skeletal model likely has acceptable accuracy for use as part of a screening tool to identify elevated risk for ACL injury.
Neutrinos from the terrestrial passage of supersymmetric dark-matter Q-balls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusenko, Alexander; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Shoemaker, Ian M.
2009-07-15
Supersymmetry implies that stable nontopological solitons, Q-balls, could form in the early universe and could make up all or part of dark matter. We show that the relic Q-balls passing through Earth can produce a detectable neutrino flux. The peculiar zenith angle dependence and a small annual modulation of this flux can be used as signatures of dark-matter Q-balls.
Multiple Types of Topological Fermions in Transition Metal Silicides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
Alonso, F; Vázquez, J; Ovejero, I; Garcimartín, M A; Mateos, A; Sánchez, E
2010-08-01
The efficiency of manure separation by a conveyor belt under a partially slatted floor for fattening pigs was determined for two types of belts, a flat belt with an incline of up to 6 degrees transversely and a concave belt with an incline of up to 1 degrees longitudinally. A 31.20% and 23.75% dry matter content of the solid fraction was obtained for the flat and concave belt, respectively. The flat belt was more efficient at 6 degrees than other slope angles. The residence time of the manure on the two belt types influenced the separation efficiency from a live weight of 63.00 kg upwards. The quantity of residue produced with this system was reduced to 25-40% with respect to a pit system under slat. This could mean a remarkable reduction in costs of storage, transport and application of manure. (c) 2010 Elsevier Ltd. All rights reserved.
Multiple Types of Topological Fermions in Transition Metal Silicides
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
2017-11-17
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Seixas, David de Sousa
2014-05-01
It has been recently pointed out that by removing the axial symmetry in the "multi-angle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos a new multi-azimuthal-angle (MAA) instability would arise. In particular, for a flux ordering Fνe>Fν ¯e>Fνx, as expected during the SN accretion phase, this instability occurs in the normal neutrino mass hierarchy. However, during this phase, the ordinary matter density can be larger than the neutrino one, suppressing the self-induced conversions. In this regard, we investigate the matter suppression of the MAA effects, performing a linearized stability analysis of the neutrino equations of motion, in the presence of realistic SN density profiles. We compare these results with the numerical solution of the SN neutrino nonlinear evolution equations. Assuming axially symmetric distributions of neutrino momenta, we find that the large matter term strongly inhibits the MAA effects. In particular, the hindrance becomes stronger including realistic forward-peaked neutrino angular distributions. As a result, in our model for a 10.8 M⊙ iron-core SNe, MAA instability does not trigger any flavor conversion during the accretion phase. Instead, for a 8.8 M⊙ O-Ne-Mg core SN model, with lower matter density profile and less forward-peaked angular distributions, flavor conversions are possible also at early times.
Characterizing dark matter at the LHC in Drell-Yan events
NASA Astrophysics Data System (ADS)
Capdevilla, Rodolfo M.; Delgado, Antonio; Martin, Adam; Raj, Nirmal
2018-02-01
Spectral features in LHC dileptonic events may signal radiative corrections coming from new degrees of freedom, notably dark matter and mediators. Using simplified models, and under a set of simplifying assumptions, we show how these features can reveal the fundamental properties of the dark sector, such as self-conjugation, spin and mass of dark matter, and the quantum numbers of the mediator. Distributions of both the invariant mass mℓℓ and the Collins-Soper scattering angle cos θCS are studied to pinpoint these properties. We derive constraints on the models from LHC measurements of mℓℓ and cos θCS, which are competitive with direct detection and jets+MET searches. We find that in certain scenarios the cos θCS spectrum provides the strongest bounds, underlining the importance of scattering angle measurements for nonresonant new physics.
Besford, Quinn Alexander; Zeng, Xiao-Yi; Ye, Ji-Ming; Gray-Weale, Angus
2016-02-01
Glycogen is a vital highly branched polymer of glucose that is essential for blood glucose homeostasis. In this article, the structure of liver glycogen from mice is investigated with respect to size distributions, degradation kinetics, and branching structure, complemented by a comparison of normal and diabetic liver glycogen. This is done to screen for differences that may result from disease. Glycogen α-particle (diameter ∼ 150 nm) and β-particle (diameter ∼ 25 nm) size distributions are reported, along with in vitro γ-amylase degradation experiments, and a small angle X-ray scattering analysis of mouse β-particles. Type 2 diabetic liver glycogen upon extraction was found to be present as large loosely bound, aggregates, not present in normal livers. Liver glycogen was found to aggregate in vitro over a period of 20 h, and particle size is shown to be related to rate of glucose release, allowing a structure-function relationship to be inferred for the tissue specific distribution of particle types. Application of branching theories to small angle X-ray scattering data for mouse β-particles revealed these particles to be randomly branched polymers, not fractal polymers. Together, this article shows that type 2 diabetic liver glycogen is present as large aggregates in mice, which may contribute to the inflexibility of interconversion between glucose and glycogen in type 2 diabetes, and further that glycogen particles are randomly branched with a size that is related to the rate of glucose release.
Kiepper, B H; Merka, W C; Fletcher, D L
2008-08-01
An experiment was conducted to compare the proximate composition of particulate matter recovered from poultry processing wastewater (PPW) generated by broiler slaughter plants. Poultry processing wastewater is the cumulative wastewater stream generated during the processing of poultry following primary and secondary physical screening (typically to 500 mum) that removes gross offal. Composite samples of PPW from 3 broiler slaughter plants (southeast United States) were collected over 8 consecutive weeks. All 3 broiler slaughter plants process young chickens with an average live weight of 2.0 kg. At each plant, a single 72-L composite sample was collected using an automatic sampler programmed to collect 1 L of wastewater every 20 min for 24 h during one normal processing day each week. Each composite sample was thoroughly mixed, and 60 L was passed through a series of sieves (2.0 mm, 1.0 mm, 500 mum, and 53 mum). The amount of particulate solids collected on the 2.0 mm, 1.0 mm, and 500 mum sieves was insignificant. The solids recovered from the 53-mum sieve were subjected to proximate analysis to determine percent moisture, fat, protein, ash, and fiber. The average percentages of fat, protein, ash, and fiber for all samples on a dry-weight basis were 55.3, 27.1, 6.1, and 4.1, respectively. Fat made up over half of the dry-weight matter recovered, representing PPW particulate matter between 500 and 53 mum. Despite the variation in number of birds processed daily, further processing operations, and number and type of wastewater screens utilized, there were no significance differences in percentage of fat and fiber between the slaughter plants. There were significant differences in percent protein and ash between the slaughter plants.
New three-dimensional visualization system based on angular image differentiation
NASA Astrophysics Data System (ADS)
Montes, Juan D.; Campoy, Pascual
1995-03-01
This paper presents a new auto-stereoscopic system capable of reproducing static or moving 3D images by projection with horizontal parallax or with horizontal and vertical parallaxes. The working principle is based on the angular differentiation of the images which are projected onto the back side of the new patented screen. The most important features of this new system are: (1) Images can be seen by naked eye, without the use of glasses or any other aid. (2) The 3D view angle is not restricted by the angle of the optics making up the screen. (3) Fine tuning is not necessary, independently of the parallax and of the size of the 3D view angle. (4) Coherent light is not necessary neither in capturing the image nor in its reproduction, but standard cameras and projectors. (5) Since the images are projected, the size and depth of the reproduced scene is unrestricted. (6) Manufacturing cost is not excessive, due to the use of optics of large focal length, to the lack of fine tuning and to the use of the same screen several reproduction systems. (7) This technology can be used for any projection system: slides, movies, TV cannons,... A first prototype of static images has been developed and tested with a 3D view angle of 90 degree(s) and a photographic resolution over a planar screen of 900 mm, of diagonal length. Present developments have success on a dramatic size reduction of the projecting system and of its cost. Simultaneous tasks have been carried out on the development of a prototype of 3D moving images.
2001-05-01
This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; ...
2016-04-08
High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less
Development of scanning holographic display using MEMS SLM
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro
2016-10-01
Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.
Electric and magnetic target polarization in quantum radar
NASA Astrophysics Data System (ADS)
Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco
2017-05-01
In this paper, we discuss the effect that photon polarization has on the quantum radar cross section (QRCS) during the special case scenario of when the target is enveloped in either a uniform electric field or magnetic field and all of its atomic electric/magnetic dipole moments become aligned (target polarization). This target polarization causes the coupling between the photon and the matter to change and alter the scattering characteristics of the target. Most notably, it causes scattering to be very near zero at a specified angle. We also investigate the relationship between electric and magnetic types of coupling and find that the electric contribution dominates the QRCS response.
Computer screen photo-excited surface plasmon resonance imaging.
Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar
2008-09-12
Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Chen, G. X.; Liu, J. W.
2018-03-01
A kind of superhydrophobic copper surface with micro-nanocomposite structure has been successfully fabricated by employing a silk-screen printing aided electrochemical machining method. At first silk-screen printing technology has been used to form a column point array mask, and then the microcolumn array would be fabricated by electrochemical machining (ECM) effect. In this study, the drop contact angles have been studied and scanning electron microscopy (SEM) has been used to study the surface characteristic of the workpiece. The experiment results show that the micro-nanocomposite structure with cylindrical array can be successfully fabricated on the metal surface. And the maximum contact angle is 151° when the fluoroalkylsilane ethanol solution was used to modify the machined surface in this study.
Upper bounds on asymmetric dark matter self annihilation cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellwanger, Ulrich; Mitropoulos, Pantelis, E-mail: ulrich.ellwanger@th.u-psud.fr, E-mail: pantelis.mitropoulos@th.u-psud.fr
2012-07-01
Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.
B-spline tight frame based force matching method
NASA Astrophysics Data System (ADS)
Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei
2018-06-01
In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.
Mattering and Suicide Ideation: Establishing and Elaborating a Relationship
ERIC Educational Resources Information Center
Elliott, Gregory C.; Colangelo, Melissa F.; Gelles, Richard J.
2005-01-01
Mattering is the belief that one makes a difference in the lives of others. We explore the effect of mattering on adolescent suicide ideation. The data source is the 2000 Youth At Risk Survey, composed of interviews with 2,004 youths, age 11-18 and screening interviews with their parents. Our analysis reveals that those who matter more are…
Development of a new type of germanium detector for dark matter searches
NASA Astrophysics Data System (ADS)
Wei, Wenzhao
Monte Carlo simulation is an important tool used to develop a better understanding of important physical processes. This thesis describes three Monte Carlo simulations used to understand germanium detector response to low energy nuclear recoils and radiogenic backgrounds for direct dark matter searches. The first simulation is the verification of Barker-Mei model, a theoretical model for calculating the ionization efficiency for germanium detector for the energy range of 1 - 100 keV. Utilizing the shape analysis, a bin-to-bin comparison between simulation and experimental data was performed for verifying the accuracy of the Barker-Mei model. A percentage difference within 4% was achieved between data and simulation, which showed the validity of the Barker-Mei model. The second simulation is the study of a new type of germanium detector for n/gamma discrimination at 77 K with plasma time difference in pulse shape. Due to the poor time resolution, conventional P-type Point Contact (PPC) and coaxial germanium detectors are not capable of discriminating nuclear recoils from electron recoils. In this thesis, a new idea of using great detector granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electron recoils with planar germanium detectors in strings was discussed. The anticipated sensitivity of this new detector array is shown for detecting dark matter. The last simulation is a study of a new type of germanium-detector array serving as a PMT screening facility for ultra-low background dark matter experiments using noble liquid xenon as detector material such LUX/LZ and XENON100/XENON1T. A well-shaped germanium detector array and a PMT were simulated to study the detector response to the signal and background for a better understanding of the radiogenic gamma rays from PMTs. The detector efficiency and other detector performance were presented in this work.
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Wide angle view of the Flight control room of Mission control center
1984-10-06
Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
Factors influencing the drain and rinse operation of Banana screens
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, M.; Firth, B.
An Australian Coal Association Research Project (ACARP) study to identify the variables and effects on Banana screens is described in this article. The impacts of the following system variables were investigated: panel angle, volumetric feed flow rate, solids content of feed screen motion, vibration frequency, magnetite content and impact of screen aperture. The article was adapted from a presentation at Coal Prep 2005, Lexington, KY, USA in May 2005. 4 refs., 8 figs., 1 tab.
Dark matter at DeepCore and IceCube
NASA Astrophysics Data System (ADS)
Barger, V.; Gao, Y.; Marfatia, D.
2011-03-01
With the augmentation of IceCube by DeepCore, the prospect for detecting dark matter annihilation in the Sun is much improved. To complement this experimental development, we provide a thorough template analysis of the particle physics issues that are necessary to precisely interpret the data. Our study is about nitty-gritty and is intended as a framework for detailed work on a variety of dark matter candidates. To accurately predict the source neutrino spectrum, we account for spin-correlations of the final state particles and the helicity-dependence of their decays, and absorption effects at production. We fully treat the propagation of neutrinos through the Sun, including neutrino oscillations, energy losses and tau regeneration. We simulate the survival probability of muons produced in the Earth by using the Muon Monte Carlo program, reproduce the published IceCube effective area, and update the parameters in the differential equation that approximates muon energy losses. To evaluate the zenith-angle dependent atmospheric background event rate, we track the Sun and determine the time it spends at each zenith-angle. Throughout, we employ neutralino dark matter as our example.
Density profiles of supernova matter and determination of neutrino parameters
NASA Astrophysics Data System (ADS)
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
Domingo-Salvany, Antónia; Barrio Anta, Gregorio; Sánchez Mañez, Amparo; Llorens Aleixandre, Noelia; Brime Beteta, Begoña; Vicente, Julián
2013-01-01
The aim of this study was to examine the feasibility of problem cannabis use screening instruments administration within wide school surveys, their psychometric properties, overlaps, and relationships with other variables. Students from 7 Spanish regions, aged 14–18, who attended secondary schools were sampled by two-stage cluster sampling (net sample 14,589). Standardized, anonymous questionnaire including DSM-IV cannabis abuse criteria, Cannabis Abuse Screening Test (CAST), and Severity of Dependence Scale (SDS) was self-completed with paper and pencil in the selected classrooms. Data was analysed using classical psychometric theory, bivariate tests, and multinomial logistic regression analysis. Not responding to instruments' items (10.5–12.3%) was associated with reporting less frequent cannabis use. The instruments overlapped partially, with 16.1% of positives being positive on all three. SDS was more likely to identify younger users with lower frequency of use who thought habitual cannabis use posed a considerable problem. CAST positivity was associated with frequent cannabis use and related problems. It is feasible to use short psychometric scales in wide school surveys, but one must carefully choose the screening instrument, as different instruments identify different groups of users. These may correspond to different types of problematic cannabis use; however, measurement bias seems to play a role too. PMID:25969832
Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)
NASA Astrophysics Data System (ADS)
Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.
Approaches to virtual screening and screening library selection.
Wildman, Scott A
2013-01-01
The ease of access to virtual screening (VS) software in recent years has resulted in a large increase in literature reports. Over 300 publications in the last year report the use of virtual screening techniques to identify new chemical matter or present the development of new virtual screening techniques. The increased use is accompanied by a corresponding increase in misuse and misinterpretation of virtual screening results. This review aims to identify many of the common difficulties associated with virtual screening and allow researchers to better assess the reliability of their virtual screening effort.
NASA Astrophysics Data System (ADS)
Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.
2017-04-01
We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.
Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase
NASA Astrophysics Data System (ADS)
Sarikas, Srdjan; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas
2012-02-01
Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M⊙ spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.
Suppression of self-induced flavor conversion in the supernova accretion phase.
Sarikas, Srdjan; Raffelt, Georg G; Hüdepohl, Lorenz; Janka, Hans-Thomas
2012-02-10
Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M[symbol: see text] spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.
Dark matter phenomenology of high-speed galaxy cluster collisions
Mishchenko, Yuriy; Ji, Chueng-Ryong
2017-07-29
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Dark matter phenomenology of high-speed galaxy cluster collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Yuriy; Ji, Chueng-Ryong
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.
2017-11-01
Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.
Relativistic weak lensing from a fully non-linear cosmological density field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.B.; Bruni, M.; Wands, D., E-mail: thomas.daniel@ucy.ac.cy, E-mail: marco.bruni@port.ac.uk, E-mail: david.wands@port.ac.uk
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- andmore » B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.« less
Perspectives Do Matter: "Joint Screen", a Promising Methodology for Multimodal Interaction Analysis
ERIC Educational Resources Information Center
Arend, Béatrice; Sunnen, Patrick; Fixmer, Pierre; Sujbert, Monika
2014-01-01
This paper discusses theoretical and methodological issues arising from a video-based research design and the emergent tool "Joint Screen'"when grasping joint activity. We share our reflections regarding the combined reading of four synchronised camera perspectives combined in one screen. By these means we reconstruct and analyse…
Low leaching and low LWR photoresist development for 193 nm immersion lithography
NASA Astrophysics Data System (ADS)
Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara
2006-03-01
With no apparent showstopper in sight, the adoption of ArF immersion technology into device mass production is not a matter of 'if' but a matter of 'when'. As the technology matures at an unprecedented speed, many of initial technical difficulties have been cleared away and the use of a protective layer known as top coat, initially regarded as a must, now becomes optional, for example. Our focus of interest has also sifted to more practical and production related issues such as defect reducing and performance enhancement. Two major types of immersion specific defects, bubbles and a large number of microbridges, were observed and reported elsewhere. The bubble defects seem to decrease by improvement of exposure tool. But the other type defect - probably from residual water spots - is still a problem. We suspect that the acid leaching from resist film causes microbridges. When small water spots were remained on resist surface after exposure, acid catalyst in resist film is leaching into the water spots even though at room temperature. After water from the spot is dried up, acid molecules are condensed at resist film surface. As a result, in the bulk of resist film, acid depletion region is generated underneath the water spot. Acid catalyzed deprotection reaction is not completed at this acid shortage region later in the PEB process resulting in microbridge type defect formation. Similar mechanism was suggested by Kanna et al, they suggested the water evaporation on PEB plate. This hypothesis led us to focus on reducing acid leaching to decrease residual water spot-related defect. This paper reports our leaching measurement results and low leaching photoresist materials satisfying the current leaching requirements outlined by tool makers without topcoat layer. On the other hand, Nakano et al reported that the higher receding contact angle reduced defectivity. The higher receding contact angle is also a key item to increase scan speed. The effort to increase the receding contact angle become very important issue for not only defectivity but also scanner throughput. Some of our experimental results along this line of study are also included in the report. The last topic covered is LWR (Line Width Roughness) as an essential leverage for performance improvement, especially for the smaller CD that immersion lithography is aiming to define. Our recent effort to find effect and working concept to reduce LWR with low leaching materials is also described.
Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki
2018-03-20
Molecular changes in dissolved organic matter (DOM) from treatment processes at two drinking water treatment plants in Japan were investigated using unknown screening analysis by Orbitrap mass spectrometry. DOM formulas with carbon, hydrogen and oxygen (CHO-DOM) were the most abundant class in water samples, and over half of them were commonly found at both plants. Among the treatment processes, ozonation induced the most drastic changes to DOM. Mass peak intensities of less saturated CHO-DOM (positive (oxygen subtracted double bond equivalent per carbon (DBE-O)/C)) decreased by ozonation, while more saturated oxidation byproducts (negative (DBE-O)/C) increased and new oxidation byproducts (OBPs) were detected. By Kendrick mass analysis, ozone reactions preferred less saturated CHO-DOM in the same alkylation families and produced more saturated alkylation families of OBPs. Following ozonation, biological activated carbon filtration effectively removed <300 Da CHO-DOM, including OBPs. Following chlorination, over 50 chlorinated formulas of disinfection byproducts (DBPs) were found in chlorinated water samples where at least half were unknown. Putative precursors of these DBPs were determined based on electrophilic substitutions and addition reactions. Ozonation demonstrated better decomposition of addition reaction-type precursors than electrophilic substitution-type precursors; over half of both precursor types decreased during biological activated carbon filtration.
Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2
NASA Astrophysics Data System (ADS)
Zhang, Wenhan; Wu, Quansheng; Zhang, Lunyong; Cheong, Sang-Wook; Soluyanov, Alexey A.; Wu, Weida
2017-10-01
A topological Weyl semimetal (TWS) is a metal where low-energy excitations behave like Weyl fermions of high-energy physics. Recently, it was shown that, due to the lower symmetry of condensed-matter systems, they can realize two distinct types of Weyl fermions. The type-I Weyl fermion in a metal is formed by a linear crossing of two bands at a point in the crystalline momentum space—Brillouin zone. The second type of TWSs host type-II Weyl points appearing at the touching points of electron and hole pockets, which is a result of tilted linear dispersion. The type-II TWS was predicted to exist in several compounds, including WTe2. Several angle-resolved photoemission spectroscopy studies of WTe2 were reported so far, having contradictory conclusions on the topological nature of observed Fermi arcs. In this paper, we report the results of spectroscopic imaging with a scanning tunneling microscope and first-principles calculations, establishing clear quasiparticle interference features of the surface states of WTe2. Our paper provides strong evidence for surface-state scattering. Although the surface Fermi arcs clearly are observed, it is still difficult to prove the existence of predicted type-II Weyl points in the bulk.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taira, Yoshitaka; Katoh, Masahiro
2018-06-01
We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.
Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong
2014-07-01
For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.
Iron overload: what is the role of public health?
Hulihan, Mary M; Sayers, Cindy A; Grosse, Scott D; Garrison, Cheryl; Grant, Althea M
2011-12-01
Hereditary hemochromatosis type 1, also known as hereditary hemochromatosis classical (HHC), is an iron overload disorder associated, in most cases, with mutations of the hemochromatosis (HFE) gene. Although suggested algorithms for diagnosing iron overload are available, there are still questions about options for genetic and biochemical screening for hemochromatosis and duration of treatment. This article provides a summary of an expert workgroup meeting convened on September 24-25, 2009, entitled "Iron Overload: What is the Role of Public Health?" The purpose of the meeting was to enable subject matter experts to share their most recent clinical and scientific iron overload information and to facilitate the discussion of future endeavors, with special emphasis on the role of public health in this field. The two main topics were the research priorities of the field, including clinical, genetic, and public health issues, and the concerns about the validity of current screening recommendations for the condition. Published by Elsevier Inc.
Geophysical searches for three-neutrino oscillations
NASA Technical Reports Server (NTRS)
Cudell, J. R.; Gaisser, T. K.
1985-01-01
The possibilities of using cosmic ray induced neutrinos to detect oscillations in deep underground experiments were considered. The matter effects are nonnegligible in the two neutrino case, they reduce a mixing angle of 45 deg to 7.5 deg for 1 GeV neutrinos of squared mass difference 10/4 eV59 going through the Earth making the oscillation totally unobservable. They produce a natural oscillation length of about 6000 km in the case of massless neutrinos. Adding a third neutrino flavor considerably modifies the oscillation pattern and suggests that scales down to 5 x 10/5 eV could be observed even when we take into account matter effects and the electron contribution to the incoming flux. The effect of matter on the probability curves for different cases are shown by varying the masses and the mixing matrix. The ratio upward upsilon + upsilon/downward upsilon + upsilon as a function of the zenith angle at Cleveland, neglecting angular smearing and energy threshold effects is predicted.
Advanced methods for displays and remote control of robots.
Eliav, Ami; Lavie, Talia; Parmet, Yisrael; Stern, Helman; Edan, Yael
2011-11-01
An in-depth evaluation of the usability and situation awareness performance of different displays and destination controls of robots are presented. In two experiments we evaluate the way information is presented to the operator and assess different means for controlling the robot. Our study compares three types of displays: a "blocks" display, a HUD (head-up display), and a radar display, and two types of controls: touch screen and hand gestures. The HUD demonstrated better performance when compared to the blocks display and was perceived to have greater usability compared to the radar display. The HUD was also found to be more useful when the operation of the robot was more difficult, i.e., when using the hand-gesture method. The experiments also pointed to the importance of using a wide viewing angle to minimize distortion and for easier coping with the difficulties of locating objects in the field of view margins. The touch screen was found to be superior in terms of both objective performance and its perceived usability. No differences were found between the displays and the controllers in terms of situation awareness. This research sheds light on the preferred display type and controlling method for operating robots from a distance, making it easier to cope with the challenges of operating such systems. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
37. REDUCTION PLANT DRYER Stainless steel screen cylinder, encased ...
37. REDUCTION PLANT - DRYER Stainless steel screen cylinder, encased within an outer steel shell (top half missing). As fish were tumbled by the rotating screen, they were cooked and dried by live steam piped into the dryer through overhead pipes. The dryer is mounted on a slight angle, aiding the process by moving the drying fish towards the exhaust end of the dryer. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
Assessing Angle's malocclusion among cleft lip and/or palate patients in Jammu.
Gupta, Akshay; Gupta, Anur; Bhardwaj, Amit; Vikram, S; Gomathi, Ajeetha; Singh, Karanprakash
2016-04-01
The study was conducted to examine the patients with abnormalities of cleft lip and/or palate and its association with different types of malocclusion. This descriptive study was done among 168 patients with abnormalities of cleft lip and/or palate. Angle's classification of malocclusion was applied for assessment of occlusion as Class I, Class II, and Class III. The types of oral clefts classification such as cleft lip unilateral and cleft lip bilateral, cleft palate (CP), unilateral cleft lip with palate (UCLP) and bilateral cleft lip with palate (BCLP) was considered. Chi-square test was applied to analyze the data at P < 0.05. The study showed different categories of clefts patients as cleft lip (81), CP (31), and both cleft lip and palate (53). The occurrence of unilateral cleft lip (44) was maximum among the sample followed by UCLP (39), and bilateral cleft lip (31). Maximum subjects with Class II (10.7%) and Class III (4.9%) malocclusion were seen with unilateral cleft lip deformities. None of the patients with UCLP had Class III malocclusion. Cleft lip was the most commonly observed deformity and high frequency of Class II and III malocclusion was evident. Therefore, patients with such abnormalities should be screened timely.
Grant Izmirlian, PhD | Division of Cancer Prevention
Dr. Grant Izmirian has worked on methodology for monitoring clinical trials, conducting formal interim analyses for the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial and the National Lung Screening Trial (NLST). These analyses were nonstandard in nature and required a subject matter expert because of the presumed delay in the effect of screening. He also
NASA Astrophysics Data System (ADS)
Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu
2017-02-01
Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.
Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center
NASA Technical Reports Server (NTRS)
2001-01-01
This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
NASA Astrophysics Data System (ADS)
Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu
2018-06-01
The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.
