Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Scanning system for angle-resolved low-coherence interferometry.
Steelman, Zachary A; Ho, Derek; Chu, Kengyeh K; Wax, Adam
2017-11-15
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm 2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm 2 without repositioning. By utilizing a reflection-only three-optic rotator prism and a two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health.
A scanning system for angle-resolved low-coherence interferometry
Steelman, Zachary A.; Ho, Derek; Chu, Kengyeh K.; Wax, Adam
2018-01-01
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm2 without repositioning. By utilizing a reflection-only three-optic rotator (ROTOR) prism and two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health. PMID:29140317
Zhu, Yizheng; Terry, Neil G; Wax, Adam
2012-01-01
Angle-resolved low-coherence interferometry (a/LCI) is an optical biopsy technique that measures scattered light from tissue to determine nuclear size with submicron-level accuracy. The a/LCI probe can be deployed through the accessory channel of a standard endoscope and provides feedback to physicians to guide physical biopsies. The technique has been validated in animal and ex vivo human studies, and has been used to detect dysplasia in Barrett’s esophagus patients in vivo. In a recent clinical study of 46 Barrett’s esophagus patients, a/LCI was able to detect dysplasia with 100% sensitivity and 84% specificity. This report reviews the technique and discusses its potential clinical utility. PMID:22149580
Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia
NASA Astrophysics Data System (ADS)
Terry, Neil G.; Zhu, Yizheng; Wax, Adam
2010-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.
Detection of intestinal dysplasia using angle-resolved low coherence interferometry
Terry, Neil; Zhu, Yizheng; Thacker, Julie K. M.; Migaly, John; Guy, Cynthia; Mantyh, Christopher R.; Wax, Adam
2011-01-01
Angle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We present the results of a pilot, ex vivo study of tissues from 27 patients undergoing partial colonic resection surgery, conducted to evaluate the ability of a/LCI to identify dysplasia. Performance was determined by comparing the nuclear morphology measurements with pathological assessment of co-located physical biopsies. A statistically significant correlation between increased average nuclear size, reduced nuclear density, and the presence of dysplasia was noted at the basal layer of the epithelium, at a depth of 200 to 300 μm beneath the tissue surface. Using a decision line determined from a receiver operating characteristic, a/LCI was able to separate dysplastic from healthy tissues with a sensitivity of 92.9% (13/14), a specificity of 83.6% (56/67), and an overall accuracy of 85.2% (69/81). The study illustrates the extension of the a/LCI technique to the detection of intestinal dysplasia, and demonstrates the need for future in vivo studies. PMID:22029349
Detection of intestinal dysplasia using angle-resolved low coherence interferometry
NASA Astrophysics Data System (ADS)
Terry, Neil; Zhu, Yizheng; Thacker, Julie K. M.; Migaly, John; Guy, Cynthia; Mantyh, Christopher R.; Wax, Adam
2011-10-01
Angle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We present the results of a pilot, ex vivo study of tissues from 27 patients undergoing partial colonic resection surgery, conducted to evaluate the ability of a/LCI to identify dysplasia. Performance was determined by comparing the nuclear morphology measurements with pathological assessment of co-located physical biopsies. A statistically significant correlation between increased average nuclear size, reduced nuclear density, and the presence of dysplasia was noted at the basal layer of the epithelium, at a depth of 200 to 300 μm beneath the tissue surface. Using a decision line determined from a receiver operating characteristic, a/LCI was able to separate dysplastic from healthy tissues with a sensitivity of 92.9% (13/14), a specificity of 83.6% (56/67), and an overall accuracy of 85.2% (69/81). The study illustrates the extension of the a/LCI technique to the detection of intestinal dysplasia, and demonstrates the need for future in vivo studies.
Development of a portable frequency-domain angle-resolved low coherence interferometry system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.; Wax, Adam
2007-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.
NASA Astrophysics Data System (ADS)
Terry, Neil G.; Zhu, Yizheng; Brown, William J.; Wax, Adam
2008-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Optical scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourierdomain angle-resolved low-coherence interferometry (a/LCI) is a novel scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, the clinical viability of the a/LCI system was demonstrated by analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI system. We present an adaptation of the portable a/LCI instrument that can be used in the accessory channel of a gastroscope, allowing for in vivo measurements to be taken. Modifications to the previous generation system include the use of an improved imaging spectrometer allowing for subsecond acquisition times and the redesign of the delivery fiber and imaging optics in order to fit in the accessory channel of a gastroscope. Accurate sizing of polystyrene microspheres and other preliminary results are presented, demonstrating promise as a clinically viable tool.
Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen
2015-03-01
To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.
Ho, Derek; Drake, Tyler K; Smith-McCune, Karen K; Darragh, Teresa M; Hwang, Loris Y; Wax, Adam
2017-03-15
This study sought to establish the feasibility of using in situ depth-resolved nuclear morphology measurements for detection of cervical dysplasia. Forty enrolled patients received routine cervical colposcopy with angle-resolved low coherence interferometry (a/LCI) measurements of nuclear morphology. a/LCI scans from 63 tissue sites were compared to histopathological analysis of co-registered biopsy specimens which were classified as benign, low-grade squamous intraepithelial lesion (LSIL), or high-grade squamous intraepithelial lesion (HSIL). Results were dichotomized as dysplastic (LSIL/HSIL) versus non-dysplastic and HSIL versus LSIL/benign to determine both accuracy and potential clinical utility of a/LCI nuclear morphology measurements. Analysis of a/LCI data was conducted using both traditional Mie theory based processing and a new hybrid algorithm that provides improved processing speed to ascertain the feasibility of real-time measurements. Analysis of depth-resolved nuclear morphology data revealed a/LCI was able to detect a significant increase in the nuclear diameter at the depth bin containing the basal layer of the epithelium for dysplastic versus non-dysplastic and HSIL versus LSIL/Benign biopsy sites (both p < 0.001). Both processing techniques resulted in high sensitivity and specificity (>0.80) in identifying dysplastic biopsies and HSIL. The hybrid algorithm demonstrated a threefold decrease in processing time at a slight cost in classification accuracy. The results demonstrate the feasibility of using a/LCI as an adjunctive clinical tool for detecting cervical dysplasia and guiding the identification of optimal biopsy sites. The faster speed from the hybrid algorithm offers a promising approach for real-time clinical analysis. © 2016 UICC.
Ho, Derek; Drake, Tyler K.; Smith-McCune, Karen K.; Darragh, Teresa M.; Hwang, Loris Y.; Wax, Adam
2017-01-01
This study sought to establish the feasibility of using in situ depth-resolved nuclear morphology measurements for detection of cervical dysplasia. Forty (40) enrolled patients received routine cervical colposcopy with angle-resolved low coherence interferometry (a/LCI) measurements of nuclear morphology. a/LCI scans from 63 tissue sites were compared to histopathological analysis of co-registered biopsy specimens which were classified as benign, low-grade squamous intraepithelial lesion (LSIL), or high-grade squamous intraepithelial lesion (HSIL). Results were dichotomized as dysplastic (LSIL/HSIL) versus non-dysplastic and HSIL versus LSIL/benign to determine both accuracy and potential clinical utility of a/LCI nuclear morphology measurements. Analysis of a/LCI data was conducted using both traditional Mie theory based processing and a new hybrid algorithm that provides improved processing speed to ascertain the feasibility of real-time measurements. Analysis of depth-resolved nuclear morphology data revealed a/LCI was able to detect a significant increase in the nuclear diameter at the depth bin containing the basal layer of the epithelium for dysplastic versus non-dysplastic and HSIL versus LSIL/Benign biopsy sites (both p < 0.001). Both processing techniques resulted in high sensitivity and specificity (> 0.80) in identifying dysplastic biopsies and HSIL. The hybrid algorithm demonstrated a threefold decrease in processing time at a slight cost in classification accuracy. The results demonstrate the feasibility of using a/LCI as an adjunctive clinical tool for detecting cervical dysplasia and guiding the identification of optimal biopsy sites. The faster speed from the hybrid algorithm offers a promising approach for real-time clinical analysis. PMID:27883177
Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.
2007-12-01
Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub-wavelength precision and accuracy. The culmination of this work is the first human study using a/LCI in which it is demonstrated that a/LCI depth resolved nuclear morphology measurements provide an excellent means to identify dysplasia in BE patients. The described results demonstrate the great potential for the in vivo application of a/LCI as a targeting mechanism for the detection of dysplasia in Barrett's esophagus patients.
NASA Astrophysics Data System (ADS)
Dragostinoff, Nikolaus; Werkmeister, René M.; Klaizer, József; Gröschl, Martin; Schmetterer, Leopold
2013-12-01
Low-coherence tissue interferometry is a technique for the depth-resolved measurement of ocular fundus pulsations. Whereas fundus pulsation amplitudes at preselected axial positions can readily be assessed by this method, coupling of the interferometer with a pulse oximeter additionally allows for the reconstruction of the time course of ocular fundus pulsation with respect to the cardiac cycle of the subject. For this purpose, the interferogram resulting from the superposition of waves reflected at the cornea and the ocular fundus is recorded synchronously with the plethysmogram. A new method for evaluating the time course of synthetic interferograms in combination with plethysmograms based on averaging several pulse periods has been developed. This technique allows for the analysis of amplitudes, time courses, and phase differences of fundus pulsations at preselected axial and transversal positions and for creating fundus pulsation movies. Measurements are performed in three healthy emmetropic subjects at angles from 0 deg to 18 deg to the axis of vision. Considerably different time courses, amplitudes, and phases with respect to the cardiac cycle are found at different angles. Data on ocular fundus pulsation obtained with this technique can-among other applications-be used to verify and to improve biomechanical models of the eye.
NASA Astrophysics Data System (ADS)
Robles, Francisco E.; Zhu, Yizheng; Lee, Jin; Sharma, Sheela; Wax, Adam
2011-03-01
We present Fourier domain low coherence interferometry (fLCI) applied to the detection of preneoplastic changes in the colon using the ex-vivo azoxymethane (AOM) rat carcinogenesis model. fLCI measures depth resolved spectral oscillations, also known as local oscillations, resulting from coherent fields induced by the scattering of cell nuclei. The depth resolution of fLCI permits nuclear morphology measurements within thick tissues, making the technique sensitive to the earliest stages of precancerous development. To achieve depth resolved spectroscopic analysis, we use the dual window method, which obtains simultaneously high spectral and depth resolution and yields access to the local oscillations. The results show highly statistically significant differences between the AOM-treated and control group samples. Further, the results suggest that fLCI may be used to detect the field effect of carcinogenesis, in addition to identifying specific areas where more advanced neoplastic development has occurred.
Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam
2015-01-01
We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2011-11-01
We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
Mishima, T; Kao, K C
1982-03-15
New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.
Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry
Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.
2013-01-01
Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Drake, Tyler K.; DeSoto, Michael G.; Peters, Jennifer J.; Henderson, Marcus H.; Murtha, Amy P.; Katz, David F.; Wax, Adam
2011-01-01
We present a multiplexed, Fourier-domain low coherence interferometry (mLCI) instrument for in vivo measurement of intravaginal microbicide gel coating thickness distribution over the surface of the vaginal epithelium. The mLCI instrument uses multiple delivery fibers to acquire depth resolved reflection profiles across large scanned tissue areas. Here mLCI has been adapted into an endoscopic system with a custom imaging module for simultaneous, co-registered measurements with fluorimetric scans of the same surface. The resolution, optical signal-to-noise, and cross-talk of the mLCI instrument are characterized to evaluate performance. Validation measurements of gel thickness are made using a calibration socket. Initial results from a clinical study are presented to show the in vivo capability of the dual-modality system for assessing the distribution of microbicide gel vehicles in the lower human female reproductive tract. PMID:22025989
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Depth-resolved measurement of ocular fundus pulsations by low-coherence tissue interferometry
NASA Astrophysics Data System (ADS)
Dragostinoff, Nikolaus; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold
2009-09-01
A device that allows for the measurement of ocular fundus pulsations at preselected axial positions of a subject's eye is presented. Unlike previously presented systems, which only allow for observation of the strongest reflecting retinal layer, our system enables the measurement of fundus pulsations at a preselected ocular layer. For this purpose the sample is illuminated by light of low temporal coherence. The layer is then selected by positioning one mirror of a Michelson interferometer according to the depth of the layer. The device contains a length measurement system based on partial coherence interferometry and a line scan charge-coupled device camera for recording and online inspection of the fringe system. In-vivo measurements in healthy humans are performed as proof of principle. The algorithms used for enhancing the recorded images are briefly introduced. The contrast of the observed interference pattern is evaluated for different positions of the measurement mirror and at various distances from the front surface of the cornea. The applications of such a system may be wide, including assessment of eye elongation during myopia development and blood-flow-related changes in intraocular volume.
NASA Astrophysics Data System (ADS)
Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.
2016-10-01
We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.
Zhao, Youbo; Monroy, Guillermo L; You, Sixian; Shelton, Ryan L; Nolan, Ryan M; Tu, Haohua; Chaney, Eric J; Boppart, Stephen A
2016-10-01
We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.
Quantification of skin wrinkles using low coherence interferometry
NASA Astrophysics Data System (ADS)
Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo
2004-07-01
We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis
Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.
2016-01-01
Abstract. We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections. PMID:27802456
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing
2017-08-14
94 5.0 Four -Dimensional Object-Space Data Reconstruction Using Spatial...103 5.3 Four -dimensional scene reconstruction using SSM...transitioning to systems based on spectrally resolved longitudinal spatial coherence interferometry. This document also includes research related to four
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Clinical detection of dysplasia using angle-resolved low coherence interferometry
NASA Astrophysics Data System (ADS)
Terry, Neil Gordon
2011-12-01
Cancer is now the leading cause of death in developed countries. Despite advances in strategies aimed at the prevention and treatment of the disease, early detection of precancerous growths remains the most effective method of reducing associated morbidity and mortality. Pathological examination of physical tissues that are collected via systematic biopsy is the current "gold standard" in this pursuit. Despite widespread acceptance of this methodology and high confidence in its performance, it is not without limitations. Recently, much attention has been given to the development of optical biopsy techniques that can be used clinically and are able to overcome these limitations. This dissertation describes one such optical biopsy technique, angle-resolved low coherence interferometry (a/LCI), its adaptation to a clinical technology, and its evaluation in clinical studies. The dissertation presents the theory that underlies the operation of the a/LCI technique, the design and validation of the clinical instrument, and its evaluation by means of two clinical trials. First, an account of the manner in which the depth-resolved angular scattering profiles that are collected by a/LCI can be used to determine nuclear characteristics of the investigated tissues is given. The design of the clinical system that is able to collect these scattering profiles through an optical fiber probe that can be passed through the accessory channel of an endoscope for in vivo use is presented. To demonstrate the ability of this system to accurately determine the size of cell nuclei, a set of validation experiments are described. In order to evaluate the clinical utility of this a/LCI system, two clinical trials intended to assess the ability of a/LCI to detect the presence of early, pre-cancerous dysplasias in human tissues are presented. The first of these, an in vivo study of Barrett's esophagus (BE) patients undergoing routine surveillance for the early signs of esophageal adenocarcinoma, is described. This study represents the first use of the a/LCI technique in vivo, and confirms its ability to provide clinically useful information regarding the disease state of the tissue that it examines, with performance that compares favorably to other optical biopsy techniques. Next, an ex vivo study of resected intestinal tissue is presented. The results of this study demonstrate the ability of a/LCI to provide information that can be used to detect dysplasia in the lower gastrointestinal tract with high accuracy. This study will enable future development of the technology to allow conduction of in vivo trials of intestinal tissue. The results of these two clinical studies demonstrate the clinical utility a/LCI, illustrating its potential as an optical biopsy technique that has great potential to provide diagnostically relevant information during surveillance procedures. This is particularly relevant in the case of BE, where its successful use has been demonstrated in vivo.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
NASA Astrophysics Data System (ADS)
Zhang, Kang; Kang, Jin U.
2011-09-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.
NASA Astrophysics Data System (ADS)
Gnyba, M.; Wróbel, M. S.; Karpienko, K.; Milewska, D.; Jedrzejewska-Szczerska, M.
2015-07-01
In this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular composition. A series of in-vitro measurements were carried out to assess sufficient accuracy for monitoring of blood parameters. A vast number of blood samples with various hematological parameters, collected from different donors, were measured in order to achieve a statistical significance of results and validation of the methods. Preliminary results indicate the benefits in combination of presented complementary methods and form the basis for development of a multimodal system for rapid and accurate optical determination of selected parameters in whole human blood. Future development of optical systems and multivariate calibration models are planned to extend the number of detected blood parameters and provide a robust quantitative multi-component analysis.
Radio-frequency low-coherence interferometry.
Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo
2014-06-15
A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.
Destroying coherence in high-temperature superconductors with current flow
Kaminski, A.; Rosenkranz, S.; Norman, M. R.; ...
2016-09-13
Here, the loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, the sharp peaks in the angle resolved photoemission spectra are completely suppressed. Since the resistance onset is a signature of phase fluctuations, this impliesmore » that the loss of single-particle coherence is connected with the loss of long-range phase coherence.« less
Common-path low-coherence interferometry fiber-optic sensor guided microincision
Zhang, Kang; Kang, Jin U.
2011-01-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912
NASA Astrophysics Data System (ADS)
Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik
2016-03-01
With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.
Single and double superimposing interferometer systems
Erskine, David J.
2000-01-01
Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim
2014-01-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim
2014-10-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Nanoscale optical interferometry with incoherent light
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-01-01
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171
Nanoscale optical interferometry with incoherent light.
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-02-16
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.
Spaceborne radar interferometry for coastal DEM construction
Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.
2005-01-01
Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Adverse effects in dual-feed interferometry
NASA Astrophysics Data System (ADS)
Colavita, M. Mark
2009-11-01
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.
Coherent properties of a tunable low-energy electron-matter-wave source
NASA Astrophysics Data System (ADS)
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging
NASA Astrophysics Data System (ADS)
Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.
2018-05-01
We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.
Chromatic dispersion effects in ultra-low coherence interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lychagov, V V; Ryabukho, V P
2015-06-30
We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less
NASA Astrophysics Data System (ADS)
Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra
2008-01-01
We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.
McAlinden, Colm; Wang, Qinmei; Gao, Rongrong; Zhao, Weiqi; Yu, Ayong; Li, Yu; Guo, Yan; Huang, Jinhai
2017-01-01
To compare a new swept-source optical coherence tomography (SSOCT)-based biometer (OA-2000) with the IOLMaster v5.4 (partial-coherence interferometry) and Aladdin (optical low-coherence interferometry) biometers in terms of axial length measurement and failure rate in eyes with cataract. Reliability study. A total of 377 eyes of 210 patients were scanned with the 3 biometers in a random order. For each biometer, the number of unobtainable axial length measurements was recorded and grouped as per the type and severity of cataract based on the Lens Opacities Classification System III by the same experienced ophthalmologist. The Bland-Altman limits-of-agreement (LoA) method was used to assess the agreement in axial length measurements between the 3 biometers. The failure rate was 0 eyes (0%) with the OA-2000, 136 eyes (36.07%) with the IOLMaster, and 51 eyes (13.53%) with the Aladdin. χ 2 analyses indicated a significant difference in failure rate between all 3 devices (P < .001). Logistic regression analysis highlighted a statistically significant trend of higher failure rates with increasing severity of nuclear, cortical, and posterior subcapsular cataracts. Bland-Altman statistics indicated small mean differences and narrow LoA (OA-2000 vs IOLMaster -0.09 to 0.08 mm; OA-2000 vs Aladdin -0.10 to 0.07 mm; IOLMaster vs Aladdin -0.05 to 0.04 mm). The OA-2000, a new SSOCT-based biometer, outperformed both the IOLMaster and Aladdin biometers in very advanced cataracts of various morphologies. The use of SSOCT technology may be the reason for the improved performance of the OA-2000 and may lead to this technology becoming the gold standard for the measurement of axial length. Copyright © 2016 Elsevier Inc. All rights reserved.
Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging
Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew
2014-01-01
Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee Yoon; Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Raphael, Patrick D.
Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane,more » tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.« less
Speckle Interferometry at SOAR in 2016 and 2017
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Mendez, Rene A.; Horch, Elliott P.
2018-06-01
The results of speckle interferometric observations at the 4.1 m Southern Astrophysical Research Telescope in 2016 and 2017 are given, totaling 2483 measurements of 1570 resolved pairs and 609 non-resolutions. We describe briefly recent changes in the instrument and observing method and quantify the accuracy of the pixel scale and position angle calibration. Comments are given on 44 pairs resolved here for the first time. The orbital motion of the newly resolved subsystem BU 83 Aa,Ab roughly agrees with its 36-year astrometric orbit proposed by J. Dommanget. Most Tycho binaries examined here turned out to be spurious.
Endoscopic low coherence interferometry in upper airways
NASA Astrophysics Data System (ADS)
Delacrétaz, Yves; Boss, Daniel; Lang, Florian; Depeursinge, Christian
2009-07-01
We introduce Endoscopic Low Coherence Interferometry to obtain topology of upper airways through commonly used rigid endoscopes. Quantitative dimensioning of upper airways pathologies is crucial to provide maximum health recovery chances, for example in order to choose the correct stent to treat endoluminal obstructing pathologies. Our device is fully compatible with procedures used in day-to-day examinations and can potentially be brought to bedside. Besides this, the approach described here can be almost straightforwardly adapted to other endoscopy-related field of interest, such as gastroscopy and arthroscopy. The principle of the method is first exposed, then filtering procedure used to extract the depth information is described. Finally, demonstration of the method ability to operate on biological samples is assessed through measurements on ex-vivo pork bronchi.
NASA Astrophysics Data System (ADS)
Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.
2016-02-01
Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Tang, Dawei; Gao, Feng; Jiang, X
2014-08-20
We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.
Interfaces detection after corneal refractive surgery by low coherence optical interferometry
Verrier, I.; Veillas, C.; Lépine, T.; Nguyen, F.; Thuret, G.; Gain, P.
2010-01-01
The detection of refractive corneal surgery by LASIK, during the storage of corneas in Eye Banks will become a challenge when the numerous operated patients will arrive at the age of cornea donation. The subtle changes of corneal structure and refraction are highly suspected to negatively influence clinical results in recipients of such corneas. In order to detect LASIK cornea interfaces we developed a low coherence interferometry technique using a broadband continuum source. Real time signal recording, without moving any optical elements and without need of a Fourier Transform operation, combined with good measurement resolution is the main asset of this interferometer. The associated numerical processing is based on a method initially used in astronomy and offers an optimal correlation signal without the necessity to image the whole cornea that is time consuming. The detection of corneal interfaces - both outer and inner surface and the buried interface corresponding to the surgical wound – is then achieved directly by the innovative combination of interferometry and this original numerical process. PMID:21258562
Can, Ertuğrul; Duran, Mustafa; Çetinkaya, Tuğba; Arıtürk, Nurşen
2016-01-01
To evaluate a new noncontact optical biometer using partial-coherence interferometry and to compare the clinical measurements with those obtained from the device using optical low-coherence reflectometry (OLCR). Ondokuz Mayis University, Samsun, Turkey. Nonrandomized, prospective clinical trial. The study was performed on the healthy phakic eyes of volunteers in the year 2014. Measurements of axial length (AL), anterior chamber depth (ACD), central corneal thickness (CCT), mean keratometry (K), and white-to-white (WTW) measurements obtained with the low-time coherence interferometry (LTCI) were compared with those obtained with the OLCR. The results were evaluated using Bland-Altman analyses. The differences between both methods were assessed using the paired t -test, and its correlation was evaluated by Pearson's coefficient. We examined seventy participants with a mean age of 33.06 (±9.7) (range: 19-53) years. AL measurements with LTCI and OLCR were 23.7 (±1.08) mm and 23.7 (±1.1) mm, respectively. ACD was 3.6 (±0.4) mm and 3.5 (±0.4) mm for LTCI and OLCR, respectively. The mean CCT measurements for both devices were 533 (±28) mm and 522 (±28) mm, respectively. The mean K readings measurements for LTCI and OLCR were 43.3 (±1.5) D and 43.3 (±1.5) D, respectively. The mean WTW distance measurements for both devices were 12.0 (±0.5) mm and 12.1 (±0.5) mm, respectively. Measurements with LTCI correlated well with those with the OLCR. These two devices showed good agreement for the measurement of all parameters.
Theoretical Studies of Magnetic Systems. Final Report, August 1, 1994 - November 30, 1997
DOE R&D Accomplishments Database
Gor`kov, L. P.; Novotny, M. A.; Schrieffer, J. R.
1997-01-01
During the grant period the authors have studied five areas of research: (1) low dimensional ferrimagnets; (2) lattice effects in the mixed valence problem; (3) spin compensation in the one dimensional Kondo lattice; (4) the interaction of quasi particles in short coherence length superconductors; and (5) novel effects in angle resolved photoemission spectra from nearly antiferromagnetic materials. Progress in each area is summarized.
Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard
2017-09-01
In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.
Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Wu, Fan; Ding, Zhenyang
2013-10-01
We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry-Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.
Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong
2011-01-01
We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B
NASA Astrophysics Data System (ADS)
Serabyn, E.; Huby, E.; Matthews, K.; Mawet, D.; Absil, O.; Femenia, B.; Wizinowich, P.; Karlsson, M.; Bottom, M.; Campbell, R.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Forsberg, P.; Gomez Gonzalez, C.; Habraken, S.; Jolivet, A.; Liewer, K.; Lilley, S.; Piron, P.; Reggiani, M.; Surdej, J.; Tran, H.; Vargas Catalán, E.; Wertz, O.
2017-01-01
An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L‧-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L‧ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serabyn, E.; Liewer, K.; Huby, E.
An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L ′-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP 79124, which had previously been detected by means of interferometry. With HIP 79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Duemore » to higher Strehl ratios and more relaxed contrasts in L ′ band versus H band, this new coronagraphic capability will enable high-contrast, small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.« less
Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow
NASA Astrophysics Data System (ADS)
McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.
2005-03-01
Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.
NASA Astrophysics Data System (ADS)
Ho, Derek; Chu, Kengyeh K.; Crose, Michael; Desoto, Michael; Peters, Jennifer J.; Murtha, Amy P.; Wax, Adam
2017-02-01
The cervix is primarily composed of two types of epithelium: stratified squamous ectocervix and simple columnar endocervix. In between these two layers lies a metaplastic squamocolumnar junction commonly referred to as the transformation zone (T-zone). During puberty, the cervical epithelium undergoes dynamic changes including cervical ectropion and increased area and rates of metaplasia. Although these metaplastic changes have been linked to higher incidence of cervical cancer among young women, research in this field has been limited to surface analysis using computerized planimetry of colopophotographs. Here, we present a novel multiplexed low coherence interferometry (mLCI) system for interrogating the cervical epithelium. The system is comprised of 6 parallel Mach-Zehnder interferometers in a time-multiplexed configuration that increases throughput by 6-fold to realize a combined 36-channel acquisition. A custom designed endoscopic handheld probe is used to collect sparsely sampled, depth-resolved scattering intensity profiles (A-scans) from a large field of view (25 x 25 mm) on the cervical epithelium in vivo. The instrument incorporates white light imaging through a plastic fiber bundle to co-register the mLCI A-scans to colpophotographs which are analyzed by a clinician to manually segment the cervical epithelium. Our preliminary data shows significant differences in characteristic A-scans from endocervical and ectocervical epithelium. These results demonstrate the feasibility of using mLCI as both a research tool for studying the relationship between cervical ectopy and cancer as well as a clinical instrument for identifying the at-risk T-zone on the cervix in vivo as a means to improve biopsy targeting. Further analysis will be performed to develop an algorithm for distinguishing the mLCI A-scans of endocervical, ectocervical, and metaplastic epithelium in real time.
Fizeau interferometric imaging of Io volcanism with LBTI/LMIRcam
NASA Astrophysics Data System (ADS)
Leisenring, J. M.; Hinz, P. M.; Skrutskie, M.; Skemer, A.; Woodward, C. E.; Veillet, C.; Arcidiacono, C.; Bailey, V.; Bertero, M.; Boccacci, P.; Conrad, A.; de Kleer, K.; de Pater, I.; Defrère, D.; Hill, J.; Hofmann, K.-H.; Kaltenegger, L.; La Camera, A.; Nelson, M. J.; Schertl, D.; Spencer, J.; Weigelt, G.; Wilson, J. C.
2014-07-01
The Large Binocular Telescope (LBT) houses two 8.4-meter mirrors separated by 14.4 meters on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with a spatial resolution equivalent to that of a 22.8-meter telescope and the light- gathering power of single 11.8-meter mirror. Capitalizing on these unique capabilities, we used LBTI/LMIRcam to image thermal radiation from volcanic activity on the surface of Io at M-Band (4.8 μm) over a range of parallactic angles. At the distance of Io, the M-Band resolution of the interferometric baseline corresponds to a physical distance of ~135 km, enabling high-resolution monitoring of Io volcanism such as ares and outbursts inaccessible from other ground-based telescopes operating in this wavelength regime. Two deconvolution routines are used to recover the full spatial resolution of the combined images, resolving at least sixteen known volcanic hot spots. Coupling these observations with advanced image reconstruction algorithms demonstrates the versatility of Fizeau interferometry and realizes the LBT as the first in a series of extremely large telescopes.
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
NASA Technical Reports Server (NTRS)
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert
2013-01-01
Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan
2013-08-15
A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.
Stimulated Raman scattering (SRS) spectroscopic OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Robles, Francisco E.; Zhou, Kevin C.; Fischer, Martin C.; Warren, Warren S.
2017-02-01
Optical coherence tomography (OCT) enables non-invasive, high-resolution, tomographic imaging of biological tissues by leveraging principles of low coherence interferometry; however, OCT lacks molecular specificity. Spectroscopic OCT (SOCT) overcomes this limitation by providing depth-resolved spectroscopic signatures of chromophores, but SOCT has been limited to a couple of endogenous molecules, namely hemoglobin and melanin. Stimulated Raman scattering, on the other hand, can provide highly specific molecular information of many endogenous species, but lacks the spatial and spectral multiplexing capabilities of SOCT. In this work we integrate the two methods, SRS and SOCT, to enable simultaneously multiplexed spatial and spectral imaging with sensitivity to many endogenous biochemical species that play an important role in biology and medicine. The method, termed SRS-SOCT, has the potential to achieve fast, volumetric, and highly sensitive label-free molecular imaging, which would be valuable for many applications. We demonstrate the approach by imaging excised human adipose tissue and detecting the lipids' Raman signatures in the high-wavenumber region. Details of this method along with validations and results will be presented.
Adverse Effects in Dual-Star Interferometry
NASA Technical Reports Server (NTRS)
Colavita, M. Mark
2008-01-01
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews: the keys aspects of the dual-star approach and implementation; the main contributors to the
NASA Astrophysics Data System (ADS)
Fleischhauer, F.; Feuchter, T.; Leick, L.; Rajendram, R.; Podoleanu, A.
2018-03-01
Spectroscopic spectral domain interferometry and spectroscopic optical coherence tomography combine depth information with spectrally-resolved localised absorption data. These additional data can improve diagnostics by giving access to functional information of the investigated sample. One possible application is measuring oxygenation levels at the retina for earlier detection of several eye diseases. Here measurements with different hollow glass tube phantoms are shown to measure the impact of a superficial absorbing layer on the precision of reconstructed attenuation spectra of a deeper layer. Measurements show that a superficial absorber has no impact on the reconstructed absorption spectrum of the deeper absorber. Even when diluting the concentration of the deeper absorber so far that an incorrect absorption maximum is obtained, still no influence of the superficially placed absorber is identified.
Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi
2015-09-20
We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan
2017-12-01
We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.
NASA Astrophysics Data System (ADS)
Beyene, F.; Knospe, S.; Busch, W.
2015-04-01
Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa
2007-01-19
When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.
Novel Principle of Contactless Gauge Block Calibration
Buchta, Zdeněk; Řeřucha, Šimon; Mikel, Břetislav; Čížek, Martin; Lazar, Josef; Číp, Ondřej
2012-01-01
In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948. PMID:22737012
Novel principle of contactless gauge block calibration.
Buchta, Zdeněk; Reřucha, Simon; Mikel, Břetislav; Cížek, Martin; Lazar, Josef; Cíp, Ondřej
2012-01-01
In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Burmak, Ludmila; Pozhar, Vitold
2018-04-01
The manuscript addresses the advantages and possible applications of acousto-optic image spectral filtration in lowcoherence interferometry. In particular, an effective operation of acousto-optical tunable filters in combination with Michelson-type interferometers is shown. The results of original experiments are presented. It is demonstrated that amplitude and phase spatial distributions of light waves reflected from or transmitted through the object can be fast determined in contactless manner for any spectral intervals with use of the presented techniques.
Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)
NASA Technical Reports Server (NTRS)
Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin
2008-01-01
The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Self-mixing interferometry: a novel yardstick for mechanical metrology
NASA Astrophysics Data System (ADS)
Donati, Silvano
2016-11-01
A novel configuration of interferometry, SMI (self-mixing interferometry), is described in this paper. SMI is attractive because it doesn't require any optical part external to the laser and can be employed in a variety of measurements - indeed it is sometimes indicated as the "interferometer for measuring without an interferometer". On processing the phase carried by the optical field upon propagation to the target under test, a number of applications have been developed, including traditional measurements related to metrology and mechanical engineering - like displacement, distance, small-amplitude vibrations, attitude angles, velocity, as well as new measurements, like mechanical stress-strain hysterisis and microstructure/MEMS electro-mechanical response. In another field, sensing of motility finds direct application in a variety of biophysical measurements, like blood pulsation, respiratory sounds, chest acoustical impedance, and blood velocity profile. And, we may also look at the amplitude of the returning signal in a SMI, and we can measure weak optical echoes - for return loss and isolation factor measurements, CD readout and scroll sensing, and THz-wave detection. Last, the fine details of the SMI waveform reveal physical parameters of the laser like the laser linewidth, coherence length, and alpha factor. Worth to be noted, SMI is also a coherent detection scheme, and measurement close to the quantum limit of received field with minimum detectable displacements of 100 pm/√Hz are currently achieved upon operation on diffusive targets, whereas in detection mode returning signal can be sensed down to attenuations of -80dB.
Novoselski, Eitan; Yifrach, Ariel; Lanzmann, Emmanuel; Arieli, Yoel
2017-01-01
Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram's modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article. PMID:29109825
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek
2017-08-01
This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.
Hoffer, Kenneth J; Shammas, H John; Savini, Giacomo; Huang, Jinhai
2016-01-01
To evaluate the agreement between the measurements provided by a new optical biometer, the Aladdin, based on optical low-coherence interferometry (OLCI), and those provided by the most commonly used optical biometer (IOLMaster 500), based on partial-coherence interferometry (PCI). Multicenter clinical trial. Prospective evaluation of diagnostic test. In this study, 2 samples of adult patients were enrolled, 1 in the United States and the other in China. The U.S. group included a sample of consecutive patients scheduled for cataract surgery. The China group included a sample of healthy subjects with no cataracts. In both cases, only 1 eye of each patient was analyzed. Axial length (AL), corneal power (in diopters [D]) (K), anterior chamber depth (ACD) (corneal epithelium to lens), and corneal astigmatism were measured. All values were analyzed using a paired t test, the Pearson product-moment correlation coefficient (r), and Bland-Altman plots. In the U.S. and China groups, the OLCI mean AL values did not show a statistically significant difference from PCI values and showed excellent agreement and correlation. On the contrary, OLCI measured a lower mean K (-0.14 D) and a deeper ACD measurements (U.S. +0.16 mm and China +0.05 mm). These differences were statistically significant (P < .0001). Vector analysis did not show a statistically significant difference in astigmatism measurements. Agreement between OLCI and PCI was good. However, the small but statistically significant differences in K and ACD measurements make constant optimization necessary when calculating the intraocular lens power using theoretical formulas. Dr. Hoffer licenses the registered trademark name Hoffer to Carl Zeiss-Meditec (PCI), Haag-Streit (Lenstar), Movu (Argos), Oculus (Pentacam, AXL), Nidek (AL-Scan), Tomey (OA-2000), Topcon EU Visia Imaging (Aladdin), Ziemer (Galilei G6), and all A-scan biometer manufacturers. Dr. Shammas licenses his formulas to Carl Zeiss-Meditec (PCI), Haag-Streit (Lenstar), Nidek (AL-Scan), and Topcon EU (Visia Imaging) (Aladdin). None of the other authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
The application of infrared speckle interferometry to the imaging of remote galaxies and AGN
NASA Technical Reports Server (NTRS)
Olivares, Robert O.
1995-01-01
A 1.5 meter reflector, used for both infrared and optical astronomy, is also being used for infrared speckle interferometry and CCD imaging. The application of these imaging techniques to remote galaxies and active galactic nuclei are discussed. A simple model for the origin of speckle in coherent imaging systems is presented. Very careful photometry of the continuum of the galaxy M31 is underway using CCD images. It involves extremely intensive data reduction because the object itself is very large and has low surface brightness.
Dispersion-cancelled biological imaging with quantum-inspired interferometry
Mazurek, M. D.; Schreiter, K. M.; Prevedel, R.; Kaltenbaek, R.; Resch, K. J.
2013-01-01
Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences. PMID:23545597
Disks and cones: resolving the dusty torus with mid-infrared interferometry.
NASA Astrophysics Data System (ADS)
Tristram, K.
2015-09-01
The thermal emission of dust is one of the main possibilities to study the (dusty) material of the so-called "torus" in AGN. Observations using interferometry in the mid-infrared have, in the last ten years, resolved and characterised this emission beyond simple fits of spectral energy distributions, leading to a great leap forward in our view of the dusty material surrounding AGN. I will present the most recent results of such observations, obtained with the instrument MIDI. More than 25 active nuclei could be observed with MIDI, showing that the dust distributions are parsec sized. The sizes roughly scale with the square root of the luminosity, albeit with a much large scatter than in the near-infrared. Detailed studies of a few well resolved sources, among them the illustrious nuclei of NGC1068 and the Circinus galaxy, show a two component structure: an inner disk-like emission region which is surrounded by a polar elongated emitter. The latter shows differential absorption in line with the one-sided ionisation cones observed in the optical. These results are in qualitative agreement with recent hydrodynamic simulations of AGN tori. In general, they confirm the concept of a dusty obscurer providing viewing-angle dependent obscuration of the central engine.
Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.
2015-01-01
A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169
Kittell, David E; Mares, Jesus O; Son, Steven F
2015-04-01
Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.
Can partial coherence interferometry be used to determine retinal shape?
Atchison, David A; Charman, W Neil
2011-05-01
To determine likely errors in estimating retinal shape using partial coherence interferometric instruments when no allowance is made for optical distortion. Errors were estimated using Gullstrand no. 1 schematic eye and variants which included a 10 diopter (D) axial myopic eye, an emmetropic eye with a gradient-index lens, and a 10.9 D accommodating eye with a gradient-index lens. Performance was simulated for two commercial instruments, the IOLMaster (Carl Zeiss Meditec) and the Lenstar LS 900 (Haag-Streit AG). The incident beam was directed toward either the center of curvature of the anterior cornea (corneal-direction method) or the center of the entrance pupil (pupil-direction method). Simple trigonometry was used with the corneal intercept and the incident beam angle to estimate retinal contour. Conics were fitted to the estimated contours. The pupil-direction method gave estimates of retinal contour that were much too flat. The cornea-direction method gave similar results for IOLMaster and Lenstar approaches. The steepness of the retinal contour was slightly overestimated, the exact effects varying with the refractive error, gradient index, and accommodation. These theoretical results suggest that, for field angles ≤30°, partial coherence interferometric instruments are of use in estimating retinal shape by the corneal-direction method with the assumptions of a regular retinal shape and no optical distortion. It may be possible to improve on these estimates out to larger field angles by using optical modeling to correct for distortion.
NASA Astrophysics Data System (ADS)
Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang
2014-08-01
A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2009-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
Active angular alignment of gauge blocks in double-ended interferometers.
Buchta, Zdeněk; Reřucha, Simon; Hucl, Václav; Cížek, Martin; Sarbort, Martin; Lazar, Josef; Cíp, Ondřej
2013-09-27
This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement.
Active Angular Alignment of Gauge Blocks in Double-Ended Interferometers
Buchta, Zdeněk; Řeřucha, Šimon; Hucl, Václav; Čížek, Martin; Šarbort, Martin; Lazar, Josef; Číp, Ondřej
2013-01-01
This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement. PMID:24084107
NASA Astrophysics Data System (ADS)
Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo
2017-04-01
We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
NASA Astrophysics Data System (ADS)
Hattori, Katsuhiro; Ohta, Takayuki; Oda, Akinori; Kousaka, Hiroyuki
2018-01-01
Substrate temperature is one of the important parameters that affect the quality of deposited films. The monitoring of the substrate temperature is an important technique of controlling the deposition process precisely. In this study, the Si substrate temperature in high-power pulse magnetron sputtering (HPPMS) was measured by a noncontact method based on optical low-coherence interferometry (LCI). The measurement was simultaneously performed using an LCI system and a thermocouple (TC) as a contact measurement method. The difference in measured value between the LCI system and the TC was about 7.4 °C. The reproducibilities of measurement for the LCI system and TC were ±0.7 and ±2.0 °C, respectively. The heat influx from the plasma to the substrate was estimated using the temporal variation of substrate temperature and increased from 19.7 to 160.0 mW/cm2 with increasing target applied voltage. The major factor for the enhancement of the heat influx would be charged species such as ions and electrons owing to the high ionization degree of sputtered metal particles in HPPMS.