Wiggs, Janey L.; Auguste, Josette; Allingham, R. Rand; Flor, Jason D.; Pericak-Vance, Margaret A.; Rogers, Kathryn; LaRocque, Karen R.; Graham, Felicia L.; Broomer, Bob; Del Bono, Elizabeth; Haines, Jonathan L.; Hauser, Michael
2005-01-01
Objective: To determine whether mutations in the optineurin gene contribute to susceptibility to adult-onset primary open-angle glaucoma. Methods: The optineurin gene was screened in 86 probands with adult-onset primary open-angle glaucoma and in 80 age-matched control subjects. Exons 4 and 5, containing the recurrent mutations identified in patients with normal-tension glaucoma, were sequenced in all individuals studied, while the remaining exons were screened for DNA sequence variants with denaturing high-performance liquid chromatography. Results: The recurrent mutation, Met98Lys, previously found to be associated with an increased risk of disease was found in 8 (9%) of 86 probands. We also found the Met98Lys mutation in 10% of individuals from a control population of similar age, sex, and ethnicity. Consistent segregation of the mutation with the disease was not demonstrated in any of the 8 families. No other DNA changes altering the amino acid structure of the protein were found. Conclusion: The mutations in the optineurin gene associated with normal-tension glaucoma are not associated with adult-onset primary open-angle glaucoma in this patient population. Clinical Relevance: Genetic abnormalities that render the optic nerve susceptible to degeneration are excellent candidates for genetic factors that could contribute to adult-onset primary open-angle glaucoma. Mutations in optineurin have been associated with normal-tension glaucoma, but are not associated with disease in patients with adult-onset primary open-angle glaucoma. This result may indicate that normal-tension glaucoma is not necessarily part of the phenotypic spectrum of adult open-angle glaucoma. PMID:12912697
Hoffmann, Errol R; Chan, Alan H S
2017-08-01
Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.
Preferred viewing distance of liquid crystal high-definition television.
Lee, Der-Song
2012-01-01
This study explored the effect of TV size, illumination, and viewing angle on preferred viewing distance in high-definition liquid crystal display televisions (HDTV). Results showed that the mean preferred viewing distance was 2856 mm. TV size and illumination significantly affected preferred viewing distance. The larger the screen size, the greater the preferred viewing distance, at around 3-4 times the width of the screen (W). The greater the illumination, the greater the preferred viewing distance. Viewing angle also correlated significantly with preferred viewing distance. The more deflected from direct frontal view, the shorter the preferred viewing distance seemed to be. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Rivera, Zahira Herrera; Oosterink, Efraim; Rietveld, Luuk; Schoutsen, Frans; Stolker, Linda
2011-08-26
The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap™ LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap™ LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns. Copyright © 2011 Elsevier B.V. All rights reserved.
Laparoscopic Heller myotomy with or without partial fundoplication: A matter of debate
Ramacciato, G; D’Angelo, FA; Aurello, P; Gaudio, M Del; Varotti, G; Mercantini, P; Bellagamba, R; Ercolani, G
2005-01-01
AIM: To present our experience of laparoscopic Heller stretching myotomy followed by His angle reconstruction as surgical approach to esophageal achalasia. METHODS: Thirty-two patients underwent laparoscopic Heller myotomy; an anterior partial fundoplication in 17, and angle of His reconstruction in 15 cases represented the antireflux procedure of choice. RESULTS: There were no morbidity and mortality recorded in both anterior funduplication and angle of His reconstruction groups. No differences were detected in terms of recurrent dysphagia, p.o. reflux or medical therapy. CONCLUSION: To reduce the incidence of recurrent achalasia after laparoscopic Heller myotomy, we believe that His’ angle reconstruction is a safe and effective alternative to the anterior fundoplication. PMID:15770738
NASA Astrophysics Data System (ADS)
Czachor, H.; Doerr, S. H.; Lichner, L.
2010-01-01
SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.
Belopolski, Ilya; Xu, Su -Yang; Koirala, Nikesh; ...
2017-03-24
Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfacesmore » act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belopolski, Ilya; Xu, Su -Yang; Koirala, Nikesh
Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfacesmore » act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites.« less
The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge
NASA Astrophysics Data System (ADS)
Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.
2018-02-01
We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.
Investigation of condensed matter by means of elastic thermal-neutron scattering
NASA Astrophysics Data System (ADS)
Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V.; Tyulyusov, A. N.
2016-07-01
The application of elastic thermal-neutron scattering in investigations of condensed matter that were performed at the Institute for Theoretical and Experimental Physics is described. An account of diffraction studies with weakly absorbing crystals, including studies of the anomalous-absorption effect and coherent effects in diffuse scattering, is given. Particular attention is given to exposing the method of multiple small-angle neutron scattering (MSANS). It is shown how information about matter inhomogeneities can be obtained by this method on the basis of Molière's theory. Prospects of the development of this method are outlined, and MSANS theory is formulated for a high concentration of matter inhomogeneities.
ASTROPHYSICS. Atom-interferometry constraints on dark energy.
Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J
2015-08-21
If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.
Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.
Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin
2017-09-01
Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.
The big picture: effects of surround on immersion and size perception.
Baranowski, Andreas M; Hecht, Heiko
2014-01-01
Despite the fear of the entertainment industry that illegal downloads of films might ruin their business, going to the movies continues to be a popular leisure activity. One reason why people prefer to watch movies in cinemas may be the surround of the movie screen or its physically huge size. To disentangle the factors that might contribute to the size impression, we tested several measures of subjective size and immersion in different viewing environments. For this purpose we built a model cinema that provided visual angle information comparable with that of a real cinema. Subjects watched identical movie clips in a real cinema, a model cinema, and on a display monitor in isolation. Whereas the isolated display monitor was inferior, the addition of a contextual model improved the viewing immersion to the extent that it was comparable with the movie theater experience, provided the viewing angle remained the same. In a further study we built an identical but even smaller model cinema to unconfound visual angle and viewing distance. Both model cinemas produced similar results. There was a trend for the larger screen to be more immersive; however, viewing angle did not play a role in how the movie was evaluated.
Anisotropic imaging performance in indirect x-ray imaging detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep
We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less
An Apparatus for Sizing Particulate Matter in Solid Rocket Motors.
1984-06-01
accurately measured. A curve for sizing polydispersions was presented which was used by Cramer and Hansen [Refs. 2, 12]. Two phase flow losses are often...Concentration...... 54 18. 5 Micron Polystyrene, Curve Fit .......... ... 55 19. 5 Micron Polystyrene, Two Angle Method ........ .56.... 20. 10 Micron...Polystyrene, Curve Fit .. ........ 57....[57 21. 10 Micron Polystyrene, Two Angle Method .. ....... .58 . . .6_ *22. 20J Mizron P3iystvrene Cu. .Fi
NASA Astrophysics Data System (ADS)
Gomer, Matthew R.; Williams, Liliya L. R.
2018-04-01
The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.
Two-Piece Screens for Decontaminating Granular Material
NASA Technical Reports Server (NTRS)
Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis
2009-01-01
Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.
Generalized charge-screening in relativistic Thomas–Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less
Photographic measurement of head and cervical posture when viewing mobile phone: a pilot study.
Guan, Xiaofei; Fan, Guoxin; Wu, Xinbo; Zeng, Ying; Su, Hang; Gu, Guangfei; Zhou, Qi; Gu, Xin; Zhang, Hailong; He, Shisheng
2015-12-01
With the dramatic growth of mobile phone usage, concerns have been raised with regard to the adverse health effects of mobile phone on spinal posture. The aim of this study was to determine the head and cervical postures by photogrammetry when viewing the mobile phone screen, compared with those in neutral standing posture. A total of 186 subjects (81 females and 105 males) aged from 17 to 31 years old participated in this study. Subjects were instructed to stand neutrally and using mobile phone as in daily life. Using a photographic method, the sagittal head and cervical postures were assessed by head tilt angle, neck tilt angle, forward head shift and gaze angle. The photographic method showed a high intra-rater and inter-rater reliability in measuring the sagittal posture of cervical spine and gaze angle (ICCs ranged from 0.80 to 0.99). When looking at mobile phone, the head tilt angle significantly increased (from 74.55° to 95.22°, p = 0.000) and the neck angle decreased (from 54.68° to 38.77°, p = 0.000). The forward head posture was also confirmed by the significantly increased head shift (from 10.90 to 13.85 cm, p = 0.000). The posture assumed in mobile phone use was significantly correlated with neutral posture (p < 0.05). Males displayed a more forward head posture than females (p < 0.05). The head tilt angle was positively correlated with the gaze angle (r = 0.616, p = 0.000), while the neck tilt angle was negatively correlated with the gaze angle (r = -0.628, p = 0.000). Photogrammetry is a reliable, quantitative method to evaluate the head and cervical posture during mobile phone use. Compared to neutral standing, subjects display a more forward head posture when viewing the mobile phone screen, which is correlated with neutral posture, gaze angle and gender. Future studies will be needed to investigate a dose-response relationship between mobile phone use and assumed posture.
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng
2016-01-01
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319
Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry
Sacco, I.C.N.; Picon, A.P.; Ribeiro, A.P.; Sartor, C.D.; Camargo-Junior, F.; Macedo, D.O.; Mori, E.T.T.; Monte, F.; Yamate, G.Y.; Neves, J.G.; Kondo, V.E.; Aliberti, S.
2012-01-01
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol. PMID:22911379
Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.
Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S
2012-09-01
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
NASA Technical Reports Server (NTRS)
Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir
1993-01-01
A time marching Navier-Stokes code called PARC3D was used to study the 3-D viscous flow associated with an advanced ducted propeller (ADP) subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 degrees became unstable at 29 degrees, and separated at 30 degrees. An experimental study with a similar inlet and with no propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller. This tends to indicate that the propeller exerts a favorable effect on the inlet performance. During the through-flow experiment a stationary blockage device was used to successfully simulate the propeller effect on the inlet flow field at angles of attack. In the present numerical study, this flow blockage was modeled via a PARC3D computational boundary condition (BC) called the screen BC. The principle formulation of this BC was based on the one-and-half dimension actuator disk theory. This screen BC was applied at the inlet propeller face station of the computational grid. Numerical results were obtained with and without the screen BC. The application of the screen BC in this numerical study provided results which are similar to the results of past experimental efforts in which either the blockage device or the propeller was used.
NASA Astrophysics Data System (ADS)
Diner, D. J.
2016-12-01
Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five continents includes major population centers covering a range of PM concentrations and particle types. MAIA will also collect aerosol and cloud observations over regions of interest to the radiation science, climate, and environmental science communities. Launch of the MAIA instrument is planned for early in the next decade.
NASA Astrophysics Data System (ADS)
Draxler, M.; Walker, M.; McConville, C. F.
2006-08-01
We have used coaxial impact collision ion scattering spectroscopy (CAICISS) data collected from 3 keV He+ ions backscattered from a Cu(1 0 0) surface in different azimuthal orientations to investigate the influence of the screening length on CAICISS polar angle scans. We have compared the experimental data to computer simulations generated with the FAN code and found that for our experimental conditions an exceptionally low value of 0.53 was required for the correction factor to the Firsov screening length used with the Thomas-Fermi-Moliere potential. In addition we found that the Ziegler-Biersack-Littmark potential is not applicable, resulting in incorrect peak positions in the CAICISS polar angle plots.
Callisaya, M L; Daly, R M; Sharman, J E; Bruce, D; Davis, T M E; Greenaway, T; Nolan, M; Beare, R; Schultz, M G; Phan, T; Blizzard, L C; Srikanth, V K
2017-10-16
Type 2 Diabetes (T2D) is associated with increased risk of dementia. We aimed to determine the feasibility of a randomised controlled trial (RCT) examining the efficacy of exercise on cognition and brain structure in people with T2D. A 6-month pilot parallel RCT of a progressive aerobic- and resistance-training program versus a gentle movement control group in people with T2D aged 50-75 years (n = 50) at the University of Tasmania, Australia. Assessors were blinded to group allocation. Brain volume (total, white matter, hippocampus), cortical thickness and white matter microstructure (fractional anisotrophy and mean diffusivity) were measured using magnetic resonance imaging, and cognition using a battery of neuropsychological tests. Study design was assessed by any changes (during the pilot or recommended) to the protocol, recruitment by numbers screened and time to enrol 50 participants; randomisation by similarity of characteristics in groups at baseline, adherence by exercise class attendance; safety by number and description of adverse events and retention by numbers withdrawn. The mean age of participants was 66.2 (SD 4.9) years and 48% were women. There were no changes to the design during the study. A total of 114 people were screened for eligibility, with 50 participants with T2D enrolled over 8 months. Forty-seven participants (94%) completed the study (23 of 24 controls; 24 of 26 in the intervention group). Baseline characteristics were reasonably balanced between groups. Exercise class attendance was 79% for the intervention and 75% for the control group. There were 6 serious adverse events assessed as not or unlikely to be due to the intervention. Effect sizes for each outcome variable are provided. This study supports the feasibility of a large scale RCT to test the benefits of multi-modal exercise to prevent cognitive decline in people with T2D. Design changes to the future trial are provided. ANZCTR 12614000222640 ; Registered 3/3/2014; First participant enrolled 26/6/2014, study screening commenced 1/9/2014; Australian and New Zealand Clinical Trial Registry.
Contribution of parsec-scale material on to the polarized X-ray spectrum of type 1 Seyfert galaxies
NASA Astrophysics Data System (ADS)
Marin, F.; Dovčiak, M.; Kammoun, E. S.
2018-07-01
Type 1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have travelled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type 1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material on to the polarized X-ray spectrum of type 1 Seyfert galaxies (Seyfert-1s) using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disc-corona system. For unpolarized and parallelly polarized photons (parallel to the disc), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10 keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or overestimating the X-ray polarization by 0.1-1 percentage points.
Contribution of parsec-scale material onto the polarized X-ray spectrum of type-1 Seyfert galaxies
NASA Astrophysics Data System (ADS)
Marin, F.; Dovčiak, M.; Kammoun, E. S.
2018-04-01
Type-1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have traveled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type-1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material onto the polarized X-ray spectrum of type-1 Seyfert galaxies using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disk-corona system. For unpolarized and parallelly polarized photons (parallel to the disk), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or over-estimating the X-ray polarization by 0.1 - 1 percentage points.
Methodology to Improve Aviation Security With Terrorist Using Aircraft as a Weapon
2013-09-01
STATEMENT Approval for public release;distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words ) The aviation industry... Electronic Baggage Screening Program EDS Explosive Detection System EMMI Energy, Matter, Material wealth, and Information ETD Explosives Trace...12 All checked baggage in the United States has been subjected to 100% screening since December 2003 under TSA’s Electronic Baggage Screening
CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model
NASA Astrophysics Data System (ADS)
Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen
2018-05-01
We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.
Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.
Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M
2016-02-04
By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening.
Model Lung Surfactant Films: Why Composition Matters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf
Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phasemore » but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.« less
Display screen and method of manufacture therefor
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)
2001-01-01
A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen is disclosed. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. The prescreen is preferably formed by a collection of light transmitting and refracting elements, preferably spheres 80, partially embedded in a light blocking layer. Toward the back of the spheres 80 are effective apertures 82 where the light blocking layer 81 is absent or at least thinner than in other regions toward the side of the spheres. The projected image enters spheres 80 through the effective apertures 82, and exits the spheres 80 centered orientationally about the normal to the lens axis. The re-oriented light rays then enter the diffusion screen for viewing.
Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...
Modeling Vortex Generators in a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2011-01-01
A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.
Large-viewing-angle electroholography by space projection
NASA Astrophysics Data System (ADS)
Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko
2004-06-01
The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.
Search for the sterile neutrino mixing with the ICAL detector at INO
NASA Astrophysics Data System (ADS)
Behera, S. P.; Ghosh, Anushree; Choubey, Sandhya; Datar, V. M.; Mishra, D. K.; Mohanty, A. K.
2017-05-01
The study has been carried out on the prospects of probing the sterile neutrino mixing with the magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO), using atmospheric neutrinos as a source. The so-called 3 + 1 scenario is considered for active-sterile neutrino mixing and lead to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed using the neutrino event generator NUANCE, modified for ICAL, and folded with the detector resolutions obtained by the INO collaboration from a full GEANT4-based detector simulation. A comparison has been made between the results obtained from the analysis considering only the energy and zenith angle of the muon and combined with the hadron energy due to the neutrino induced event. A small improvement has been observed with the addition of the hadron information to the muon. In the analysis we consider neutrinos coming from all zenith angles and the Earth matter effects are also included. The inclusion of events from all zenith angles improves the sensitivity to sterile neutrino mixing by about 35% over the result obtained using only down-going events. The improvement mainly stems from the impact of Earth matter effects on active-sterile mixing. The expected precision of ICAL on the active-sterile mixing is explored and the allowed confidence level (C.L.) contours presented. At the assumed true value of 10° for the sterile mixing angles and marginalization over Δ m^2_{41} and the sterile mixing angles, the upper bound at 90% C.L. (from two-parameter plots) is around 20^deg; for θ _{14} and θ _{34}, and about 12°c for θ _{24}.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Riparian Sanctuary Unit by the Department of Water Resources in 1985 and 1986. The rock was placed in order... activities would not impact the Goose Lake overflow structure that diverts flood water into the Butte Basin..., the angle of flow and velocity of the water passing the screens will change, trapping fish against the...
MadDM: Computation of dark matter relic abundance
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew
2017-12-01
MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.
Cost-effectiveness and cost utility of community screening for glaucoma in urban India.
John, Denny; Parikh, Rajul
2017-07-01
Population-based screening for glaucoma has been demonstrated to be cost-effective if targeted at high-risk groups such as older adults and those with a family history of glaucoma, and through use of a technician for conducting initial assessment rather than a medical specialist. This study attempts to investigate the cost-effectiveness of a hypothetical community screening and subsequent treatment programme for glaucoma in comparison with current practice (i.e. with no screening programme but with some opportunistic case finding) in the urban areas of India. A hypothetical screening programme for both primary open-angle glaucoma and angle-closure disease was built for a population aged between 40 and 69 years in the urban areas of India. Screening and treatment costs were obtained from an administrator of a tertiary eye hospital in India. The probabilities for the screening pathway were derived from published literature and expert opinion. The glaucoma prevalence rates for urban areas were adapted from the Chennai Glaucoma Study findings. A decision-analytical model using TreeAge Pro 2015 was built to model events, costs and treatment pathways. One-way sensitivity analyses were conducted. The introduction of a community screening programme for glaucoma is likely to be cost-effective, the estimated incremental cost-effectiveness ratio (ICER) values being 10,668.68 when compared with no screening programme and would treat an additional 4443 cases and prevent 1790 person-years of blindness over a 10-year period in the urban areas of India. Sensitivity analyses revealed that glaucoma prevalence rates across various age groups, screening uptake rate, follow-up compliance after screening, treatment costs and utility values of health states associated with medical and surgical treatment of glaucoma had an impact on the ICER values of the screening programme. In comparison with current practice (i.e. without a screening programme but with some opportunistic case finding), the introduction of a community screening programme for glaucoma for the 40-69 years age group is likely to be relatively cost-effective if implemented in the urban areas of India. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Kiepper, B H; Merka, W C; Fletcher, D L
2008-12-01
Experiments were conducted to compare the effects of tertiary microscreen gap size on the proximate composition and rate of recovery of particulate matter from poultry processing wastewater (PPW). A high-speed vibratory screen was installed within the wastewater treatment area of a southeast US broiler slaughter plant after the existing primary and secondary mechanical rotary screens. Microscreen panels with nominal gap size openings of 212, 106 and 45mum were investigated. The particulate matter samples recovered were subjected to proximate analysis to determine percent moisture, fat, protein, crude fiber and ash. The average percent wet weight moisture (%WW) content for all samples was 79.1. The average percent dry matter (%DM) fat, protein, crude fiber and ash were 63.5, 17.5, 4.8 and 1.5, respectively. The mean concentration of total solids (TS) recovered from all microscreen runs was 668mg/L, which represents a potential additional daily offal recovery rate of 12.1metric tons (MT) per 3.78 million L (1.0 million gallons US) of PPW. There was no significant difference in the performance of the three microscreen gap sizes with regard to proximate composition or mass of particulate matter recovered.
Nakhforoosh, Alireza; Bodewein, Thomas; Fiorani, Fabio; Bodner, Gernot
2016-01-01
Modern imaging technology provides new approaches to plant phenotyping for traits relevant to crop yield and resource efficiency. Our objective was to investigate water use strategies at early growth stages in durum wheat genetic resources using shoot imaging at the ScreenHouse phenotyping facility combined with physiological measurements. Twelve durum landraces from different pedoclimatic backgrounds were compared to three modern check cultivars in a greenhouse pot experiment under well-watered (75% plant available water, PAW) and drought (25% PAW) conditions. Transpiration rate was analyzed for the underlying main morphological (leaf area duration) and physiological (stomata conductance) factors. Combining both morphological and physiological regulation of transpiration, four distinct water use types were identified. Most landraces had high transpiration rates either due to extensive leaf area (area types) or both large leaf areas together with high stomata conductance (spender types). All modern cultivars were distinguished by high stomata conductance with comparatively compact canopies (conductance types). Only few landraces were water saver types with both small canopy and low stomata conductance. During early growth, genotypes with large leaf area had high dry-matter accumulation under both well-watered and drought conditions compared to genotypes with compact stature. However, high stomata conductance was the basis to achieve high dry matter per unit leaf area, indicating high assimilation capacity as a key for productivity in modern cultivars. We conclude that the identified water use strategies based on early growth shoot phenotyping combined with stomata conductance provide an appropriate framework for targeted selection of distinct pre-breeding material adapted to different types of water limited environments. PMID:27547208
Target material dependence of positron generation from high intensity laser-matter interactions
Williams, G. J.; Barnak, D.; Fiksel, G.; ...
2016-12-06
Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z 2. The unexpectedly low scaling results from Coulomb collisions that act to stop ormore » scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.« less
ERIC Educational Resources Information Center
Hodgkinson, Anthony W.
A variety of screen education courses were designed, implemented, and evaluated in a public school system. Specific objectives of the courses were to teach screen education together with English skills and subject matter, to teach film production to interested students, to teach about media operation and performance, and to demonstrate that media…
The Vainshtein mechanism in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particlesmore » are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.« less
-dimensional thin shell wormhole with deformed throat can be supported by normal matter
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
2015-06-01
From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies. We aim to circumvent this handicap by considering angle dependent throats in dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of and , we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Hering, P.; Brown, S. B.
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Chen, Z.; Hering, P.; Brown, S. B.; ...
2016-09-19
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Here, temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Tsai, Fang-Chih; Lee, Han-Jui; Wang, An-Guor; Hsieh, Shu-Chen; Lu, Yung-Hsiu; Lee, Ming-Che; Pai, Ju-Shan; Chu, Tzu-Hung; Yang, Chia-Feng; Hsu, Ting-Rong; Lai, Chih-Jou; Tsai, Ming-Tzu; Ho, Ping-Hsun; Lin, Min-Chieh; Cheng, Ling-Yee; Chuang, Ya-Chin; Niu, Dau-Ming
2017-04-01
Glutaric aciduria type 1 (GA-1) is an organic acidemia with potentially severe neurological sequelae. In Taiwan, newborn screening (NBS) for GA-1 began in 2001, but large-scale reporting is lacking. This study describes Taiwan's largest newborn screening population to date. Between 2001 and 2015, 1,490,636 newborns were screened for GA-1. Confirmatory examinations included the carnitine loading test. Confirmed patients were treated with a low lysine diet, carnitine, and high-energy intake during illness. Clinical, laboratory, and neuroimaging data were analyzed. Fourteen newborns were diagnosed with GA-1 (incidence: 1/106,474). C5DC concentration was clearly increased after carnitine loading in the affected newborns, but not in false-positive newborns (p = 0.004), indicating that this test is useful as an adjuvant diagnostic method. Eleven patients followed in our hospital were enrolled, namely nine NBS patients and two patients diagnosed clinically. IVS10-2A>C was the most common mutation. Two novel mutations (T36fs and N291K) were identified. Pendular nystagmus was found in two pediatric GA-1 patients. The corresponding pathology was optic atrophy in one patient, but remained undetermined in the other patient. The frequency of encephalopathic crisis decreased substantially following NBS. Among patients diagnosed by NBS, cognitive functioning was better among patients with good compliance than patients with poor compliance (p = 0.03). Abnormalities were detected by brain MRI including diffusion-weighted imaging and apparent diffusion coefficient maps; these affected various brain regions at different stages of the disease. Basal ganglion injuries occurred after an encephalopathic crisis. White matter disease was prevalent among older patients, either with or without an encephalopathic crisis. Early diagnosis by newborn screening followed by full compliance with treatment guidelines is important to a good outcome. Copyright © 2017. Published by Elsevier Taiwan LLC.
Chen, Ru; Yang, Ke; Zheng, Zhong; Ong, Moh-Lim; Wang, Ning-Li; Zhan, Si-Yan
2016-03-01
To systematically evaluate the safety and efficacy of latanoprost monotherapy for the treatment of patients with angle-closure glaucoma. We searched EMBASE, Medline, Cochrane Library, Chinese Journal Full-text Database (CNKI), Chinese Science and Technology Periodical Database (VIP), and Wang Fang using the search terms "latanoprost" (or its commercial name, Xalatan) and "angle-closure glaucoma." Resulting articles were then screened using preset inclusion criteria. Subgroup and sensitivity analyses were performed to evaluate the impact of research population, research type (blinded or controlled), and withdrawal/loss to follow-up. A total of 17 studies (n=807) were included in this meta-analysis. The primary outcome measure was intraocular pressure (IOP). Changes in the mean, peak, and trough IOP from baseline were used as effect measures. As I statistic revealed statistical heterogeneity, the random-effects model was applied. With the exception of 2 non-Asian populations from Australia and Peru, all 13 countries included in this study were from Asia. Latanoprost reduced mean IOP by 7.9 mm Hg (32.4%), peak IOP by 7.4 mm Hg (29.8%), and trough IOP by 7.9 mm Hg (32.5%). The most frequent ocular adverse effects were ocular hyperemia, discomfort (including eye irritation, ocular discomfort, foreign body sensation, and itching), and blurred vision with a total incidence rate of 9.4%, 8.7%, and 5.2%, respectively. Systemic adverse effects encompass rhinitis, dizziness, headache, and nonspecific skin pigmentation. Latanoprost is effective at reducing the IOP of patients with angle-closure glaucoma. Adverse reactions associated with latanoprost were mainly ocular in nature.
Reduced head-neck offset in nontraumatic osteonecrosis of the femoral head.
Fraitzl, Christian R; Kappe, Thomas; Brugger, Annina; Billich, Christian; Reichel, Heiko
2013-08-01
Risk factors for nontraumatic osteonecrosis of the femoral head have in common that they trigger intravascular coagulation and thus lead to devascularization of the femoral head. In part of the patients, however, no risk factors seem to be evident. Mechanical reasons contributing to nontraumatic osteonecrosis have not been discussed so far. We hypothesized that recurrent traumatization of the vessels supplying the femoral head by a cam-type mechanism as in femoroacetabular impingement could add to intravascular coagulation. We, therefore, asked whether structural abnormalities at the femoral head-neck junction indicative of such a mechanism could be observed in radiographs of patients with osteonecrosis of the femoral head. The preoperative anteroposterior and lateral radiographs of 77 patients who underwent surgery because of osteonecrosis of the femoral head were retrospectively screened for a reduced head-neck offset by measuring the α-angle. For comparison, the α-angle was measured on anteroposterior and lateral radiographs of 339 control subjects without evident underlying hip pathology. The mean α-angle was 62.8° (SD 18.7°) for anteroposterior and 67.6° (SD 13.2°) for lateral radiographs in patients with nontraumatic osteonecrosis of the femoral head, whereas in control subjects, the mean α-angle was 47.2° (SD 9.6°) (p < 0.0001) and 47.6° (SD 10.3°) (p < 0.0001), respectively. A reduced head-neck offset in patients with nontraumatic osteonecrosis of the femoral head may act as a mechanical (co-)factor in developing osteonecrosis of the femoral head.
Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening
2014-01-01
Analyzing the chemical space coverage in commercial fragment screening collections revealed the overlap between bioactive medicinal chemistry substructures and rule-of-three compliant fragments is only ∼25%. We recommend including these fragments in fragment screening libraries to maximize confidence in discovering hit matter within known bioactive chemical space, while incorporation of nonoverlapping substructures could offer novel hits in screening libraries. Using principal component analysis, polar and three-dimensional substructures display a higher-than-average enrichment of bioactive compounds, indicating increasing representation of these substructures may be beneficial in fragment screening. PMID:24405118
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection
NASA Astrophysics Data System (ADS)
Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.
2013-12-01
Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.
NASA Technical Reports Server (NTRS)
Lathem, W. C.; Hudson, W. R.
1972-01-01
Measurements of beam deflection angle with respect to spring positioning power and accelerator impingement current as a function of deflection angle were made on a 5-cm diameter system. Response time measurements on the translational grid beam deflection system showed that the time for the maximum deflection angle analyzed (+16.4 deg to -16.4 deg) could be reduced by a factor of nine by increasing the heating power applied to the positioning spring from 4 to 16 watts. At 14 watts the response time for maximum deflection was about 1 minute.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Temkin, Sarah M; Miller, Eric A; Samimi, Goli; Berg, Christine D; Pinsky, Paul; Minasian, Lori
2017-12-01
A mortality benefit from screening for ovarian cancer has never been demonstrated. The aim of this study was to evaluate the screening outcomes for different histologic subtypes of ovarian cancers. Women in the screening arm of the Prostate, Lung, Colorectal and Ovarian Screening Trial underwent CA-125 and transvaginal ultrasound annually for 3-5 years. We compared screening test characteristics (including overdiagnosis) and outcomes by tumour type (type II versus other) and study arm (screening versus usual care). Of 78,215 women randomised, 496 women were diagnosed with ovarian cancer. Of the tumours that were characterised (n = 413; 83%), 74% (n = 305) were type II versus 26% other (n = 108). Among screened patients, 70% of tumours were type II compared to 78% in usual care (p = 0.09). Within the screening arm, 29% of type II tumours were screen detected compared to 54% of the others (p < 0.01). The sensitivity of screening was 65% for type II tumours versus 86% for other types (p = 0.02). 15% of type II screen-detected tumours were stage I/II, compared to 81% of other tumours (p < 0.01). The overdiagnosis rate was lower for type II compared to other tumours (28.2% versus 72.2%; p < 0.01). Ovarian cancer-specific survival was worse for type II tumours compared to others (p < 0.01). Survival was similar for type II (p = 0.74) or other types (p = 0.32) regardless of study arm. Test characteristics of screening for ovarian cancer differed for type II tumours compared to other ovarian tumours. Type II tumours were less likely to be screen diagnosed, early stage at diagnosis or overdiagnosed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Brandon, Jay; Stacy, Kathryn; Johnson, Thomas D., Jr.; Severance, Kurt; Childers, Brooks A.
1993-01-01
A flight research program to study the flow structure and separated-flow origins over an F-106B aircraft wing is described. The flight parameters presented include Mach numbers from 0.26 to 0.81, angles of attack from 8.5 deg to 22.5 deg, Reynolds numbers from 22.6 x 10(exp 6) to 57.3 x 10(exp 6) and load factors from 0.9 to 3.9 times the acceleration due to gravity. Techniques for vapor screens, image enhancement, photogrammetry, and computer graphics are integrated to analyze vortex-flow systems. Emphasis is placed on the development and application of the techniques. The spatial location of vortex cores and their tracks over the wing are derived from the analysis. Multiple vortices are observed and are likely attributed to small surface distortions in the wing leading-edge region. A major thrust is to correlate locations of reattachment lines obtained from the off-surface (vapor-screen) observations with those obtained from on-surface oil-flow patterns and pressure-port data. Applying vapor-screen image data to approximate reattachment lines is experimental, but depending on the angle of attack, the agreement with oil-flow results is generally good. Although surface pressure-port data are limited, the vapor-screen data indicate reattachment point occurrences consistent with the available data.
Multi-angle nuclear imaging apparatus and method
Anger, Hal O. [Berkeley, CA
1980-04-08
Nuclear imaging apparatus for obtaining multi-plane readouts of radioactive material in a human or animal subject. A probe disposed in the vicinity of the subject is provided for receiving radiation from radiating sources in the subject and for forming a probe radiation image. The probe has a collimator with different portions thereof having holes disposed at different angles. A single scintillation crystal overlies the collimator for receiving radiation passing through the collimator and producing scintillations to provide the probe image. An array of photomultiplier tubes overlie the single crystal for observing the probe image and providing electrical outputs. Conversion apparatus is provided for converting the electrical outputs representing the probe image into optical images displayed on the screen of a cathode ray tube. Divider apparatus is provided for dividing the probe radiation image into a plurality of areas with the areas corresponding to different portions of the collimator having holes disposed at different angles. A light sensitive medium is provided for receiving optical images. Apparatus is provided for causing relative movement between the probe and the subject. Apparatus is also provided for causing relative movement between the optical image on the screen and the light sensitive medium which corresponds to the relative movement between the probe and the subject whereby there is produced on the light sensitive medium a plurality of images that portray the subject as seen from different angles corresponding to the portions of the collimator having holes at different angles.
Multi-angle nuclear imaging apparatus and method
Anger, H.O.
1980-04-08
A nuclear imaging apparatus is described for obtaining multi-plane readouts of radioactive material in a human or animal subject. A probe disposed in the vicinity of the subject is provided for receiving radiation from radiating sources in the subject and for forming a probe radiation image. The probe has a collimator with different portions having holes disposed at different angles. A single scintillation crystal overlies the collimator for receiving radiation passing through the collimator and producing scintillations to provide the probe image. An array of photomultiplier tubes overlie the single crystal for observing the probe image and providing electrical outputs. Conversion apparatus is provided for converting the electrical outputs representing the probe image into optical images displayed on the screen of a cathode ray tube. Divider apparatus is provided for dividing the probe radiation image into a plurality of areas with the areas corresponding to different portions of the collimator having holes disposed at different angles. A light sensitive medium is provided for receiving optical images. Apparatus is provided for causing relative movement between the probe and the subject. Apparatus is also provided for causing relative movement between the optical image on the screen and the light sensitive medium which corresponds to the relative movement between the probe and the subject whereby there is produced on the light sensitive medium a plurality of images that portray the subject as seen from different angles corresponding to the portions of the collimator having holes at different angles. 11 figs.
Li, C; Bhatt, P P; Johnston, T P
1998-10-01
We have assessed the bioadhesive properties of several different mucoadhesive buccal patches. The patches consisted of custom coformulations of silicone polymers and Carbopol 974P. The contact angle of water was measured for each of the test formulations, using an ophthalmic shadow scope. The corresponding work of adhesion between the water and the patches (W1), and between the patches and freshly-excised rabbit buccal mucosa (W2) was then calculated, using a modification of Dupre's equation. The bioadhesive strength between the patches and excised rabbit buccal mucosa was also assessed. The results of the contact-angle measurements indicated that the contact angle decreased with an increase in the amount of Carbopol in the formulation. Additionally, the calculated values of both W1 and W2 increased with an increase in the amount of Carbopol in the buccal-patch formulations. A correlation (r not equal to 0.9808) was found between the measured contact angle and the calculated values for W2. The direct measurement of the force required to separate a buccal patch from excised rabbit buccal mucosa with the INSTRON demonstrated that the adhesive strength increased with an increase in the amount of Carbopol. This preliminary study has shown that the measurement of contact angles alone may provide a useful technique for estimating the work of adhesion, and may serve as a convenient and rapid screening procedure to identify potential mucoadhesive buccal-patch formulations.
Results from Core-collapse Simulations with Multi-dimensional, Multi-angle Neutrino Transport
NASA Astrophysics Data System (ADS)
Brandt, Timothy D.; Burrows, Adam; Ott, Christian D.; Livne, Eli
2011-02-01
We present new results from the only two-dimensional multi-group, multi-angle calculations of core-collapse supernova evolution. The first set of results from these calculations was published in 2008 by Ott et al. We have followed a nonrotating and a rapidly rotating 20 M sun model for ~400 ms after bounce. We show that the radiation fields vary much less with angle than the matter quantities in the region of net neutrino heating. This happens because most neutrinos are emitted from inner radiative regions and because the specific intensity is an integral over sources from many angles at depth. The latter effect can only be captured by multi-angle transport. We then compute the phase relationship between dipolar oscillations in the shock radius and in matter and radiation quantities throughout the post-shock region. We demonstrate a connection between variations in neutrino flux and the hydrodynamical shock oscillations, and use a variant of the Rayleigh test to estimate the detectability of these neutrino fluctuations in IceCube and Super-Kamiokande. Neglecting flavor oscillations, fluctuations in our nonrotating model would be detectable to ~10 kpc in IceCube, and a detailed power spectrum could be measured out to ~5 kpc. These distances are considerably lower in our rapidly rotating model or with significant flavor oscillations. Finally, we measure the impact of rapid rotation on detectable neutrino signals. Our rapidly rotating model has strong, species-dependent asymmetries in both its peak neutrino flux and its light curves. The peak flux and decline rate show pole-equator ratios of up to ~3 and ~2, respectively.
Transverse tails and higher order moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, W.L.; Decker, F.J.; Woodley, M.D.
1993-05-01
The tails that may be engendered in a beam`s transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment {l_angle}x{sup 3}{r_angle} in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set {l_angle}x{sup 3}{r_angle}, {l_angle}xx{prime}{sup 2}{r_angle}, {l_angle}x{prime}{sup 3}{r_angle}, and {l_angle}x{sup 2}x{prime}{r_angle} to be deduced --more » the natural extension of the well-known ``emittance measurement`` treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the {beta}-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails.« less
Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
Highly efficient isolation of waterborne sound by an air-sealed meta-screen
NASA Astrophysics Data System (ADS)
Bai, Xiaoxue; Qiu, Chunyin; Wen, Xinhua; Peng, Shasha; Ke, Manzhu; Liu, Zhengyou
2017-05-01
Underwater sound isolation has been a long-standing fundamental issue in industry and military fields. Starting from a simple theoretical model, here an air-sealed meta-screen is proposed to overcome this problem. Comparing with the sample without filling air, the effective impedance of the air-sealed one is greatly reduced and strikingly mismatch with water, accompanying another merit of low sound speed. Deeply suppressed sound transmission (˜50 dB) through such a meta-screen is observed experimentally over a wide range of ultrasonic frequencies and incident angles.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung
2014-05-01
The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.
NASA Astrophysics Data System (ADS)
Chen, Liping; Guo, Yi; Peng, Xinsheng
2017-10-01
Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.
Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk
2017-08-24
High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.
Observation of nodal line in non-symmorphic topological semimetal InBi
Ekahana, Sandy Adhitia; Wu, Shu-Chun; Jiang, Juan; ...
2017-05-30
Topological nodal semimetal (TNS), characterized by its touching conduction and valence bands, is a newly discovered state of quantum matter which exhibits various exotic physical phenomena. Recently, a new type of TNS called topological nodal line semimetal (TNLS) is predicted where its conduction and valence band form a degenerate one-dimension line which is further protected by its crystal symmetry. In this work, we systematically investigated the bulk and surface electronic structure of the non-symmorphic, TNLS in InBi (which is also a type II Dirac semimetal) with strong spin–orbit coupling by using angle resolved photoemission spectroscopy. By tracking the crossing points of the bulk bands at the Brillouin zone boundary, we discovered the nodal-line feature along themore » $${{k}}_{{z}}$$ direction, in agreement with the ab initio calculations and confirmed it to be a new compound in the TNLS family. Our discovery provides a new material platform for the study of these exotic topological quantum phases and paves the way for possible future applications.« less
Cancer screening is not only about numbers.
Knottnerus, B J
2017-05-01
In the cancer screening debate, arguments for and against screening are often based on statistics, whereas for individuals personal, non-statistical factors are at least as important when deciding whether to participate in screening. Health care professionals have a responsibility in helping individuals navigate in this complex field by identifying and clarifying the individuals' beliefs, fears and preferences while being aware of their own. Moreover, researchers should explore beliefs and motives that matter for individuals and not only report numbers that can be interpreted in different ways. © 2017 John Wiley & Sons Ltd.
The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease
Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia
2011-01-01
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273
Simple and compact expressions for neutrino oscillation probabilities in matter
Minakata, Hisakazu; Parke, Stephen J.
2016-01-29
We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm 2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the ν e disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and Δm 2. Furthermore, despite exceptional simplicity in their forms they accommodatemore » all order effects θ 13 and the matter potential.« less
Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.
1985-01-01
The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.
Analysis of Large-scale Anisotropy of Ultra-high Energy Cosmic Rays in HiRes Data
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Koers, H.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration
2010-04-01
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle θ s . We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless θ s > 10° and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team
Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.
Further development of imaging near-field scatterometer
NASA Astrophysics Data System (ADS)
Uebeler, Denise; Pescoller, Lukas; Hahlweg, Cornelius
2015-09-01
In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. Beside the identification of several types of surfaces and related features, for which the method is applicable, several refinements are introduced. The theory of the method is extended, based on a mixed Fourier optical and geometrical approach, leading to rules of thumb for the resolution to be expected, giving a framework for design. Further, a refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of he layers of the surface under test, cross and parallel polarization techniques are applied. Finally, exemplary measurement results and examples are included.
Kaon Condensation and the Non-Uniform Nuclear Matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi
2004-04-01
Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.
Davis, Stacy N; Christy, Shannon M; Chavarria, Enmanuel A; Abdulla, Rania; Sutton, Steven K; Schmidt, Alyssa R; Vadaparampil, Susan T; Quinn, Gwendolyn P; Simmons, Vani N; Ufondu, Chukwudi B; Ravindra, Chitra; Schultz, Ida; Roetzheim, Richard G; Shibata, David; Meade, Cathy D; Gwede, Clement K
2017-04-15
The objective of the current study was to improve colorectal cancer (CRC) screening uptake with the fecal immunochemical test (FIT). The current study investigated the differential impact of a multicomponent, targeted, low-literacy educational intervention compared with a standard, nontargeted educational intervention. Patients aged 50 to 75 years who were of average CRC risk and not up-to-date with CRC screening were recruited from either a federally qualified health center or a primary care community health clinic. Patients were randomized to the intervention condition (targeted photonovella booklet/DVD plus FIT kit) or comparison condition (standard Centers for Disease Control and Prevention brochure plus FIT kit). The main outcome was screening with FIT within 180 days of delivery of the intervention. Of the 416 participants, 54% were female; the participants were racially and ethnically diverse (66% white, 10% Hispanic, and 28% African American), predominantly of low income, and insured (the majority had county health insurance). Overall, the FIT completion rate was 81%, with 78.1% of participants in the intervention versus 83.5% of those in the comparison condition completing FIT (P = .17). In multivariate analysis, having health insurance was found to be the primary factor predicting a lack of FIT screening (adjusted odds ratio, 2.10; 95% confidence interval, 1.04-4.26 [P = .04]). The multicomponent, targeted, low-literacy materials were not found to be significantly different or more effective in increasing FIT uptake compared with the nontargeted materials. Provision of a FIT test plus education may provide a key impetus to improve the completion of CRC screening. The type of educational material (targeted vs nontargeted) may matter less. The findings of the current study provide a unique opportunity for clinics to adopt FIT and to choose the type of patient education materials based on clinic, provider, and patient preferences. Cancer 2017;123:1390-1400. © 2016 American Cancer Society. © 2016 American Cancer Society.
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Bending of Light in Modified Gravity at Large Distances
NASA Technical Reports Server (NTRS)
Sultana, Joseph; Kazanas, Demosthenes
2012-01-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric
Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors
2012-05-01
Vol. 5745. 2005. 14. Y. Zhang, et al., A comparative study of limited-angle cone-beam reconstruction methods 505 for breast tomosynthesis. Med...opening angl em integratio designed line nia Dimension determine the try calibration th the detector ain is sent fro between XC urce not fou here...screening mammography. AJR, 2007. 189: p. 616. 12. P. Baldelli, et al., A prototype of a quasi-monochromatic system for mammography applications . Phys
Glinkowski, Wojciech; Michoński, Jakub; Glinkowska, Bożena; Zukowska, Agnieszka; Sitnik, Robert; Górecki, Andrzej
2012-01-01
Several studies consider the school scoliosis screening as controversial. Many authors postulate to improve its clinical effectiveness. Authors assumed that three dimensional telediagnostic surface topography measurements allowing measuring several postural deformity indexes and angles of curvatures in sagittal plane may enhance current practice. The study was designed to determine usefulness of school screening back evaluation performed utilizing the three dimensional telediagnostic measurement system. The measurement module is based on structured light method using "3D Orthoscreen" system. The technique for 3D image acquisition of back shape is based on temporal phase shifting and Gray codes. Measurement data was securely archived for remote access by investigator over the secure Internet connection. Acquired "images" were transferred to Telediagnostic Center for clinical evaluation. Spine parameters and deformation indexes like Posterior Trunk Symmetry Index (POTSI), Deformity in the Axial Plane Index (DAPI), kyphosis and lordosis angle were measured. The preliminary study was performed in 2 selected schools (basic and middle schools). The study was approved by Bioethical Committee. Clouds of points representing back topography of assessed subjects were acquired at schools in March and May 2011 and stored for remote evaluation and analysis. 758 children averagely aged 11.1 years (from 5 to 16), 387 females and 371 males, were examined. Their average body mass was 45.13 kg [16-105; STD 16.4] and average height was 151.43 cm, [110-192; STD 18.3]. The average values of back assessment parameters were as follows: POTSI 15.97% [0-73.4; STD 10.3]; DAPI 0.88% [0-5.9; STD 0.76]; kyphosis angle 10.19° [0-32; STD 5.82]; and lordosis angle 32,82° [0-56; STD 9.86]. Technical and clinical issues of the practical implementation allowed to elaborate preliminary protocol for cohort studies addressed to subject (i.e. parents acceptance of examination of undressed back) and technical issues (i.e. upload data and retrieval, network transfer velocity). Postural telediagnostics was found sufficiently feasible for further implementation of remote, cohort 3D back shape evaluations including school screening. Permanently saved 3D data allow monitoring back surface of the individual subjects.
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng
2016-11-15
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.
Screening for Scoliosis: Different Countries' Perspectives and Evidence-Based Health Care
ERIC Educational Resources Information Center
Plaszewski, Maciej; Nowobilski, Roman; Kowalski, Pawel; Cieslinski, Maciej
2012-01-01
Idiopathic scoliosis affects 2-3% of adolescents. Large, progressing deformities, mostly present in girls, may lead to pulmonary complications, pain symptoms, the feeling of social isolation, and even mental disorders. The correlation of screening programs with surgery rate reduction and the clinical effectiveness of bracing remain a matter of…
The essential roles of chemistry in high-throughput screening triage
Dahlin, Jayme L; Walters, Michael A
2015-01-01
It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise. PMID:25163000
Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA
NASA Astrophysics Data System (ADS)
Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.
2017-12-01
Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.
Grossman, David C; Curry, Susan J; Owens, Douglas K; Barry, Michael J; Davidson, Karina W; Doubeni, Chyke A; Epling, John W; Kemper, Alex R; Krist, Alex H; Kurth, Ann E; Landefeld, C Seth; Mangione, Carol M; Phipps, Maureen G; Silverstein, Michael; Simon, Melissa A; Tseng, Chien-Wen
2018-01-09
Adolescent idiopathic scoliosis, a lateral curvature of the spine of unknown cause with a Cobb angle of at least 10°, occurs in children and adolescents aged 10 to 18 years. Idiopathic scoliosis is the most common form and usually worsens during adolescence before skeletal maturity. Severe spinal curvature may be associated with adverse long-term health outcomes (eg, pulmonary disorders, disability, back pain, psychological effects, cosmetic issues, and reduced quality of life). Early identification and effective treatment of mild scoliosis could slow or stop curvature progression before skeletal maturity, thereby improving long-term outcomes in adulthood. To update the 2004 US Preventive Services Task Force (USPSTF) recommendation on screening for idiopathic scoliosis in asymptomatic adolescents. The USPSTF reviewed the evidence on the benefits and harms of screening for and treatment of adolescent idiopathic scoliosis. The USPSTF found no direct evidence on screening for adolescent idiopathic scoliosis and health outcomes and no evidence on the harms of screening. The USPSTF found inadequate evidence on treatment with exercise and surgery. It found adequate evidence that treatment with bracing may slow curvature progression in adolescents with mild or moderate curvature severity (Cobb angle <40° to 50°); however, evidence on the association between reduction in spinal curvature in adolescence and long-term health outcomes in adulthood is inadequate. The USPSTF found inadequate evidence on the harms of treatment. Therefore, the USPSTF concludes that the current evidence is insufficient and that the balance of benefits and harms of screening for adolescent idiopathic scoliosis cannot be determined. The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for adolescent idiopathic scoliosis in children and adolescents aged 10 to 18 years. (I statement).
Isotopic Evolution of Soil Organic Matter Affects Paleo-vegetation and Paleo-pCO2 Reconstructions
NASA Astrophysics Data System (ADS)
Bowen, G. J.; Beerling, D. J.
2004-12-01
The stable carbon isotope ratio (\\delta13C) of fossil terrestrial organic matter is used to study several aspects of biosphere/atmosphere coupling in the geologic past. These range from vegetation response to climatic and pCO2 shifts to reconstruction of paleo-pCO2 levels. Although screening for diagenesis is typical in these studies, few have taken into account the ubiquitous but poorly understood phenomenon of progressive 13C-enrichment of soil organic matter during its decay, which is observed in modern soils worldwide. We present a simple model that describes this phenomenon and the interaction of soil organic carbon and CO2 concentrations, fluxes and \\delta13C values. At its most basic level, the model suggests that bulk organic matter from sub-surface soil horizons will be variably enriched in 13C relative to the vegetation living on the soil surface. This complicates interpretation of paleo-isotopic records used in C3/C4 vegetation reconstructions, and may account for anomalously heavy fossil organic carbon isotope values measured in some paleosols pre-dating the end-Miocene expansion of C4 floras. The model also demonstrates that the \\delta13C evolution of soil organic carbon during its decay generates 2 types of biases that may affect soil mineral paleo-pCO2 proxies. The first type of bias results from a steady-state inequality between the \\delta13C of organic carbon at a single depth within the soil and that of respired CO2 in the soil. This bias is present when fossil organic matter is used to reconstruct the \\delta13C of soil-respired carbon, and can be minimized with appropriate sampling methods. The second type of bias results from a dynamic, seasonal imbalance in respiration, which may cause the soil \\delta13CO2 flux during times of soil mineral formation to deviate from that of the annually integrated flux. At present, this bias can not be fully described or corrected for due to inadequacies in our knowledge of soil \\delta13C dynamics and the timing of soil mineral formation. Given the strong dependence of paleo-pCO2 reconstructions on data from soil mineral isotopes, further work on these topics is warranted.
Renormalization group equation analysis of a pseudoscalar portal dark matter model
NASA Astrophysics Data System (ADS)
Ghorbani, Karim
2017-10-01
We investigate the vacuum stability and perturbativity of a pseudoscalar portal dark matter (DM) model with a Dirac DM candidate, through the renormalization group equation analysis at one-loop order. The model has a particular feature which can evade the direct detection upper bounds measured by XENON100 and even that from planned experiment XENON1T. We first find the viable regions in the parameter space which will give rise to correct DM relic density and comply with the constraints from Higgs physics. We show that for a given mass of the pseudoscalar, the mixing angle plays no significant role in the running of the couplings. Then we study the running of the couplings for various pseudoscalar masses at mixing angle θ =6^\\circ , and find the scale of validity in terms of the dark coupling, {λ }d. Depending on our choice of the cutoff scale, the resulting viable parameter space will be determined.
NASA Astrophysics Data System (ADS)
Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.
2010-01-01
Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.
Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.
Takaki, Yasuhiro; Nakaoka, Mitsuki
2016-08-08
Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.
30 CFR 77.1001 - Stripping; loose material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ground Control § 77.1001 Stripping; loose material. Loose hazardous material shall be stripped for a safe... angle of repose, or barriers, baffle boards, screens, or other devices be provided that afford...
What Is Carotid Artery Disease?
... Your doctor can see these pictures on a computer screen. For this test, your doctor may give ... pictures of the body from many angles. A computer combines the pictures into two- and three-dimensional ...
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola
1992-01-01
A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.
[The effect of notch's angle and depth on crack propagation of zirconia ceramics].
Chen, Qingya; Chen, Xinmin
2012-10-01
This paper is aimed to study the effect of notch's angle and depth on crack propagation of zirconia ceramics. We fabricated cuboid-shaped zirconia ceramics samples with the standard sizes of 4. 4 mm x 2. 2 mm x 18 mm for the experiments, divided the samples into 6 groups, and prepared notches on these samples with different angles and depth. We placed the samples with loads until they were broke, and observe the fracture curve of each sample. We then drew coordinates and described the points of the fracture curve under a microscope, and made curve fitting by the software-Origin. When the notch angle beta = 90 degrees, the crack propagation is pure type I; when beta = 60 degrees, the crack propagation is mainly type I; and when beta = 30 degrees, the crack propagation is a compound of type I and type III. With the increasing of the notch depth, the effect of notch angles on crack propagation increases. In addition, Notch angle is a very important fracture mechanics parameter for crack propagation of zirconia ceramics. With the increasing of notch depth, the impact of notch angle increases.