Monitoring of laser material processing using machine integrated low-coherence interferometry
NASA Astrophysics Data System (ADS)
Kunze, Rouwen; König, Niels; Schmitt, Robert
2017-06-01
Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.
Label-free measurement of microbicidal gel thickness using low-coherence interferometry
NASA Astrophysics Data System (ADS)
Braun, Kelly E.; Boyer, Jeffrey D.; Henderson, Marcus H.; Katz, David F.; Wax, Adam
2006-03-01
Spectral-domain low-coherence interferometry (LCI) was used to measure the thickness of microbicidal gels applied to a cylindrical calibration test socket. Microbicides are topical formulations containing active ingredients targeted to inhibit specific pathogens that are currently under development for application to the epithelial lining of the lower female reproductive tract to combat sexually transmitted infections such as HIV. Understanding the deployment and drug delivery of these formulations is vital to maximizing their effectiveness. Previously, in vivo measurements of microbicidal formulation thickness were assessed using fluorescence measurements of fluorescein-labeled gels via an optical endoscope-based device. Here we present an LCI-based device that measures the thickness of a formulation without the use of any exogenous agents by analyzing the interference pattern generated between the reflections from the front and back surface of the sample. Results are presented that validate the effectiveness and performance of the LCI measurement in a clinically relevant system as compared to an existing fluorescence-based method. The impact of the new LCI-based design on in vivo measurements is discussed.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Measuring finite-range phase coherence in an optical lattice using Talbot interferometry
Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig
2017-01-01
One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941
Digitally enhanced homodyne interferometry.
Sutton, Andrew J; Gerberding, Oliver; Heinzel, Gerhard; Shaddock, Daniel A
2012-09-24
We present two variations of a novel interferometry technique capable of simultaneously measuring multiple targets with high sensitivity. The technique performs a homodyne phase measurement by application of a four point phase shifting algorithm, with pseudo-random switching between points to allow multiplexed measurement based upon propagation delay alone. By multiplexing measurements and shifting complexity into signal processing, both variants realise significant complexity reductions over comparable methods. The first variant performs a typical coherent detection with a dedicated reference field and achieves a displacement noise floor 0.8 pm/√Hz above 50 Hz. The second allows for removal of the dedicated reference, resulting in further simplifications and improved low frequency performance with a 1 pm/√Hz noise floor measured down to 20 Hz. These results represent the most sensitive measurement performed using this style of interferometry whilst simultaneously reducing the electro-optic footprint.
Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha
2008-04-14
We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.
The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Silverburg, Robert
2009-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T
2001-12-03
Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.
Micro- and nano-tomography at the DIAMOND beamline I13L imaging and coherence
NASA Astrophysics Data System (ADS)
Rau, C.; Bodey, A.; Storm, M.; Cipiccia, S.; Marathe, S.; Zdora, M.-C.; Zanette, I.; Wagner, U.; Batey, D.; Shi, X.
2017-10-01
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.
Luft, Nikolaus; Hirnschall, Nino; Farrokhi, Sanaz; Findl, Oliver
2015-08-01
To assess whether anterior chamber depth (ACD) measurements in pseudophakic eyes obtained with partial coherence interferometry (PCI) and optical low-coherence reflectometry (OLCR) devices can be used interchangeably. Vienna Institute for Research in Ocular Surgery, A Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria. Prospective case series. The ACD measurements in 1 eye of each pseudophakic patient were performed with the PCI-based ACMaster device and the OLCR-based Lenstar LS900 device at least 1 day postoperatively. The study comprised 65 eyes of 65 patients with a mean age of 71.7 years ± 9.0 (SD) (range 39 to 91 years). In 15 eyes, no valid ACD readings could be obtained with the OLCR device. No obvious reason for these measurement failures was identified; however, tear-film alterations shortly after surgery were suspected. No significant difference in the mean ACD in the remaining 50 eyes was found between PCI measurements (5019 ± 660 μm; range 4008 to 6181 μm) and OLCR measurements (5015 ± 663 μm; range 4017 to 6163 μm) (P = .06). Three (6%) of 50 measurements were not within the 95% limits of agreement in the Bland-Altman analysis. Pseudophakic ACD measurements with the PCI and OLCR devices can be used interchangeably. The OLCR device proved to be more user-friendly and faster; however, in a substantial number of eyes, no usable values were obtainable. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Huang, Jinhai; McAlinden, Colm; Huang, Yingying; Wen, Daizong; Savini, Giacomo; Tu, Ruixue; Wang, Qinmei
2017-02-24
A meta-analysis to compare ocular biometry measured by optical low-coherence reflectometry (Lenstar LS900; Haag Streit) and partial coherence interferometry (the IOLMaster optical biometer; Carl Zeiss Meditec). A systematic literature search was conducted for articles published up to August 6th 2015 in the Cochrane Library, PubMed, Medline, Embase, China Knowledge Resource Integrated Database and Wanfang Data. A total of 18 studies involving 1921 eyes were included. There were no statistically significant differences in axial length (mean difference [MD] 0 mm; 95% confidence interval (CI) -0.08 to 0.08 mm; p = 0.92), anterior chamber depth (MD 0.02 mm; 95% CI -0.07 to 0.10 mm; p = 0.67), flat keratometry (MD -0.05 D; 95% CI -0.16 to 0.06 D; p = 0.39), steep keratometry (MD -0.09 D; 95% CI -0.20 to 0.03 D; p = 0.13), and mean keratometry (MD -0.15 D; 95% CI -0.30 to 0.00 D; p = 0.05). The white to white distance showed a statistically significant difference (MD -0.14 mm; 95% CI -0.25 to -0.02 mm; p = 0.02). In conclusion, there was no difference in the comparison of AL, ACD and keratometry readings between the Lenstar and IOLMaster. However the WTW distance indicated a statistically significant difference between the two devices. Apart from the WTW distance, measurements for AL, ACD and keratometry readings may be used interchangeability with both devices.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
A novel plasmonic interferometry and the potential applications
NASA Astrophysics Data System (ADS)
Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.
2018-03-01
In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.
Sjodahl, Mikael; Amer, Eynas
2018-05-10
The two techniques of lateral shear interferometry and speckle deflectometry are analyzed in a common optical system for their ability to measure phase gradient fields of a thin phase object. The optical system is designed to introduce a shear in the frequency domain of a telecentric imaging system that gives a sensitivity of both techniques in proportion to the defocus introduced. In this implementation, both techniques successfully measure the horizontal component of the phase gradient field. The response of both techniques scales linearly with the defocus distance, and the precision is comparative, with a random error in the order of a few rad/mm. It is further concluded that the precision of the two techniques relates to the transverse speckle size in opposite ways. While a large spatial coherence width, and correspondingly a large lateral speckle size, makes lateral shear interferometry less susceptible to defocus, a large lateral speckle size is detrimental for speckle correlation. The susceptibility for the magnitude of the defocus is larger for the lateral shear interferometry technique as compared to the speckle deflectometry technique. The two techniques provide the same type of information; however, there are a few fundamental differences. Lateral shear interferometry relies on a special hardware configuration in which the shear angle is intrinsically integrated into the system. The design of a system sensitive to both in-plane phase gradient components requires a more complex configuration and is not considered in this paper. Speckle deflectometry, on the other hand, requires no special hardware, and both components of the phase gradient field are given directly from the measured speckle deformation field.
Environmental Impact Assessment of Rosia Jiu Opencast Area Using AN Integrated SAR Analysis
NASA Astrophysics Data System (ADS)
Poenaru, V. D.; Negula, I. F. Dana; Badea, A.; Cuculici, R.
2016-06-01
The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR). The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.
Large-aperture ground glass surface profile measurement using coherence scanning interferometry.
Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo
2017-01-23
We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.
Undersampled digital holographic interferometry
NASA Astrophysics Data System (ADS)
Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.
2008-04-01
In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.
Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.
Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T
2016-05-15
We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena
2014-06-01
We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.
Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer
NASA Astrophysics Data System (ADS)
Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz
2015-12-01
In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.
NASA Astrophysics Data System (ADS)
Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.
2017-06-01
The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.
The New Physical Optics Notebook: Tutorials in Fourier Optics.
ERIC Educational Resources Information Center
Reynolds, George O.; And Others
This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…
A Possible Future for Space-Based Interferometry
NASA Technical Reports Server (NTRS)
Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.
2013-01-01
We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.
Coherent convergent-beam time-resolved X-ray diffraction
Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng
2014-01-01
The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153
NASA Technical Reports Server (NTRS)
Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.
1977-01-01
Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Classical analogues of two-photon quantum interference.
Kaltenbaek, R; Lavoie, J; Resch, K J
2009-06-19
Chirped-pulse interferometry (CPI) captures the metrological advantages of quantum Hong-Ou-Mandel (HOM) interferometry in a completely classical system. Modified HOM interferometers are the basis for a number of seminal quantum-interference effects. Here, the corresponding modifications to CPI allow for the first observation of classical analogues to the HOM peak and quantum beating. They also allow a new classical technique for generating phase super-resolution exhibiting a coherence length dramatically longer than that of the laser light, analogous to increased two-photon coherence lengths in entangled states.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.
Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue
2016-11-15
We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
Neutze, Richard; Moffat, Keith
2012-01-01
X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2011-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.
2015-02-15
Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less
Terahertz reflection interferometry for automobile paint layer thickness measurement
NASA Astrophysics Data System (ADS)
Rahman, Aunik; Tator, Kenneth; Rahman, Anis
2015-05-01
Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive
NASA Astrophysics Data System (ADS)
Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason
We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.
NASA Astrophysics Data System (ADS)
Pakula, Anna; Tomczewski, Slawomir; Skalski, Andrzej; Biało, Dionizy; Salbut, Leszek
2010-05-01
This paper presents novel application of Low Coherence Interferometry (LCI) in measurements of characteristic parameters as circular pitch, foot diameter, heads diameter, in extremely small cogged wheels (cogged wheel diameter lower than θ=3 mm and module m = 0.15) produced from metal and ceramics. The most interesting issue concerning small diameter cogged wheels occurs during their production. The characteristic parameters of the wheel depend strongly on the manufacturing process and while inspecting small diameter wheels the shrinkage during the cast varies with the slight change of fabrication process. In the paper the LCI interferometric Twyman - Green setup with pigtailed high power light emitting diode, for cogged wheels measurement, is described. Due to its relatively big field of view the whole wheel can be examined in one measurement, without the necessity of numerical stitching. For purposes of small cogged wheel's characteristic parameters measurement the special binarization algorithm was developed and successfully applied. At the end the results of measurement of heads and foot diameters of two cogged wheels obtained by proposed LCI setup are presented and compared with the results obtained by the commercial optical profiler. The results of examination of injection moulds used for fabrication of measured cogged wheels are also presented. Additionally, the value of cogged wheels shrinkage is calculated as a conclusion for obtained results. Proposed method is suitable for complex measurements of small diameter cogged wheels with low module especially when there are no measurements standards for such objects.
An Aeroacoustic Characterization of a Multi-Element High-Lift Airfoil
NASA Astrophysics Data System (ADS)
Pascioni, Kyle A.
The leading edge slat of a high-lift system is known to be a large contributor to the overall radiated acoustic field from an aircraft during the approach phase of the flight path. This is due to the unsteady flow field generated in the slat-cove and near the leading edge of the main element. In an effort to understand the characteristics of the flow-induced source mechanisms, a suite of experimental measurements has been performed on a two-dimensional multi-element airfoil, namely, the MD-30P30N. Particle image velocimetry provide mean flow field and turbulence statistics to illustrate the differences associated with a change in angle of attack. Phase-averaged quantities prove shear layer instabilities to be linked to narrowband peaks found in the acoustic spectrum. Unsteady surface pressure are also acquired, displaying strong narrowband peaks and large spanwise coherence at low angles of attack, whereas the spectrum becomes predominately broadband at high angles. Nonlinear frequency interaction is found to occur at low angles of attack, while being negligible at high angles. To localize and quantify the noise sources, phased microphone array measurements are per- formed on the two dimensional high-lift configuration. A Kevlar wall test section is utilized to allow the mean aerodynamic flow field to approach distributions similar to a free-air configuration, while still capable of measuring the far field acoustic signature. However, the inclusion of elastic porous sidewalls alters both aerodynamic and acoustic characteristics. Such effects are considered and accounted for. Integrated spectra from Delay and Sum and DAMAS beamforming effectively suppress background facility noise and additional noise generated at the tunnel wall/airfoil junction. Finally, temporally-resolved estimates of a low-dimensional representation of the velocity vector fields are obtained through the use of proper orthogonal decomposition and spectral linear stochastic estimation. An estimate of the pressure field is then extracted by Poissons equation. From this, Curles analogy projects the time-resolved pressure forces on the airfoil surface to further establish the connection between the dominating unsteady flow structures and the propagated noise.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
Park, Joo Hyun; Lee, Jae Yong; Lee, Eun Seong
2014-01-01
We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM. PMID:24940548
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
NASA Astrophysics Data System (ADS)
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
SPECKLE INTERFEROMETRY AT SOAR IN 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2015-08-15
The results of speckle interferometric observations at the Southern Astrophysical Research Telescope (SOAR) telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.°1 in angle and 0.3% in pixelmore » scale, while the measurement errors are on the order of 3 mas. The new data are used here to compute 194 binary star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits.« less
Interferometry on a Balloon; Paving the Way for Space-based Interferometers
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,
Podoleanu, Adrian Gh; Bradu, Adrian
2013-08-12
Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.
Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao
2017-11-22
Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.
Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.
Clark, Christopher A; Elsner, Ann E; Konynenbelt, Benjamin J
2015-01-01
Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. Spectral domain optical coherence tomography (SD-OCT) and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Seventy-nine subjects' right eyes were imaged for this study (age range, 22 to 34 years; refractive error, -10 to +5.00). Thirty-degree SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Autorefractor) and peripheral axial length measurements with partial coherence interferometry (IOLMaster, Zeiss). Statistics were performed using repeated-measures analysis of variance in SPSS (IBM, Armonk, NY), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Spectral domain OCT showed a retinal shape with an increased curvature for myopes compared with emmetropes/hyperopes. This retinal shape change became significant around 5 degrees. The SD-OCT analysis for retinal shape provides a resolution of 0.026 diopters, which is about 10 times more accurate than using autorefraction (AR) or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD-OCT and the partial coherence interferometry method were more consistent with one another than either was with AR. With more accurate measures of retinal shape using SD-OCT, consistent differences between emmetropes/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD-OCT appear to be more accurate than AR, which may be influenced by other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method.
Manipulating the polar mismatch at the LaNi O 3 / SrTi O 3 (111) interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghayezhian, M.; Wang, Zhen; Guo, Hangwen
2017-04-20
Heteroepitaxial growth of transition-metal oxide films on the open (111) surface of SrTi O 3 results in significant restructuring due to the polar mismatch. Monitoring the structure and composition on an atomic scale of LaNi O 3 / SrTi O 3 (111) interface as a function of processing conditions has enabled the avoidance of the expected polar catastrophe. Using atomically resolved transmission electron microscopy and spectroscopy as well as low-energy electron diffraction, the structure of the thin film, from interface to the surface, has been studied. Here, we show that the proper processing can lead to a structure that ismore » ordered, coherent with the substrate without intermediate structural phase. Using angle-resolved x-ray photoemission spectroscopy we show that the oxygen content of thin films increases with the film thickness, which indicates that the polar mismatch is avoided by the presence of oxygen vacancies.« less
Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E
2004-01-07
We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.
The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni
2010-06-01
using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of...resolved the outer Hα-emitting region of the extended envelope, but detected signatures of clumping. Although, the angular scales sampled with a 1.52 m
Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition
NASA Astrophysics Data System (ADS)
Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred
2011-11-01
Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.
Edge effects in composites by moire interferometry
NASA Technical Reports Server (NTRS)
Czarnek, R.; Post, D.; Herakovich, C.
1983-01-01
The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.
Tan, Jun; Nie, Zaiping
2018-05-12
Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.
NASA Astrophysics Data System (ADS)
Avigo, I.; Cortés, R.; Rettig, L.; Thirupathaiah, S.; Jeevan, H. S.; Gegenwart, P.; Wolf, T.; Ligges, M.; Wolf, M.; Fink, J.; Bovensiepen, U.
2013-03-01
We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe2As2 and optimally doped BaFe1.85Co0.15As2 near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A1g mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω2> between 30 and 70 meV2. The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.
Bifocal optical coherenc refractometry of turbid media.
Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D
2003-01-15
We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.
NASA Astrophysics Data System (ADS)
Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.
2018-05-01
Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2014-01-01
We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young’s modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies. PMID:25071943
Radio interferometry: Techniques for Geodesy. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
Pressure spectra from single-snapshot tomographic PIV
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio
2018-03-01
The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.
Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie
2012-07-30
A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.
Meissner, Sven; Müller, Gregor; Walther, Julia; Morawietz, Henning; Koch, Edmund
2009-01-01
In-vivo imaging of the vascular system can provide novel insight into the dynamics of vasoconstriction and vasodilation. Fourier domain optical coherence tomography (FD-OCT) is an optical, noncontact imaging technique based on interferometry of short-coherent near-infrared light with axial resolution of less than 10 microm. In this study, we apply FD-OCT as an in-vivo imaging technique to investigate blood vessels in their anatomical context using temporally resolved image stacks. Our chosen model system is the murine saphenous artery and vein, due to their small inner vessel diameters, sensitive response to vasoactive stimuli, and advantageous anatomical position. The vascular function of male wild-type mice (C57BL/6) is determined at the ages of 6 and 20 weeks. Vasoconstriction is analyzed in response to dermal application of potassium (K(+)), and vasodilation in response to sodium nitroprusside (SNP). Vasodynamics are quantified from time series (75 sec, 4 frames per sec, 330 x 512 pixels per frame) of cross sectional images that are analyzed by semiautomated image processing software. The morphology of the saphenous artery and vein is determined by 3-D image stacks of 512 x 512 x 512 pixels. Using the FD-OCT technique, we are able to demonstrate age-dependent differences in vascular function and vasodynamics.
Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry
NASA Astrophysics Data System (ADS)
Minh, Tuan Pham; Hucl, Václav; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Řeřucha, Šimon; Číp, Ondřej; Lazar, Josef
2015-05-01
Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.
Performance of the fiber-optic low-coherent ground settlement sensor: From lab to field
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Tan, Yanbin; Peng, Li; Chen, Jisong; Wei, Chuanjun; Zhang, Pinglei; Zhang, Tianhang; Alrabeei, Salah; Zhang, Zhe; Sun, Changsen
2018-04-01
A fiber-optic low-coherent interferometry sensor was developed to measure the ground settlement (GS) in an accuracy of the micrometer. The sensor combined optical techniques with liquid-contained chambers that were hydraulically connected together at the bottom by using a water-filled tube. The liquid surface inside each chamber was at the same level initially. The optical interferometry was employed to read out the liquid level changes, which following the GS happened at the place where the chamber was put on and, thereby, the GS information was calculated. The laboratory effort had demonstrated its potential in the practical application. Here, the denoising algorithms on the measurement signal were carried out based on the specific environment to ensure the accuracy and stability of the system in field applications. After that, we extended this technique to the high-speed railway. The 5-days continuous measurement proved that the designed system could be applied to monitor the GS of the high-speed railway piers and approached an accuracy of ±70 μm in the field situation with a reference compensation sensor. So the performance of the sensor was suitable to the GS monitoring problem in the high-speed railway. There, the difficulties were to meet the monitoring requirement of both a large span in space and its quite tiny and slow changes.
Organ of Corti Micromechanics with Local Electrical Stimulation
NASA Astrophysics Data System (ADS)
Chen, Fangyi; Zheng, Jiefu; Choudhury, Niloy; Jaques, Steve; Nuttall, Alfred L.
2009-02-01
Optical low coherence interferometry is able to both image and measure the vibration of the cellular and non-cellular structures of the organ of Corti in vivo. In this study we applied an electric current to the basal turn from a pair of electrodes, one in scala tympani and the other in scala vestibuli, at the location corresponding to ~17 kHz when interferometry measurements were made. The coherence gate of the interferometer was positioned 1) at the basilar membrane (BM) near the radial location of the outer hair cells (OHCs) (approximately 1/2 the width of the BM) and 2) at the reticular lamina (RL) where the OHCs are located. We confirmed that electrical stimulation with a frequency sweep (12 kHz -25 kHz) caused a mechanical BM displacement with a peak and a traveling wave-like phase delay as we reported previously using laser Doppler velocimetry and reflective beads on the BM. Reflective beads were not used in the current study. The vibration of the RL had little or no phase delay that would characterize a traveling wave. These data suggest a very high compliance system for the electrically activated cellular structure of the organ.
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3
NASA Astrophysics Data System (ADS)
Golias, E.; Sánchez-Barriga, J.
2016-10-01
In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .
Li, Junhua; Chen, Hao; Savini, Giacomo; Lu, Weicong; Yu, Xinxin; Bao, Fangjun; Wang, Qinmei; Huang, Jinhai
2016-01-01
To evaluate the agreement of ocular measurements obtained with a new optical biometer (AL-Scan) and a previously validated optical biometer (Lenstar). Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Prospective observational cross-sectional study. For a comprehensive comparison between the partial coherence interferometry (PCI) device and the optical low-coherence reflectometry (OLCR) device, the axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), aqueous depth, mean keratometry (K), astigmatism, white-to-white (WTW), and pupil diameter were measured 3 times per device in eyes with cataract. The sequence of the device was in random order. The mean values were compared and 95% limits of agreement (LoA) were assessed. Ninety-two eyes of 92 cataract patients were included. Bland-Altman analysis showed excellent agreement between the PCI device and the OLCR device for AL, CCT, ACD and aqueous depth measurements with narrow 95% LoA (-0.05 to 0.06 mm, -13.39 to 15.61 μm, -0.11 to 0.10 mm, and -0.12 to 0.10 mm, respectively), and the P values were more than 0.05. The mean K, astigmatism, and WTW values provided by the PCI device were in good agreement with the OLCR device, although statistically significant differences were detected. A major difference was observed in the pupil diameter measurement, with a 95% LoA of -0.73 to 1.21 mm. The PCI device biometer provided ocular measurements similar to those provided by the OLCR device for most parameters, especially for AL, CCT, and ACD. The pupil diameter values obtained with the PCI device were in poor agreement with the OLCR device, and these measurements should be interpreted with necessary adjustment. None of the authors has a proprietary or financial interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Arosa, Yago; Lago, Elena López; Varela, Luis Miguel; de la Fuente, Raúl
2016-07-25
In this paper we apply spectrally resolved white light interferometry to measure refractive and group index over a wide spectral band from 400 to 1000 nm. The output of a Michelson interferometer is spectrally decomposed by a homemade prism spectrometer with a high resolution camera. The group index is determined directly from the phase extracted from the spectral interferogram while the refractive index is estimated once its value at a given wavelength is known.
Scattering angle resolved optical coherence tomography for in vivo murine retinal imaging
NASA Astrophysics Data System (ADS)
Gardner, Michael R.; Katta, Nitesh; McElroy, Austin; Baruah, Vikram; Rylander, H. G.; Milner, Thomas E.
2017-02-01
Optical coherence tomography (OCT) retinal imaging contributes to understanding central nervous system (CNS) diseases because the eye is an anatomical "window to the brain" with direct optical access to nonmylenated retinal ganglion cells. However, many CNS diseases are associated with neuronal changes beyond the resolution of standard OCT retinal imaging systems. Though studies have shown the utility of scattering angle resolved (SAR) OCT for particle sizing and detecting disease states ex vivo, a compact SAR-OCT system for in vivo rodent retinal imaging has not previously been reported. We report a fiber-based SAR-OCT system (swept source at 1310 nm +/- 65 nm, 100 kHz scan rate) for mouse retinal imaging with a partial glass window (center aperture) for angular discrimination of backscattered light. This design incorporates a dual-axis MEMS mirror conjugate to the ocular pupil plane and a high collection efficiency objective. A muring retina is imaged during euthanasia, and the proposed SAR-index is examined versus time. Results show a positive correlation between the SAR-index and the sub-cellular hypoxic response of neurons to isoflurane overdose during euthanasia. The proposed SAR-OCT design and image process technique offer a contrast mechanism able to detect sub-resolution neuronal changes for murine retinal imaging.
Calvo-Sanz, Jorge A; Portero-Benito, Alejandro; Arias-Puente, Alfonso
2018-03-01
To compare and evaluate the agreement between the measurements obtained with a swept-source optical coherence tomography (OCT)-based biometer, the IOLMaster® 700 (IOLM), and those obtained by an optical biometer based on optical low-coherence interferometry (OLCI), the Aladdin (ALD); To evaluate the ability to perform biometric measurements in those eyes with transparency alterations. Fifty-five eyes of 55 subjects were included in this study. Axial length (AL), corneal power (K, in diopters) and its astigmatism, anterior chamber depth (ACD), central corneal thickness (CCT), and lens thickness (LT) measures were obtained within both biometers, Zeiss IOLMaster 700 and Topcon Aladdin. Results were analyzed and compared using the Student's paired samples t-test, Bland-Altman analysis and intraclass correlation coefficient (ICC). Mean age was 73.12 ± 2.63 (62-89 years). The IOLM mean AL, K, and LT values did not show a statistically significant difference from ALD values and showed excellent agreement and correlation (ICC = 1.000, 0.970, 0.952). IOLM measured a lower mean ACD (-0.036 mm) and higher CCT measurements (9.296 μm). Those results were statistically different (p < 0.001 in both cases) but showed an excellent correlation coefficients (ICC = 0.994, 0.938). IOLM was able to obtain measures from all the eyes examined, while ALD did not measure in two cases with dense nuclear cataract. ALD showed spherical K measures in 7.27% of cases. Overall a quite good agreement between IOLM and ALD was found. ALD showed spherical keratometry measures in 7.27% of cases. IOLMaster 700 was more effective in obtaining AL measurements in eyes with dense cataracts.
Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K.
2014-12-04
In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.
Energy-resolved coherent diffraction from laser-driven electronic motion in atoms
NASA Astrophysics Data System (ADS)
Shao, Hua-Chieh; Starace, Anthony F.
2017-10-01
We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.
Non-contact angle measurement based on parallel multiplex laser feedback interferometry
NASA Astrophysics Data System (ADS)
Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian
2014-11-01
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles
2013-09-23
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
Very long baseline interferometry using a radio telescope in Earth orbit
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.
1987-01-01
Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.
NASA Astrophysics Data System (ADS)
Yazdanfar, Siavash; Kulkarni, Manish D.; Wong, Richard C. K.; Sivak, Michael J., Jr.; Willis, Joseph; Barton, Jennifer K.; Welch, Ashley J.; Izatt, Joseph A.
1998-04-01
A recently developed modality for blood flow measurement holds high promise in the management of bleeding ulcers. Color Doppler optical coherence tomography (CDOCT) uses low- coherence interferometry and digital signal processing to obtain precise localization of tissue microstructure simultaneous with bi-directional quantitation of blood flow. We discuss CDOCT as a diagnostic tool in the management of bleeding gastrointestinal lesions. Common treatments for bleeding ulcers include local injection of a vasoconstrictor, coagulation of blood via thermal contact or laser treatment, and necrosis of surrounding tissue with a sclerosant. We implemented these procedures in a rat dorsal skin flap model, and acquired CDOCT images before and after treatment. In these studies, CDOCT succeeded in identifying cessation of flow before it could be determined visually. Hence, we demonstrate the diagnostic capabilities of CDOCT in the regulation of bleeding in micron-scale vessels.
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.; ...
2018-02-02
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less
Peripapillary schisis in open-angle glaucoma.
Dhingra, N; Manoharan, R; Gill, S; Nagar, M
2017-03-01
PurposeTo report clinical features, topographic findings and outcome of 10 eyes with peripapillary schisis in open-angle glaucoma.Patients and methodsA retrospective review of patients with open-angle glaucoma who were noted to have peripapillary schisis on optical coherence tomography (OCT) were included. Serial peripapillary and macula infrared and OCT images, visual acuity, visual fields, and schisis appearance were reviewed.ResultsTen eyes of nine patients with open-angle glaucoma were detected to have the presence of peripapillary schisis. Nerve fibre layer schisis was detected in all eyes and one eye had an associated macular schisis. None of the eyes had an acquired pit of the optic nerve or pathological myopia. The mean intraocular pressures at detection was 18.3±4.3 mm Hg and the schisis resolved in four eyes after a mean follow-up of 21.2±8.8 months. Visual field worsening was noted in 4 of the 10 eyes and the resolution of schisis resulted in significant reduction in the retinal nerve fibre layer (RNFL) thickness.ConclusionsPeripapillary schisis detected during the normal course of open-angle glaucoma can resolve spontaneously and rarely involves the macula. Its resolution leads to reduction in RNFL thickness; therefore, caution is advised while interpreting serial scans.
Distributed measurement of birefringence dispersion in polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai
2006-12-01
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.
Confocal shift interferometry of coherent emission from trapped dipolar excitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repp, J.; Nanosystems Initiative Munich; Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München
2014-12-15
We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
Imaging of dental material by polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.
1999-05-01
Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.
Trimodal low-dose X-ray tomography
Zanette, I.; Bech, M.; Rack, A.; Le Duc, G.; Tafforeau, P.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.
2012-01-01
X-ray grating interferometry is a coherent imaging technique that bears tremendous potential for three-dimensional tomographic imaging of soft biological tissue and other specimens whose details exhibit very weak absorption contrast. It is intrinsically trimodal, delivering phase contrast, absorption contrast, and scattering (“dark-field”) contrast. Recently reported acquisition strategies for grating-interferometric phase tomography constitute a major improvement of dose efficiency and speed. In particular, some of these techniques eliminate the need for scanning of one of the gratings (“phase stepping”). This advantage, however, comes at the cost of other limitations. These can be a loss in spatial resolution, or the inability to fully separate the three imaging modalities. In the present paper we report a data acquisition and processing method that optimizes dose efficiency but does not share the main limitations of other recently reported methods. Although our method still relies on phase stepping, it effectively uses only down to a single detector frame per projection angle and yields images corresponding to all three contrast modalities. In particular, this means that dark-field imaging remains accessible. The method is also compliant with data acquisition over an angular range of only 180° and with a continuous rotation of the specimen. PMID:22699500
NASA Astrophysics Data System (ADS)
Reil, Frank; Thomas, John E.
2002-05-01
For the first time we are able to observe the time-resolved Wigner function of enhanced backscatter from a random medium using a novel two-window technique. This technique enables us to directly verify the phase-conjugating properties of random media. An incident divergent beam displays a convergent enhanced backscatter cone. We measure the joint position and momentum (x, p) distributions of the light field as a function of propagation time in the medium. The two-window technique allows us to independently control the resolutions for position and momentum, thereby surpassing the uncertainty limit associated with Fourier transform pairs. By using a low-coherence light source in a heterodyne detection scheme, we observe enhanced backscattering resolved by path length in the random medium, providing information about the evolution of optical coherence as a function of penetration depth in the random medium.
NASA Astrophysics Data System (ADS)
Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.
2009-02-01
Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.
Konorov, Stanislav O; Turner, Robin F B; Blades, Michael W
2007-05-01
Efficient time-resolved coherent anti-Stokes Raman scattering (CARS) of atmospheric nitrogen and ethanol trapped in a nanoporous silica aerogel matrix is demonstrated. Silica aerogel hosts are attractive for analytical CARS spectroscopy due to their high porosity/low density, low refractive index, and low scattering cross-section. Differences between the resonant and nonresonant parts of the nonlinear optical susceptibilities lead to much longer relaxation times for analytes compared to the matrix. Time-resolved CARS can then be used to obtain a nearly background-free measurement at characteristic vibrations of the analyte. These results demonstrate the potential of this approach for rapid, sensitive, background-free analyses of analytes entrapped in the aerogel pores, which may be advantageous for some environmental, chemical, and biological sensing applications.
The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni
2010-06-01
using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of
Measuring ocean coherence time with dual-baseline interferometry
NASA Technical Reports Server (NTRS)
Carande, Richard E.
1992-01-01
Using the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) interferometer, measurements of the ocean coherence time at L and C band can be made at high spatial resolution. Fundamental to this measurement is the ability to image the ocean interferometrically at two different time-lags, or baselines. By modifying the operating procedure of the existing two antenna interferometer, a technique was developed make these measurements. L band coherence times are measured and presented.
From a structural average to the conformational ensemble of a DNA bulge
Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel
2014-01-01
Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812
Ultrasonography and optical low-coherence interferometry compared in the chicken eye.
Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank; Feldkaemper, Marita P
2012-06-01
To compare ocular biometry [anterior chamber depth (ACD), lens thickness (LT), vitreous chamber depth (VCD), and axial length (AL)] using A-scan ultrasonography and optical low-coherence interferometry (OLCI) in the chicken eye. Two-week-old chicks (n = 42) were measured. Bland-Altman plots and repeatability and correlation analyses were calculated for both methods. There was a high correlation between both methods for ACD (r = 0.6144, p < 0.0001), VCD (r = 0.9595, p < 0.0001), and AL (r = 0.9290, p < 0.0001) but not for LT (r = 0.1604, p = 0.144). Measurements by OLCI were more consistent (smaller coefficients of variation and higher intraclass correlation). Bland-Altman plots showed that ultrasound provided larger values for LT, VCD, and AL but not for ACD [differences between ultrasound and OLCI (mean ± SD): ACD = -0.11 ± 0.12 mm; LT = 0.10 ± 0.09 mm; VCD = 0.25 ± 0.08 mm; AL = 0.50 ± 0.16 mm]. A high correlation between both techniques was found for three of the four parameters (ACD, VCD, and AL). However, as the absolute values were different, both techniques cannot replace each other mainly because (1) one is non-contact and the other contact and can induce a minor indentation of the cornea and (2) each device uses different types of waves that cross the ocular interfaces differently. While consistency and repeatability were better by OLCI, a disadvantage is that, different from humans, it can only be used in anesthetized chicks.
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
NASA Astrophysics Data System (ADS)
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Angle-resolved Photoemission of CeCoIn5: Detailed Comparison to LDA and LDA+DMFT
NASA Astrophysics Data System (ADS)
Allen, J. W.
2008-03-01
Highly-automated photon-dependent angle resolved photoemission spectroscopy (ARPES) in the energy range of 80-200 eV has been used to characterize the three dimensional (3D) Fermi surface (FS) topology and electronic band structure of cleaved single crystals of CeCoIn5. The sample temperature of 26K is well below the lattice coherence onset temperature of 45K found in a recent ``two fluid'' analysis of transport data. Detailed comparison of ARPES FS contours to LDA calculations for the Ce 4f electrons treated as itinerant or confined to the core reveals remarkable agreement to fine topological details of the f-core calculations. Also in agreement to the f-core calculations is the experimental absence of extra electron-like contours predicted in the f-itinerant calculation, originating from α and β bands re-entrant below EF along Z-A. Finally, the areas enclosed by FS contours for the α and β bands are significantly smaller than are found in very low temperature CeCoIn5 de Haas van Alphen data that agrees generally with the f-itinerant calculation. It is concluded that clear signatures of coherence in the transport data can develop at temperatures for which the f-electrons are not yet included in the FS. In this connection, comparison will also be made to recent T-dependent LDA+DMFT calculations for CeIrIn5. This work was done in collaboration with J. D. Denlinger, Feng Wang, R. S. Singh, K. Rossnagel, S. Elgazzar, P. M. Oppeneer, V. S. Zapf and M. B. Maple, and was supported by the U.S. DOE (DE-AC03-76SF00098 at the ALS, DE-FG02-07ER46379 at UM for current work, DE FG02-04ER-46105 at UCSD), by the U.S. NSF (DMR-03-02825 at UM for initial work, DMR-03-35173 at UCSD) and by the Swedish Research Council (VR) and the European Commission (JRC-ITU).
The Theoretical Problem of Partial Coherence and Partial Polarization in PolSAR and PolInSAR
NASA Astrophysics Data System (ADS)
Alvarez-Perez, J. L.
2013-08-01
Coherence is a key concept in all aspects related to SAR, and it is also an essential ingredient not only of its signal processing and image formation but also of the data postprocessing stages of SAR data. Coherence is however a non-trivial concept that has been the subject of much debate in the last sixty years, even if its definition in the context of PolInSAR has been almost univocal. Nevertheless, the mutual relationships between coherence, polarization and statistical independence in PolSAR has recently been the subject of discussion in [1]. Some of these questions affect the eigenanalysis-based approach to PolInSAR, as developed by Cloude and Papathanassiou's foundational work. Coherence involves the behaviour of electromagnetic waves in at least a pair of points and in this sense it plays an important role in interferometry that is not present in non-interferometric radar polarimetry. PolInSAR inherits some of the difficulties found in [1], which stem from the controversial confusion between coherence and polarization as present in PolSAR, as well as the ability of separating different physical contributors to the scattering phenomenon through the use of eigenvalues and eigenvectors. Although these are also issues present in eigenanalysis-based PolInSAR, it is still possible to analyze a scene in terms of coherence and this very concept of coherence is the subject of this paper. A new analysis of the concept of coherence for interferometry is proposed, including multiple observation point configurations that bring about statistical moments whose order is higher than two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.
Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding withmore » linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.« less
Teo, Stephanie M; Ofori-Okai, Benjamin K; Werley, Christopher A; Nelson, Keith A
2015-05-01
Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.
Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales
NASA Astrophysics Data System (ADS)
Tristam, Konrad R. W.
2016-08-01
The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.
Coherence and interlimb force control: Effects of visual gain.
Kang, Nyeonju; Cauraugh, James H
2018-03-06
Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.
Spatially resolved scatter measurement of diffractive micromirror arrays.
Sicker, Cornelius; Heber, Jörg; Berndt, Dirk
2016-06-01
Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.
Infrasonic interferometry applied to synthetic and measured data
NASA Astrophysics Data System (ADS)
Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.
2013-04-01
The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808
Application of point-diffraction interferometry to testing infrared imaging systems
NASA Astrophysics Data System (ADS)
Smartt, Raymond N.; Paez, Gonzalo
2004-11-01
Point-diffraction interferometry has found wide applications spanning much of the electromagnetic spectrum, including both near- and far-infrared wavelengths. Any telescopic, spectroscopic or other imaging system that converts an incident plane or spherical wavefront into an accessible point-like image can be tested at an intermediate image plane or at the principal image plane, in situ. Angular field performance can be similarly tested with inclined incident wavefronts. Any spatially coherent source can be used, but because of the available flux, it is most convenient to use a laser source. The simplicity of the test setup can allow testing of even large and complex fully-assembled systems. While purely reflective IR systems can be conveniently tested at visible wavelengths (apart from filters), catadioptric systems could be evaluated using an appropriate source and an IRPDI, with an imaging and recording system. PDI operating principles are briefly reviewed, and some more recent developments and interesting applications briefly discussed. Alternative approaches and recommended procedures for testing IR imaging systems, including the thermal IR, are suggested. An example of applying point-diffraction interferometry to testing a relatively low angular-resolution, optically complex IR telescopic system is presented.
Lu, Z.; Power, J.A.; McConnell, V.S.; Wicks, C.; Dzurisin, D.
2002-01-01
Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.
Resolution enhancement of partial coherence interferometry by dispersion compensation
NASA Astrophysics Data System (ADS)
Baumgartner, Angela; Hitzenberger, Christoph K.; Drexler, Wolfgang; Fercher, Adolf F.
1997-12-01
In the past ten years partial coherence interferometry and optical coherence tomography have been developed for high precision biometry and tomography of the human eye in vivo. The longitudinal resolution of the optical coherence tomography technique depends on the spectral bandwidth of the light source used and on the dispersion of the media to be measured. In nondispersive media the resolution is approximately equal to the coherence length of the light used, which is inversely proportional to the width of the emission spectrum. Hence, a broad emission spectrum yields a short coherence length and consequently a good resolution. However, if the tissue under investigation is dispersive, the coherence envelope of the signal broadens leading to a decrease in resolution and interference fringe contrast. This effect becomes predominant if measurements through the dispersive media of the eye to the retina are performed with source bandwidths larger than approximately 25 nm. In order to achieve optimum resolution of OCT by applying a light source with a broad emission spectrum, the dispersion of the object to be measured, i.e. in this case of the ocular media, has to be compensated. Within the scope of this work we demonstrate the resolution improvement that is obtained by compensating the dispersive effects of the ocular media and using broadband light sources. Furthermore, we present the first optical coherence tomogram recorded with this technique in the retina of a human eye in vivo with an axial geometrical resolution of approximately 6 micrometers which is a two-fold improvement compared to presently used technology.
Evaluation of microfluidic channels with optical coherence tomography
NASA Astrophysics Data System (ADS)
Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.