Mao, Xiaoyan; Fu, Xi; Niu, Feng; Chen, Ying; Jin, Qi; Qiao, Jia; Gui, Lai
2018-05-14
Reduction gonioplasty is very popular in East Asia. However, there has been little quantitative criteria for mandibular angle classification or aesthetics. The aim of this study was to investigate the quantitative differences of mandibular angle types and determine the morphologic features of mandibular angle in attractive women. We created a database of skull computed tomography and standardized frontal and lateral photographs of 96 Chinese female adults. Mandibular angle was classified into 3 groups, namely, extraversion, introversion, and healthy group, based on the position of gonion. We used a 5-point Likert scale to quantify attractiveness based on photographs. Those who scored 4 or higher were defined as attractive women. Three types of computed tomography measurements of the mandible were taken, including 4 distances, 4 angles, and 3 proportions. Discriminant analysis was applied to establish a mathematic model for mandibular angle aesthetics evaluation. Significant differences were observed between the different types of mandibular angle in lower facial width (Gol-Gor), mandibular angle (Co-Go-Me), and gonion divergence angle (Gol-Me-Gor) (P < 0.01). Chinese attractive women had a mandibular angle of 123.913 ± 2.989 degrees, a FH-MP of 27.033 ± 2.695 degrees, and a Go-Me/Co-Go index of 2.0. The "healthy" women had a mandibular angle of 116.402 ± 5.373 degrees, a FH-MP of 19.556 ± 5.999 degrees, and a Go-Me/Co-Go index of 1.6. The estimated Fisher linear discriminant function for the identification of attractive women was as follows: Y = -0.1516X1(Co-Go) + 0.128X2(Go-Me) + 0.04936X3(Co-Go-Me) +0.0218X4(FH-MP). Our study quantified the differences of mandibular angle types and identified the morphological features of mandibular angle in attractive Chinese female adults. Our results could assist plastic surgeons in presurgical designing of new aesthetic gonion and help to evaluate lower face aesthetics.
Angular momentum evolution in dark matter haloes: a study of the Bolshoi and Millennium simulations
NASA Astrophysics Data System (ADS)
Contreras, S.; Padilla, N.; Lagos, C. D. P.
2017-12-01
We use three different cosmological dark matter simulations to study how the orientation of the angular momentum (AM) vector in dark matter haloes evolve with time. We find that haloes in this kind of simulations are constantly affected by a spurious change of mass, which translates into an artificial change in the orientation of the AM. After removing the haloes affected by artificial mass change, we found that the change in the orientation of the AM vector is correlated with time. The change in its angle and direction (i.e. the angle subtended by the AM vector in two consecutive time-steps) that affect the AM vector has a dependence on the change of mass that affects a halo, the time elapsed in which the change of mass occurs and the halo mass. We create a Monte Carlo simulation that reproduces the change of angle and direction of the AM vector. We reproduce the angular separation of the AM vector since a lookback time of 8.5 Gyr to today (α) with an accuracy of approximately 0.05 in cos(α). We are releasing this Monte Carlo simulation together with this publication. We also create a Monte Carlo simulation that reproduces the change of the AM modulus. We find that haloes in denser environments display the most dramatic evolution in their AM direction, as well as haloes with a lower specific AM modulus. These relations could be used to improve the way we follow the AM vector in low-resolution simulations.
[Anatomy of fractures of the inferior scapular angle].
Bartoníček, J; Tuček, M; Malík, J
2018-01-01
The aim of this study is to describe the anatomy of fractures of the inferior angle and the adjacent part of the scapular body, based on 3D CT reconstructions. In a series of 375 scapular fractures, we identified a total of 20 fractures of the inferior angle of the scapular body (13 men, 7 women), with a mean patient age of 50 years (range 3373). In all fractures, 3D CT reconstructions were obtained, allowing an objective evaluation of the fracture pattern with a focus on the size and shape of the inferior angle fragment, propagation of the fracture line to the lateral and medial borders of the infraspinous part of the scapular body, fragment displacement and any additional fracture of the ipsilateral scapula and the shoulder girdle. We identified a total of 5 types of fracture involving the distal half of the infraspinous part of the scapular body. The first type, recorded in 5 cases, affected only the apex of the inferior angle, with a small part of the adjacent medial border. The second type, occurring in 4 cases, involved fractures separating the entire inferior angle. The third type, represented by 4 cases, was characterized by a fracture line starting medially close above the inferior angle and passing proximolaterally. The separated fragment had a shape of a big drop, carrying also the distal half of the lateral pillar in addition to the inferior angle. In the fourth type identified in 5 fractures, the separated fragment was formed both by the inferior angle and a variable part of the medial border. The fifth type, being by its nature a transition to the fracture of the infraspinous part of the body, was recorded in 2 cases, with the same V-shaped fragment. Fractures of the inferior angle and the adjacent part of the scapular body are groups of fractures differing from other infraspinous fractures of the scapular body. Although these fractures are highly variable in terms of shape, they have the same course of fracture line and the manner of displacement.Key words: scapula scapula fractures scapular body fractures inferior angle classification of scapular body fractures.
The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter
Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.
2014-07-04
Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less
NASA Astrophysics Data System (ADS)
Cheng, Z.; Shi, J.; Zhang, J.; Kistler, L. M.
2017-12-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes (ILATs) of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistic study of 542 FAC cases observed by the four Cluster spacecraft in the northern hemisphere. The results show that the large FAC (>10 nA/m2) cases occur at the low ILATs (<71 º) and mainly occur when the IMF cone angle θ>60º, which implies the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with the IMF cone angle especially when IMF Bz is positive. There is almost no correlation or a weak positive correlation of the poleward boundary and IMF cone angle no matter IMF is northward or southward. The equatorward boundary is more responsive to the IMF cone angle. Compared to the equatorward boundary, the center of the FAC projected location changes very little. This is the first time a correlation between FAC projected location and IMF cone angle has been determined.
Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.
Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme
2017-01-01
In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.
Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K
2015-01-01
To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.
Measuring contact angle and meniscus shape with a reflected laser beam.
Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K
2014-01-01
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.
Measuring contact angle and meniscus shape with a reflected laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibach, T. F.; Nguyen, H.; Butt, H. J.
2014-01-15
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less
Wang, Yunji; Qiu, Ye; Liu, Henglang; He, Jinlong; Fan, Xiaoping
2017-01-01
Objectives: To quantitatively evaluate palatal bone thickness in adults with different facial types using cone beam computed tomography (CBCT). Methods: The CBCT volumetric data of 123 adults (mean age, 26.8 years) collected between August 2014 and August 2016 was retrospectively studied. The subjects were divided into a low-angle group (39 subjects), a normal-angle group (48 subjects) and a high-angle group (36 subjects) based on facial types assigned by cephalometric radiography. The thickness of the palatal bone was assessed at designated points. A repeated-measure analysis of variance (rm-ANOVA) test was used to test the relationship between facial types and palatal bone thickness. Results: Compared to the low-angle group, the high-angle group had significantly thinner palatal bones (p<0.05), except for the anterior-midline, anterior-medial and middle-midline areas. Conclusion: The safest zone for the placement of microimplants is the anterior part of the paramedian palate. Clinicians should pay special attention to the probability of thinner bone plates and the risk of perforation in high-angle patients. PMID:28917071
ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.
2010-04-10
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s}more » > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.« less
Brain MRI in neuropsychiatric lupus: associations with the 1999 ACR case definitions.
Jeong, Hae Woong; Her, Minyoung; Bae, Jong Seok; Kim, Seong-Kyu; Lee, Sung Won; Kim, Ho Kyun; Kim, Dongyook; Park, Nayoung; Chung, Won Tae; Lee, Sang Yeob; Choe, Jung-Yoon; Kim, In Joo
2015-05-01
The purpose of this study was to identify the characteristic magnetic resonance imaging (MRI) findings in neuropsychiatric systemic lupus erythematosus (NPSLE) and to investigate the association between MRI findings and neuropsychiatric manifestations in SLE. Brain MRIs with a diagnosis of SLE from 2002 to 2013 from three tertiary university hospitals were screened. All clinical manifestations evaluated by brain MRI were retrospectively reviewed. If the clinical manifestations were compatible with the 1999 NPSLE American College of Rheumatology (ACR) nomenclature and case definitions, the brain MRIs were assessed for the presence of white matter hyperintensities, gray matter hyperintensities, parenchymal defects, atrophy, enhancement, and abnormalities in diffusion-weighted images (DWI). The number, size, and location of each lesion were evaluated. The neuropsychiatric manifestation of each brain MRI was classified according to the 1999 ACR NPSLE case definitions. The associations between MRI findings and NPSLE manifestations were examined. In total, 219 brain MRIs with a diagnosis of SLE were screened, and 133 brain MRIs met the inclusion criteria for NPSLE. The most common MRI abnormality was white matter hyperintensities, which were observed in 76 MRIs (57.1 %). Gray matter hyperintensities were observed in 41 MRIs (30.8 %). Parenchymal defects were found in 31 MRIs (23.3 %), and atrophy was detected in 20 MRIs (15.0 %). Patients who had seizures were more associated with gray matter hyperintensities than patients with other neuropsychiatric manifestations. Patients with cerebrovascular disease were more associated with gray matter hyperintensity, parenchymal defects, and abnormal DWI than patients with other neuropsychiatric manifestations. In addition to white matter hyperintensities, which were previously known as SLE findings, we also noted the presence of gray matter hyperintensities, parenchymal defects, and abnormal DWI in a substantial portion of SLE patients, particularly in those with cerebrovascular disease or seizures.
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
Noise reducing screen devices for in-flow pressure sensors
NASA Technical Reports Server (NTRS)
Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)
1997-01-01
An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.
A novel emissive projection display (EPD) on transparent phosphor screen
NASA Astrophysics Data System (ADS)
Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.
2017-03-01
A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.
The Zeldovich approximation and wide-angle redshift-space distortions
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.
Minary-Dohen, P; Floret, N; Bailly, P; Dohen, R; Bertrand, X; Talon, D
2005-03-01
The risk associated with methicillin-resistant Staphylococcus aureus (MRSA) has been decreasing for several years in intensive care departments, but is now increasing in rehabilitation and chronic-care-facilities (R-CCF). The aim of this study was to use published data and our own experience to discuss the roles of screening for MRSA carriers, the type of isolation to be implemented and the efficiency of chemical decontamination. Screening identifies over 90% of patients colonized with MRSA upon admission to R-CCF versus only 50% for intensive care units. Only totally dependent patients acquire MRSA. Thus, strict geographical isolation, as opposed to "social reinsertion", is clearly of no value. However, this should not lead to the abandoning of isolation, which remains essential during the administration of care. The use of chemicals to decolonize the nose and healthy skin appeared to be of some value and the application of this procedure could make technical isolation unnecessary in a non-negligible proportion of cases. Given the increase in morbidity associated with MRSA observed in numerous hospitals, the emergence of a community-acquired disease associated with these strains and the evolution of glycopeptide-resistant strains, the voluntary application of a strategy combining screening, technical isolation and chemical decolonization in R-CCF appears to be an urgent matter of priority.
Incorporation and Effects of Nanoparticles in a Supramolecular Polymer
2016-05-01
Oak Ridge, TN Robert H Lambeth and Frederick L Beyer Weapons and Materials Research Directorate, ARL Approved for...nanocomposites: phase diagram, rheology and structure using a combined small angle neutron scattering and reverse Monte Carlo approach. Soft Matter. 2010;6
The nature of organic records in impact excavated rocks on Mars
NASA Astrophysics Data System (ADS)
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-08-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
The nature of organic records in impact excavated rocks on Mars.
Montgomery, W; Bromiley, G D; Sephton, M A
2016-08-05
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
The nature of organic records in impact excavated rocks on Mars
Montgomery, W.; Bromiley, G. D.; Sephton, M. A.
2016-01-01
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved. PMID:27492071
Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.
A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.
Desiccation of a pool of blood: from fluid mechanics to forensic investigations
NASA Astrophysics Data System (ADS)
Nicloux, Celine; Brutin, David
2012-11-01
The evaporation of biological fluids (with droplet configuration) has been studied since a few years due to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The evaporation of a pool of blood is studied in order to link the pattern formation and the evaporation dynamics. We intend to transfer the knowledge acquired for drops on pool to improve the forensic investigations. In this study, we focus on both pool of blood and pure water to determine the transition region from drop to pool and then to characterize the evaporation rate in the pool configuration. The spreading of blood which can be seen as a complex fluid is strongly influenced the substrate nature. The initial contact angle of blood on different substrate nature will influence the maximum thickness of the layer and then will influence the evaporation mass flux. The authors gratefully acknowledge the help and the fruitful discussions raised with A. Boccoz.
Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter
2012-01-01
Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.
Compression member response of double steel angles on truss structure with member length variation
NASA Astrophysics Data System (ADS)
Hasibuan, Purwandy; Panjaitan, Arief; Haiqal, Muhammad
2018-05-01
One type of structures that implements steel angles as its members is truss system of telecommunication tower. For this structure, reinforcements on tower legs are also needed when antennas and microwaves installation placed on the peak of tower increases in quantity. One type of reinforcement methods commonly used is by increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle sections. Regarding this case, this research discussed behavior two types of double angle steel section 2L 30.30.3 that were designed identically in area section but vary in length: 103 cm and 83 cm. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at the joint plate. Schematic loading was implemented by giving tension loading on the joint plate, and this loading was terminated when each specimen reached its failure. Research findings showed that implementing shorter double angle (83 cm) sections, increased compression strength of steel angle section up to 13 %. Significant deformation occurring only on the flange for both of specimens indicated that implementing double angle is effective to prevent lateral-torsional buckling.
Photons in dense nuclear matter: Random-phase approximation
NASA Astrophysics Data System (ADS)
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
Du, Zhe; Chen, Shichang; Yan, Mengning; Yue, Bing; Zeng, Yiming; Wang, You
2017-01-06
Our study aimed to investigate whether geometrical features (size, shape, or alignment parameters) of the femoral condyle affect the morphology of the trochlear groove. Computed tomography models of 195 femurs (97 and 98 knees from male and female subjects, respectively) were reconstructed into three-dimensional models and categorised into four types of trochlear groove morphology based on the position of the turning point in relation to the mechanical axis (types 45°, 60°, 75°, and 90°). Only subjects with healthy knees were included, whereas individuals with previous knee trauma or knee pain, soft tissue injury, osteoarthritis, or other chronic diseases of the musculoskeletal system were excluded. The size parameters were: radius of the best-fit cylinder, anteroposterior dimension of the lateral condyles (AP), and distal mediolateral dimension (ML). The shape parameters were: aspect ratio (AP/ML), arc angle, and proximal- and distal- end angles. The alignment parameters were: knee valgus physiologic angle (KVPA), mechanical medial distal femoral angle (mMDFA), and hip-knee-ankle angle (HKA). All variables were measured in the femoral condyle models, and the means for each groove type were compared using one-way analysis of variance. No significant difference among groove types was observed regarding size parameters. There were significant differences when comparing type 45° with types 60°, 75°, and 90° regarding aspect ratio and distal-end angle (p < 0.05), but not regarding proximal-end angle. There were significant differences when comparing type 90° with types 45°, 60°, and 75° regarding KVPA, mMDFA, and HKA (p < 0.05). Among size, shape, and alignment parameters, the latter two exhibited partial influence on the morphology of the trochlear groove. Shape parameters affected the trochlear groove for trochlear type 45°, for which the femoral condyle was relatively flat, whereas alignment parameters affected the trochlear groove for trochlear type 90°, showing that knees in type 90° tend to be valgus. The morphometric analysis based on trochlear groove classification may be helpful for the future design of individualized prostheses.
Hansen, Trine Lund; Jansen, Jes la Cour; Davidsson, Asa; Christensen, Thomas Højlund
2007-01-01
Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder+magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre-treatment technologies: 59%, 66% and 98% wet weight, respectively (41%, 34% and 2% reject, respectively). The pre-treatment technologies showed differences with respect to distribution of the chemical components in the waste between the biomass and the rejected material (reject), especially for dry matter, ash, collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre-treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor variations caused by the factors city, pre-treatment technology, dwelling type and season when based on the VS content of the waste (overall average 459STPm(3)/tVS). The amount of methane generated from 1t of collected waste was therefore mainly determined by the efficiency of the chosen pre-treatment technology described by the mass distribution of the incoming waste between biomass and reject.
Brightness discrimination test is not useful in screening for open angle glaucoma.
Peter, E; Thomas, R; Muliyil, J
1996-06-01
Brightness discrimination test (BDT) is routinely employed to assess asymmetrical optic nerve dysfunction and has been suggested as a screening test for primary open angle glaucoma (POAG). We tested the reliability and validity of BDT in the diagnosis of POAG. The study groups included 34 patients with established primary open angle glaucoma, 20 glaucoma suspects, and 33 age-sex matched controls. Cataract was not an exclusion criterion in these groups. The normal brightness score was determined to be 88% (mean score, 94%-2 SD) in a pilot study. Brightness discrimination test was performed in all subjects by two observers independently. BDT showed an excellent interobserver agreement (weighted Kappa 0.84). The presence of a cataract alone increased the risk of brightness impairment twofold, glaucoma alone increased the risk eightfold, and the presence of both conditions by 17 times compared to those with neither condition. BDT was not a useful test in the diagnosis of POAG (sensitivity 67% and specificity 93%); the ability to detect a significant field defect was also poor (sensitivity 53% and specificity 76%). There was poor association between decreased brightness scores and asymmetrical field defects as determined by the Humphrey's field analyzer (HFA).
Portable retinal imaging for eye disease screening using a consumer-grade digital camera
NASA Astrophysics Data System (ADS)
Barriga, Simon; Larichev, Andrey; Zamora, Gilberto; Soliz, Peter
2012-03-01
The development of affordable means to image the retina is an important step toward the implementation of eye disease screening programs. In this paper we present the i-RxCam, a low-cost, hand-held, retinal camera for widespread applications such as tele-retinal screening for eye diseases like diabetic retinopathy (DR), glaucoma, and age-related ocular diseases. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities. The i-RxCam uses a Nikon D3100 digital camera body. The camera has a CMOS sensor with 14.8 million pixels. We use a 50mm focal lens that gives a retinal field of view of 45 degrees. The internal autofocus can compensate for about 2D (diopters) of focusing error. The light source is an LED produced by Philips with a linear emitting area that is transformed using a light pipe to the optimal shape at the eye pupil, an annulus. To eliminate corneal reflex we use a polarization technique in which the light passes through a nano-wire polarizer plate. This is a novel type of polarizer featuring high polarization separation (contrast ratio of more than 1000) and very large acceptance angle (>45 degrees). The i-RxCam approach will yield a significantly more economical retinal imaging device that would allow mass screening of the at-risk population.
Non-equilibrium Transport in Carbon based Adsorbate Systems
NASA Astrophysics Data System (ADS)
Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka
2007-03-01
We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.
Physical region for three-neutrino mixing angles
NASA Astrophysics Data System (ADS)
Latimer, D. C.; Ernst, D. J.
2005-01-01
We derive a set of symmetry relations for the three-neutrino mixing angles, including the Mikheyev-Smirnov-Wolfenstein (MSW) matter effect. Though interesting in their own right, these relations are used to choose the physical region of the mixing angles such that oscillations are parametrized completely and uniquely. We propose that the preferred way of setting the bounds on the mixing angles should be θ12∈[0,π/2], θ13∈[-π/2,π/2], θ23∈[0,π/2], and δ∈[0,π). No CP violation then results simply from setting δ=0. In the presence of the MSW effect, this choice of bounds is a new result. Since the size of the asymmetry about θ13=0 is dependent on the details of the data analysis and is a part of the results of the analysis, we argue that the negative values of θ13 should not be ignored.
Gaze and viewing angle influence visual stabilization of upright posture
Ustinova, KI; Perkins, J
2011-01-01
Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978
Dark matter maps reveal cosmic scaffolding.
Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James
2007-01-18
Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.
On the origin of jets from disc-accreting magnetized stars
NASA Astrophysics Data System (ADS)
Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei
2014-09-01
A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.
The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.
2008-05-01
The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.
Nouwen, Arie; Chambers, Alison; Chechlacz, Magdalena; Higgs, Suzanne; Blissett, Jacqueline; Barrett, Timothy G; Allen, Harriet A
2017-01-01
In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.
ERIC Educational Resources Information Center
Bullock, Emma P.; Shumway, Jessica F.; Watts, Christina M.; Moyer-Packenham, Patricia S.
2017-01-01
The purpose of this study was to contribute to the research on mathematics app use by very young children, and specifically mathematics apps for touch-screen mobile devices that contain virtual manipulatives. The study used a convergent parallel mixed methods design, in which quantitative and qualitative data were collected in parallel, analyzed…
Unscreening Modified Gravity in the Matter Power Spectrum.
Lombriser, Lucas; Simpson, Fergus; Mead, Alexander
2015-06-26
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.
Method and apparatus for providing a seamless tiled display
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Johnson, Michael J. (Inventor)
2002-01-01
A display for producing a seamless composite image from at least two discrete images. The display includes one or more projectors for projecting each of the discrete images separately onto a screen such that at least one of the discrete images overlaps at least one other of the discrete images by more than 25 percent. The amount of overlap that is required to reduce the seams of the composite image to an acceptable level over a predetermined viewing angle depends on a number of factors including the field-of-view and aperture size of the projectors, the screen gain profile, etc. For rear-projection screens and some front projection screens, an overlap of more than 25 percent is acceptable.
Low background screening capability in the UK
NASA Astrophysics Data System (ADS)
Ghag, Chamkaur
2015-08-01
Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-04-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-07-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori
2013-12-01
The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is important to pay attention not only to the posterior tibial slope, but also to the flexion medial/lateral ligament balance during surgery. A cruciate-retaining-type TKA has the potential to achieve both stability and a wide range of motion and to improve the patients' activities of daily living.
Electrophoretic display technologies for e-book readers: system integration aspects
NASA Astrophysics Data System (ADS)
Gentric, Philippe
2011-03-01
Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.
The opportunities of mining historical and collective data in drug discovery.
Wassermann, Anne Mai; Lounkine, Eugen; Davies, John W; Glick, Meir; Camargo, L Miguel
2015-04-01
Vast amounts of bioactivity data have been generated for small molecules across public and corporate domains. Biological signatures, either derived from systematic profiling efforts or from existing historical assay data, have been successfully employed for small molecule mechanism-of-action elucidation, drug repositioning, hit expansion and screening subset design. This article reviews different types of biological descriptors and applications, and we demonstrate how biological data can outlive the original purpose or project for which it was generated. By comparing 150 HTS campaigns run at Novartis over the past decade on the basis of their active and inactive chemical matter, we highlight the opportunities and challenges associated with cross-project learning in drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
NASA Astrophysics Data System (ADS)
Lillo, T. M.; van Rooyen, I. J.
2016-05-01
In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.
Low-background gamma spectroscopy at the Boulby Underground Laboratory
NASA Astrophysics Data System (ADS)
Scovell, P. R.; Meehan, E.; Araújo, H. M.; Dobson, J.; Ghag, C.; Kraus, H.; Kudryavtsev, V. A.; Liu, X.-. R.; Majewski, P.; Paling, S. M.; Preece, R. M.; Saakyan, R.; Tomás, A.; Toth, C.; Yeoman, L. M.
2018-01-01
The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210Pb and 234Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6mBqkg-1 for 234Th and 6.6mBqkg-1 for 210Pb both of which have uncovered some significant equilibrium breaks in the 238U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9mBqkg-1 for 226Ra, 1.1mBqkg-1 for 228Ra, 0.3mBqkg-1 for 224Ra, and 8.6mBqkg-1 for 40K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.
Modeling the Stability of Topological Matter in Optical Lattices
2013-05-18
that vortex attachment to each particle helps screen the otherwise strong inter- particle repulsion by tuning the size of correlation holes. Figure 3...electric and ferromagnetic order in complex multiferroic materi - als presents a set of compelling fundamental condensed matter physics problems with... particle interactions and heating. I will examine interacting atoms in square optical lattices with spin orbit coupling, and more generally, gauge fields
Posture Alignment of Adolescent Idiopathic Scoliosis: Photogrammetry in Scoliosis School Screening.
Penha, Patrícia Jundi; Penha, Nárima Lívia Jundi; De Carvalho, Bárbarah Kelly Gonçalves; Andrade, Rodrigo Mantelatto; Schmitt, Ana Carolina Basso; João, Sílvia Maria Amado
The objective of this study was to describe the posture patterns of adolescents diagnosed with adolescent idiopathic scoliosis (AIS) in a scoliosis school screening (SSS). Two-dimensional photogrammetry was used to assess the posture of 37 adolescents diagnosed with scoliosis (scoliosis group, SG) (Cobb angle ≥10°) and 76 adolescents with a false positive diagnosis (false positive group, FPG) (Cobb angle <10°, angle of trunk rotation ≥7°). In total, 2562 10- to 14-year-old adolescents were enrolled in the SSS, which was performed in public schools in the cities of Amparo, Pedreira, and Mogi Mirim in the state of São Paulo, Brazil. Their posture was analyzed using Postural Analysis Software. Continuous variables were tested using Student t test, and categorical variables were tested using a χ2 test. The SG, FPG, simple curve group, and double curve group were all compared. Bivariate analysis was used to identify associations between postural deviations and scoliosis. The adopted significance level was α = .05. The SG (2.7 ± 1.9°) had greater shoulder obliquity than the FPG (1.9 ± 1.4°) (P = .010), and this deviation was associated with scoliosis (odds ratio [95% CI] P = 1.4 [1.1-1.8] 0.011). The SG had asymmetry between the right- and left-side lower limb frontal angle, shoulder sagittal alignment, and knee angle. The double curve group (3 ± 1.7°) presented a greater value of the vertical alignment of the torso than the simple curve group did (1.9 ± 1°; P = .032). Adolescents diagnosed with AIS in an SSS had greater shoulder obliquity and asymmetry between the right and left sides. Shoulder obliquity was the only postural deviation associated with AIS. Copyright © 2017. Published by Elsevier Inc.
Self-acceleration in scalar-bimetric theories
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2018-05-01
We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth force on small scales and decouples the local value of Newton constant from its cosmological value. This cannot be achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.
Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A.; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M.
2011-01-01
The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action. PMID:21502533
Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M
2011-04-26
The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action.
Wang, Ning-li
2013-11-01
Promoting the control of primary angle-closure glaucoma (PACG) and primary open angle glaucoma (POAG) is most important prevention program of blindness in China. PACG has been incorporated into the prevention program of blindness in China based on the population-based screening studies. However, the clinical screening should be strengthened in POAG. The creation of a series of appropriate technologies suitable for glaucoma prevention and management has been achieved in China, especially for PACG. The technologies have been evaluated in the pilot areas and obtained very good results in China. It is recommended to develop new technology suitable for glaucoma management using the following workflow: research, development, and evaluation by large scale hospitals, and then clinical trial in the pilot areas. After a cost-benefit analysis is made, the new technology can be promoted and applied in clinical practice nationwide. We propose to gradually formed a strategical mode of "screening in township hospitals, intervention in county hospitals, and technical support and tackling in provincial hospitals" in order to improve the level of prevention and treatment of glaucoma and reduce the blindness incidence rate caused by glaucoma.