2010-11-01
Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
Kunert, Kathleen S; Peter, Monika; Blum, Marcus; Haigis, Wolfgang; Sekundo, Walter; Schütze, Juliane; Büehren, Tobias
2016-01-01
To estimate the repeatability of biometric parameters obtained with a new swept-source biometer and to compare the agreement with that of partial coherence interferometry (PCI) and optical low-coherence reflectometry (OLCR). Department of Ophthalmology, Helios Hospital Erfurt, Erfurt, Julius-Maximilians University, Würzburg, and Philipps University, Marburg, Germany. Prospective comparative multicenter clinical study. Biometry was taken with the use of 3 different biometers: the IOLMaster 700 swept-source biometer, the PCI-based IOLMaster 500, and the OCLR-based Lenstar LS 900. Axial length (AL), anterior chamber depth (ACD), and spherical equivalent (SE) were compared between swept-source and PCI biometry and central corneal thickness (CCT) and lens thickness (LT) between swept-source and OLCR biometry. The repeatability of swept-source biometry was evaluated on the basis of 3 measurements captured for each patient. One hundred twenty cataract eyes were included in the study. The mean difference between swept-source and PCI biometry for AL, ACD, and SE measurements was 4 μm ± 25 (SD), 17 ± 122 μm, and -0.001 ± 0.19 diopter (D), respectively. The mean difference between swept-source and OLCR biometry for LT and CCT measurements was 21 ± 122 μm and 0.15 ± 4.51 μm, respectively. Differences between swept-source biometry and the other devices distributed around zero without statistical significance. The standard deviation of repeatability for AL, ACD, LT, CCT, and SE was 8.8 μm, 9.8 μm, 2.3 μm, 19.5 μm, and 0.1 D, respectively. Swept-source biometry showed high repeatability performance for all biometric parameters. The agreement of AL, ACD, and SE between swept-source and PCI biometry as well as that of LT and CCT between swept-source and OLCR biometry was excellent. It remains to be validated whether high repeatability shown by swept-source biometry will result in better postoperative refractive outcomes. Drs. Blum and Sekundo are members of the Scientific Advisory Board of Carl Zeiss Meditec AG. Drs. Peter and Bühren are employees of Carl Zeiss Meditec AG. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Anisotropic scattering rate in Fe-substituted Bi 2Sr 2Ca(Cu 1-xFex) 2O 8+δ
Naamneh, M.; Lubashevsky, Y.; Lahoud, E.; ...
2015-05-27
We measured the electronic structure of Fe substituted Bi2212 using Angle Resolved Photoemission Spectroscopy (ARPES). We find that the substitution does not change the momentum dependence of the superconducting gap but induces a very anisotropic enhancement of the scattering rate. A comparison of the effect of Fe substitution to that of Zn substitution suggests that the Fe reduces T c so effectively because it supresses very strongly the coherence weight around the anti-nodes.
Highly coherent free-running dual-comb chip platform.
Hébert, Nicolas Bourbeau; Lancaster, David G; Michaud-Belleau, Vincent; Chen, George Y; Genest, Jérôme
2018-04-15
We characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities. Furthermore, it displays a remarkably low mutual frequency noise floor around 10 Hz 2 /Hz, which is enabled by its large-mode-area waveguides and low Kerr nonlinearity. As a result, it reaches a free-running mutual coherence time of 1 s since mode-resolved dual-comb spectra are generated even on this time scale. This design greatly simplifies dual-comb interferometers by enabling mode-resolved measurements without any phase lock.
Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment
NASA Astrophysics Data System (ADS)
McNabb, Ryan Palmer
Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine the clinical evaluation of the iridocorneal angle through gonioscopy with OCT.
Ocular Coherence Tomography in the Evaluation of Anterior Eye Injuries in Space Flight
NASA Technical Reports Server (NTRS)
Fer, Dan M.; Law, Jennifer; Wells, Julia
2017-01-01
While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.
NASA Astrophysics Data System (ADS)
Robert, Clélia; Conan, Jean-Marc; Wolf, Peter
2016-06-01
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end- to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. These temporally resolved simulations allow characterizing the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show that Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock comparisons.
InSAR constraints on the kinematics and magnitude of the 2001 Bhuj earthquake
NASA Astrophysics Data System (ADS)
Schmidt, D.; Bürgmann, R.
2005-12-01
The Mw 7.6 Bhuj intraplate event occurred along a blind thrust within the Kutch Rift basin of western India in January of 2001. The lack of any surface rupture and limited geodetic data have made it difficult to place the event on a known fault and constrain its source parameters. Moment tensor solutions and aftershock relocations indicate that the earthquake was a reverse event along an east-west striking, south dipping fault. In an effort to image the surface deformation, we have processed a total of 9 interferograms that span the coseismic event. Interferometry has proven difficult for the region because of technical difficulties experienced by the ERS Satellite around the time of the earthquake and because of low coherence. The stabilization of the orbital control by the European Space Agency beginning in 2002 has allowed us to interfere more recent SAR data with pre-earthquake data. Therefore, all available interferograms of the event include the first year of any postseismic deformation. The source region is characterized by broad floodplains interrupted by isolated highlands. Coherence is limited to the surrounding highlands and no data is available directly over the epicenter. Using the InSAR data along two descending and one ascending tracks, we perform a gridded search for the optimal source parameters of the earthquake. The deformation pattern is modeled assuming uniform slip on an elastic dislocation. Since the highland regions are discontinuous, the coherent InSAR phase is isolated to several individual patches. For each iteration of the gridded search algorithm, we optimize the fit to the data by solving for number of 2π phase cycles between coherent patches and the orbital gradient across each interferogram. Since the look angle varies across a SAR scene, a variable unit vector is calculated for each track. Inversion results place the center of the fault plane at 70.33° E/23.42° N at a depth of 21 km, and are consistent with the strike and dip suggested by the relocated aftershocks. The data also constrain the magnitude, rake, and finiteness of the event.
Pande, Paritosh; Shelton, Ryan L; Monroy, Guillermo L; Nolan, Ryan M; Boppart, Stephen A
2016-10-01
The thickness of the human tympanic membrane (TM) is known to vary considerably across different regions of the TM. Quantitative determination of the thickness distribution and mapping of the TM is of significant importance in hearing research, particularly in mathematical modeling of middle-ear dynamics. Change in TM thickness is also associated with several middle-ear pathologies. Determination of the TM thickness distribution could therefore also enable a more comprehensive diagnosis of various otologic diseases. Despite its importance, very limited data on human TM thickness distribution, obtained almost exclusively from ex vivo samples, are available in the literature. In this study, the thickness distribution for the in vivo human TM is reported for the first time. A hand-held imaging system, which combines a low coherence interferometry (LCI) technique for single-point thickness measurement, with video-otoscopy for recording the image of the TM, was used to collect the data used in this study. Data were acquired by pointing the imaging probe over different regions of the TM, while simultaneously recording the LCI and concomitant TM surface video image data from an average of 500 locations on the TM. TM thickness distribution maps were obtained by mapping the LCI imaging sites onto an anatomically accurate wide-field image of the TM, which was generated by mosaicking the sequence of multiple small field-of-view video-otoscopy images. Descriptive statistics of the thickness measurements obtained from the different regions of the TM are presented, and the general thickness distribution trends are discussed.
Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung
2018-04-01
A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.
NASA Astrophysics Data System (ADS)
Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.
2018-03-01
With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.
Unification of nonclassicality measures in interferometry
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Zhou, Hongyi; Gu, Mile; Ma, Xiongfeng
2018-01-01
From an operational perspective, nonclassicality characterizes the exotic behavior in a physical process which cannot be explained with Newtonian physics. There are several widely used measures of nonclassicality, including coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists evidence of fundamental connections among the three measures. However, the sources of nonclassicality are still regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of defining a unified nonclassicality with an operational motivation founded on the capability of interferometry. Nonclassicality appears differently as coherence, discord, and entanglement in different scenarios with local measurement, weak basis-independent measurement, and strong basis-independent measurement, respectively. Our results elaborate how these three measures are related and how they can be transformed from each other. Experimental schemes are proposed to test the results.
NASA Astrophysics Data System (ADS)
Kwak, Sangmin; Song, Seok Goo; Kim, Geunyoung; Cho, Chang Soo; Shin, Jin Soo
2017-10-01
Using recordings of a mine collapse event (Mw 4.2) in South Korea in January 2015, we demonstrated that the phase and amplitude information of impulse response functions (IRFs) can be effectively retrieved using seismic interferometry. This event is equivalent to a single downward force at shallow depth. Using quantitative metrics, we compared three different seismic interferometry techniques—deconvolution, coherency, and cross correlation—to extract the IRFs between two distant stations with ambient seismic noise data. The azimuthal dependency of the source distribution of the ambient noise was also evaluated. We found that deconvolution is the best method for extracting IRFs from ambient seismic noise within the period band of 2-10 s. The coherency method is also effective if appropriate spectral normalization or whitening schemes are applied during the data processing.
A Comparative Study of Radar Stereo and Interferometry for DEM Generation
NASA Astrophysics Data System (ADS)
Gelautz, M.; Paillou, P.; Chen, C. W.; Zebker, H. A.
2004-06-01
In this experiment, we derive and compare radar stereo and interferometric elevation models (DEMs) of a study site in Djibouti, East Africa. As test data, we use a Radarsat stereo pair and ERS-2 and Radarsat interferometric data. Comparison of the reconstructed DEMs with a SPOT reference DEM shows that in regions of high coherence the DEMs produced by interferometry are of much better quality than the stereo result. However, the interferometric error histograms also show some pronounced outliers due to decorrelation and phase unwrapping problems on forested mountain slopes. The more robust stereo result is able to capture the general terrain shape, but finer surface details are lost. A fusion experiment demonstrates that merging the stereoscopic and interferometric DEMs by utilizing coherence- derived weights can significantly improve the accuracy of the computed elevation maps.
High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography
Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...
2016-11-21
Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
On marginally resolved objects in optical interferometry
NASA Astrophysics Data System (ADS)
Lachaume, R.
2003-03-01
With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.
Depth Profilometry via Multiplexed Optical High-Coherence Interferometry
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289
Depth profilometry via multiplexed optical high-coherence interferometry.
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.
NASA Astrophysics Data System (ADS)
Jiang, Houjun; Feng, Guangcai; Wang, Teng; Bürgmann, Roland
2017-02-01
Sentinel-1's continuous observation program over all major plate boundary regions makes it well suited for earthquake studies. However, decorrelation due to large displacement gradients and limited azimuth resolution of the Terrain Observation by Progressive Scan (TOPS) data challenge acquiring measurements in the near field of many earthquake ruptures and prevent measurements of displacements in the along-track direction. Here we propose to fully exploit the coherent and incoherent information of TOPS data by using standard interferometric synthetic aperture radar (InSAR), split-bandwidth interferometry in range and azimuth, swath/burst-overlap interferometry, and amplitude cross correlation to map displacements in both the line-of-sight and the along-track directions. Application to the 2016 Kumamoto earthquake sequence reveals the coseismic displacements from the far field to the near field. By adding near-field constraints, the derived slip model reveals more shallow slip than obtained when only using far-field data from InSAR, highlighting the importance of exploiting all coherent and incoherent information in TOPS data.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.
2012-01-01
Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
Cross spectra between temperature and pressure in a constant area duct downstream of a combustor
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.
1983-01-01
The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay.
The Speckle Toolbox: A Powerful Data Reduction Tool for CCD Astrometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Rowe, David; Genet, Russell
2017-01-01
Recent advances in high-speed low-noise CCD and CMOS cameras, coupled with breakthroughs in data reduction software that runs on desktop PCs, has opened the domain of speckle interferometry and high-accuracy CCD measurements of double stars to amateurs, allowing them to do useful science of high quality. This paper describes how to use a speckle interferometry reduction program, the Speckle Tool Box (STB), to achieve this level of result. For over a year the author (Harshaw) has been using STB (and its predecessor, Plate Solve 3) to obtain measurements of double stars based on CCD camera technology for pairs that are either too wide (the stars not sharing the same isoplanatic patch, roughly 5 arc-seconds in diameter) or too faint to image in the coherence time required for speckle (usually under 40ms). This same approach - using speckle reduction software to measure CCD pairs with greater accuracy than possible with lucky imaging - has been used, it turns out, for several years by the U. S. Naval Observatory.
NASA Astrophysics Data System (ADS)
Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.
2017-08-01
Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of I = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.
Integral ceramic superstructure evaluation using time domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-02-01
Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake. PMID:29145475
Resolvent analysis of exact coherent solutions
NASA Astrophysics Data System (ADS)
Rosenberg, Kevin; McKeon, Beverley
2017-11-01
Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.
Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska
Lu, Z.; Freymueller, J.T.
1998-01-01
The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.
Probing the solar corona with very long baseline interferometry.
Soja, B; Heinkelmann, R; Schuh, H
2014-06-20
Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.
Azzam, R M A
2017-08-10
A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.
Coherent amplification of X-ray scattering from meso-structures
Lhermitte, Julien R.; Stein, Aaron; Tian, Cheng; ...
2017-07-10
Small-angle X-ray scattering (SAXS) often includes an unwanted background, which increases the required measurement time to resolve the sample structure. This is undesirable in all experiments, and may make measurement of dynamic or radiation-sensitive samples impossible. Here, we demonstrate a new technique, applicable when the scattering signal is background-dominated, which reduces the requisite exposure time. Our method consists of exploiting coherent interference between a sample with a designed strongly scattering `amplifier'. A modified angular correlation function is used to extract the symmetry of the interference term; that is, the scattering arising from the interference between the amplifier and the sample.more » This enables reconstruction of the sample's symmetry, despite the sample scattering itself being well below the intensity of background scattering. Thus, coherent amplification is used to generate a strong scattering term (well above background), from which sample scattering is inferred. We validate this method using lithographically defined test samples.« less
NASA Technical Reports Server (NTRS)
Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)
1985-01-01
Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.
Determinants of lens vault and association with narrow angles in patients from Singapore.
Tan, Gavin S; He, Mingguang; Zhao, Wanting; Sakata, Lisandro M; Li, Jialiang; Nongpiur, Monisha E; Lavanya, Raghavan; Friedman, David S; Aung, Tin
2012-07-01
To describe the distribution and determinants of lens vault and to investigate the association of lens vault with narrow angles. Prospective cross-sectional study. Phakic subjects 50 years and older were evaluated at a primary healthcare clinic with gonioscopy, partial laser interferometry, and anterior segment optical coherence tomography (AS-OCT). Narrow angles were defined as posterior trabecular meshwork not visible for ≥2 quadrants on non-indentation gonioscopy. Lens vault was defined as the perpendicular distance between the anterior pole of the crystalline lens and the horizontal line joining the 2 scleral spurs on horizontal AS-OCT scans. Analysis of covariance, multivariate logistic regression, and area under the receiver operating characteristic curves (AUC) were performed. Of the 2047 subjects recruited, 582 were excluded because of poor image quality or inability to locate scleral spurs, leaving 1465 subjects for analysis. Eyes with narrow angles had greater lens vault compared to eyes with open angles (775.6 µm vs 386.5 µm, P < .0001). Women had significantly greater lens vault than men (497.28 µm vs 438.56 µm, P < .001), and lens vault increased significantly with age (P for trend <.001). Adjusted for age and sex, significant associations with greater lens vault were shorter axial length, shallower anterior chamber depth(ACD), higher intraocular pressure, and more hyperopic spherical equivalent (all P < .001). On multivariate analysis, subjects with lens vault >667.6 µm were more likely to have narrow angles (OR 2.201, 95% CI: 1.070-4.526) compared to those with lens vault ≤462.7 µm. The AUC for lens vault (0.816) and ACD (0.822) for detecting narrow angles were similar (P = .582). Lens vault was independently associated with narrow angles and may be useful in screening to detect eyes with narrow angles. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.
1980-01-01
A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.
Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran
NASA Astrophysics Data System (ADS)
Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter
2016-08-01
This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.
Validation of a partial coherence interferometry method for estimating retinal shape
Verkicharla, Pavan K.; Suheimat, Marwan; Pope, James M.; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L.; Atchison, David A.
2015-01-01
To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data. PMID:26417496
Validation of a partial coherence interferometry method for estimating retinal shape.
Verkicharla, Pavan K; Suheimat, Marwan; Pope, James M; Sepehrband, Farshid; Mathur, Ankit; Schmid, Katrina L; Atchison, David A
2015-09-01
To validate a simple partial coherence interferometry (PCI) based retinal shape method, estimates of retinal shape were determined in 60 young adults using off-axis PCI, with three stages of modeling using variants of the Le Grand model eye, and magnetic resonance imaging (MRI). Stage 1 and 2 involved a basic model eye without and with surface ray deviation, respectively and Stage 3 used model with individual ocular biometry and ray deviation at surfaces. Considering the theoretical uncertainty of MRI (12-14%), the results of the study indicate good agreement between MRI and all three stages of PCI modeling with <4% and <7% differences in retinal shapes along horizontal and vertical meridians, respectively. Stage 2 and Stage 3 gave slightly different retinal co-ordinates than Stage 1 and we recommend the intermediate Stage 2 as providing a simple and valid method of determining retinal shape from PCI data.
Zurauskas, Mantas; Bradu, Adrian; Ferguson, Daniel R; Hammer, Daniel X; Podoleanu, Adrian
2016-03-01
This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed-loop tracking architecture. The dual channel system can operate in two regimes: (i) single-point Doppler signal monitoring or (ii) fast 3-D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo monitoring of the larvae heart without anesthetic or physical restraint. Such an instrument can be used to measure subtle variations in the cardiac behavior otherwise obscured by the larvae movements. A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface.
Zutz, Amelia; Nesbitt, David J
2017-08-07
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ( 2 Π 1/2 , J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf 2 N], squalane, and PFPE) at θ inc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θ s = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [E inc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θ s ) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θ s ), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (T elec < T rot < T S ) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [E inc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θ s . Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θ s ⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface
NASA Astrophysics Data System (ADS)
Zutz, Amelia; Nesbitt, David J.
2017-08-01
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Optical coherence refractometry.
Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew
2008-10-01
We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.
Speckle reduction in optical coherence tomography images based on wave atoms
Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping
2014-01-01
Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507
NASA Astrophysics Data System (ADS)
Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao
2014-12-01
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.
Advanced wave field sensing using computational shear interferometry
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.
2014-07-01
In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.
Won, Jungeun; Monroy, Guillermo L; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C; Novak, Michael A; Porter, Ryan G; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A
2018-02-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch's t- test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM.
Won, Jungeun; Monroy, Guillermo L.; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C.; Novak, Michael A.; Porter, Ryan G.; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A.
2018-01-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch’s t-test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM. PMID:29552381
Observations of Coherent Flow Structures Over Subaqueous High- and Low- Angle Dunes
NASA Astrophysics Data System (ADS)
Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.
2017-11-01
Large-scale coherent flow structures (CFSs) above dunes are the dominant source of flow resistance and constitute the principal mechanism for sediment transport and mixing in sand bed river and estuarine systems. Based on laboratory observations, CFS formation has been previously linked to flow separation downstream of high-angle dunes with lee slopes of 30°. How CFSs form in natural, deep rivers and estuaries where dunes exhibit lower lee slopes and intermittent flow separation is not well understood. Here we present particle image velocimetry measurements from an experiment where dune lee slope was systematically varied (30°, 20°, and 10°), while other geometric and hydraulic parameters were held constant. We show that CFSs form downstream of all three dune geometries from shear layer vortices in the dune lee. The mode of CFS formation undergoes a low-frequency oscillation with periods of intense vortex shedding interspersed with periods of rare vortex shedding. Streamwise alignment of several vortices during periods of intense shedding results in wedge-shaped CFSs that are advected above the dune stoss side. Streamwise length scales of wedge-shaped CFS correspond to large-scale motions (LSMs). We hypothesize that the advection of LSM over the dune crest triggers the periods of intense shedding in the dune lee. LSMs are weaker and smaller above low-angle dunes; however, the low-frequency oscillation in CFS formation periods persists. The formation of smaller and weaker CFS results in a reduction of flow resistance over low-angle dunes.
A new multifunction acousto-optic signal processor
NASA Technical Reports Server (NTRS)
Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.
1984-01-01
An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.
Global astrometry with the space interferometry mission
NASA Technical Reports Server (NTRS)
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
Fourier phase in Fourier-domain optical coherence tomography.
Uttam, Shikhar; Liu, Yang
2015-12-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.
Super-resolution method for face recognition using nonlinear mappings on coherent features.
Huang, Hua; He, Huiting
2011-01-01
Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
Partially coherent lensfree tomographic microscopy⋄
Isikman, Serhan O.; Bishara, Waheb; Ozcan, Aydogan
2012-01-01
Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 10–15 mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings. PMID:22193016
Optical phase nanoscopy in red blood cells using low-coherence spectroscopy.
Shock, Itay; Barbul, Alexander; Girshovitz, Pinhas; Nevo, Uri; Korenstein, Rafi; Shaked, Natan T
2012-10-01
We propose a low-coherence spectral-domain phase microscopy (SDPM) system for accurate quantitative phase measurements in red blood cells (RBCs) for the prognosis and monitoring of disease conditions that affect the visco-elastic properties of RBCs. Using the system, we performed time-recordings of cell membrane fluctuations, and compared the nano-scale fluctuation dynamics of healthy and glutaraldehyde-treated RBCs. Glutaraldehyde-treated RBCs possess lower amplitudes of fluctuations, reflecting an increased membrane stiffness. To demonstrate the ability of our system to measure fluctuations of lower amplitudes than those measured by the commonly used holographic phase microscopy techniques, we also constructed wide-field digital interferometry (WFDI) system and compared the performances of both systems. Due to its common-path geometry, the optical-path-delay stability of SDPM was found to be less than 0.3 nm in liquid environment, at least three times better than WFDI under the same conditions. In addition, due to the compactness of SDPM and its inexpensive and robust design, the system possesses a high potential for clinical applications.