Nair, M K C; Krishnan, Rajee; Harikumaran Nair, G S; George, Babu; Bhaskaran, Deepa; Leena, M L; Russell, Paul Swamidhas Sudhakar
2014-12-01
To describe CDC Kerala experience of establishing an at-risk baby clinic and the comparison of different developmental screening tools at 12 mo against the gold standard Developmental Assessment Scale for Indian Infants (DASII). At risk baby clinic of CDC, Kerala was established as a facility for follow up of NICU graduates from Sree Avittam Thirunal Hospital at 2, 4, 6, 8 and 12 mo corrected age and during each visit the mother is taught the CDC model early stimulation by developmental therapists and encouraged to continue to do the same at home. At 12 mo, assessment results of four simple developmental tools were compared with the gold standard DASII administered by a senior developmental therapist. Out of a total of 800 babies, outcome measurements at 12 mo were available for 604 infants. The prevalence of developmental delay using the screening tools, CDC grading for standing, Amiel Tison angles and DDST II (Denver II) gross motor were 24.8, 24 and 24.3% respectively and using DASII, a diagnostic tool (13.3%). Also the combination of Amiel Tison angles, CDC standing grading and DDST gross motor against DASII motor DQ had high specificity (94.15%) and negative predictive value (NPV) (70.18%) but with a very low sensitivity of 14.58% and low positive predictive value (PPV) of 53.85%. It was observed that a significant odds ratio for DASII mental deviation quotient (DQ) was seen for neonatal seizures (2.34) and low birth weight (1.49). The prevalence of developmental delay using the screening tools, CDC grading for standing, Amiel Tison angles and DDST II (Denver II) gross motor were 24.8, 24 and 24.3% respectively and together they had a high specificity, NPV and accuracy against DASII motor DQ as gold standard at one year assessment.
Jiang, Yu; Li, Changying
2015-01-01
Cotton quality, a major factor determining both cotton profitability and marketability, is affected by not only the overall quantity of but also the type of the foreign matter. Although current commercial instruments can measure the overall amount of the foreign matter, no instrument can differentiate various types of foreign matter. The goal of this study was to develop a hyperspectral imaging system to discriminate major types of foreign matter in cotton lint. A push-broom based hyperspectral imaging system with a custom-built multi-thread software was developed to acquire hyperspectral images of cotton fiber with 15 types of foreign matter commonly found in the U.S. cotton lint. A total of 450 (30 replicates for each foreign matter) foreign matter samples were cut into 1 by 1 cm2 pieces and imaged on the lint surface using reflectance mode in the spectral range from 400-1000 nm. The mean spectra of the foreign matter and lint were extracted from the user-defined region-of-interests in the hyperspectral images. The principal component analysis was performed on the mean spectra to reduce the feature dimension from the original 256 bands to the top 3 principal components. The score plots of the 3 principal components were used to examine clusterization patterns for classifying the foreign matter. These patterns were further validated by statistical tests. The experimental results showed that the mean spectra of all 15 types of cotton foreign matter were different from that of the lint. Nine types of cotton foreign matter formed distinct clusters in the score plots. Additionally, all of them were significantly different from each other at the significance level of 0.05 except brown leaf and bract. The developed hyperspectral imaging system is effective to detect and classify cotton foreign matter on the lint surface and has the potential to be implemented in commercial cotton classing offices.
Subcritical water extraction of organic matter from sedimentary rocks.
Luong, Duy; Sephton, Mark A; Watson, Jonathan S
2015-06-16
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Rajesh; Singal, Shobhita; Kotnala, Ravinder K
2017-10-01
A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz. The bioelectrode was characterized by contact angle measurements, scanning electron microscopy, and electrochemical techniques. A concentration-dependent response of immunosensor to CRP with the change in phase angle, at a fixed frequency of 10 Hz, was found to be in the range of 10 ng mL -1 to 10 μg mL -1 in PBS and was fit quantitative well with the Hill-Langmuir equation. Based on the concentration-response data, the dissociation constant (K d ) was found to be 3.5 nM (with a Hill coefficient n = 0.57), which indicated a negative cooperativity with high anti-CRP (antibody)-CRP (antigen) binding at the electrode surface. A low-frequency analysis of sensing with an ease of measurement on a disposable electroactive rGO-modified electrode with high selectivity and sensitivity makes it a potential tool for biological sensors.
Constraining axion dark matter with Big Bang Nucleosynthesis
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...
2014-08-04
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Constraining axion dark matter with Big Bang Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Arora, Pankaj; Talker, Eliran; Mazurski, Noa; Levy, Uriel
2018-06-13
We demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure. This contributes to the enhancement in Q factor which is found to be 3-4 times higher as compared to the conventional Kretschmann configuration. The influence of the incident angle on resonance wavelength is also demonstrated both numerically and experimentally, where, only a negligible wavelength shift is observed with increasing the incident angles for plasmonic nanograting configuration. This surprising feature may be helpful for studying and utilizing light-matter interaction between plasmons and narrow linewidth media (e.g. Rb atom or molecule) having nonlocalities in their susceptibility-momentum relation. Finally, we analyze the role of plasmonic nanograting in enhancing the performance of an SPR sensor. Our results indicate that the integrated SPR-nanograting device shows a great promise as a sensor for various types of analytes.
NASA Astrophysics Data System (ADS)
Maleszewski, C.; McMillan, R.; Smith, P.
2012-12-01
We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization becomes steeper. This is similar to the behavior seen in S-type MBAs, except that the trend in phase angle is less pronounced in the MBAs. For Heracles, high phase angle observations were made in the first half of 2012. The slope of the positive branch of Heracles's phase angle curve is consistent with our Ganymed measurements. Slopes of Heracles' spectral dependence follow similar trends to our Ganymed results and the aggregate MBA data. However, the magnitudes of the Heracles slopes are lower. Because differences of spectra between these asteroid types are thought to be due to resurfacing, that process may affect the polarimetric spectral dependence as well. Further polarimetric studies of S-, Sq- and Q-type asteroids and spectroscopic surveys designed to classify additional Q-types are thus encouraged. This research is funded by the Brinson Foundation of Chicago, Illinois. Links to Cited Material: Belskaya et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..199...97B DeMeo et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..202..160D Gil-Hutton and Cañada-Assandri 2011: http://adsabs.harvard.edu/abs/2011A%26A...529A..86G
Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.
Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T
2012-01-01
The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.
Asymmetrically pressing nasal splint for crooked nose deformity.
Tugrul, Selahattin; Dogan, Remzi; Kocak, Ilker; Ozturan, Orhan
2015-01-01
Correcting crooked nose deformity is one of the most difficult procedure in rhinoplastic surgery. For that reason, the authors have been designed an asymmetrically pressing nasal splint. In this prospective study, the aim was to compare the effects of applying asymmetrically pressing nasal splint and normal symmetrically splint on the crooked nose. This study included 129 patients who were operated on for crooked nose deformity. Patients were divided into 2 groups. Normal symmetrically pressing nasal splint was applied to groups 1a (I type) and 1b (C type). Asymmetrically pressing nasal splint was applied to groups 2a (I type) and 2b (C type). All groups were compared according to deflection angle from the midline, the percentage of postoperative improvement, patient satisfaction with visual analog scale, and complication rate. I-type noses in both groups at postoperative angle values were reduced, and C-type noses in both groups at postoperative angle values were increased significantly compared with preoperative values. I-type noses of group 2 at postoperative angle values compared with group 1 were reduced, and C-type noses were increased in group 2 significantly. Patient satisfaction rate in group 2 were significantly better than in group 1. The closeness ratios to the ideal angles in group 1 were in "good" and "moderate" levels, whereas in group 2, it was in "excellent" level. There was no significant difference in complication rate in both groups. Asymmetrically pressing splint (novel design) showed increasing success rate clearly in crooked nose surgery than in normal splints.
NASA Technical Reports Server (NTRS)
Dawson, John R
1936-01-01
The results of tank tests of three models of flying-boat hulls of the pointed-step type with different angles of dead rise are given in charts and are compared with results from tests of more conventional hulls. Increasing the angle of dead rise from 15 to 25 degrees: had little effect on the hump resistance; increased the resistance throughout the planning range; increased the best trim angle; reduced the maximum positive trimming moment required to obtain best trim angle; and had but a slight effect on the spray characteristics. For approximately the same angles of dead rise the resistance of the pointed-step hulls were considerably lower at high speeds than those of the more conventional hulls.
Development and first experimental tests of Faraday cup array.
Prokůpek, J; Kaufman, J; Margarone, D; Krůs, M; Velyhan, A; Krása, J; Burris-Mog, T; Busold, S; Deppert, O; Cowan, T E; Korn, G
2014-01-01
A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.
Kim, Ki Joon
2014-01-01
Abstract This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of—and attitude toward—the device respectively. Implications and directions for future research are discussed. PMID:24694112
Kim, Ki Joon; Sundar, S Shyam
2014-07-01
This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of-and attitude toward-the device respectively. Implications and directions for future research are discussed.
Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan
2016-12-01
Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Observing Primeval Galaxies and Dark Matter with LAIRTS
1988-12-05
in the form of black holes. Previously, we had argued that the dark matter in the halo of spiral galaxies is not baryonic . Now we have extended those...consider each type of barvonic matter and show the contradictions that would exist if the dark matter were made up of each form of baryonic matter . A topic...Classification) Observing Primeval Galaxies and Dark Matter with LAIRTS 12. PERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year
Axino LSP baryogenesis and dark matter
Monteux, Angelo; Shin, Chang Sub
2015-05-01
We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less
Direct detection constraints on dark photon dark matter
NASA Astrophysics Data System (ADS)
An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam
2015-07-01
Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01- 100 keV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to O (10-15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity to dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. We also revisit indirect constraints from V → 3 γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.
Direct detection constraints on dark photon dark matter
An, Haipeng; Pospelov, Maxim; Pradler, Josef; ...
2015-06-11
Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01–100KeV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to Ο(10 –15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity tomore » dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. As a result, we also revisit indirect constraints from V → 3γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.« less
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Zhang, Weihong; Howell, Steven C; Wright, David W; Heindel, Andrew; Qiu, Xiangyun; Chen, Jianhan; Curtis, Joseph E
2017-05-01
We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynamics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data with greater accuracy by using robust physics based simulation and sampling methods which are a significant improvement over traditional methods used to interpret such data. Published by Elsevier Inc.
Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes
NASA Astrophysics Data System (ADS)
Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Di Stefano, O.; Patanè, S.; Savasta, S.; Sanvitto, D.; Gigli, G.
2014-06-01
The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.
Characteristics of Selected Anthropometric Foot Indicators in Physically Active Students.
Bac, Aneta; Bogacz, Gabriela; Ogrodzka-Ciechanowicz, Katarzyna; Kulis, Aleksandra; Szaporów, Tomasz; Woźniacka, Renata; Radlińska, Natalia
2018-05-01
The aim of this study was to determine the type of medial longitudinal arch (MLA) in students of Krakow universities, investigate the relationship between physical activity and the shaping of the feet, and examine the relationship between hallux valgus angle and the type of footwear chosen most often. The study group consisted of 120 students, of which 56 respondents were students of the University School of Physical Education in Krakow, whereas the remaining 64 respondents were students of the Pedagogical University of Krakow. To evaluate the MLA, a podoscope was used, which allowed us to determine the length and width of the foot, and calculation of the Clarke angle, heel angle γ, and the angle of hallux valgus. All students were also subjected to a measurement of body weight and height. There was a statistically significant relationship between physical activity and the Clarke angle in the group of women studying at the University School of Physical Education. There was no correlation between the hallux valgus angle and the type of footwear chosen most often in the research groups. The most frequently diagnosed type of longitudinal and transverse arch foot in the research group was normal MLA. There was no relationship between physical activity and transverse arch foot in any of the research groups.
Davies, Richard; Kinmonth, Ann-Louise; Griffin, Simon; Lawton, Julia
2007-01-01
Objectives To provide insight into factors that contribute to the anxiety reported in a quantitative study of the psychological effect of screening for type 2 diabetes. To explore expectations of and reactions to the screening experience of patients with positive, negative, and intermediate results. Design Prospective qualitative interview study of patients attending a screening programme for type 2 diabetes. Setting Seven general practices in the ADDITION (Cambridge) trial in the east of England. Participants 23 participants (aged 50-69) attending different stages in the screening process. Results Participants' perceptions changed as they progressed through the screening programme; the stepwise process seemed to help them adjust psychologically. The first screening test was typically considered unimportant and was attended with no thought about its implications. By the final diagnostic test, type 2 diabetes was considered a strong possibility, albeit a “mild” form. After diagnosis, people with screen detected type 2 diabetes tended to downplay its importance and talked confidently about their plans to control it. Participants with intermediate results seemed uncertain about their diagnosis, and those who screened negative were largely unaware of their remaining high risk. Conclusions This study helps in understanding the limited psychological impact of screening for type 2 diabetes quantified previously, in particular by the quantitative substudy of ADDITION (Cambridge). The findings have implications for implementing such a screening programme in terms of timing and content. PMID:17762000
Wide angle view of Mission Control Center during Apollo 14 transmission
1971-01-31
S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
Booth, T N; Wick, C; Clarke, R; Kutz, J W; Medina, M; Gorsage, D; Xi, Y; Isaacson, B
2018-05-01
Cochlear malformations may be be subtle on imaging studies. The purpose of this study was to evaluate the angle and depth of the lateral second interscalar ridge or notch in ears without sensorineural hearing loss (normal ears) and compare them with ears that have a documented incomplete type II partition malformation. The second interscalar ridge notch angle and depth were measured on MR imaging in normal ears by a single experienced neuroradiologist. The images of normal and incomplete partition II malformation ears were then randomly mixed for 2 novice evaluators to measure both the second interscalar ridge notch angle and depth in a blinded manner. For the mixed group, interobserver agreement was calculated, normal and abnormal ear measurements were compared, and receiver operating characteristic curves were generated. The 94 normal ears had a mean second interscalar ridge angle of 80.86° ± 11.4° and depth of 0.54 ± 0.14 mm with the 98th percentile for an angle of 101° and a depth of 0.3 mm. In the mixed group, agreement between the 2 readers was excellent, with significant differences for angle and depth found between normal and incomplete partition type II ears for angle and depth on average ( P < .001). Receiver operating characteristic cutoffs for delineating normal from abnormal ears were similar for both readers (depth, 0.31/0.34 mm; angle, 114°/104°). A measured angle of >114° and a depth of the second interscalar ridge notch of ≤0.31 mm suggest the diagnosis of incomplete partition type II malformation and scala communis. These measurements can be accurately made by novice readers. © 2018 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.
2003-01-01
Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.
Neutrino masses in the minimal gauged (B -L ) supersymmetry
NASA Astrophysics Data System (ADS)
Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei
2018-03-01
We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.
Mikheyev-smirnov-wolfenstein effects in vacuum oscillations
Friedland
2000-07-31
We point out that for solar neutrino oscillations with the mass-squared difference of Deltam(2) approximately 10(-10)-10(-9) eV(2), i.e., in the so-called vacuum oscillation range, the solar matter effects are non-negligible, particularly for the low energy pp neutrinos. One consequence of this is that the values of the mixing angle straight theta and pi/2-straight theta are not equivalent, making it necessary to consider the entire physical range of the mixing angle 0=straight theta=pi/2 when determining the allowed values of the neutrino oscillation parameters.
NASA Astrophysics Data System (ADS)
Kneller, James P.; McLaughlin, Gail C.
2009-09-01
We discuss the three neutrino flavor evolution problem with general, flavor-diagonal, matter potentials and a fully parametrized mixing matrix that includes CP violation, and derive expressions for the eigenvalues, mixing angles, and phases. We demonstrate that, in the limit that the mu and tau potentials are equal, the eigenvalues and matter mixing angles θ˜12 and θ˜13 are independent of the CP phase, although θ˜23 does have CP dependence. Since we are interested in developing a framework that can be used for S matrix calculations of neutrino flavor transformation, it is useful to work in a basis that contains only off-diagonal entries in the Hamiltonian. We derive the “nonadiabaticity” parameters that appear in the Hamiltonian in this basis. We then introduce the neutrino S matrix, derive its evolution equation and the integral solution. We find that this new Hamiltonian, and therefore the S matrix, in the limit that the μ and τ neutrino potentials are the same, is independent of both θ˜23 and the CP violating phase. In this limit, any CP violation in the flavor basis can only be introduced via the rotation matrices, and so effects which derive from the CP phase are then straightforward to determine. We then show explicitly that the electron neutrino and electron antineutrino survival probability is independent of the CP phase in this limit. Conversely, if the CP phase is nonzero and mu and tau matter potentials are not equal, then the electron neutrino survival probability cannot be independent of the CP phase.
Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald
2013-01-01
Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.
... damage. The types of glaucoma include the following: Open-angle glaucoma Open-angle glaucoma is the most common form of ... angle formed by the cornea and iris remains open, but the trabecular meshwork is partially blocked. This ...
White matter abnormalities of microstructure and physiological noise in schizophrenia.
Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P
2015-12-01
White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.
Challenging Popular Media's Control by Teaching Critical Viewing.
ERIC Educational Resources Information Center
Couch, Richard A.
The purpose of this paper is to express the importance of visual/media literacy and the teaching of critical television viewing. An awareness of the properties and characteristics of television--including camera angles and placement, editing, and emotionally involving subject matter--aids viewers in the critical viewing process. The knowledge of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.; Perego, A.; Arcones, A.
2015-11-01
We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to 9 × 10{sup −3} M{sub ⊙} becomes unbound until ∼200 ms. Due to electron fractions of Y{submore » e} ≈ 0.2–0.4, mainly nuclei with mass numbers A < 130 are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about 4 hr. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after 3–4 days.« less
Optical Properties of Ice Particles in Young Contrails
NASA Technical Reports Server (NTRS)
Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.
2008-01-01
The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.
Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale
Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki
2014-01-01
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910
Quality of public information matters in mate-choice copying in female zebra finches.
Kniel, Nina; Schmitz, Jennifer; Witte, Klaudia
2015-01-01
Mate-choice copying is a form of social learning in which an individual gains information about potential mates by observing conspecifics. However, it is still unknown what kind of information drives the decision of an individual to copy the mate choice of others. Among zebra finches (Taeniopygia guttata castanotis), only females (not males) copy the mate choice of others. We tested female zebra finches in a binary choice test where they, first, could choose between two males of different phenotypes: one unadorned male and one male artificially adorned with a red feather on the forehead. After this mate-choice test, females could observe a single unadorned male and a pair of zebra finches, i.e. a wild-type female and her adorned mate. Pair interactions were either restricted to acoustic and visual communication (clear glass screen between pair mates) or acoustic communication alone (opaque screen between pair mates). After the observation period, females could again choose between new males of the two phenotypes in a second mate-choice test. In experiments with a clear glass screen, time spent with the respective males changed between the two mate-choice tests, and females preferred adorned over unadorned males during the second mate-choice test. In experiments with an opaque screen, time spent with the respective males did not change between the two mate-choice tests, although females lost an initial preference for unadorned males. Our results demonstrate that the quality of the received public information (visual and acoustic interaction of the observed pair) influences mate-choice copying in female zebra finches.
Glutaric aciduria type 1: neuroimaging features with clinical correlation.
Mohammad, Shaimaa Abdelsattar; Abdelkhalek, Heba Salah; Ahmed, Khaled A; Zaki, Osama K
2015-10-01
Glutaric aciduria type 1 is a rare neurometabolic disease with high morbidity. To describe the MR imaging abnormalities in glutaric aciduria type 1 and to identify any association between the clinical and imaging features. MRI scans of 29 children (mean age: 16.9 months) with confirmed diagnosis of glutaric aciduria type 1 were retrospectively reviewed. Gray matter and white matter scores were calculated based on a previously published pattern-recognition approach of assessing leukoencephalopathies. Hippocampal formation and opercular topography were assessed in relation to the known embryological basis. MRI scores were correlated with morbidity score. The most consistent MRI abnormality was widened operculum with dilatation of the subarachnoid spaces surrounding underdeveloped frontotemporal lobes. Incomplete hippocampal inversion was also seen. The globus pallidus was the most frequently involved gray matter structure (86%). In addition to the central tegmental tract, white matter abnormalities preferentially involved the central and periventricular regions. The morbidity score correlated with the gray matter abnormality score (P = 0.004). Patients with dystonia had higher gray matter and morbidity scores. Morbidity is significantly correlated with abnormality of gray matter, rather than white matter, whether secondary to acute encephalopathic crisis or insidious onset disease.
NASA Technical Reports Server (NTRS)
Koharchik, Michael; Murphy, Lindsay; Parker, Paul
2012-01-01
An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.
NASA Astrophysics Data System (ADS)
Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik
2017-03-01
Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ˜5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O III] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.
Le Hyaric, R; Canler, J-P; Barillon, B; Naquin, P; Gourdon, R
2009-01-01
The objective of this study was to analyze the composition of the screenings sampled from three municipal wastewater treatment plants (wwtp) located in the Region Rhône-Alpes, France. The plants were equipped with multi screening stages with gap sizes ranging from 60 to 3 mm. Waste production flows from each plant were monitored over at least 48 hours in each sampling campaign in order to calculate average production rates. Waste samples of at least 7 kg were collected from each screening stage in each plant at different seasons to evaluate the influence of different parameters on the composition of the waste. An overall 30 samples were thereby collected between May 2007 and February 2008, dried at 80 degrees C for a week, and subsequently hand sorted into 10 fractions of waste materials. Results showed that the average production varied between 0.53 and 3.49 kg (wet mass) per capita per year. The highest production rates were observed during or immediately after rainy weather conditions. The dry matter content ranged between 14.4 and 29.2% of wet mass, and the volatile matter content was between 70.0 and 90.5% of dry mass. The predominant materials in the screenings were found to be sanitary textiles which accounted for 65.2% to 73.6% of dry weight and fines (<20 mm) which accounted for 15.2% to 18.2% of dry weight. These proportions were relatively similar in each plant and each sampling campaign.
Transmission type flat-panel X-ray source using ZnO nanowire field emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng
2015-12-14
A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
30 CFR 77.1001 - Stripping; loose material.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... angle of repose, or barriers, baffle boards, screens, or other devices be provided that afford...
NASA Astrophysics Data System (ADS)
Oota, A.; Matsui, H.; Funakura, M.; Iwaya, J.; Maeda, J.
1993-07-01
A process of combined rolling and uniaxial pressing with intermediate sintering steps for fabrication of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick films sandwiched between Ag substrates yields c-axis-oriented microstructures with a high critical current density (Jc) of 1.5 x 10 exp 4 A/sq cm (77 K, 0 T) and 9.0 x 10 exp 4 A/sq cm (23 K, 0 T). The measured Jc anisotropy at 77 K, as a function of the angle Theta between B and c axis, is pronounced. An increase in B sharpens a peak at Theta = 90 deg in the Jc vs Theta curve, together with enhancement of the anisotropy ratio. In high fields above 0.5 T, the half-height angular width of the peak approaches an average misalignment angle between the grains with increasing B.
Material screening with HPGe counting station for PandaX experiment
NASA Astrophysics Data System (ADS)
Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Mao, Y.; Wang, H.; Wang, S.; Xie, P.; Zhang, T.
2016-12-01
A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.
Growth Angle: A Microscopic View
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Croll, Arne; Volz, Martin P.
2017-01-01
A microscopic continuum mechanical model of the growth angle is proposed. It is based on the van der Waals type framework that is used for surface force phenomena. The obtained augmented Laplace type integro-differential equations are, in general, difficult to analyze. Here we focused primarily on the particular case of equal melt and crystal surface energies. We derived an approximate equation for the meniscus shape, and obtained an analytical relationship between the contact and the growth angle. Interestingly, the same result can be obtained using the macroscopic model of Herring. The case of a macroscopically sharp corner is also considered. For this case, the macroscopic angle is not defined and it can be any angle between the contact angles of both flat surfaces. The microscopic model yields the smooth shape for the meniscus that also is not unique, but depends on the initial position of the meniscus.
Krause, David A; Boyd, Michael S; Hager, Allison N; Smoyer, Eric C; Thompson, Anthony T; Hollman, John H
2015-02-01
The squat is a fundamental movement of many athletic and daily activities. Methods to clinically assess the squat maneuver range from simple observation to the use of sophisticated equipment. The purpose of this study was to examine the reliability of Coach's Eye (TechSmith Corp), a 2-dimensional (2D) motion analysis mobile device application (app), for assessing maximal sagittal plane hip, knee, and ankle motion during a functional movement screen deep squat, and to compare range of motion values generated by it to those from a Vicon (Vicon Motion Systems Ltd) 3-dimensional (3D) motion analysis system. Twenty-six healthy subjects performed three functional movement screen deep squats recorded simultaneously by both the app (on an iPad [Apple Inc]) and the 3D motion analysis system. Joint angle data were calculated with Vicon Nexus software (Vicon Motion Systems Ltd). The app video was analyzed frame by frame to determine, and freeze on the screen, the deepest position of the squat. With a capacitive stylus reference lines were then drawn on the iPad screen to determine joint angles. Procedures were repeated with approximately 48 hours between sessions. Test-retest intrarater reliability (ICC3,1) for the app at the hip, knee, and ankle was 0.98, 0.98, and 0.79, respectively. Minimum detectable change was hip 6°, knee 6°, and ankle 7°. Hip joint angles measured with the 2D app exceeded measurements obtained with the 3D motion analysis system by approximately 40°. Differences at the knee and ankle were of lower magnitude, with mean differences of 5° and 3°, respectively. Bland-Altman analysis demonstrated a systematic bias in the hip range-of-motion measurement. No such bias was demonstrated at the knee or ankle. The 2D app demonstrated excellent reliability and appeared to be a responsive means to assess for clinical change, with minimum detectable change values ranging from 6° to 7°. These results also suggest that the 2D app may be used as an alternative to a sophisticated 3D motion analysis system for assessing sagittal plane knee and ankle motion; however, it does not appear to be a comparable alternative for assessing hip motion. 3.
Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads
Lu, Ming-Lun; Waters, Thomas; Werren, Dwight
2015-01-01
Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435
Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo, José Simon
2016-01-01
Abstract Objective: To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Methods: Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. Results: The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05). The body mass index criterion for age of the World Health Organization showed no difference between groups. Conclusions: Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. PMID:27102998
Numerical simulation of incidence and sweep effects on delta wing vortex breakdown
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Schiff, Lewis B.
1994-01-01
The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. Q.; Feng, H. Q.; Liu, Q.
Energetic electrons with power-law spectra are commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of the X2 mode rapidly decreases with respect to the electron pitch-angle cosinemore » μ {sub 0} at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as μ {sub 0} increases. Moreover, the O mode, as well as the X mode, can be the fastest growth mode, in terms of not only the plasma parameter but also the type of electron pitch-angle distribution. This result presents a significant extension of the recent researches on ECME driven by the lower energy cutoff of power-law electrons, in which the X mode is generally the fastest growth mode.« less
Comparison of νμ->νe Oscillation calculations with matter effects
NASA Astrophysics Data System (ADS)
Gordon, Michael; Toki, Walter
2013-04-01
An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for νμ->νe oscillations in matter. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitely the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method developed by Arafune, Koike, and Sato uses an alternate method to find an approximation of the evolution operator. These methods are compared to each other using parameters from both the T2K and LBNE experiments.
Scattering and stopping of hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase
NASA Astrophysics Data System (ADS)
Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard
2011-10-01
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ13 is not very small.
No collective neutrino flavor conversions during the supernova accretion phase.
Chakraborty, Sovan; Fischer, Tobias; Mirizzi, Alessandro; Saviano, Ninetta; Tomàs, Ricard
2011-10-07
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-11-21
To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40-80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-01-01
Purpose. To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. Methods. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40–80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. Results. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Conclusions. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese. PMID:24168992
Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration
NASA Technical Reports Server (NTRS)
Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.
1984-01-01
The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.
NASA Technical Reports Server (NTRS)
Muszynska, A.
1985-01-01
In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen.
Jiao, Leizi; Dong, Daming; Zhao, Xiande; Han, Pengcheng
2016-12-01
In the study, we proposed an animal surface temperature measurement method based on Kinect sensor and infrared thermal imager to facilitate the screening of animals with febrile diseases. Due to random motion and small surface temperature variation of animals, the influence of the angle of view on temperature measurement is significant. The method proposed in the present study could compensate the temperature measurement error caused by the angle of view. Firstly, we analyzed the relationship between measured temperature and angle of view and established the mathematical model for compensating the influence of the angle of view with the correlation coefficient above 0.99. Secondly, the fusion method of depth and infrared thermal images was established for synchronous image capture with Kinect sensor and infrared thermal imager and the angle of view of each pixel was calculated. According to experimental results, without compensation treatment, the temperature image measured in the angle of view of 74° to 76° showed the difference of more than 2°C compared with that measured in the angle of view of 0°. However, after compensation treatment, the temperature difference range was only 0.03-1.2°C. This method is applicable for real-time compensation of errors caused by the angle of view during the temperature measurement process with the infrared thermal imager. Copyright © 2016 Elsevier Ltd. All rights reserved.
Abe Vicente, Mariana; Barão, Katia; Silva, Tiago Donizetti; Forones, Nora Manoukian
2013-01-01
To evaluate methods for the identification of nutrition risk and nutritional status in outpatients with colorectal (CRC) and gastric cancer (GC), and to compare the results to those obtained for patients already treated for these cancers. A cross-sectional study was conducted on 137 patients: group 1 (n = 75) consisting of patients with GC or CRC, and group 2 (n = 62) consisting of patients after treatment of GC or CRC under follow up, who were tumor free for a period longer than 3 months. Nutritional status was assessed in these patients using objective methods [body mass index (BMI), phase angle, serum albumin]; nutritional screening tools [Malnutrition Universal Screening Tool (MUST), Malnutrition Screening Tool (MST), Nutritional Risk Index (NRI)], and subjective assessment [Patient-Generated Subjective Global Assessment (PGSGA)]. The sensitivity and specificity of each method was calculated in relation to the PG-SGA used as gold standard. One hundred thirty seven patients participated in the study. Stage IV cancer patients were more common in group 1. There was no difference in BMI between groups (p = 0.67). Analysis of the association between methods of assessing nutritional status and PG-SGA showed that the nutritional screening tools provided more significant results (p < 0.05) than the objective methods in the two groups. PG-SGA detected the highest proportion of undernourished patients in group 1. The nutritional screening tools MUST, NRI and MST were more sensitive than the objective methods. Phase angle measurement was the most sensitive objective method in group 1. The nutritional screening tools showed the best association with PG-SGA and were also more sensitive than the objective methods. The results suggest the combination of MUST and PG-SGA for patients with cancer before and after treatment. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Lai, Alex L; Tamm, Lukas K
2010-11-26
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.
Lai, Alex L.; Tamm, Lukas K.
2010-01-01
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788
Balsdon, Megan E R; Bushey, Kristen M; Dombroski, Colin E; LeBel, Marie-Eve; Jenkyn, Thomas R
2016-10-01
The structure of the medial longitudinal arch (MLA) affects the foot's overall function and its ability to dissipate plantar pressure forces. Previous research on the MLA includes measuring the calcaneal-first metatarsal angle using a static sagittal plane radiograph, a dynamic height-to-length ratio using marker clusters with a multisegment foot model, and a contained angle using single point markers with a multisegment foot model. The objective of this study was to use biplane fluoroscopy to measure a contained MLA angle between foot types: pes planus (low arch), pes cavus (high arch), and normal arch. Fifteen participants completed the study, five from each foot type. Markerless fluoroscopic radiostereometric analysis (fRSA) was used with a three-dimensional model of the foot bones and manually matching those bones to a pair of two-dimensional radiographic images during midstance of gait. Statistically significant differences were found between barefoot arch angles of the normal and pes cavus foot types (p = 0.036), as well as between the pes cavus and pes planus foot types (p = 0.004). Dynamic walking also resulted in a statistically significant finding compared to the static standing trials (p = 0.014). These results support the classification of individuals following a physical assessment by a foot specialist for those with pes cavus and planus foot types. The differences between static and dynamic kinematic measurements were also supported using this novel method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Nanjing Artillery Academy, Nanjing 211132; Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number ofmore » PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.« less
7 CFR 29.2520 - Foreign matter.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any extraneous...
7 CFR 29.2520 - Foreign matter.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any extraneous...
7 CFR 29.2520 - Foreign matter.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any extraneous...
7 CFR 29.2520 - Foreign matter.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any extraneous...
7 CFR 29.2520 - Foreign matter.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Foreign matter. 29.2520 Section 29.2520 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2520 Foreign matter. Any extraneous...
SPACE FOR AUDIO-VISUAL LARGE GROUP INSTRUCTION.
ERIC Educational Resources Information Center
GAUSEWITZ, CARL H.
WITH AN INCREASING INTEREST IN AND UTILIZATION OF AUDIO-VISUAL MEDIA IN EDUCATION FACILITIES, IT IS IMPORTANT THAT STANDARDS ARE ESTABLISHED FOR ESTIMATING THE SPACE REQUIRED FOR VIEWING THESE VARIOUS MEDIA. THIS MONOGRAPH SUGGESTS SUCH STANDARDS FOR VIEWING AREAS, VIEWING ANGLES, SEATING PATTERNS, SCREEN CHARACTERISTICS AND EQUIPMENT PERFORMANCES…
Self-Paced Physics, Segments 19-23.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Five study segments of the Self-Paced Physics Course materials are presented in this fourth problems and solutions book used as a part of student course work. The subject matter is related to electric charges, insulators, Coulomb's law, electric fields, lines of force, solid angles, conductors, motion of charged particles, dipoles, electric flux,…
Reflections on Jonathan Boston's Paper
ERIC Educational Resources Information Center
Devine, Nesta
2014-01-01
In this article, Nesta Devine responds to Jonathan Boston's article "Child Poverty in New Zealand: Why It Matters and How It Can Be Reduced" ("Educational Philosophy and Theory," v46 n9 p995-999, 2014). Devine wishes to consider Boston's position from two angles: one is to rehearse the point that these statistics are an…
Evaluation of urine culture screening by light-scatter photometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, D.C.; Thrupp, L.D.; Matsen, J.M.
1981-08-01
Urine screening for bacteriuria by light-scatter photometry (Autobac) was evaluated for accuracy and compared with a colony count by the calibrated loop method. Incubation time, inoculum size, precision, and interference of particulate matter were evaluated in an effort to standardize the screening procedure. Results showed that urines could be accurately screened for Enterobacteriaceae by inoculating a single Autobac cuvette chamber with 0.1 or 0.2 ml of urine and determining the voltage change after four hours. A change of greater than or equal to 0.2 units indicates significant bacteriuria. Decreased accuracy was noted for urines having greater than 10(5) cfu/ml ofmore » Pseudomonas species or gram-positive cocci, possibly because these organisms grow more slowly.« less
NASA Astrophysics Data System (ADS)
Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.
2014-11-01
The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.
Saranathan, Vinodkumar; Forster, Jason D.; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G. J.; Cao, Hui; Dufresne, Eric R.; Prum, Richard O.
2012-01-01
Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology. PMID:22572026
Measurement of thin liquid film drainage using a novel high-speed impedance analyzer
NASA Astrophysics Data System (ADS)
Hool, Kevin O.; Saunders, Robert C.; Ploehn, Harry J.
1998-09-01
This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil-water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of the admittance associated with the draining and thinning of the oil film. The features of the drainage curves vary considerably with the type, amount, and location of surfactants in the oil and water phases, as well as with user-specified values of drop volume, drop equilibration time, and extent of drop compression. For this reason, the instrument has utility as a screening tool for selecting surfactants for emulsion formulations. Potential future uses include accelerated prediction of emulsion stability and extraction of oil-water interfacial rheological parameters.
The self-propulsion of a helix in granular matter
NASA Astrophysics Data System (ADS)
Valdes, Rogelio; Angeles, Veronica; de La Calleja, Elsa; Zenit, Roberto
2017-11-01
The effect of the shape of helicoidal on the displacement of magnetic robots in granular media is studied experimentally. We quantify the influences of three main parameters of the shape of the helicoidal swimmers: body diameter, step, and the angle. We compare the experimental measurements with an empirically modified resistive force theory prediction that accounts for the static friction coefficient of the particles of the granular material, leading to good agreement. Comparisons are also made with the granular resistive force theory proposed by Goldman and collaborators. We found an optimal helix angle to produce movement and determined a relationship between the swimmer size and speed.
Basavaiah, N; Blaha, U; Das, P K; Deenadayalan, K; Sadashiv, M B; Schulz, H
2011-08-01
Soils of basaltic origin cause difficulties in environmental magnetic screening for heavy metal pollution due to their natural high background values. Magnetic parameters and heavy metal content of highly magnetic topsoils from the Deccan Trap basalts are investigated to assess their potential for use in environmental magnetic pollution screening. This work extends the fast and cost-effective magnetic pollution screening techniques into soils with high natural magnetic signals. Fifty-five topsoil samples from N-S and W-E transects were collected and subdivided according to grain size using wet sieving technique. Magnetic susceptibility, soft isothermal remanent magnetization (Soft IRM), thermomagnetic analysis, scanning electron microscopy (SEM), and heavy metal analysis were performed on the samples. Magnetic analyses reveal a significant input of anthropogenic magnetic particulate matter within 6 km of the power plant and the adjacent ash pond. Results depend strongly on the stage of soil development and vary spatially. While results in the W, E, and S directions are easily interpretable, in the N direction, the contribution of the anthropogenic magnetic matter is difficult to assess due to high magnetic background values, less developed soils, and a more limited contribution from the fly ash sources. Prevailing winds towards directions with more enhanced values seem to have a certain effect on particulate matter accumulation in the topsoil. Thermomagnetic measurements show Verwey transition and Hopkinson peak, thus proving the presence of ferrimagnetic mineral phases close to the pollution source. A quantitative decrease of the anthropogenic ferrimagnetic mineral concentration with increased distance is evident in Soft IRM measurements. SEM investigations of quantitatively extracted magnetic particles confirm the fly ash distribution pattern obtained from the magnetic and heavy metal analyses. Evaluation of magnetic and chemical data in concert with the Pollution Load IndiceS (PLIS) of Pb, Zn, and Cu reveals a good relationship between magnetic susceptibility and the metal content. Integrated approaches in data acquisition of magnetic and chemical parameters enable the application of magnetic screening methods in highly magnetic soils. Combined data evaluation allows identification of sampling sites that are affected by human activity, through the deviation of the magnetic and chemical data from the general trend. It is shown that integrative analysis of magnetic parameters and a limited metal concentration dataset can enhance the quality of the output of environmental magnetic pollution screening significantly.
Transition from ideal to viscous Mach cones in a kinetic transport approach
NASA Astrophysics Data System (ADS)
Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.
2012-04-01
Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.
Identification of types of landings after blocking in volleyball associated with risk of ACL injury.
Zahradnik, David; Jandacka, Daniel; Farana, Roman; Uchytil, Jaroslav; Hamill, Joseph
2017-03-01
Landing with a low knee flexion angle after volleyball block jumps may be associated with an increased risk of anterior cruciate ligament (ACL) injury. The aim of the present study was to identify the types of volleyball landings after blocks where the knee flexion angle is found to be under a critical knee flexion angle value of 30° at the instant of the first peak of the ground reaction force (GRF). Synchronized kinematic and kinetic data were collected for each trial. T-tests were used to determine if each knee flexion angle at the instant of the peak GRF was significantly different from the critical value of 30°. A repeated measures ANOVA was used to compare knee flexion angle, time to first peak and the magnitude of the first peak of the resultant GRF and knee stiffness. Significantly lower knee flexion angles were found in the "go" landing (p = .01, ES = 0.6) and the "reverse" landing (p = .02, ES = 0.6) only. The results for knee flexion angle and GRF parameters indicated a significant difference between a "reverse" and "go" and other types of landings, except the "side stick" landing for GRF. The "reverse" and "go" landings may present a risk for ACL injury due to the single-leg landing of these activities that have an associated mediolateral movement.
Anisotropic imaging performance in breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badano, Aldo; Kyprianou, Iacovos S.; Jennings, Robert J.
We describe the anisotropy in imaging performance caused by oblique x-ray incidence in indirect detectors for breast tomosynthesis based on columnar scintillator screens. We use MANTIS, a freely available combined x-ray, electron, and optical Monte Carlo transport package which models the indirect detection processes in columnar screens, interaction by interaction. The code has been previously validated against published optical distributions. In this article, initial validation results are provided concerning the blur for particular designs of phosphor screens for which some details with respect to the columnar geometry are available from scanning electron microscopy. The polyenergetic x-ray spectrum utilized comes frommore » a database of experimental data for three different anode/filter/kVp combinations: Mo/Mo at 28 kVp, Rh/Rh at 28 kVp, and W/Al at 42 kVp. The x-ray spectra were then filtered with breast tissue (3, 4, and 6 cm thickness), compression paddle, and support base, according to the oblique paths determined by the incidence angle. The composition of the breast tissue was 50%/50% adipose/glandular tissue mass ratio. Results are reported on the pulse-height statistics of the light output and on spatial blur, expressed as the response of the detector to a pencil beam with a certain incidence angle. Results suggest that the response is nonsymmetrical and that the resolution properties of a tomosynthesis system vary significantly with the angle of x-ray incidence. In contrast, it is found that the noise due to the variability in the number of light photons detected per primary x-ray interaction changes only a few percent. The anisotropy in the response is not less in screens with absorptive backings while the noise introduced by variations in the depth-dependent light output and optical transport is larger. The results suggest that anisotropic imaging performance across the detector area can be incorporated into reconstruction algorithms for improving the image quality of breast tomosynthesis. This study also demonstrates that the assessment of image quality of breast tomosynthesis systems requires a more complete description of the detector response beyond local, center measurements of resolution and noise that assume some degree of symmetry in the detector performance.« less
Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism
NASA Astrophysics Data System (ADS)
Bernal, Nicolás; Cárcamo Hernández, A. E.; de Medeiros Varzielas, Ivo; Kovalenko, Sergey
2018-05-01
We formulate a predictive model of fermion masses and mixings based on a Δ(27) family symmetry. In the quark sector the model leads to the viable mixing inspired texture where the Cabibbo angle comes from the down quark sector and the other angles come from both up and down quark sectors. In the lepton sector the model generates a predictive structure for charged leptons and, after radiative seesaw, an effective neutrino mass matrix with only one real and one complex parameter. We carry out a detailed analysis of the predictions in the lepton sector, where the model is only viable for inverted neutrino mass hierarchy, predicting a strict correlation between θ 23 and θ 13. We show a benchmark point that leads to the best-fit values of θ 12, θ 13, predicting a specific sin2 θ 23 ≃ 0.51 (within the 3 σ range), a leptonic CP-violating Dirac phase δ ≃ 281.6° and for neutrinoless double-beta decay m ee ≃ 41.3 meV. We turn then to an analysis of the dark matter candidates in the model, which are stabilized by an unbroken ℤ2 symmetry. We discuss the possibility of scalar dark matter, which can generate the observed abundance through the Higgs portal by the standard WIMP mechanism. An interesting possibility arises if the lightest heavy Majorana neutrino is the lightest ℤ2-odd particle. The model can produce a viable fermionic dark matter candidate, but only as a feebly interacting massive particle (FIMP), with the smallness of the coupling to the visible sector protected by a symmetry and directly related to the smallness of the light neutrino masses.
Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter
NASA Astrophysics Data System (ADS)
Wignall, G. D.; Melnichenko, Y. B.
2005-08-01
Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenfeld, A; Poppinga, D; Poppe, B
Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, themore » scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”.« less
Origin of the styloglossus muscle in the human fetus
Mérida-Velasco, J R; Rodríguez-Vazquez, J F; de la Cuadra Blanco, C; Sánchez-Montesinos, I; Mérida-Velasco, J A
2006-01-01
The origin of the styloglossus muscle was histologically studied bilaterally in nine human fetuses (18 sides). In all cases, the muscle originated in Reichert's cartilage, which gives rise to the temporal styloid process. We identified three types of variation: type A, an accessory muscle fascicle originating from the mandibular angle, found in 7 cases (12 sides); type B, where the styloglossus muscle was attached to the mandibular angle by fibrous tracts, found in three cases (4 sides); and type C, where an accessory muscle fascicle arose from the fibrous tract connecting Reichert's cartilage to the mandibular angle; found in one case. In all cases (2 sides), the styloglossus muscle was innervated by the hypoglossal nerve. Relationships between the styloglossus muscle and vasculonervous elements of the prestyloid and retrostyloid spaces were analysed. PMID:16637887
Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang
2018-05-02
Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.
Looker, H C; Nyangoma, S O; Cromie, D T; Olson, J A; Leese, G P; Philip, S; Black, M W; Doig, J; Lee, N; Briggs, A; Hothersall, E J; Morris, A D; Lindsay, R S; McKnight, J A; Pearson, D W M; Sattar, N A; Wild, S H; McKeigue, P; Colhoun, H M
2013-08-01
The aim of our study was to identify subgroups of patients attending the Scottish Diabetic Retinopathy Screening (DRS) programme who might safely move from annual to two yearly retinopathy screening. This was a retrospective cohort study of screening data from the DRS programme collected between 2005 and 2011 for people aged ≥12 years with type 1 or type 2 diabetes in Scotland. We used hidden Markov models to calculate the probabilities of transitions to referable diabetic retinopathy (referable background or proliferative retinopathy) or referable maculopathy. The study included 155,114 individuals with no referable diabetic retinopathy or maculopathy at their first DRS examination and with one or more further DRS examinations. There were 11,275 incident cases of referable diabetic eye disease (9,204 referable maculopathy, 2,071 referable background or proliferative retinopathy). The observed transitions to referable background or proliferative retinopathy were lower for people with no visible retinopathy vs mild background retinopathy at their prior examination (respectively, 1.2% vs 8.1% for type 1 diabetes and 0.6% vs 5.1% for type 2 diabetes). The lowest probability for transitioning to referable background or proliferative retinopathy was among people with two consecutive screens showing no visible retinopathy, where the probability was <0.3% for type 1 and <0.2% for type 2 diabetes at 2 years. Transition rates to referable diabetic eye disease were lowest among people with type 2 diabetes and two consecutive screens showing no visible retinopathy. If such people had been offered two yearly screening the DRS service would have needed to screen 40% fewer people in 2009.
Surgical Videos with Synchronised Vertical 2-Split Screens Recording the Surgeons' Hand Movement.
Kaneko, Hiroki; Ra, Eimei; Kawano, Kenichi; Yasukawa, Tsutomu; Takayama, Kei; Iwase, Takeshi; Terasaki, Hiroko
2015-01-01
To improve the state-of-the-art teaching system by creating surgical videos with synchronised vertical 2-split screens. An ultra-compact, wide-angle point-of-view camcorder (HX-A1, Panasonic) was mounted on the surgical microscope focusing mostly on the surgeons' hand movements. In combination with the regular surgical videos obtained from the CCD camera in the surgical microscope, synchronised vertical 2-split-screen surgical videos were generated with the video-editing software. Using synchronised vertical 2-split-screen videos, residents of the ophthalmology department could watch and learn how assistant surgeons controlled the eyeball, while the main surgeons performed scleral buckling surgery. In vitrectomy, the synchronised vertical 2-split-screen videos showed the surgeons' hands holding the instruments and moving roughly and boldly, in contrast to the very delicate movements of the vitrectomy instruments inside the eye. Synchronised vertical 2-split-screen surgical videos are beneficial for the education of young surgical trainees when learning surgical skills including the surgeons' hand movements. © 2015 S. Karger AG, Basel.
Allingham, R. Rand
2008-01-01
Purpose A screening study was performed to assess levels of visual impairment and blindness among a representative sample of older members of the Aeta, an indigenous hunter-gatherer population living on the island of Luzon in the Philippines. Methods Unrelated older Aeta couples were randomly invited to participate in a visual screening study. All consented individuals had ocular history, medical history, complete ophthalmic examination, height, weight, and blood pressure taken. Results A total of 225 individuals were screened from 4 villages. Visual acuity, both uncorrected and pinhole corrected, was significantly worse among older vs younger age-groups for women, men, and when combined (P < .001). Visual impairment was present in 48% of uncorrected and 43% of pinhole corrected eyes in the oldest age-group. Six percent of the screened population was bilaterally blind. The major causes of blindness were readily treatable. The most common etiologies as a proportion of blind eyes were cataract (66%), refractive error (20%), and trauma (7%). No cases of primary open-angle, primary angle-closure, or exfoliation glaucoma were observed in this population. Discussion Visual impairment and blindness were common in the Aeta population. Primary forms of glaucoma, a major cause of blindness found in most population-based studies, were not observed. The absence of primary glaucoma in this population may reflect random sampling error. However, based on similar findings in the Australian Aborigine, this raises the possibility that these two similar populations may share genetic and/or environmental factors that are protective for glaucoma.. PMID:19277240
Suzuki, Ayuko; Shinozaki, Jun; Yazawa, Shogo; Ueki, Yoshino; Matsukawa, Noriyuki; Shimohama, Shun; Nagamine, Takashi
2018-01-01
The mental rotation task is well-known for the assessment of visuospatial function; however, it has not been used for screening of dementia patients. The aim of this study was to create a simple screening test for patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) by focusing on non-amnestic symptoms. Age-matched healthy controls (age 75.3±6.8), patients with MCI (76.5±5.5), and AD (78.2±5.0) participated in this study. They carried out mental rotation tasks targeting geometric graphics or alphabetical characters with three rotating angles (0°, 90°, and 180°) and indicated the correct answer. Response accuracy and reaction time were recorded along with their eye movements using an eye tracker. To quantify their visual processing strategy, the run count ratio (RC ratio) was calculated by dividing the mean number of fixations in incorrect answers by that in correct answers. AD patients showed lower accuracy and longer reaction time than controls. They also showed a significantly greater number of fixation and smaller saccade amplitude than controls, while fixation duration did not differ significantly. The RC ratio was higher for AD, followed by MCI and control groups. By setting the cut-off value to 0.47 in the 180° rotating angle task, we could differentiate MCI patients from controls with a probability of 80.0%. We established a new screening system for dementia patients by evaluating visuospatial function. The RC ratio during a mental rotation task is useful for discriminating MCI patients from controls.
Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R.; Bergamo, M.
2012-01-01
Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.
2013-01-01
The Chemical Events Working Group of the Global Health Security Initiative has developed a flexible screening tool for chemicals that present a risk when accidentally or deliberately released into the atmosphere. The tool is generic, semi-quantitative, independent of site, situation and scenario, encompasses all chemical hazards (toxicity, flammability and reactivity), and can be easily and quickly implemented by non-subject matter experts using freely available, authoritative information. Public health practitioners and planners can use the screening tool to assist them in directing their activities in each of the five stages of the disaster management cycle. PMID:23517410
Advanced Breast Cancer as Indicator of Quality Mammography
NASA Astrophysics Data System (ADS)
Gaona, Enrique
2003-09-01
Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is the more important screening tool for detecting early breast cancer. Screening mammography involves taking x-rays from two views from each breast, typically from above (cranial-caudal view, CC) and from an oblique or angled view (mediolateral-oblique, MLO). The purpose of this study was to carry out an exploratory survey of the issue of patients with advanced breast cancer who have had a screening mammography. A general result of the survey is that 22.5% of all patients (102) with advanced breast cancer that participated in the study had previous screening mammography. But we should consider that 10% of breast cancers are not detected by mammography. Only 70% of the family doctors prescribed a diagnostic mammography when the first symptoms were diagnosed.
Griffith, Joseph F; Goldberg, Jeffrey L
2016-03-01
To determine the frequency of optical coherence tomography (OCT) examinations compared with clinical examinations and visual field (VF) tests in patients with 5 types of glaucoma. A retrospective, longitudinal cohort study was conducted of 5154 patients treated between 2003 and 2010 at a single academic medical center. Patients were classified using billing records as having primary open-angle glaucoma, low-tension open-angle glaucoma (NTG), pigmentary open-angle glaucoma, chronic angle-closure glaucoma, or pseudoexfoliation glaucoma. Analysis of variance, χ test, and exact χ test were performed to identify associations between glaucoma type and test frequency. Pigmentary open-angle glaucoma and NTG patients had a higher rate of undergoing at least 2 VFs (94.4%, 94.9%), and chronic angle-closure glaucoma patients had a lower rate of undergoing at least 2 OCTs (25.3%) than all other glaucoma types. NTG patients also had the highest rate of undergoing at least 2 OCTs and at least 2 VFs (36.6%). Overall, the rate of clinical examinations (2.68 examinations/y) exceeded the rates of OCTs (1.39 examinations/y), which exceeded the rate of VF tests (1.24 tests/y). There were no differences in OCT frequency between glaucoma types (0.91 to 1.63 OCTs/y). Within each glaucoma diagnosis, patients had clinical examinations more frequently than OCTs and clinical examinations more frequently than VFs. Primary open-angle glaucoma and pseudoexfoliation glaucoma patients also had OCTs more frequently than VFs. More patients had at least 2 VF tests than at least 2 OCTs (4481 vs. 1679). The relative use of clinical examinations, VF testing, and OCT imaging varies among glaucoma diagnoses.
Comparison of intersecting pedestrian flows based on experiments
NASA Astrophysics Data System (ADS)
Zhang, J.; Seyfried, A.
2014-07-01
Intersections of pedestrian flows feature multiple types, varying in the numbers of flow directions as well as intersecting angles. In this article results from intersecting flow experiments with two different intersecting angles are compared. To analyze the transport capabilities the Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The fundamental diagrams of various flow types are compared and show no apparent difference with respect to the intersecting angle 90° and 180°. This result indicates that head-on conflicts of different types of flow have the same influence on the transport properties of the system, which demonstrates the high self-organization capabilities of pedestrians.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2018-03-01
In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.