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System
Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye
2016-01-01
In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642
DOA Finding with Support Vector Regression Based Forward-Backward Linear Prediction.
Pan, Jingjing; Wang, Yide; Le Bastard, Cédric; Wang, Tianzhen
2017-05-27
Direction-of-arrival (DOA) estimation has drawn considerable attention in array signal processing, particularly with coherent signals and a limited number of snapshots. Forward-backward linear prediction (FBLP) is able to directly deal with coherent signals. Support vector regression (SVR) is robust with small samples. This paper proposes the combination of the advantages of FBLP and SVR in the estimation of DOAs of coherent incoming signals with low snapshots. The performance of the proposed method is validated with numerical simulations in coherent scenarios, in terms of different angle separations, numbers of snapshots, and signal-to-noise ratios (SNRs). Simulation results show the effectiveness of the proposed method.
Holographic Interferometry of Oil Films and Droplets in Water with a Single-Beam Mirror-Type Scheme
2011-03-01
A simple scheme of holographic interferometry is shown in Fig. 1. A beam from an He-Ne laser (wave- length 0.632/ym), expanded by a lens (F-5cm...1 March 2011 r\\i rii cos 9 - ra2cos9f fii cos 9 + n2cos9, 2nj cos 9 t\\2 = 1 + r\\2 nx cos 9 + n2cos9, (3) Here 9r is the transmission angle ...which is related to the incidence angle by cos 9, — .11 - I tii sin9\\2 n% It follows from Eq. (3) that, for n2 > «i (as in our case of the air
Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
1994-01-01
Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.
NASA Astrophysics Data System (ADS)
Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto
2010-05-01
Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.
Optical control and diagnostics sensors for gas turbine machinery
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke
2012-10-01
There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).
Attosecond-resolved photoionization of chiral molecules.
Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y
2017-12-08
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array
NASA Astrophysics Data System (ADS)
Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo
A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.
Zhang, Tao; Gao, Feng; Jiang, Xiangqian
2017-10-02
This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.
Speckle Interferometry at SOAR in 2014
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Mendez, Rene A.; Horch, Elliott P.
2015-08-01
The results of speckle interferometric observations at the Southern Astrophysical Research Telescope (SOAR) telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.°1 in angle and 0.3% in pixel scale, while the measurement errors are on the order of 3 mas. The new data are used here to compute 194 binary star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Minimal basilar membrane motion in low-frequency hearing
Warren, Rebecca L.; Ramamoorthy, Sripriya; Ciganović, Nikola; Zhang, Yuan; Wilson, Teresa M.; Petrie, Tracy; Wang, Ruikang K.; Jacques, Steven L.; Reichenbach, Tobias; Nuttall, Alfred L.; Fridberger, Anders
2016-01-01
Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea. PMID:27407145
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
NASA Astrophysics Data System (ADS)
Tan, Zhenkun; Ke, Xizheng
2017-10-01
The variance of angle-of-arrival fluctuation of the partially coherent Gaussian-Schell Model (GSM) beam propagations in the slant path, based on the extended Huygens-Fresnel principle and the model of atmospheric refraction index structural constant proposed by the international telecommunication union-radio (ITU-R), has been investigated under the modified Hill turbulence model. The expression of that has been obtained. Firstly, the effects of optical wavelength, the inner-and-outer scale of the turbulence and turbulence intensity on the variance of angle-of-arrival fluctuation have been analyzed by comparing with the partially coherent GSM beam and the completely coherent Gaussian beam. Secondly, the variance of angle-of-arrival fluctuation has been compared with the von Karman spectrum and the modified Hill spectrum under the partially coherent GSM beam. Finally, the effects of beam waist radius and partial coherence length on the variance of angle-of-arrival of the collimated (focused) beam have been analyzed under the modified Hill turbulence model. The results show that the influence of the variance of angle-of-arrival fluctuation for the inner scale effect is larger than that of the outer scale effect. The variance of angle-of-arrival fluctuation under the modified Hill spectrum is larger than that of the von Karman spectrum. The influence of the waist radius on the variance of angle-of-arrival for the collimated beam is less than focused the beam. This study will provide a necessary theoretical basis for the experiments of partially coherent GSM beam propagation through atmosphere turbulence.
Interstellar scintillations of PSR B1919+21: space-ground interferometry
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Smirnova, T. V.; Gwinn, C. R.; Andrianov, A. S.; Popov, M. V.; Rudnitskiy, A. G.; Soglasnov, V. A.
2017-07-01
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB). The maximum baseline projection for the space-ground interferometer was about 60 000 km. We show that interstellar scintillation of this pulsar consists of two components: diffractive scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc from the observer or homogeneously distributed scattering material to the pulsar; and weak scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore, in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in observed source position. We show that the influence of the ionosphere can be ignored for the space-ground baseline. Analysis of the spatial coherence function for the space-ground baseline (RA-GB) yielded a scattering angle in the observer plane of θscat = 0.7 mas. An analysis of the time-frequency correlation function for weak scintillations yielded an angle of refraction in the direction to the pulsar θref, 0 = 110 ms and a distance to the prism zprism ≤ 2 pc.
Circumstellar Matter Studied by Spectrally-Resolved Interferometry
NASA Astrophysics Data System (ADS)
Millour, F.
2012-12-01
This paper describes some generalities about spectro-interferometry and the role it has played in the last decade for the better understanding of circumstellar matter. I provide a small history of the technique and its origins, and recall the basics of differential phase and its central role for the recent discoveries. I finally provide a small set of simple interpretations of differential phases for specific astrophysical cases, and intend to provide a "cookbook" for the other cases.
Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.
Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A
2008-03-01
In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.
Detection of a Geostationary Satellite with the Navy Prototype Optical Interferometer
2010-07-01
USA 86001 USA ABSTRACT We have detected a satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical...available at the time of our observations, resolves out structures larger than ∼ 1.5 m at the geostationary distance, while a typical size for the solar... satellite via optical interferometry for the first time , using a 16 m baseline of the Navy Prototype Optical Interferometer (NPOI) to observe the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, K.; Yang, H; Johnson, P
Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77) and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described bymore » this propagator.« less
Eye Shape Using Partial Coherence Interferometry, Autorefraction and SD OCT
Clark, Christopher A.; Elsner, Ann E.; Konynenbelt, Benjamin J.
2015-01-01
Purpose Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. SD OCT and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Methods 79 subjects right eyes were imaged for this study (age range: 22 to 34 yr, refractive error: −10 to +5.00.) Thirty deg SD OCT (Spectralis, Heidleberg) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Auto-refractor) and peripheral axial length measurements with partial coherence interferometry (PCI) (IOLmaster, Zeiss). Statistics were performed using repeat measures ANOVA in SPSS (IBM), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Results SD OCT showed a retinal shape with an increased curvature for myopes compared to emmetropes/hyperopes. This retinal shape change became significant around 5 deg. The SD OCT analysis for retinal shape provides a resolution of 0.026 dipopters, which is about ten times more accurate than using autorefraction or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD OCT and the PCI method were more consistent with one another than either was with AR. Conclusions With more accurate measures of retinal shape using SD OCT, consistent differences between emmetrope/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD OCT appear to be more accurate than autorefraction, which may be influenced other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method. PMID:25437906
Phase contrast imaging with coherent high energy X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snigireva, I.
X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less
Coherent infrared imaging camera (CIRIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.
1995-07-01
New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerousmore » and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.« less
Bai, Yulei; Jia, Quanjie; Zhang, Yun; Huang, Qiquan; Yang, Qiyu; Ye, Shuangli; He, Zhaoshui; Zhou, Yanzhou; Xie, Shengli
2016-05-01
It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.
Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Meier, St. M.; Tsankov, Ts V.; Luggenhölscher, D.; Czarnetzki, U.
2017-06-01
In this paper we show the development and the application of the terahertz time domain spectroscopy (THz TDS) diagnostic technique for the determination of plasma densities in low-pressure discharges. A commercially available system was modified to reach a better signal-to-noise ratio. For that the THz emitter and the detection method were changed and a fast lock-in amplifier was used to reach 38 MHz lock-in frequency. These modifications in a combination with the novel method of dual frequency multichannel boxcar embedded as a feature in the lock-in amplifier allowed us to make also time-resolved measurements. The temporal resolution can potentially go down to 100 ps and is limited only by the spectral range that needs to be recovered for the measurement of low electron densities. Further, the cause of artefacts found in all THz TDS based systems, but not understood until now, is identified and explained. As an application the electron densities in inductively coupled plasmas sustained in a magnetic multi-cusp chamber are determined. Results from steady-state discharges in noble gases (He, Ne, Ar, Kr, Xe) and time-resolved measurements in pulsed discharges in Ar and Ne are presented. The technique is benchmarked against microwave interferometry with good agreement in the applicability range of both techniques. The THz TDS performs reliably also in much denser plasmas where standard microwave interferometry fails. The lower limit for the technique is at a line-integrated electron density of 1012 cm-2, corresponding to about 1011 cm-3 for typical plasma dimensions.
Phase coherence and Andreev reflection in topological insulator devices
Finck, A. D. K.; Kurter, C.; Hor, Y. S.; ...
2014-11-04
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less
Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry
NASA Astrophysics Data System (ADS)
Mao, Bosi; Divoux, Thibaut; Snabre, Patrick
2017-01-01
Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels.
Low-angle X-ray scattering properties of irradiated spices
NASA Astrophysics Data System (ADS)
Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.
2007-09-01
The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.
Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M
2017-09-01
We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Resolving microstructures in Z pinches with intensity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Kroupp, E.; Maron, Y.
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less
One-dimensional angular-measurement-based stitching interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less
One-dimensional angular-measurement-based stitching interferometry
Huang, Lei; Xue, Junpeng; Gao, Bo; ...
2018-04-05
In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
Fourier phase in Fourier-domain optical coherence tomography
Uttam, Shikhar; Liu, Yang
2015-01-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383
Coherence specific signal detection via chiral pump-probe spectroscopy.
Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra
2016-05-21
We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.
An Acousto-Optical Sensor with High Angular Resolution
Kaloshin, Gennady; Lukin, Igor
2012-01-01
The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034
Apparatus for generating partially coherent radiation
Naulleau, Patrick P.
2004-09-28
The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.
Tachometer Derived From Brushless Shaft-Angle Resolver
NASA Technical Reports Server (NTRS)
Howard, David E.; Smith, Dennis A.
1995-01-01
Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.
NASA Astrophysics Data System (ADS)
Meredith, Roger W.; Kennedy, E. Ted; Malley, Dexter; Fisher, Robert A.; Brown, Robert; Stanic, Steve
2004-11-01
This paper is part of a series of papers describing acoustic coherence and fluctuations measurements made by the Naval Research Laboratory in the Gulf of Mexico near Panama City Beach, FL during June 2003. This paper presents low frequency (1-10 kHz) buried hydrophone measurements and preliminary results for two source-receiver ranges with grazing angles less than two degrees (realtive to the direct-path to the seafloor at the receiver location). Results focus on fluctuations after acoustic penetration into the sediment. These fluctuations are correlated with environmental influences.
NASA Astrophysics Data System (ADS)
Thapa, Shailaja; Chatterjee, R. S.; Kumar, Dheeraj; Singh, K. B.; Sengar, Vivek
2017-10-01
This paper presents a spatiotemporal study of surface subsidence over urban area due to coal mining using Persistent scatterer interferometry. In the past few years Differential Interferometric Synthetic Aperture Radar has emerged as a very useful remote sensing technique for measuring land subsidence. It plays a vital role in insitu subsidence prediction of coal mining area. However there are some limitation viz. atmospheric decorrelation, temporal decorrelation and spatial decorrelation with conventional D-InSAR techniques, which can be overcome up to certain extent by using multiinterferogram framework approach. The Persistent Scatterer interferometry technique comprises of more number of SAR datasets, it only concentrates over the pixel which remain coherent over long time period. Persistent Scatterer interferometry makes deformation measurement on permanent scattering location for the targeted ground surface. Mainly, these permanent scatterer are manmade features like metallic bridges, dams, antennae roof of buildings etc. apart that some permanent scatterer may comprise of prominent stable natural targets. The results obtained from PS-InSAR gives more precised measurement of surface deformation. Total eight ALOS PALSAR scenes covering the time period from 2007 to 2010 have been utilized to produce ground deformation map using PSInSAR techniques for Jharia Coal field, Dhanbad. This is proven technique, which helps to identify the persistent land surface movement .The results were analyzed Sijua area in Jharia coalfield. The subsidence fringes were demarcated over the entire study area. The PSInSAR results were validated using precision leveling data provided by mining authorities. The results demonstrates that PSInSAR can be used as potential tool to highlight the subsidence prone area depending upon the spatial and temporal coherency of SAR data.
Searching For Low-mass Companions Of Cepheids
NASA Astrophysics Data System (ADS)
Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.
2011-05-01
The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.
NASA Astrophysics Data System (ADS)
Braun, Jürgen; Minár, Ján; Ebert, Hubert
2018-04-01
Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.
NASA Astrophysics Data System (ADS)
Williams, E. F.; Martin, E. R.; Biondi, B. C.; Lindsey, N.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Dou, S.; Freifeld, B. M.; Robertson, M.; Ulrich, C.
2016-12-01
We analyze the impact of identifying and removing coherent anthropogenic noise on synthetic Green's functions extracted from ambient noise recorded on a dense linear distributed acoustic sensing (DAS) array. Low-cost, low-impact urban seismic surveys are possible with DAS, which uses dynamic strain sensing to record seismic waves incident to a buried fiber optic cable. However, interferometry and tomography of ambient noise data recorded in urban areas include coherent noise from near-field infrastructure such as cars and trains passing the array, in some cases causing artifacts in estimated Green's functions and potentially incorrect surface wave velocities. Based on our comparison of several methods, we propose an automated, real-time data processing workflow to detect and reduce the impact of these events on data from a dense array in an urban environment. We utilize a recursive STA/LTA (short-term average/long-term average) algorithm on each channel to identify sharp amplitude changes typically associated with an event arrival. In order to distinguish between optical noise and physical events, an event is cataloged only if STA/LTA is triggered on enough channels across the array in a short time window. For each event in the catalog, a conventional semblance analysis is performed across a straight segment of the array to determine whether the event has a coherent velocity signature. Events that demonstrate a semblance peak at low apparent velocities (5-50 m/s) are assumed to represent coherent transportation-related noise and are down-weighted in the time domain before cross-correlation. We show the impact of removing such noise on estimated Green's functions from ambient noise data recorded in Richmond, CA in December 2014. This method has been developed for use on a continuous time-lapse ambient noise survey collected with DAS near Fairbanks, AK, and an upcoming ambient noise survey on the Stanford University campus using DAS with a re-purposed telecommunications fiber optic cable.
NASA Astrophysics Data System (ADS)
Harter, John Wallace
Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi ≈ 0.14. In contrast, in all hole-doped cuprates, Neel order is rapidly suppressed by chi ≈ 0.03, with superconductivity following at higher doping levels. Studies of cuprates, however, often yield material-specific features that are idiosyncratic to particular compounds. By studying a completely different electron-doped cuprate, we can for the first time independently confirm that the cuprate phase diagram is fundamentally asymmetric and provide a coherent framework for understanding the generic properties of all electron-doped cuprates.
Coherent assembly of heterostructures in ternary and quaternary carbonitrides
NASA Astrophysics Data System (ADS)
Caicedo, J. C.; Aperador, W.; Saldarriaga, W.
2018-05-01
In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).
An investigation of CO2 laser scleral buckling using moiré interferometry.
Maswadi, Saher M; Dyer, Peter E; Verma, Dinesh; Jalabi, Wadah; Dave, Dinesh
2002-01-01
To demonstrate suitability of moiré interferometry to assess and quantify laser-induced shrinkage of scleral collagen for buckling procedures. Scleral buckling of human cadaver eyes was investigated using a Coherent Ultrapulse CO2 laser. Projection moiré interferometry was employed to determine the out-of plane displacement produced by laser exposure, and in-situ optical microscopy of reference markers on the eye was used to measure in-plane shrinkage. Measurements based on moiré interferometry allow a three dimensional view of shape changes in the eye surface as laser treatment proceeds. Out-of-plane displacement reaches up to 1.5 mm with a single laser spot exposure. In-plane shrinkage reached a maximum of around 30%, which is similar to that reported by Sasoh et al (Ophthalmic Surg Lasers. 1998;29:410) for a Tm:YAG laser. The moiré technique is found to be suitable for quantifying the effects of CO2 laser scleral shrinkage and buckling. This can be further developed to provide a standardized method for experimental investigations of other laser sources for scleral shrinkage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrosov, V I
2015-10-31
This paper analyses low-coherence tomography of absorbing media with the use of spatially separated counterpropagating object and reference beams. A probe radiation source based on a broadband terahertz (THz) generator that emits sufficiently intense THz waves in the spectral range 90 – 350 μm and a prism spectroscope that separates out eight narrow intervals from this range are proposed for implementing this method. This allows media of interest to be examined by low-coherence tomography with counterpropagating beams in each interval. It is shown that, according to the Rayleigh criterion, the method is capable of resolving inhomogeneities with a size nearmore » one quarter of the coherence length of the probe radiation. In addition, the proposed tomograph configuration allows one to determine the average surface asperity slope and the refractive index and absorption coefficient of inhomogeneities 180 to 700 mm in size, and obtain spectra of such inhomogeneities in order to determine their chemical composition. (laser applications and other topics in quantum electronics)« less
Simple and versatile heterodyne whole-field interferometer for phase optics characterization.
Silva, D M; Barbosa, E A; Wetter, N U
2012-10-01
A wavefront sensor for thermally induced lens and passive lens characterization based on low-coherence digital speckle interferometry was developed and studied. By illuminating the optical setup with two slightly detuned red diode lasers, whole-field contour interference fringes were generated according to the resulting synthetic wavelength. For fringe pattern visualization the optical setup used the light transmitted through a ground glass plate as object beam. The performance of the sensor was investigated and its versatility was demonstrated by measuring the thermal lens induced in an Er-doped glass sample pumped by a 1.76-W diode laser emitting at 976 nm and by evaluating the wavefront distortion introduced by an ophthalmic progressive lens.
Physical mechanism of coherent acoustic phonons generation and detection in GaAs semiconductor
NASA Astrophysics Data System (ADS)
Babilotte, P.; Morozov, E.; Ruello, P.; Mounier, D.; Edely, M.; Breteau, J.-M.; Bulou, A.; Gusev, V.
2007-12-01
We first describe the picosecond acoustic interferometry study of GaAs with two-colors pump-probe laser pulses. The dependence of the generation process on the pump wavelength and the detection process on the probe wavelength both can cause the shift in the phase of the Brillouin signal. Secondly, in order to distinguish the short high frequency wideband acoustic pulse from low frequency Brillouin contribution, we accomplished experiments with (100)GaAs semiconductor coated by a transparent and photoelastically inactive thin film, serving a delay line for the acoustic pulse. Even with highly penetrating pump light (approx 680nm), short acoustic disturbances of approx 7ps of duration have been registered.
THz QCL self-mixing interferometry for biomedical applications
NASA Astrophysics Data System (ADS)
Rakić, Aleksandar D.; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Wilson, Stephen J.; Nikolić, Milan; Valavanis, Alexander; Indjin, Dragan; Linfield, Edmund H.; Davies, A. Giles; Ferguson, Blake; Walker, Graeme; Schaider, Helmut; Soyer, H. Peter
2014-09-01
In this paper, we introduce the self-mixing phenomenon in terahertz quantum cascade lasers (THz QCLs) and present recent advancements in the development of coherent THz imaging and sensing systems that exploit the self-mixing effect. We describe an imaging method which utilises the interferometric nature of optical feedback in a THz QCL to employ it as a homodyning transceiver. This results in a highly sensitive and compact scheme. Due to the inherently low penetration depth of THz radiation in hydrated biological tissue, imaging of superficial skin is an ideal application for this technique. We present results for imaging of excised skin tissue, showing high-contrast between different tissue types and pathologies.
Angle-resolved effective potentials for disk-shaped molecules
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2014-12-01
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
New Frontiers at the Interface of General Relativity and Quantum Optics
NASA Astrophysics Data System (ADS)
Feiler, C.; Buser, M.; Kajari, E.; Schleich, W. P.; Rasel, E. M.; O'Connell, R. F.
2009-12-01
In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel’s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall.
Korkusinski, M; Studenikin, S A; Aers, G; Granger, G; Kam, A; Sachrajda, A S
2017-02-10
Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.
Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry
NASA Astrophysics Data System (ADS)
Zhu, Jian T.