Gamma-ray Signal from Dark Matter Annihilation Mediated by Mixing Slepton
NASA Astrophysics Data System (ADS)
Teng, Fei
2016-03-01
In order to reconcile the tension between the collider SUSY particle search and the dark matter relic density constraint, we free ourselves from the simplest CMSSM model and find a large parameter space in which a sub-TeV bino dark matter may comply with all the current experimental constraints. In this so-called incredible bulk region, dark matter mainly annihilates through the t channel exchange of a mixing slepton into a leptonic final state. We have explored this proposal and studied the resultant spectrum feature. We are going to show that the line signal produced by the γγ and γZ final state will give some indications to the mixing angle and CP-violation phase of the slepton sector. On the other hand, internal bremsstrahlung (IB) feature will be easier to get observed by future experiments, with sensitivity around 10-29cm3 /s . Unlike some other models, our IB signal is dominated by the collinear limit of the final state radiation amplitude and shows a bump-like feature.
Glaucoma in atomic bomb survivors.
Kiuchi, Yoshiaki; Yokoyama, Tomoko; Takamatsu, Michiya; Tsuiki, Eiko; Uematsu, Masafumi; Kinoshita, Hirofumi; Kumagami, Takeshi; Kitaoka, Takashi; Minamoto, Atsushi; Neriishi, Kazuo; Nakashima, Eiji; Khattree, Ravindra; Hida, Ayumi; Fujiwara, Saeko; Akahoshi, Masazumi
2013-10-01
Radiation has been associated with increases in noncancerous diseases. An effect of low-dose radiation on the prevalence of clinically detected glaucoma has not been previously reported. We therefore investigated the prevalence of glaucoma in A-bomb survivors and its possible association with radiation dose. A total of 1,589 people who participated in the clinical examination program for A-bomb survivors at the Radiation Effects Research Foundation (RERF) between October 2006 and September 2008 and who had reconstructed radiation doses, were recruited into this cross-sectional screening study. The prevalence of glaucoma and its dose-response relationship to A-bomb radiation were measured. Each subject underwent an initial screening consisting of an interview and ophthalmological examination. Questionable cases with any indication of ocular disease, including glaucoma, were referred to local hospitals for more comprehensive evaluation. A diagnosis of glaucoma was made based on specific optic disc appearance, perimetric results and other ocular findings. Of 1,589 eligible people, we detected 284 (17.9%) cases of glaucoma overall, including 36 (2.3%) cases of primary open-angle glaucoma with intraocular pressure levels greater than 21 mmHg, 226 (14.2%) cases of normal-tension glaucoma and 25 (1.6%) cases of primary angle-closure glaucoma. Seven glaucoma risk factors were examined as potential confounders but only two needed to be included in the final model. Binary regression using a generalized estimating equation method, with adjustment for gender, age, city, cataract surgery or diabetes mellitus, revealed an odds ratio at 1 Gy of 1.31 (95% confidence interval 1.11-1.53, P = 0.001) in the case of normal-tension glaucoma, but no association for other types of glaucoma. The prevalence of normal-tension glaucoma may increase with A-bomb radiation dose, but uncertainties associated with nonparticipation (59% participation) suggest caution in the interpretation of these results until they are confirmed by other studies.
Millá, Elena; Mañé, Begoña; Duch, Susana; Hernan, Imma; Borràs, Emma; Planas, Ester; Dias, Miguel de Sousa; Carballo, Miguel
2013-01-01
Purpose To identify myocilin (MYOC) and cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1) mutations in a Spanish population with different clinical forms of familial glaucoma or ocular hypertension (OHT). Methods Index patients from 226 families participated in this study. Patients were diagnosed with familial glaucoma or OHT by complete ophthalmologic examination. Screening for MYOC mutations was performed in 207 index patients: 96 with adult-onset primary open-angle glaucoma (POAG), 21 with primary congenital glaucoma (PCG), 18 with juvenile-onset open-angle glaucoma (JOAG), five with Axenfeld-Rieger syndrome (ARS), and 67 with other types of glaucoma. One hundred two of the families (including all those in whom a MYOC mutation was detected) were also screened for CYP1B1 mutations: 45 POAG, 25 PCG, 21 JOAG, four ARS, and seven others. Results We examined 292 individuals (patients and relatives) with a positive family history of glaucoma or OHT. We identified two novel MYOC variants, p.Lys39Arg and p.Glu218Lys, in two families with POAG, and six previously reported MYOC mutations in seven families with POAG (four), JOAG (one), PCG (one), and normotensive glaucoma (one). CYP1B1 mutations were found in 16 index patients with PCG (nine), POAG (three), JOAG (two), and ARS (two). Conclusions The high percentage (9/25=36%) of mutations in CYP1B1 found in non-consanguineous patients with congenital glaucoma mandates genetic testing. However, the percentage of mutations (9/207=4.4%) in MYOC associated with glaucoma is relatively low in our population. The variable phenotype expression of glaucoma, even in families, cannot be explained with a digenic mechanism between MYOC and CYP1B1. PMID:23922489
Morphological configuration of the cranial base among children aged 8 to 12 years.
Cossio, Lina; López, Jorge; Rueda, Zulma Vanessa; Botero-Mariaca, Paola
2016-06-14
Cranial base is used as reference structure to determine the skeletal type in cephalometric analysis. The purpose was to assess the cranial base length on lateral cephalic radiographs of children between 8 and 12 and compare these measurements with baseline studies in order to evaluate the relationship between the length and the cranial base angle, articular angle, gonial angle and skeletal type. A Cross-sectional study in 149 children aged 8-12 years, originally from Aburrá Valley, who had lateral cephalic radiographs and consented to participate in this study. The variables studied included: age, sex, sella-nasion, sella-nasion-articular, sella-nasion-basion, articular-gonion-menton, gonion-menton, sella-nasion-point B, sella-nasion-point A y point A-nasion-point B. These variables were digitally measured through i-dixel 2 digital software. One-way ANOVA was used to determine mean values and mean value differences. The values obtained were compared with previous studies. A p value <0.05 was considered significant. Cranial base lengths are smaller in each age and sex group, with differences exceeding 10 mm for measurement, compared both with the study by Riolo (Michigan) and the study carried out in Damasco (Antioquia). No relation was found between the skeletal type and the anterior cranial base length, the sella angle and the cranial base angle. Also, no relation was found between the gonial angle and sella angle or the cranial base angle. The cranial base varies from one population to another. Accordingly, compared to other studies it is shorter for the assessed sample.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Seidel, F. C.; Xu, F.; Garay, M. J.; Wu, L.; Bruegge, C. J.; van Harten, G.; Val, S.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Cappa, C. D.; Bradley, C. L.; Kupinski, M.; Clements, C. B.; Camacho, C.; Yorks, J. E.
2016-12-01
The Multi-Angle Imager for Aerosols (MAIA) instrument, which was recently selected under NASA's third Earth Venture Instrument call, will improve aerosol particle type sensitivity through the atmospheric column as well as at the surface through the use of multiangular, multispectral, and polarimetric observations. MAIA will provide new information that enables estimates of speciated (size- and particle type classifications) surface particulate matter (PM) from space over major cities around the globe, and enable improved associations between particulate air pollution and human health. As a pathfinder to MAIA, the ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from MISR and AirMSPI with in situ airborne measurements and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter. We will present highlights of the successfully completed ImPACT-PM field campaign which took place in the California Central Valley on July 5-8, 2016. We had two NASA ER-2/ CIRPAS Twin Otter collocated flights coincident with Terra/MISR overpasses on Tuesday and Thursday July 5 and 7; and two ER-2/Twin Otter collocations over local fires on Friday, July 8th. The AirMSPI, AirSPEX, and CPL instruments were integrated on the ER-2, and Caltech aerosol/cloud in-situ instruments were integrated on the CIRPAS Twin Otter aircraft in addition to the normal Twin Otter payload. We also deployed the JPL/University of Arizona GroundMSPI instrument and a ground-based lidar from San José State University at the Fresno California Air Resources Board super-site. While the overall aerosol and PM levels were low at this time, we were able to see a gradient of pollution in specially processed MISR high-resolution 4.4 km resolution aerosol data on both days. We will present initial results of AirMSPI WRF-Chem-constrained retrievals in comparison with EPA Speciation Trends Network stations in Fresno and Bakersfield, and with available AMS/DMA/SP2 instrument data from the Twin Otter. The SP2 instrument measured very high levels of carbon over the fire near Gorman on July 8 that was collocated with the AirMSPI/SPEX data. This provides a case to validate AirMSPI retrievals of absorbing particles.
Dark Matter Search Using XMM-Newton Observations of Willman 1
NASA Technical Reports Server (NTRS)
Lowenstein, Michael; Kusenko, Alexander
2012-01-01
We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.
Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts
NASA Astrophysics Data System (ADS)
Diner, D. J.
2016-12-01
Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers, PM size discrimination and chemical speciation monitors, and access to geocoded health datasets. The MAIA investigation brings together an international team of researchers and policy specialists with expertise in remote sensing, aerosol science, air quality, epidemiology, and public health.
Studies of non-standard effects in atmospheric neutrino oscillations of Super-Kamiokande
NASA Astrophysics Data System (ADS)
Wang, Wei
Neutrino oscillation due to mass eigenstate mixing has become the standard theory accounting for both solar and atmospheric neutrino data. This explanation indicates that neutrinos have small but non-vanishing masses, which is a sign of new physics beyond the Standard Model. In this dissertation, we will compare the standard explanation with three types of alternative theories using Super-Kamiokande (SK) atmospheric neutrino data. The first type of non-standard theory involves sterile neutrinos. By using the neutral current enhanced data samples of SK and by considering matter effect, we conclude it is unlikely that sterile neutrinos are responsible for SK atmospheric neutrino zenith angle distributions. Furthermore, we study the allowance of sterile neutrino admixture in atmospheric neutrino mixing and find an admixture of 23% sterile neutrino is allowed at 90% confidence level based on a 2+2 mass hierarchy model. The second type of non-standard theory involves neutrino oscillation induced by violations of Lorentz invariance (LIV) and CPT symmetry (CPTV). The neutrino oscillations induced by the temporal components of the LIV and CPTV terms in the minimal Standard Model Extension (SME) have different energy and pathlength dependences compared to the standard oscillation. Our analysis indicates that it is unlikely to explain SK atmospheric neutrino data with the oscillation effects induced by the temporal components of the minimal SME separately. By treating LIV- and CPTV-induced oscillations as sub-dominant effects, limits on symmetry-breaking parameters are established. The third category of non-standard theory involves vanishing neutrinos caused by neutrino decoherence and neutrino decay. Our study shows that it is unlikely to explain SK atmospheric neutrino zenith angle distributions using these two non-oscillatory models. By treating them as sub-dominant effects, limits on these two types of new physics are set based on several specific models. Our study shows that the oscillation between muon neutrinos and tau neutrinos is the best model explaining SK atmospheric neutrino data among the models we test. In most cases, limits on new physics established in this study using SK atmospheric neutrino data are the best currently available.
All-around viewing display system for group activity on life review therapy
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Okumura, Mitsuru
2009-10-01
This paper describes 360 degree viewing display system that can be viewed from any direction. A conventional monitor display is viewed from one direction, i.e., the display has narrow viewing angle and observers cannot view the screen from the opposite side. To solve this problem, we developed the 360 degree viewing display for collaborative tasks on the round table. This developed 360 degree viewing system has a liquid crystal display screen and a 360 degree rotating table by motor. The principle is very simple. The screen of a monitor only rotates at a uniform speed, but the optical techniques are also utilized. Moreover, we have developed a floating 360 degree viewing display that can be viewed from any direction. This new viewing system has a display screen, a rotating table and dual parabolic mirrors. In order to float the only image screen above the table, the rotating mechanism works in the parabolic mirrors. Because the dual parabolic mirrors generate a "mirage" image over the upper mirror, observers can view a floating 2D image on the virtual screen in front of them. Then the observer can view a monitor screen at any position surrounding the round table.
NASA Astrophysics Data System (ADS)
Castro, José J.; Pozo, Antonio M.; Rubiño, Manuel
2013-11-01
In this work we studied the color dependence with a horizontal-viewing angle and colorimetric characterization of two liquid-crystal displays (LCD) using two different backlighting: Cold Cathode Fluorescent Lamps (CCFLs) and light-emitting diodes (LEDs). The LCDs studied had identical resolution, size, and technology (TFT - thin film transistor). The colorimetric measurements were made with the spectroradiometer SpectraScan PR-650 following the procedure recommended in the European guideline EN 61747-6. For each display, we measured at the centre of the screen the chromaticity coordinates at horizontal viewing angles of 0, 20, 40, 60 and 80 degrees for the achromatic (A), red (R), green (G) and blue (B) channels. Results showed a greater color-gamut area for the display with LED backlight, compared with the CCFL backlight, showing a greater range of colors perceptible by human vision. This color-gamut area diminished with viewing angle for both displays. Higher differences between trends for viewing angles were observed in the LED-backlight, especially for the R- and G-channels, demonstrating a higher variability of the chromaticity coordinates with viewing angle. The best additivity was reached by the LED-backlight display (a lower error percentage). LED-backlight display provided better color performance of visualization.
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Zhu, Y.; Luo, X.
2018-07-01
The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.
Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming
2018-05-01
The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.
Open-angle glaucoma in patients with diabetic retinopathy at the Puerto Rico Medical Center.
Cruz-lñigo, Yousef; Izquierdo, Natalio J; García, Omar; Pérez, Raúl
2012-01-01
The association of open-angle glaucoma (OAG) with diabetes mellitus remains controversial. We report on the frequency of open-angle glaucoma in patients having diabetic retinopathy in a population of the Puerto Rico Medical Center. A cross-sectional study of 1,442 patients was done. Only the chart of patients 40 years-of-age and older, with a diagnosis of diabetic retinopathy and/or open-angle glaucoma were included. Descriptive analysis was done. Unadjusted and gender-adjusted logistic regression analyses were used to estimate risk of developing open-angle glaucoma in patients with diabetic retinopathy for each subsequent decade. 1,040 patients were diagnosed with diabetic retinopathy from July 1, 2004 to June 30, 2009. Also, 402 patients were diagnosed with open-angle glaucoma from July 1, 2007 to June 30, 2009. Of the 1,040 patients with diabetic retinopathy, 64 patients (6.15%) also had OAG. According to our gender-adjusted logistic regression analysis the estimated risk of developing open-angle glaucoma for patients 40 years-of-age with diabetic retinopathy increased for each subsequent decade until the seventh decade, odds ratio = 5.07 (95% confidence interval: 1.62-15.86). Thereafter, it decreased, odds ratio = 2.07 (95% confidence interval: 0.36-11.82). Our findings suggest that Puerto Rico patients between 40 to 79 years of age with diabetic retinopathy have an increased risk of developing open-angle glaucoma with each subsequent decade. Screening for open-angle glaucoma in patients with diabetic retinopathy is of utmost importance in the aging Puerto Rico population to prevent blindness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo, E-mail: n.bozorgnia@uva.nl, E-mail: gelmini@physics.ucla.edu, E-mail: paolo@physics.utah.edu
Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the meanmore » recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.« less
Gravitational anti-screening as an alternative to dark matter
NASA Astrophysics Data System (ADS)
Penner, A. Raymond
2016-04-01
A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.
The New US Preventive Services Task Force "C" Draft Recommendation for Prostate Cancer Screening.
Cooperberg, Matthew R
2017-09-01
The US Preventive Services Task Force has issued a new draft guideline, with a "C" recommendation that men aged 55-69 yr should be informed about the benefits and harms of screening for prostate cancer, and offered prostate-specific antigen testing if they choose it. For men aged ≥70 yr, the recommendation remains "D", or "do not screen." This draft represents substantial progress in the right direction towards offering men a fair opportunity to discuss the risks and benefits of screening with their primary care providers. However, the evidence review underlying the draft remains fundamentally inadequate, leading to biased presentations of both benefits and harms of screening. The final guideline and future revisions should reflect formal engagement with subject matter experts to optimize the advise given to men and their physicians. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Enhancing citizen engagement in cancer screening through deliberative democracy.
Rychetnik, Lucie; Carter, Stacy M; Abelson, Julia; Thornton, Hazel; Barratt, Alexandra; Entwistle, Vikki A; Mackenzie, Geraldine; Salkeld, Glenn; Glasziou, Paul
2013-03-20
Cancer screening is widely practiced and participation is promoted by various social, technical, and commercial drivers, but there are growing concerns about the emerging harms, risks, and costs of cancer screening. Deliberative democracy methods engage citizens in dialogue on substantial and complex problems: especially when evidence and values are important and people need time to understand and consider the relevant issues. Information derived from such deliberations can provide important guidance to cancer screening policies: citizens' values are made explicit, revealing what really matters to people and why. Policy makers can see what informed, rather than uninformed, citizens would decide on the provision of services and information on cancer screening. Caveats can be elicited to guide changes to existing policies and practices. Policies that take account of citizens' opinions through a deliberative democracy process can be considered more legitimate, justifiable, and feasible than those that don't.
Universal precision sine bar attachment
NASA Technical Reports Server (NTRS)
Mann, Franklin D. (Inventor)
1989-01-01
This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.
Air Quality Strategies on Public Health and Health Equity in Europe-A Systematic Review.
Wang, Li; Zhong, Buqing; Vardoulakis, Sotiris; Zhang, Fengying; Pilot, Eva; Li, Yonghua; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas
2016-12-02
Air pollution is an important public health problem in Europe and there is evidence that it exacerbates health inequities. This calls for effective strategies and targeted interventions. In this study, we conducted a systematic review to evaluate the effectiveness of strategies relating to air pollution control on public health and health equity in Europe. Three databases, Web of Science, PubMed, and Trials Register of Promoting Health Interventions (TRoPHI), were searched for scientific publications investigating the effectiveness of strategies on outdoor air pollution control, public health and health equity in Europe from 1995 to 2015. A total of 15 scientific papers were included in the review after screening 1626 articles. Four groups of strategy types, namely, general regulations on air quality control, road traffic related emission control interventions, energy generation related emission control interventions and greenhouse gas emission control interventions for climate change mitigation were identified. All of the strategies reviewed reported some improvement in air quality and subsequently in public health. The reduction of the air pollutant concentrations and the reported subsequent health benefits were more significant within the geographic areas affected by traffic related interventions. Among the various traffic related interventions, low emission zones appeared to be more effective in reducing ambient nitrogen dioxide (NO₂) and particulate matter levels. Only few studies considered implications for health equity, three out of 15, and no consistent results were found indicating that these strategies could reduce health inequity associated with air pollution. Particulate matter (particularly fine particulate matter) and NO₂ were the dominant outdoor air pollutants examined in the studies in Europe in recent years. Health benefits were gained either as a direct, intended objective or as a co-benefit from all of the strategies examined, but no consistent impact on health equity from the strategies was found. The strategy types aiming to control air pollution in Europe and the health impact assessment methodology were also discussed in this review.
Air Quality Strategies on Public Health and Health Equity in Europe—A Systematic Review
Wang, Li; Zhong, Buqing; Vardoulakis, Sotiris; Zhang, Fengying; Pilot, Eva; Li, Yonghua; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas
2016-01-01
Air pollution is an important public health problem in Europe and there is evidence that it exacerbates health inequities. This calls for effective strategies and targeted interventions. In this study, we conducted a systematic review to evaluate the effectiveness of strategies relating to air pollution control on public health and health equity in Europe. Three databases, Web of Science, PubMed, and Trials Register of Promoting Health Interventions (TRoPHI), were searched for scientific publications investigating the effectiveness of strategies on outdoor air pollution control, public health and health equity in Europe from 1995 to 2015. A total of 15 scientific papers were included in the review after screening 1626 articles. Four groups of strategy types, namely, general regulations on air quality control, road traffic related emission control interventions, energy generation related emission control interventions and greenhouse gas emission control interventions for climate change mitigation were identified. All of the strategies reviewed reported some improvement in air quality and subsequently in public health. The reduction of the air pollutant concentrations and the reported subsequent health benefits were more significant within the geographic areas affected by traffic related interventions. Among the various traffic related interventions, low emission zones appeared to be more effective in reducing ambient nitrogen dioxide (NO2) and particulate matter levels. Only few studies considered implications for health equity, three out of 15, and no consistent results were found indicating that these strategies could reduce health inequity associated with air pollution. Particulate matter (particularly fine particulate matter) and NO2 were the dominant outdoor air pollutants examined in the studies in Europe in recent years. Health benefits were gained either as a direct, intended objective or as a co-benefit from all of the strategies examined, but no consistent impact on health equity from the strategies was found. The strategy types aiming to control air pollution in Europe and the health impact assessment methodology were also discussed in this review. PMID:27918457
Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw
Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.
2003-01-01
The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.
Schulz, Simone; Koos, Bernd; Duske, Kathrin; Stahl, Franka
2016-11-01
The purpose of this work was to employ both cephalometric and tensor analysis in characterizing the skeletal changes experienced by patients with Angle Class II/1 malocclusion during functional orthodontic treatment with the functional regulator type II. A total of 23 patients with Class II/1 malocclusion based on lateral cephalograms obtained before and after treatment with the functional regulator type II were analyzed. Another 23 patients with Angle Class II/1 malocclusion who had not undergone treatment were included as controls. Our cephalometric data attest to significant therapeutic effects of the functional regulator type II on the skeletal mandibular system, including significant advancement of the mandible, increases in effective mandibular length with enhancement of the chin profile, and reduction of growth-related bite deepening. No treatment-related effects were observed at the cranial-base and midface levels. In addition, tensor analysis revealed significant stimulation of mandibular growth in sagittal directions, without indications of growth effects on the maxilla. Its growth-pattern findings differed from those of cephalometric analysis by indicating that the appliance did promote horizontal development, which supports the functional orthodontic treatment effect in Angle Class II/1 cases. Tensor analysis yielded additional insights into sagittal and vertical growth changes not identifiable by strictly cephalometric means. The functional regulator type II was an effective treatment modality for Angle Class II/1 malocclusion and influenced the skeletal development of these patients in favorable ways.
Gagné, Anne-Julie; Voyer, Philippe; Boucher, Valérie; Nadeau, Alexandra; Carmichael, Pierre-Hugues; Pelletier, Mathieu; Gouin, Emilie; Berthelot, Simon; Daoust, Raoul; Wilchesky, Machelle; Richard, Hélène; Pelletier, Isabelle; Ballard, Stephanie; Laguë, Antoine; Émond, Marcel
2018-05-17
CLINICIAN'S CAPSULE What is known about the topic? Delirium is frequent in older inpatients but often goes undetected. A short tool, the 4 A's Test (4AT), was created and validated for the detection of delirium. What did this study ask? This study compared the performance of the French version of the 4AT (4AT-F) with the Confusion Assessment Method (CAM) for the screening of delirium. What did this study find? The 4AT-F was a fast and reliable screening tool for delirium in the emergency department (ED). Why does this study matter to clinicians? Because of its quick administration time, it allows for systematic screening of patients at risk of delirium and cognitive impairment.
Documentary Elements in Early Films.
ERIC Educational Resources Information Center
Sanderson, Richard A.
Focusing on documentary elements, this study examines the film content and film techniques of 681 motion pictures produced in the United States prior to 1904. Analysis of films by type, subject matter, and trends in subject matter shows that one-third of the early films are documentary in type and three-fourths of the films use subject matter of a…
CMB-lensing beyond the Born approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth
2016-09-01
We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussianmore » nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.« less
Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William
2018-04-01
To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Angled shots onto body armour using 9 mm ammunition: the effect on potential blunt injury.
Lyall, Alison; Carr, D J; Lankester, C; Malbon, C
2017-02-01
Some military specialists wear body armour that is more similar to police armour and provides protection from ammunition fired from pistols. During ballistic testing, these armours are mounted on a standardised type of modelling clay and the back face signature (BFS; depth of depression) formed as a result of the non-perforating impact event on to the armour is measured. This study investigated the effect of impact angle on the BFS and on the deformation of the bullet. Two commonly worn types of armour (HG1/A+KR1 and HG1+KR1) were considered that provide protection from pistol ammunition and sharp weapons. Armours were tested against two types of pistol ammunition (9 mm full metal jacket and 9 mm hollow point) at eight different impact angles (0°, 15°, 30°, 45°, 60°, 70°, 75° and 80°). Increased impact angles resulted in smaller BFSs. Impact angle also affected whether bullets were retained in the armour; as the impact angle increased, the probability of a round exiting the side of the armour increased. Bullet deformation was affected by impact angle. Understanding the deformation of bullets may assist with recreating a shooting incident and interpreting forensic evidence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Su, Yanling; Chen, Wei; Zhang, Tao; Wu, Xingwang; Wu, Zhanpo; Zhang, Yingze
2013-09-24
Controversy exits over the role of Böhler's angle in assessing the injury severity of displaced intra-articular calcaneal fractures and predicting the functional outcome following internal fixation. This study aims to investigate whether a correlation exists between Böhler's angle and the injury severity of displaced calcaneal fractures, and between surgical improvement of Böhler's angle and functional outcome. Patients treated operatively for unilateral closed displaced intra-articular calcaneal fractures from January 1, 2004 to March 31, 2008 were identified. The Böhler's angles of both calcaneus were measured, and the measurement of the uninjured foot was used as its normal control. The difference in the value of Böhler's angle measured preoperatively or postoperatively between the angle of the injured foot and that of the contralateral calcaneus were calculated, respectively. The change in Böhler's angle by ratio was calculated by dividing the difference value of Böhler's angle between bilateral calcaneus by its normal control. The injury severity was assessed according to Sanders classification. The functional outcomes were assessed using American Orthopaedic Foot & Ankle Society hindfoot scores. 274 patients were included into the study with a mean follow-up duration of 71 months. According to Sanders classification, the fracture pattern included 105 type II, 121 type III and 48 type IV fractures. According to American Orthopaedic Foot & Ankle Society hindfoot scoring system, the excellent, good, fair and poor results were achieved in 104, 132, 27, and 11 patients, respectively. The preoperative Böhler's angle, difference value of Böhler's angle between bilateral calcaneus, and change in Böhler's angle by ratio each has a significant correlation with Sanders classification (rs=-0.178, P=0.003; rs=-0.174, P=0.004; rs=-0.172, P=0.005, respectively), however, is not correlated with functional outcome individually. The three postoperative measurements were all found to have a significant correlation with American Orthopaedic Foot & Ankle Society hindfoot scores (rs=0.223, P<0.001; rs=0.224, P<0.001; rs=0.220, P<0.001, respectively). However, these correlations were all weak to low. There was a significant correlation between preoperative Böhler's angle and the injury severity of displaced intra-articular calcaneal fractures, but only postoperative Böhler's angle parameters were found to have a significant correlation with the functional recovery.
A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification
NASA Technical Reports Server (NTRS)
Fries, K. L.; Smith, L. G.; Voss, H. D.
1979-01-01
A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.
New Method of Determining the Polar Curve of an Airplane in Flight
NASA Technical Reports Server (NTRS)
Yegorov, B. N.
1945-01-01
A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.
In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.
Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming
2015-12-30
The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...
21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...
21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...