1991-12-01
By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.
ERIC Educational Resources Information Center
Toal, Vincent; Mihaylova, Emilia M.
2009-01-01
This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…
NASA Astrophysics Data System (ADS)
Déau, Estelle; Dones, Luke; Mishchenko, Michael I.; West, Robert A.; Helfenstein, Paul; Hedman, Matt M.; Porco, Carolyn C.
2018-05-01
In this paper, we continue our analysis of the saturnian ring opposition effect seen by Cassini ISS. The ring opposition effect is a peak in the rings' reflectivity caused as the directions from a spot on the rings to the observer and to the light source, respectively, converge toward zero degrees. So far, the exact origin of the ring's opposition effect is still a matter of debate. In our previous work (Déau, et al., 2013, Icarus, 226, 591-603), we compared the opposition effect morphology with the rings' optical depth and found that only the slope of the linear part of the rings' phase curves was strongly correlated with the optical depth. We interpreted this as an indication of the predominant role of interparticle shadowing at moderate phase angles (α ∼ 10-40o). More recently (Déau, 2015, Icarus, 253, 311-345), we showed that interparticle shadowing cannot explain the behavior at low phase angles (α < 1o), indirectly confirming our 2013 result. These findings led to the idea that coherent backscattering is preponderant at the smallest phase angles. Coherent backscattering depends on the microscopic scale of the regolith, and there is a growing body of evidence that regolith grain size, porosity, roughness, and composition control the opposition surge behavior for α < 1o. To test this hypothesis, we compare the opposition surge morphology to the regolith albedo and other spectral properties related to the regolith, such as water ice band depths and spectral slopes derived from Cassini VIMS data (Hedman et al., 2013, Icarus, 223, 105-130). Indeed, it has been recently proven that coherent backscattering affects the water ice band depth variations with phase angle for icy saturnian regoliths (Kolokolova et al., 2010, The Astrophysical Journal Letters, 711, L71-L74). We find that the opposition surge morphology is strongly correlated with the water ice band depth and the regolith albedo. We interpret this finding as an indication that coherent backscattering plays a role in affecting both the water ice band depths and the opposition surge at low phase angles (α < 1o). As the regolith albedo and spectral properties are related to the grain size, porosity, roughness, and composition, we try to assess which of these regolith properties are preponderant in coherent backscattering. Our study is able to narrow down the parameter space of these properties, whose values allow a good match between the angular width predicted by models of coherent backscattering and the width of the observed peak.
Imaging of supersonic flow over a double elliptic surface
NASA Astrophysics Data System (ADS)
Zhang, Qing-Hu; Yi, Shi-He; He, Lin; Zhu, Yang-Zhu; Chen, Zhi
2013-11-01
The coherent structures of flow over a double elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of both laminar and turbulent inflows over the test model are captured. Based on the time-correlation images, the spatial and temporal evolutionary characteristics of the coherent structures are investigated. The flow structures in the NPLS images are in good agreement with the velocity fluctuation fields by PIV. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and the orientation of coherent structures. The results indicate that the mean structure is elliptical in shape and the structural angles in the separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structural angles of both cases increase with their distance away from the wall.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
Quantum-optical coherence tomography with classical light.
Lavoie, J; Kaltenbaek, R; Resch, K J
2009-03-02
Quantum-optical coherence tomography (Q-OCT) is an interferometric technique for axial imaging offering several advantages over conventional methods. Chirped-pulse interferometry (CPI) was recently demonstrated to exhibit all of the benefits of the quantum interferometer upon which Q-OCT is based. Here we use CPI to measure axial interferograms to profile a sample accruing the important benefits of Q-OCT, including automatic dispersion cancellation, but with 10 million times higher signal. Our technique solves the artifact problem in Q-OCT and highlights the power of classical correlation in optical imaging.
The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.
Stuhrmann, Heinrich B
2007-11-01
Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.
Development of a diffraction imaging flow cytometer
Jacobs, Kenneth M.; Lu, Jun Q.
2013-01-01
Diffraction images record angle-resolved distribution of scattered light from a particle excited by coherent light and can correlate highly with the 3D morphology of a particle. We present a jet-in-fluid design of flow chamber for acquisition of clear diffraction images in a laminar flow. Diffraction images of polystyrene spheres of different diameters were acquired and found to correlate highly with the calculated ones based on the Mie theory. Fast Fourier transform analysis indicated that the measured images can be used to extract sphere diameter values. These results demonstrate the significant potentials of high-throughput diffraction imaging flow cytometry for extracting 3D morphological features of cells. PMID:19794790
SLS-2 – the upgrade of the Swiss Light Source
Streun, Andreas; Garvey, Terence; Rivkin, Lenny; Schlott, Volker; Schmidt, Thomas; Willmott, Philip; Wrulich, Albin
2018-01-01
An upgrade of the Swiss Light Source (SLS) is planned for 2021–2024 and includes the exchange of the existing storage ring by a new one providing about 40–50 times lower emittance in user operation mode. This will extend the performance of SLS in particular in the fields of coherent imaging, full-field tomography, soft X-ray angle-resolved photoelectron spectroscopy and resonant inelastic X-ray scattering. A science case and a conceptual design for the machine have been established. As a summary of these reports, the novel lattice design, undulator developments and scientific highlights are presented. PMID:29714174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagias, M.; Cartier, S.; Wang, Z.
X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front ofmore » the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.« less
The critical angle in seismic interferometry
Van Wijk, K.; Calvert, A.; Haney, M.; Mikesell, D.; Snieder, R.
2008-01-01
Limitations with respect to the characteristics and distribution of sources are inherent to any field seismic experiment, but in seismic interferometry these lead to spurious waves. Instead of trying to eliminate, filter or otherwise suppress spurious waves, crosscorrelation of receivers in a refraction experiment indicate we can take advantage of spurious events for near-surface parameter extraction for static corrections or near-surface imaging. We illustrate this with numerical examples and a field experiment from the CSM/Boise State University Geophysics Field Camp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Adler, C.; Aggarwal, M.M.
2004-06-30
We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.
Status of holographic interferometry at University of Michigan
NASA Technical Reports Server (NTRS)
Vest, Charles
1987-01-01
Reflection holograms were taken of a jet of air injected traverse to a subsonic stream. The technique of reflection holograms allowed maximum viewing angle and minimum distance to the jet. Holographic interferometry is being used to measure the temperature distribution in a growing crystal. Computations of the temperatures are being made. A phase shift interferometer was used to study flows with very weak changes in refractive index, of the order of 1 shift. Tomographic techniques are being developed for strong refractive cases.
Eddy current imaging with an atomic radio-frequency magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.
2016-05-02
We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.
Reticular lamina and basilar membrane vibrations in the basal turn of gerbil and mouse cochleae
NASA Astrophysics Data System (ADS)
Ren, Tianying; He, Wenxuan
2018-05-01
Low-coherence interferometry in living cochleae has provided valuable information for understanding cochlear micromechanics. A recent measurement of the reticular lamina and basilar membrane vibrations in mouse cochleae, however, is inconsistent with data collected from guinea pig cochleae. To determine whether a species difference accounts for the observed difference, a custom-built heterodyne low-coherence interferometer was used to measure reticular lamina and basilar membrane vibrations at the basal turn of sensitive gerbil and mouse cochleae. For the gerbil and mouse, both the reticular lamina and basilar membrane vibrations show sharp tuning and nonlinear compressive growth near the best frequency. The magnitude of the reticular lamina vibration is significantly greater than that of the basilar membrane vibration not only near the best frequency, but also at low frequencies. The phase of the reticular lamina vibration leads the basilar membrane phase by up to 180-degrees at low frequencies, and this phase lead decreases with frequency, approaching zero near the best frequency. The best frequency of the reticular lamina and basilar membrane vibrations at the cochlear basal turn in mice is significantly higher than that in gerbils. Besides this difference, cochlear micromechanical responses in the gerbil are similar to those in the mouse. Thus, the current results indicate that gerbil and mouse cochleae detect and process sounds likely through a similar micromechanical mechanism.
Jung, H.-S.; Lu, Z.; Lee, C.-W.
2011-01-01
Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.
Polar-interferometry: what can be learnt from the IOTA/IONIC experiment
NASA Astrophysics Data System (ADS)
Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley
2008-07-01
We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.
SAR Interferometry: On the Coherence Estimation in non Stationary Scenes
NASA Astrophysics Data System (ADS)
Ballatore, P.
2005-05-01
The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, P.; Anghel, I.; Aurisano, A.
Forward single π0 production by coherent neutral-current interactions, νA→νAπ 0, is investigated using a 2.8×10 20 protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1–8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei withmore » $$\\langle$$A$$\\rangle$$=48, the highest-$$\\langle$$A$$\\rangle$$ target used to date in the study of this coherent reaction. In conclusion, the total cross section for coherent neutral-current single π 0 production initiated by the ν μ flux of the NuMI low-energy beam with mean (mode) E ν of 4.9 GeV (3.0 GeV), is 77.6±5.0(stat)$$+15.0\\atop{-16.8}$$(syst)×10 -40 cm 2 pernucleus. Finally, the results are in good agreement with predictions of the Berger-Sehgal model.« less
Adamson, P.; Anghel, I.; Aurisano, A.; ...
2016-10-26
Forward single π0 production by coherent neutral-current interactions, νA→νAπ 0, is investigated using a 2.8×10 20 protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1–8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei withmore » $$\\langle$$A$$\\rangle$$=48, the highest-$$\\langle$$A$$\\rangle$$ target used to date in the study of this coherent reaction. In conclusion, the total cross section for coherent neutral-current single π 0 production initiated by the ν μ flux of the NuMI low-energy beam with mean (mode) E ν of 4.9 GeV (3.0 GeV), is 77.6±5.0(stat)$$+15.0\\atop{-16.8}$$(syst)×10 -40 cm 2 pernucleus. Finally, the results are in good agreement with predictions of the Berger-Sehgal model.« less
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2015-11-01
We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.
Compressed-sensing wavenumber-scanning interferometry
NASA Astrophysics Data System (ADS)
Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli
2018-01-01
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.
Spatially resolved photodiode response for simulating precise interferometers.
Fernández Barranco, Germán; Tröbs, Michael; Müller, Vitali; Gerberding, Oliver; Seifert, Frank; Heinzel, Gerhard
2016-08-20
Quadrant photodiodes (QPDs) are used in laser interferometry systems to simultaneously detect longitudinal displacement of test masses and angular misalignment between the two interfering beams. The latter is achieved by means of the differential wavefront sensing (DWS) technique, which provides ultra-high precision for measuring angular displacements. We have developed a setup to obtain the spatially resolved response of QPDs that, together with an extension of the simulation software IfoCAD, allows us to use the measured response in simulations and accurately predict the desired longitudinal and DWS phase observables. Three different commercial off-the-shelf QPD candidates for space-based interferometry were characterized. The measured response of one QPD was used in optical simulations. Nonuniformities in the response of the device and crosstalk between segments do not introduce significant variations in the longitudinal and DWS measurands with respect to the standard case when a uniform QPD without crosstalk is used.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite
NASA Astrophysics Data System (ADS)
Habib, K. M. Masum; Sylvia, Somaia S.; Ge, Supeng; Neupane, Mahesh; Lake, Roger K.
2013-12-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm2. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.
A coherent fiber link for very long baseline interferometry.
Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide
2015-11-01
We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.
Tarutta, E P; Milash, S V; Tarasova, N A; Romanova, L I; Markosian, G A; Epishina, M V
2014-01-01
To determine the posterior pole contour of the eye based on the relative peripheral refractive error and relative eye length. A parallel study was performed, which enrolled 38 children (76 eyes) with myopia from -1.25 to -10.82 diopters. The patients underwent peripheral refraction assessment with WR-5100K Binocular Auto Refractometer ("Grand Seiko", Japan) and partial coherence tomography with IOLMaster ("Carl Zeiss", Germany) for the relative eye length in areas located 15 and 30 degrees nasal and temporal from the central fovea along the horizontal meridian. In general, refractometry and interferometry showed high coincidence of defocus signs and values for the areas located 15 and 30 degrees nasal as well as 15 degrees temporal from the fovea. However, in 41% of patients defocus signs determined by the two methods mismatched in one or more areas. Most of the mismatch cases were mild myopia. We suppose that such a mismatch is caused by optical peculiarities of the anterior eye segment that have an impact on refractometry results.
Kolega, Marija Škara; Kovačević, Suzana; Čanović, Samir; Pavičić, Ana Didović; Bašić, Jadranka Katušić
2015-03-01
Postoperative refractive outcome largely depends on the accuracy of calculating power of implanted IOL. Lens power calculation can be done by conventional ultrasound biometry and partial coherence laser interferometry (IOL Master). The aim was to compare the accuracy of IOL power calculations using conventional ultrasound biometry and partial coherence laser interferometry.40 eyes were included in this prospective randomized trial. Twenty eyes underwent IOL master and 20 eyes had aplanation ultrasound biometry. There were included only eyes with age-related cataract and postoperative natural visual acuity (VA) 0.7. Visual acuity was performed 6 weeks after cataract surgery. After 6 weeks best natural visual acuity were 0.9 (± 0.1) in IOL-Master group and 0.85 (± 0.15) in ultrasound biometry. The postoperative mean absolute refractive error was 0.75 (± 0.5) D for ultrasound biometry and 0.50 (± 0.50) D for IOL-Master. Optical biometry with the IOL-Master proved to be slightly more accurate than ultrasound biometry for IOL power calculation.
Wafer-shape metrics based foundry lithography
NASA Astrophysics Data System (ADS)
Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng
2017-03-01
As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.
Analyzing the texture changes in the quantitative phase maps of adipocytes
NASA Astrophysics Data System (ADS)
Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.
2016-03-01
We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.
Determinants and two-year change in anterior chamber angle width in a Chinese population.
Congdon, Nathan G; Kong, Xiangbin; Meltzer, Mirjam E; Chen, Qianyun; Zeng, Yangfa; Huang, Yuanzhou; Zhang, Jian; He, Mingguang
2012-12-01
To study the population distribution and longitudinal changes in anterior chamber angle width and its determinants among Chinese adults. Prospective cohort, population-based study. Persons aged 35 years or more residing in Guangzhou, China, who had not previously undergone incisional or laser eye surgery. In December 2008 and December 2010, all subjects underwent automated keratometry, and a random 50% sample had anterior segment optical coherence tomography with measurement of angle-opening distance at 500 μm (AOD500), angle recess area (ARA), iris thickness at 750 μm (IT750), iris curvature, pupil diameter, corneal thickness, anterior chamber width (ACW), lens vault (LV), and lens thickness (LT) and measurement of axial length (AL) and anterior chamber depth (ACD) by partial coherence laser interferometry. Baseline and 2-year change in AOD500 and ARA in the right eye. A total of 745 subjects were present for full biometric testing in both 2008 and 2010 (mean age at baseline, 52.2 years; standard deviation [SD], 11.5 years; 53.7% were female). Test completion rates in 2010 varied from 77.3% (AOD500: 576/745) to 100% (AL). Mean AOD500 decreased from 0.25 mm (SD, 0.13 mm) in 2008 to 0.21 mm (SD, 13 mm) in 2010 (difference, -0.04; 95% confidence interval [CI], -0.05 to -0.03). The ARA decreased from 21.5 ± 3.73 10(-2) mm(2) to 21.0 ± 3.64 10(-2) mm(2) (difference, -0.46; 95% CI, -0.52 to -0.41). The decrease in both was most pronounced among younger subjects and those with baseline AOD500 in the widest quartile at baseline. The following baseline variables were significantly associated with a greater 2-year decrease in both AOD500 and ARA: deeper ACD, steeper iris curvature, smaller LV, greater ARA, and greater AOD500. By using simple regression models, we could explain 52% to 58% and 93% of variation in baseline AOD500 and ARA, respectively, but only 27% and 16% of variation in 2-year change in AOD500 and ARA, respectively. Younger persons and those with the least crowded anterior chambers at baseline have the largest 2-year decreases in AOD500 and ARA. The ability to predict change in angle width based on demographic and biometric factors is relatively poor, which may have implications for screening. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Lee, Sang-Mok; Choi, Hyuk Jin; Choi, Heejin; Kim, Mee Kum; Wee, Won Ryang
2016-10-07
BACKGROUND: Though the development and fitting of scleral contact lenses are expanding steadily, there is no simple method to provide scleral metrics for scleral contact lens fitting yet. The aim of this study was to establish formulae for estimation of the axial radius of curvature (ARC) of the anterior sclera using ocular biometric parameters that can be easily obtained with conventional devices. A semi-automated stitching method and a computational analysis tool for calculating ARC were developed by using the ImageJ and MATLAB software. The ARC of all the ocular surface points were analyzed from the composite horizontal cross-sectional images of the right eyes of 24 volunteers; these measurements were obtained using anterior segment optical coherence tomography for a previous study (AS-OCT; Visante). Ocular biometric parameters were obtained from the same volunteers with slit-scanning topography and partial coherence interferometry. Correlation analysis was performed between the ARC at 8 mm to the axis line (ARC[8]) and other ocular parameters (including age). With ARC obtained on several nasal and temporal points (7.0, 7.5, 8.0, 8.5, and 9.0 mm from the axis line), univariate and multivariate linear regression analyses were performed to develop a model for estimating ARC with the help of ocular biometric parameters. Axial length, spherical equivalent, and angle kappa showed correlations with temporal ARC[8] (tARC[8]; Pearson's r = 0.653, -0.579, and -0.341; P = 0.001, 0.015, and 0.015, respectively). White-to-white corneal diameter (WTW) and anterior chamber depth (ACD) showed correlation with nasal ARC[8] (nARC[8]; Pearson's r = -0.492 and -0.461; P = 0.015 and 0.023, respectively). The formulae for estimating scleral curvatures (tARC, nARC, and average ARC) were developed as a function of axial length, ACD, WTW, and distance from the axis line, with good determinant power (72 - 80 %; SPSS ver. 22.0). Angle kappa showed strong correlation with axial length (Pearson's r = -0.813, P <0.001), and the different correlation patterns of nasal and temporal ARC with axial length can be explained by the ocular surface deviation represented by angle kappa. Axial length, ACD, and WTW are useful parameters for estimating the ARC of the anterior sclera, which is important for the haptic design of scleral contact lenses. Angle kappa affects the discrepancies between the nasal and temporal scleral curvature.
Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes
NASA Astrophysics Data System (ADS)
Buckup, Tiago; Motzkus, Marcus
2014-04-01
Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.
NASA Astrophysics Data System (ADS)
Lin, Ming-Wei; Jovanovic, Igor
2016-09-01
We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L
2014-06-06
Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.
A Model of Low Grazing Angle Sea Clutter for Coherent Radar Performance Analysis
2013-06-01
Navy Communications & Information Warfare Doc. Data Sheet Director General Navy Certification and Safety Doc. Data Sheet Director General Submarine...Abstracts, US 1 Documents Librarian , The Center for Research Libraries, US 1 International Technology and Science Center (ITSC) Library 1 Spare Copies 4
Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco
2016-01-01
In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931
Preliminary investigation of Zagros thrust-fold-belt deformation using SAR interferometry
NASA Technical Reports Server (NTRS)
Nilforoushan, Faramarz; Talbot, Christopher J.; Fielding, Eric J.
2005-01-01
Most of the Zagros deformation resulting from the convergence of Arabia and Eurasia takes place in the Southeast Zagros. To apply the SAR interferometry geodetic technique, a few ERS 1 & 2 satellite images were used to map this continuing deformation proven by GPS. Interferograms over 7 years show surprisingly high coherence. The unwrapped phases display a high correlation with topography reflecting atmospheric noise in addition to the desired tectonic signal. We estimate two simple linear trends and remove them from interferograms. The preliminary results show local uplift rates with a likely minimum of 1-2 mm/yr. These early crude results will be tested by more data in project No. 3174.
Displacement interferometry with stabilization of wavelength in air.
Lazar, Josef; Holá, Miroslava; Cíp, Ondřej; Cížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2012-12-03
We present a concept of suppression of the influence of variations of the refractive index of air in displacement measuring interferometry. The principle is based on referencing of wavelength of the coherent laser source in atmospheric conditions instead of traditional stabilization of the optical frequency and indirect evaluation of the refractive index of air. The key advantage is in identical beam paths of the position measuring interferometers and the interferometer used for the wavelength stabilization. Design of the optical arrangement presented here to verify the concept is suitable for real interferometric position sensing in technical practice especially where a high resolution measurement within some limited range in atmospheric conditions is needed, e.g. in nanometrology.
Scattering of surface electrons by isolated steps versus periodic step arrays
NASA Astrophysics Data System (ADS)
Ortega, J. E.; Lobo-Checa, J.; Peschel, G.; Schirone, S.; Abd El-Fattah, Z. M.; Matena, M.; Schiller, F.; Borghetti, P.; Gambardella, P.; Mugarza, A.