21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... virus, Type 1 (e.g., FDA licensed screening test for anti-HIV-1); (2) Human immunodeficiency virus, Type 2 (e.g., FDA licensed screening test for anti-HIV-2); (3) Hepatitis B (e.g., FDA licensed screening... been tested and found negative using FDA licensed screening tests for HIV-1, HIV-2, hepatitis B, and...
Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo Junior, José Simon
2016-12-01
To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (p<0.05). The body mass index criterion for age of the World Health Organization showed no difference between groups. Children with osteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Klein, Christian; Kinz, Wieland; Zembsch, Alexander; Groll-Knapp, Elisabeth; Kundi, Michael
2014-04-21
Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis.Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. The correlations between the hallux valgus angles determined by the three different methods were all above r=0.89 (p<0.001) and thus highly significant. The values obtained by measuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the metatarsophalangeal angle. Because the hallux valgus angles based on margo medialis pedis measurements were slightly but statistically significantly smaller, these measurements should be considered conservative estimates of the metatarsophalangeal angle. Significant differences between hallux valgus angles based on radiographic and non-radiographic material are unlikely. However this question has to be treated in a second stage in detail.
DOT National Transportation Integrated Search
2008-06-01
This paper empirically examines the vehicle type regulation that was introduced under the : Automobile Nitrogen OxidesParticulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively...
Does the evidence support population-wide screening for type 2 diabetes? No.
Shaw, Jonathan E
2017-11-01
Large-scale, centrally-coordinated screening for undiagnosed type 2 diabetes is an attractive option to reduce the mortality and morbidity resulting from inadequately controlled diabetes. However, there is limited research examining the direct consequences of such screening programmes on outcomes such as cardiovascular disease and death. Two papers published in this edition of Diabetologia (DOIs: 10.1007/s00125-017-4323-2 and 10.1007/s00125-017-4299-y ) examine data from one of the very few trials conducted in this area. Overall, there was little benefit that could be directly related to the screening programme. In part, this was due to the high levels of opportunistic screening in the control group. Thus, when there are high levels of opportunistic screening for type 2 diabetes, there remains no clear evidence of benefit of centrally-coordinated screening programmes that approach individuals outside usual healthcare settings.
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stage of flooding: (a) Final waterline. The final waterline, in the final condition of sinkage, heel... nonopening type; (7) Retractable inflatable seal; or (8) Guillotine door. (b) Heel angle. The maximum angle of heel must not exceed 15 degrees, except that this angle may be increased to 17 degrees if no deck...
46 CFR 172.245 - Survival conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stage of flooding: (a) Final waterline. The final waterline, in the final condition of sinkage, heel... nonopening type; (7) Retractable inflatable seal; or (8) Guillotine door. (b) Heel angle. The maximum angle of heel must not exceed 15 degrees, except that this angle may be increased to 17 degrees if no deck...
Baseline and annual repeat rounds of screening: implications for optimal regimens of screening.
Henschke, Claudia I; Salvatore, Mary; Cham, Matthew; Powell, Charles A; DiFabrizio, Larry; Flores, Raja; Kaufman, Andrew; Eber, Corey; Yip, Rowena; Yankelevitz, David F
2018-03-01
Differences in results of baseline and subsequent annual repeat rounds provide important information for optimising the regimen of screening. A prospective cohort study of 65,374 was reviewed to examine the frequency/percentages of the largest noncalcified nodule (NCN), lung cancer cell types and Kaplan-Meier (K-M) survival rates, separately for baseline and annual rounds. Of 65,374 baseline screenings, NCNs were identified in 28,279 (43.3%); lung cancer in 737 (1.1%). Of 74,482 annual repeat screenings, new NCNs were identified in 4959 (7%); lung cancer in 179 (0.24%). Only adenocarcinoma was diagnosed in subsolid NCNs. Percentages of lung cancers by cell type were significantly different (p < 0.0001) in the baseline round compared with annual rounds, reflecting length bias, as were the ratios, reflecting lead times. Long-term K-M survival rate was 100% for typical carcinoids and for adenocarcinomas manifesting as subsolid NCNs; 85% (95% CI 81-89%) for adenocarcinoma, 74% (95% CI 63-85%) for squamous cell, 48% (95% CI 34-62%) for small cell. The rank ordering by lead time was the same as the rank ordering by survival rates. The significant differences in the frequency of NCNs and frequency and aggressiveness of diagnosed cancers in baseline and annual repeat need to be recognised for an optimal regimen of screening. • Lung cancer aggressiveness varies considerably by cell type and nodule consistency. • Kaplan-Meier survival rates varied by cell type between 100% and 48%. • The percentages of lung cancers by cell type in screening rounds reflect screening biases. • Rank ordering by cell type survival is consistent with that by lead times. • Empirical evidence provides critical information for the regimen of screening.
Limited data tomographic image reconstruction via dual formulation of total variation minimization
NASA Astrophysics Data System (ADS)
Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong
2011-03-01
The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.
Classification of ring artifacts for their effective removal using type adaptive correction schemes.
Anas, Emran Mohammad Abu; Lee, Soo Yeol; Hasan, Kamrul
2011-06-01
High resolution tomographic images acquired with a digital X-ray detector are often degraded by the so called ring artifacts. In this paper, a detail analysis including the classification, detection and correction of these ring artifacts is presented. At first, a novel idea for classifying rings into two categories, namely type I and type II rings, is proposed based on their statistical characteristics. The defective detector elements and the dusty scintillator screens result in type I ring and the mis-calibrated detector elements lead to type II ring. Unlike conventional approaches, we emphasize here on the separate detection and correction schemes for each type of rings for their effective removal. For the detection of type I ring, the histogram of the responses of the detector elements is used and a modified fast image inpainting algorithm is adopted to correct the responses of the defective pixels. On the other hand, to detect the type II ring, first a simple filtering scheme is presented based on the fast Fourier transform (FFT) to smooth the sum curve derived form the type I ring corrected projection data. The difference between the sum curve and its smoothed version is then used to detect their positions. Then, to remove the constant bias suffered by the responses of the mis-calibrated detector elements with view angle, an estimated dc shift is subtracted from them. The performance of the proposed algorithm is evaluated using real micro-CT images and is compared with three recently reported algorithms. Simulation results demonstrate superior performance of the proposed technique as compared to the techniques reported in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Carbon nanotube (CNT) field emission displays (FEDs) are currently in the product development stage and are expected to be commercialized in the near future because they offer image quality and viewing angles comparable to a cathode ray tube (CRT) while using a thinner structure,...
Schnall, Rebecca; Currie, Leanne M; Jia, Haomiao; John, Rita Marie; Lee, Nam-Ju; Velez, Olivia; Bakken, Suzanne
2010-07-01
The purpose of this study was to determine if race/ethnicity, payer type, or nursing specialty affected depression screening rates in primary care settings in which nurses received a reminder to screen. The sample comprised 4,160 encounters in which nurses enrolled in advanced practice training were prompted to screen for depression using the Patient Health Questionnaire (PHQ)-2/PHQ-9 integrated into a personal digital assistant-based clinical decision support system for depression screening and management. Nurses chose to screen in response to 52.5% of reminders. Adjusted odds ratios showed that payer type and nurse specialty, but not race/ethnicity, significantly predicted proportion of patients screened.
Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong
2017-03-01
Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA < 5°) at 25 wt % PDMS-PEG copolymer in the paste, and they have an electrical conductivity of over 1000 S m -1 . Patterned superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.
Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters
NASA Technical Reports Server (NTRS)
Lamar, John E.; Johnson, Thomas D., Jr.
1988-01-01
A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.
A phase screen model for simulating numerically the propagation of a laser beam in rain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, I P; Rychkov, D S; Falits, A V
2009-09-30
The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less
Results from the search for eV-sterile neutrinos with IceCube
NASA Astrophysics Data System (ADS)
Argüelles, Carlos A.;
2017-09-01
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy. Using IceCubes full detector configuration we have performed searches for eV-scale sterile neutrinos. Such a sterile neutrino, motivated by the anomalies observed in short-baseline experiments, is expected to have a significant effect on {\\bar{ν }}μ survival probability due to matter-induced resonant effects for energies of order 1 TeV. This effect makes this search unique and sensitive to small sterile mixing angle values. This work comprises results obtained using up-going muon neutrinos taken with one year of full detector configuration.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
Wang, Guo-Cang; Sun, Min-Zhuo; Gao, Shu-Fang; Tang, Li
2018-04-26
This organic-rich shale was analyzed to determine the type, origin, maturity and depositional environment of the organic matter and to evaluate the hydrocarbon generation potential of the shale. This study is based on geochemical (total carbon content, Rock-Eval pyrolysis and the molecular composition of hydrocarbons) and whole-rock petrographic (maceral composition) analyses. The petrographic analyses show that the shale penetrated by the Chaiye 2 well contains large amounts of vitrinite and sapropelinite and that the organic matter within these rocks is type III and highly mature. The geochemical analyses show that these rocks are characterized by high total organic carbon contents and that the organic matter is derived from a mix of terrestrial and marine sources and highly mature. These geochemical characteristics are consistent with the results of the petrographic analyses. The large amounts of organic matter in the Carboniferous shale succession penetrated by the Chaiye 2 well may be due to good preservation under hypersaline lacustrine and anoxic marine conditions. Consequently, the studied shale possesses very good hydrocarbon generation potential because of the presence of large amounts of highly mature type III organic matter.
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
Lillo, T. M.; Rooyen, I. J.
2016-02-26
The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, T. M.; Rooyen, I. J.
The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less
DOT National Transportation Integrated Search
2009-05-01
This paper examines the vehicle type regulation that was introduced under the Automobile : Nitrogen OxidesParticulate Matter Law to mitigate air pollution in Japanese metropolitan : areas. The vehicle type regulation effectively sets the timing fo...
Glaucoma anterior chamber morphometry based on optical Scheimpflug images.
Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis
2010-01-01
To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.
Effect of stern hull shape on turning circle of ships
NASA Astrophysics Data System (ADS)
Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman
2012-06-01
Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.
Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao
2016-11-01
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.
NASA Astrophysics Data System (ADS)
Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.
2017-11-01
This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghag, Chamkaur
Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screeningmore » and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.« less
Contact angle hysteresis and oil film lubrication in electrowetting with two immiscible liquids
NASA Astrophysics Data System (ADS)
Gao, J.; Mendel, N.; Dey, R.; Baratian, D.; Mugele, F.
2018-05-01
Electrowetting (EW) of water drops in ambient oil has found a wide range of applications including lab-on-a-chip devices, display screens, and variable focus lenses. The efficacy of all these applications is dependent on the contact angle hysteresis (CAH), which is generally reduced in the presence of ambient oil due to thin lubrication layers. While it is well-known that AC voltage reduces the effective contact angle hysteresis (CAH) for EW in ambient air, we demonstrate here that CAH for EW in ambient oil increases with increasing AC and DC voltage. Taking into account the disjoining pressure of the fluoropolymer-oil-water system, short range chemical interactions, viscous oil entrainment, and electrostatic stresses, we find that this observation can be explained by progressive thinning of the oil layer underneath the drop with increasing voltage. This exposes the droplet to the roughness of the underlying solid and thereby increases hysteresis.
Elias, J; Hoorweg-Nijman, J J G; Balemans, W A
2015-06-01
To investigate the clinical relevance and cost-effectiveness of human leukocyte antigen (HLA)-genotyping in the Netherlands as a screening tool for the development of coeliac disease in children with Type 1 diabetes mellitus. A retrospective analysis was performed in 110 children with Type 1 diabetes mellitus diagnosed between January 1996 and January 2013. All children were screened for coeliac disease using coeliac disease-specific antibodies and HLA genotyping was performed in all children. One hundred and ten children were screened for coeliac disease, and coeliac disease could be confirmed in seven. Eighty-six per cent of the children with Type 1 diabetes mellitus had one of the variants of HLA-DQ2.5 and DQ8. HLA genotypes observed in children with Type 1 diabetes mellitus children and coeliac disease were heterozygote DQ2.5, homozygote DQ2.5 and heterozygote DQ2.5/DQ8. HLA genotyping in coeliac disease screening in children with Type 1 diabetes mellitus is more expensive than screening for coeliac disease with antibodies alone (€326 vs. €182 per child). The risk of coeliac disease development in children with Type 1 diabetes mellitus is increased when they are heterozygote DQ2.5/DQ8, homozygote or heterozygote DQ2.5. The implementation of HLA genotyping as a first-line screening tool has to be reconsidered because it is not distinctive or cost-effective. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Mahmud, Farid H; Murray, Joseph A; Kudva, Yogish C; Zinsmeister, Alan R; Dierkhising, Ross A; Lahr, Brian D; Dyck, Peter J; Kyle, Robert A; El-Youssef, Mounif; Burgart, Lawrence J; Van Dyke, Carol T; Brogan, Deanna L; Melton, L Joseph
2005-11-01
To estimate the prevalence of cellac disease (CD) in pediatric and adult type 1 diabetes melitus in a defined population and to describe clinical features and HLA class II genotypes predictive of CD in screened patients with type 1 diabetes. All residents of Olmsted County, Minnesota, with type 1 diabetes mellitus on the prevalence date January 1, 2001, were identified with the use of an established medical records linkage system (Rochester Epidemiology Project) and defined clinical criteria. Consenting patients underwent serologic screening with endomyslal antibody and tissue transglutaminase antibody testing and Intestinal biopsies to confirm the diagnosis of CD. A subset of screened patients also underwent HLA class II genotyping. Quality-of-life screening (Medical Outcomes Study 36-Item Short-Form Health Survey) was completed in a subset of patients at the time of serologic screening. Overall, 392 Olmsted County residents with type 1 diabetes on January 1, 2001, were Identified. A total of 158 patients with type 1 diabetes were tested, representing 40% (158/392) of the enumerated diabetic population, and 11 had biopsy-proven CD for an estimated point prevalence of 7.0% (95% confidence Interval, 3.5%-12.1%). Most CD-positive diabetic patients were asymptomatic and expressed an at-risk CD haplotype with at least one of but not both HLA DQ2 or DQ8. Celiac disease Is not rare In North American patients with type 1 diabetes, and most CD-positive diabetic patients are asymptomatic Irrespective of age at screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gewering-Peine, A.; Horns, D.; Schmitt, J.H.M.M., E-mail: alexander.gewering-peine@desy.de, E-mail: dieter.horns@desy.de, E-mail: jschmitt@hs.uni-hamburg.de
The Standard Model of particle physics can be extended to include sterile (right-handed) neutrinos or axions to solve the dark matter problem. Depending upon the mixing angle between active and sterile neutrinos, the latter have the possibility to decay into monoenergetic active neutrinos and photons in the keV-range while axions can couple to two photons. We have used data taken with the X-ray telescope XMM-Newton for the search of line emissions. We used pointings with high exposures and expected dark matter column densities with respect to the dark matter halo of the Milky Way. The posterior predictive p-value analysis hasmore » been applied to locate parameter space regions which favour additional emission lines. In addition, upper limits of the parameter space of the models have been generated such that the preexisting limits have been significantly improved.« less
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rudder angle must be provided both at the main steering station in the pilothouse and in the steering-gear compartment. The rudder-angle indicator must be independent of control systems for steering gear. (b) Each electric-type rudder-angle indicator must comply with § 113.40-10 of this chapter and, in...
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rudder angle must be provided both at the main steering station in the pilothouse and in the steering-gear compartment. The rudder-angle indicator must be independent of control systems for steering gear. (b) Each electric-type rudder-angle indicator must comply with § 113.40-10 of this chapter and, in...
46 CFR 172.065 - Damage stability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...
46 CFR 172.065 - Damage stability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of sinkage, heel, and trim, must be below the lower edge of an opening through which progressive... sliding watertight door; or (vi) Side scuttle of the non-opening type. (2) Heel angle. The maximum angle of heel must not exceed 25 degrees, except that this angle may be increased to 30 degrees if no deck...
MacKenzie, Ross; Chapman, Simon; Holding, Simon; McGeechan, Kevin
2007-01-01
Objective Despite a near universal absence of evidence-based policies supporting population screening for prostate cancer, the prostate-specific antigen (PSA) test is aggressively promoted in the media as a life-saving form of screening. The objective of this study was to examine media coverage of prostate-cancer screening in Australia. Design Frame analysis of all direct or attributed quotes about prostate cancer. Setting Australian capital city newspapers (February 2003-December 2006) and Sydney television news (January 2003-December 2006). Main outcome measures Quotes regarding prostate cancer screening: n=436 in newspapers and television news. Results Seven rhetorical frames were identified. 86% of all quotes framed prostate screening and its outcomes as desirable, associating PSA testing as being consonant with other early-detection cancer-control messages. Adverse surgical sequelae to screening were often minimized, scientific progress highlighted and gender equity appeals appropriated. Those questioning screening were vilified, with epidemiology being framed as an inferior form of knowledge than clinical experience. Conclusions Australian men are exposed to unbalanced and often non-evidence-based appeals to seek PSA testing. There is a disturbing lack of effort to redress this imbalance. PMID:18048709
Persistence of abnormalities in white matter in children with type 1 diabetes.
Fox, Larry A; Hershey, Tamara; Mauras, Nelly; Arbeláez, Ana Maria; Tamborlane, William V; Buckingham, Bruce; Tsalikian, Eva; Englert, Kim; Raman, Mira; Jo, Booil; Shen, Hanyang; Reiss, Allan; Mazaika, Paul
2018-07-01
Prior studies suggest white matter growth is reduced and white matter microstructure is altered in the brains of young children with type 1 diabetes when compared with brains of non-diabetic children, due in part to adverse effects of hyperglycaemia. This longitudinal observational study examines whether dysglycaemia alters the developmental trajectory of white matter microstructure over time in young children with type 1 diabetes. One hundred and eighteen children, aged 4 to <10 years old with type 1 diabetes and 58 age-matched, non-diabetic children were studied at baseline and 18 months, at five Diabetes Research in Children Network clinical centres. We analysed longitudinal trajectories of white matter using diffusion tensor imaging. Continuous glucose monitoring profiles and HbA 1c levels were obtained every 3 months. Axial diffusivity was lower in children with diabetes at baseline (p = 0.022) and at 18 months (p = 0.015), indicating that differences in white matter microstructure persist over time in children with diabetes. Within the diabetes group, lower exposure to hyperglycaemia, averaged over the time since diagnosis, was associated with higher fractional anisotropy (p = 0.037). Fractional anisotropy was positively correlated with performance (p < 0.002) and full-scale IQ (p < 0.02). These results suggest that hyperglycaemia is associated with altered white matter development, which may contribute to the mild cognitive deficits in this population.
Nichols, Jennifer A; Roach, Koren E; Fiorentino, Niccolo M; Anderson, Andrew E
2016-09-01
Evidence suggests that the tibiotalar and subtalar joints provide near six degree-of-freedom (DOF) motion. Yet, kinematic models frequently assume one DOF at each of these joints. In this study, we quantified the accuracy of kinematic models to predict joint angles at the tibiotalar and subtalar joints from skin-marker data. Models included 1 or 3 DOF at each joint. Ten asymptomatic subjects, screened for deformities, performed 1.0m/s treadmill walking and a balanced, single-leg heel-rise. Tibiotalar and subtalar joint angles calculated by inverse kinematics for the 1 and 3 DOF models were compared to those measured directly in vivo using dual-fluoroscopy. Results demonstrated that, for each activity, the average error in tibiotalar joint angles predicted by the 1 DOF model were significantly smaller than those predicted by the 3 DOF model for inversion/eversion and internal/external rotation. In contrast, neither model consistently demonstrated smaller errors when predicting subtalar joint angles. Additionally, neither model could accurately predict discrete angles for the tibiotalar and subtalar joints on a per-subject basis. Differences between model predictions and dual-fluoroscopy measurements were highly variable across subjects, with joint angle errors in at least one rotation direction surpassing 10° for 9 out of 10 subjects. Our results suggest that both the 1 and 3 DOF models can predict trends in tibiotalar joint angles on a limited basis. However, as currently implemented, neither model can predict discrete tibiotalar or subtalar joint angles for individual subjects. Inclusion of subject-specific attributes may improve the accuracy of these models. Copyright © 2016 Elsevier B.V. All rights reserved.
Takatori, Katsuhiko; Matsumoto, Daisuke
2015-10-01
To investigate the relationships between toe elevation ability in the standing position and dynamic balance and fall risk among community-dwelling older adults. Cross-sectional survey. General community. Community-dwelling older adults (N = 287). Toe elevation angles in the standing position. Intra-rater and inter-rater reliability of measurements of the toe elevation angle was high (internal coefficient of correlation [ICC] (1,2) = 0.94 for the former and ICC (2,1) = 0.90 for the latter). Significant correlations were found between the toe elevation angle and age (r = -0.20, P < .01), 5-m walking time (r = -0.31, P < .01), Functional Reach Test (r = 0.36, P < .01), Timed Up and Go Test (r = -0.36, P < .01), and Chair Stand Test (r = 0.26, P < .01). Subjects who experienced a fall in the previous 6 months had a significantly lower toe elevation angle compared with subjects who did not experience a fall (t = 2.19, P < .05). Multiple regression analysis revealed that results of the Functional Reach Test (β = .22, P < .001) and Timed Up and Go Test (β = -0.74, P < .001) were significantly associated with the toe elevation angle. Toe elevation angle was an index of dynamic balance ability and appears to be a simple screening test for fall risk in community-dwelling older adults. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jubb, Thomas; Kirk, Matthew; Lenz, Alexander
2017-12-01
We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.
Strong lensing by fermionic dark matter in galaxies
NASA Astrophysics Data System (ADS)
Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.
2016-12-01
It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.
ERIC Educational Resources Information Center
King, Cheryl A.; Hill, Ryan M.; Wynne, Henry A.; Cunningham, Rebecca M.
2012-01-01
This experimental study examined the effect of communication about type of screening follow-up (in-person follow-up vs. no in-person follow-up) on adolescents' responses to a self-report suicide risk screen. Participants were 245 adolescents (131 girls, 114 boys; ages 13-17; 80% White, 21.6% Black, 9.8% American Indian, 2.9% Asian) seeking medical…
Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators
NASA Astrophysics Data System (ADS)
Wu, R.-S.
- Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-domain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.
NASA Astrophysics Data System (ADS)
Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.
2004-06-01
Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.
LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES
Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...
Scoliosis convexity and organ anatomy are related.
Schlösser, Tom P C; Semple, Tom; Carr, Siobhán B; Padley, Simon; Loebinger, Michael R; Hogg, Claire; Castelein, René M
2017-06-01
Primary ciliary dyskinesia (PCD) is a respiratory syndrome in which 'random' organ orientation can occur; with approximately 46% of patients developing situs inversus totalis at organogenesis. The aim of this study was to explore the relationship between organ anatomy and curve convexity by studying the prevalence and convexity of idiopathic scoliosis in PCD patients with and without situs inversus. Chest radiographs of PCD patients were systematically screened for existence of significant lateral spinal deviation using the Cobb angle. Positive values represented right-sided convexity. Curve convexity and Cobb angles were compared between PCD patients with situs inversus and normal anatomy. A total of 198 PCD patients were screened. The prevalence of scoliosis (Cobb >10°) and significant spinal asymmetry (Cobb 5-10°) was 8 and 23%, respectively. Curve convexity and Cobb angle were significantly different within both groups between situs inversus patients and patients with normal anatomy (P ≤ 0.009). Moreover, curve convexity correlated significantly with organ orientation (P < 0.001; ϕ = 0.882): In 16 PCD patients with scoliosis (8 situs inversus and 8 normal anatomy), except for one case, matching of curve convexity and orientation of organ anatomy was observed: convexity of the curve was opposite to organ orientation. This study supports our hypothesis on the correlation between organ anatomy and curve convexity in scoliosis: the convexity of the thoracic curve is predominantly to the right in PCD patients that were 'randomized' to normal organ anatomy and to the left in patients with situs inversus totalis.
Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel
Veligdan, James T.
2005-07-26
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Light redirective display panel and a method of making a light redirective display panel
Veligdan, James T.
2002-01-01
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Playforth, Krupa B; Coughlan, Alexandria; Upadhya, Krishna K
2016-02-01
The purpose of this study was to evaluate whether providers offer chlamydia screening to teenagers and/or whether screening is accepted at different rates depending on insurance type. Retrospective chart review. Academic center serving urban and suburban patients between April 2009 and October 2011. Nine hundred eighty-three health maintenance visits for asymptomatic, insured female adolescents aged 15-19 years. None. Dichotomous dependent variables of interest indicated whether chlamydia screening was: (1) offered; and (2) accepted. The key independent variable insurance type was coded as 'public' if Medicaid or Medicaid Managed Care and 'private' if a commercial plan. χ(2) and logistic regression analyses were used to assess the significance of differences in screening rates according to insurance type. Of asymptomatic health-maintenance visits 933 (95%) had a documented sexual history and 339 (34%) had a documented history of sexual activity. After excluding those who had a documented chlamydia screen in the 12 months before the visit (n = 79; 23%), 260 visits met eligibility for chlamydia screening. Only 169 (65%) of eligible visits had chlamydia screening offered and there was no difference in offer of screening according to insurance type. Significantly more visits covered by public insurance had chlamydia screening accepted (98%) than those covered by private insurance (82%). Controlling for demographic factors, the odds of accepted chlamydia screening was 8 times higher in visits covered by public insurance than those with private insurance. Although publically and privately insured teens were equally likely to be offered chlamydia screening, publically insured teens were significantly more likely to accept screening. Future research should investigate reasons for this difference in screening acceptance. These findings have implications for interventions to improve chlamydia screening because more adolescents are covered by parental insurance under the Affordable Care Act. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Effects of spray angle variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Zhu, Lin; Luo, Feng; Qi, Yin-Yin; Wei, Min; Ge, Jia-Ru; Liu, Wei-Lai; Li, Guo-Li; Jen, Tien-Chien
2018-03-01
Effective fuel injection and mixing is of particular importance for scramjet engines to be operated reliably because the fuel must be injected into high-speed crossflow and mixed with the supersonic air at an extremely short time-scale. This study numerically characterizes an injection jet under different spray angles in a cold kerosene-fueled supersonic flow and thus assesses the effects of the spray angle on the mixing between incident shock wave and transverse cavity injection. A detailed computational fluid dynamics model is developed in accordance with the real scramjet combustor. Next, the spray angles are designated as 45°, 90°, and 135° respectively with the other constant operational conditions (such as the injection diameter, velocity and pressure). Next, a combination of a three dimensional Couple Level Set & Volume of Fluids with an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical predictions are focused on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with or without evaporation. Finally, validation has been implemented by comparing the calculated to the measured in literature with good qualitative agreement. Results show that no matter whether the evaporation is considered, the penetration depth, span-wise angle and expansion area of the kerosene droplets are all increased with the spray angle, and most especially, that the size of the kerosene droplets is surely reduced with the spray angle increase. These calculations are beneficial to better understand the underlying atomization mechanism in the cold kerosene-fueled supersonic flow and hence provide insights into scramjet design improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gratia, Pierre; Hu, Wayne; Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637
Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in amore » broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.« less