2013-03-01
We investigate the scattering of electrons belonging to Shockley states of (111)-oriented noble metal surfaces using angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). Both ARPES and STM indicate that monatomic steps on a noble metal surface may act either as strongly repulsive or highly transmissive barriers for surface electrons, depending on the coherence of the step lattice, and irrespectively of the average step spacing. By measuring curved crystal surfaces with terrace length ranging from 30 to 180 Å, we show that vicinal surfaces of Au and Ag with periodic step arrays exhibit a remarkable wave function coherence beyond 100 Å step spacings, well beyond the Fermi wavelength limit and independently of the projection of the bulk band gap on the vicinal plane. In contrast, the analysis of transmission resonances investigated by STM shows that a pair of isolated parallel steps defining a 58 Å wide terrace confines and decouples the surface state of the small terrace from that of the (111) surface. We conclude that the formation of laterally confined quantum well states in vicinal surfaces as opposed to propagating superlattice states depends on the loss of coherence driven by imperfection in the superlattice order.
Role of coherence in microsphere-assisted nanoscopy
NASA Astrophysics Data System (ADS)
Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.
2017-06-01
The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.
From master slave interferometry to complex master slave interferometry: theoretical work
NASA Astrophysics Data System (ADS)
Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian
2018-03-01
A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.
Galloway, D.L.; Hoffmann, J.
2007-01-01
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Sun, Yue; Kittaka, Shunichiro; Nakamura, Shota; Sakakibara, Toshiro; Irie, Koki; Nomoto, Takuya; Machida, Kazushige; Chen, Jingting; Tamegai, Tsuyoshi
2017-12-01
Quasiparticle excitations in FeSe were studied by means of specific heat (C ) measurements on a high-quality single crystal under rotating magnetic fields. The field dependence of C shows three-stage behavior with different slopes, indicating the existence of three gaps (Δ1,Δ2, and Δ3). In the low-temperature and low-field region, the azimuthal angle (ϕ ) dependence of C shows a fourfold symmetric oscillation with a sign change. On the other hand, the polar angle (θ ) dependence manifests as an anisotropy-inverted twofold symmetry with unusual shoulder behavior. Combining the angle-resolved results and the theoretical calculation, the smaller gap Δ1 is proved to have two vertical-line nodes or gap minima along the kz direction, and is determined to reside on the electron-type ɛ band. Δ2 is found to be related to the electron-type δ band, and is isotropic in the a b plane but largely anisotropic out of the plane. Δ3 residing on the hole-type α band shows a small out-of-plane anisotropy with a strong Pauli paramagnetic effect.
NASA Astrophysics Data System (ADS)
Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.
2016-12-01
Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Laser-induced plasmas in air studied using two-color interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zefeng; Wu, Jian, E-mail: jxjawj@mail.xjtu.edu.cn; Li, Xingwen
2016-08-15
Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10{sup 24 }m{sup −3} at 304 ns.more » The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10{sup 25 }m{sup −3}, corresponding to air compression of a factor of 1.7–2.5.« less
Direct characterization of photoinduced lattice dynamics in BaFe 2As 2
Gerber, S.; Kim, K. W.; Zhang, Y.; ...
2015-06-08
Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe 2As 2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent latticemore » dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.« less
Direct characterization of photoinduced lattice dynamics in BaFe2As2
Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P.S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.
2015-01-01
Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704
Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2
Leuenberger, D.; Sobota, J. A.; Yang, S. -L.; ...
2018-04-06
Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less
Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuenberger, D.; Sobota, J. A.; Yang, S. -L.
Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less
Dehybridization of f and d states in the heavy-fermion system YbRh2Si2
NASA Astrophysics Data System (ADS)
Leuenberger, D.; Sobota, J. A.; Yang, S.-L.; Pfau, H.; Kim, D.-J.; Mo, S.-K.; Fisk, Z.; Kirchmann, P. S.; Shen, Z.-X.
2018-04-01
We report an optically induced reduction of the f -d hybridization in the prototypical heavy-fermion compound YbRh2Si2 . We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4 f and Rh 4 d states before the lattice temperature increases after pumping. Overall, the f -d hybridization decreases smoothly with increasing electronic temperature up to ˜250 K but changes slope at ˜100 K . This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, we observe a persistent f -d hybridization up to at least ˜250 K , which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.
Grain boundary character, and carbide size and spatial distribution in a ternary nickel alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.; Gao, M.; Harlow, D.G.
1995-06-01
A preliminary investigation of the grain boundary character and its relationship to carbide distribution in a Ni-18Cr-18Fe ternary alloy was conducted. The results showed that there was a strong preference for the formation of {Sigma}3 (44.6%) and twin-related {Sigma}9 and {Sigma}27 CSL boundaries. If the coherent {Sigma}3{sub c} twin and the twin-related boundaries are excluded, then the distribution would consist of nearly 80% random (high angle) boundaries and about 20% CSL (with {Sigma} {<=} 49) boundaries. The size and spacing of grain boundary carbides were influenced by grain boundary {Sigma}; the carbides being smaller and more closely spaced on themore » {Sigma}1, {Sigma}9 and {Sigma}27 boundaries, and none could be resolved on the coherent {Sigma}3 twin boundaries. The results could be understood, in part, in terms of the influence of grain boundary energy, but the understanding is incomplete. Further studies are in progress and will be reported.« less
Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures
NASA Astrophysics Data System (ADS)
Pereira, Filipe S.; Eça, Luís; Vaz, Guilherme; Girimaji, Sharath S.
2018-06-01
The objective of this work is to investigate the challenges encountered in Scale-Resolving Simulations (SRS) of turbulent wake flows driven by spatially-developing coherent structures. SRS of practical interest are expressly intended for efficiently computing such flows by resolving only the most important features of the coherent structures and modelling the remainder as stochastic field. The success of SRS methods depends upon three important factors: i) ability to identify key flow mechanisms responsible for the generation of coherent structures; ii) determine the optimum range of resolution required to adequately capture key elements of coherent structures; and iii) ensure that the modelled part is comprised nearly exclusively of fully-developed stochastic turbulence. This study considers the canonical case of the flow around a circular cylinder to address the aforementioned three key issues. It is first demonstrated using experimental evidence that the vortex-shedding instability and flow-structure development involves four important stages. A series of SRS computations of progressively increasing resolution (decreasing cut-off length) are performed. An a priori basis for locating the origin of the coherent structures development is proposed and examined. The criterion is based on the fact that the coherent structures are generated by the Kelvin-Helmholtz (KH) instability. The most important finding is that the key aspects of coherent structures can be resolved only if the effective computational Reynolds number (based on total viscosity) exceeds the critical value of the KH instability in laminar flows. Finally, a quantitative criterion assessing the nature of the unresolved field based on the strain-rate ratio of mean and unresolved fields is examined. The two proposed conditions and rationale offer a quantitative basis for developing "good practice" guidelines for SRS of complex turbulent wake flows with coherent structures.
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.
2016-08-01
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.
Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.
2015-01-01
We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836
Speckle interferometry at SOAR in 2012 and 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I., E-mail: atokovinin@ctio.noao.edu, E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil
2014-05-01
We report the results of speckle runs at the 4.1 m Southern Astronomical Research telescope in 2012 and 2013. A total of 586 objects were observed. We give 699 measurements of 487 resolved binaries and upper detection limits for 112 unresolved stars. Eleven pairs (including one triple) were resolved for the first time. Orbital elements have been determined for the first time for 13 pairs; orbits of another 45 binaries are revised or updated.
Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects
Deng, Shijie; Wang, Peng; Yu, Xinglong
2017-01-01
Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology. PMID:29206182
Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry
NASA Astrophysics Data System (ADS)
Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan
2016-04-01
The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).
Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
So, Peter T.
2016-03-01
Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.
Speckle interferometric measurements of binary stars. IX
NASA Technical Reports Server (NTRS)
Hartkopf, W. I.; Gaston, B. J.; Fekel, F. C.; Hendry, E. M.; Mcalister, H. A.
1984-01-01
Four hundred-forty measurements of 232 binary stars observed during 1981 by means of speckle interferometry with the 4-m telescope at KPNO are represented. Newly resolved systems include Xi-1 Cet, Rho Her A, HD 187321, and 59 Cyg A.
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Kervella, P.; Moser Faes, D.; Dalla Vedova, G.; Mérand, A.; Le Bouquin, J.-B.; Espinosa Lara, F.; Rieutord, M.; Bendjoya, P.; Carciofi, A. C.; Hadjara, M.; Millour, F.; Vakili, F.
2014-09-01
Context. Rotation significantly impacts on the structure and life of stars. In phases of high rotation velocity (close to critical), the photospheric structure can be highly modified, and present in particular geometrical deformation (rotation flattening) and latitudinal-dependent flux (gravity darkening). The fastest known rotators among the nondegenerate stars close to the main sequence, Be stars, are key targets for studying the effects of fast rotation on stellar photospheres. Aims: We seek to determine the purely photospheric parameters of Achernar based on observations recorded during an emission-free phase (normal B phase). Methods: Several recent works proved that optical/IR long-baseline interferometry is the only technique able to sufficiently spatially resolve and measure photospheric parameters of fast rotating stars. We thus analyzed ESO-VLTI (PIONIER and AMBER) interferometric observations of Achernar to measure its photospheric parameters by fitting our physical model CHARRON using a Markov chain Monte Carlo method. This analysis was also complemented by spectroscopic, polarimetric, and photometric observations to investigate the status of the circumstellar environment of Achernar during the VLTI observations and to cross-check our model-fitting results. Results: Based on VLTI observations that partially resolve Achernar, we simultaneously measured five photospheric parameters of a Be star for the first time: equatorial radius (equatorial angular diameter), equatorial rotation velocity, polar inclination, position angle of the rotation axis projected on the sky, and the gravity darkening β coefficient (effective temperature distribution). The close circumstellar environment of Achernar was also investigated based on contemporaneous polarimetry, spectroscopy, and interferometry, including image reconstruction. This analysis did not reveal any important circumstellar contribution, so that Achernar was essentially in a normal B phase at least from mid-2009 to end-2012, and the model parameters derived in this work provide a fair description of its photosphere. Finally, because Achernar is the flattest interferometrically resolved fast rotator to-date, the measured β and flattening, combined with values from previous works, provide a crucial test for a recently proposed gravity darkening model. This model offers a promising explanation to the fact that the measured β parameter decreases with flattening and shows significantly lower values than the classical prediction of von Zeipel. Based on observations performed at ESO, Chile under VLTI PIONIER and AMBER programme IDs 087.D-0150 and 084.D-0456.
NASA Technical Reports Server (NTRS)
Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.;
2016-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
Ramsey, Elijah W.; Lu, Z.; Rangoonwala, A.; Rykhus, Russ
2006-01-01
ERS-1 and ERS-2 SAR data were collected in tandem over a four-month period and used to generate interferometric coherence, phase, and intensity products that we compared to a classified land cover coastal map of Big Bend, Florida. Forests displayed the highest intensity, and marshes the lowest. The intensity for fresh marsh and forests progressively shifted while saline marsh intensity variance distribution changed with the season. Intensity variability suggested instability between temporal comparisons. Forests, especially hardwoods, displayed lower coherences and marshes higher. Only marshes retained coherence after 70 days. Coherence was more responsive to land cover class than intensity and provided discrimination in winter. Phase distributions helped reveal variation in vegetation structure, identify broad land cover classes and unique within-class variations, and estimate water-level changes. Copyright ?? 2006 by V. H. Winston & Son, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
Structure and texture analysis of PVC foils by neutron diffraction.
Kalvoda, L; Dlouhá, M; Vratislav, S
2010-01-01
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed. Copyright 2009 Elsevier Ltd. All rights reserved.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)
NASA Astrophysics Data System (ADS)
Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.
2014-12-01
(Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Rowe, David; Smith, Thomas C.; Teiche, Alex; Harshaw, Richard; Wallace, Daniel; Weise, Eric; Wiley, Edward; Boyce, Grady; Boyce, Patrick; Branston, Detrick; Chaney, Kayla; Clark, R. Kent; Estrada, Chris; Frey, Thomas; Estrada, Reed; Green, Wayne; Haurberg, Nathalie; Kenney, John; Jones, Greg; Loftin, Sheri; McGieson, Izak; Patel, Rikita; Plummer, Josh; Ridgely, John; Trueblood, Mark; Westergren, Donald; Wren, Paul
2015-09-01
Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electronmultiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The data base of well over one million images was reduced with the Speckle Interferometry Tool of PlateSolve 3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Multi-modality endoscopic imaging for the detection of colorectal cancer
NASA Astrophysics Data System (ADS)
Wall, Richard Andrew
Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
Petruccelli, Jonathan C; Alonso, Miguel A
2007-09-01
We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito
A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less
NASA Astrophysics Data System (ADS)
Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.
1992-01-01
An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.
Stellar Temporal Intensity Interferometry
NASA Astrophysics Data System (ADS)
Kian, Tan Peng
Stellar intensity interferometry was developed by Hanbury-Brown & Twiss [1954, 1956b, 1957, 1958] to bypass the diffraction limit of telescope apertures, with successful measurements including the determination of 32 stellar angular diameters using the Narrabri Stellar Intensity Interferometer [Hanbury-Brown et al., 1974]. This was achieved by measuring the intensity correlations between starlight received by a pair of telescopes separated by varying baselines b which, by invoking the van Cittert-Zernicke theorem [van Cittert, 1934; Zernicke, 1938], are related to the angular intensity distributions of the stellar light sources through a Fourier transformation of the equal-time complex degree of coherence gamma(b) between the two telescopes. This intensity correlation, or the second order correlation function g(2) [Glauber, 1963], can be described in terms of two-photoevent coincidence measurements [Hanbury-Brown, 1974] for our use of photon-counting detectors. The application of intensity interferometry in astrophysics has been largely restricted to the spatial domain but not found widespread adoption due to limitations by its signal-to-noise ratio [Davis et al., 1999; Foellmi, 2009; Jensen et al., 2010; LeBohec et al., 2008, 2010], although there is a growing movement to revive its use [Barbieri et al., 2009; Capraro et al., 2009; Dravins & Lagadec, 2014; Dravins et al., 2015; Dravins & LeBohec, 2007]. In this thesis, stellar intensity interferometry in the temporal domain is investigated instead. We present a narrowband spectral filtering scheme [Tan et al., 2014] that allows direct measurements of the Lorentzian temporal correlations, or photon bunching, from the Sun, with the preliminary Solar g(2)(tau = 0) = 1.3 +/- 0.1, limited mostly by the photon detector response [Ghioni et al., 2008], compared to the theoretical value of g(2)(0) = 2. The measured temporal photon bunching signature of the Sun exceeded the previous records of g(2)(0) = 1.03 [Karmakar et al., 2012] and g(2)(0) = 1.04 [Liu et al., 2014] by an order of magnitude. In order to study possible effects of atmospheric turbulence [Blazej et al., 2008; Cavazzani et al., 2012; Dravins et al., 1997] on temporal intensity interferometry, the filtering scheme was improved so that the required integration time of measurement reduced from 45 minutes previously to only 4 minutes, which allowed for timing correlation measurements of Sunlight in 1° intervals of elevation angular position to probe the atmospheric dependence. The instruments were used to measure the temporal photon bunching signal of the Sun from 11:36 am to 5:36 pm, covering Solar elevation angles from approximately 70° just before noon to about 20° by the evening, corresponding to different depths of atmospheric air column [Bennett, 1982; Marini & Murray, 1973] the sunlight passed through. The thereby obtained Solar g (2)(tau = 0) = 1.693 +/- 0.003 exceeded our previous record, due to improved suppression of the blackbody spectrum outside the target bandwidth. The Solar photon bunching signature was compatible with control measurements of an Argon arc lamp with g(2)(tau = 0) = 1.687 +/- 0.004, which served as a blackbody light source of temperature T = 6000K. This suggests that the atmospheric and weather conditions have no measurable effects on temporal intensity interferometry for a 2GHz optical bandwidth after narrowband spectral filtering. The instruments were exposed to a light source simulating astrophysical scenarios, created by mixing the blackbody radiation from the Argon arc lamp with laser light at 513.8 nm. The spectral filtering scheme was able to isolate the laser light by filtering the blackbody spectrum to only Deltanu FWHM ≈ 2GHz and thus suppressing the blackbody contribution to the order of 104 photoevents/sec. The instruments were thus able to identify coherent laser light contributions of 3 x 10 4 photoevents/sec within the blackbody spectrum, which is a situation that Optical SETI [Drake, 1961; Dyson, 1960; Forgan, 2014; Korpela et al., 2011; Merali, 2015; Sagan & Drake, 1975; Townes, 1983] may have to identify. The final scenario tested was to identify the laser light at 513.8 nm that has been Doppler broadened by a suspension of mono-dispersive microspheres [Dravins & Lagadec, 2014; Dravins et al., 2015]. We found that g(2)(0) = 1.227 +/- 0.005 and determined the coherence time of the broadened laser signal to be tauc = 44 +/- 2 ns, corresponding to a linewidth of about 23MHz which is comparable to the predicted linewidth values for natural lasers [Dravins & Germana, 2008; Griest et al., 2010; Johansson & Letokhov, 2005; Roche et al., 2012; Strelnitski et al., 1995; Taylor, 1983; Tellis & Marcy, 2015]. These results suggest that the narrowband spectral filtering technique developed in this thesis may provide a useful tool for revisiting intensity correlation measurements in astronomy again.
Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture
Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D.
2017-01-01
Abstract. Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications. PMID:28301634
Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture
NASA Astrophysics Data System (ADS)
Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D.
2017-01-01
Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.
Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng
2018-01-08
An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.
Techniques in Broadband Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J
2004-01-04
This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less
Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment
NASA Astrophysics Data System (ADS)
Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.
2017-12-01
Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.
NASA Astrophysics Data System (ADS)
Ke, Jingtang; Pryputniewicz, Ryszard J.
Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.
Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.
Geraci, Andrew A; Derevianko, Andrei
2016-12-23
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR
NASA Technical Reports Server (NTRS)
Lavalle, M.; Hensley, S.; Simard, M.
2011-01-01
We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.
Stall behavior of a scaled three-dimensional wind turbine blade
NASA Astrophysics Data System (ADS)
Mulleners, Karen; Melius, Matthew; Cal, Raul Bayoan
2014-11-01
The power generation of a wind turbine is influenced by many factors including the unsteady incoming flow characteristics, pitch regulation, and the geometry of the various turbine components. Within the framework of maximizing energy extraction, it is important to understand and tailor the aerodynamics of a wind turbine. In the interest of seeking further understanding into the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. A wind tunnel experiment has been carried out in the 2.2 m × 1.8 m cross-section closed loop wind tunnel at DLR in Göttingen by means of time-resolved stereoscopic PIV. An extensive coherent structure analysis of the time-resolved velocity field over the suction side of the blade was performed to study stall characteristics under a geometrically induced pressure gradient. In particular, the radial extent and propagation of stalled flow regions were characterized for various static angles of attack.
Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates
NASA Astrophysics Data System (ADS)
Ueba, H.; Sawabu, T.; Mii, T.
2002-04-01
We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.
NASA Astrophysics Data System (ADS)
Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.
2015-12-01
Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.
Micro-optical coherence tomography of the mammalian cochlea
Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.
2016-01-01
The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610
NASA Astrophysics Data System (ADS)
Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.
2017-10-01
We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.
NASA Astrophysics Data System (ADS)
Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael
2018-03-01
Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.
Multi-angle lensless digital holography for depth resolved imaging on a chip.
Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan
2010-04-26
A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.
Analysis of surface structures of chemically peculiar stars with modern and future interferometers
NASA Astrophysics Data System (ADS)
Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.
2014-07-01
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
Laser holographic interferometry for an unsteady airfoil in dynamic stall
NASA Technical Reports Server (NTRS)
Lee, G.; Buell, D. A.; Licursi, J. P.; Craig, J. E.
1983-01-01
Laser holographic interferometry was used to study a two-dimensional NACA 0012 airfoil undergoing dynamic stall. The airfoil, fabricated from graphite fiber and epoxy, was tested at Mach numbers of 0.3 to 0.6, at Reynolds numbers of 500,000-2,000,000, at reduced frequencies of 0.015 to 0.15, and at mean angles of attack of 0-10 deg with amplitudes of 10 deg. Density and pressure fields were obtained from dual-plate interferograms. Double-pulse interferograms, which seemed to show the wake boundaries better, were also taken. Comparisons of pressures with orifice pressures were good for the attached flow cases. For the separated flow cases, which had a vortex enbedded in the flow, the comparisons were poor. Vortices, wake structures, and the dynamic stall process can be seen by holographic interferometry.
McNabb, Ryan P.; Challa, Pratap; Kuo, Anthony N.; Izatt, Joseph A.
2015-01-01
Clinically, gonioscopy is used to provide en face views of the ocular angle. The angle has been imaged with optical coherence tomography (OCT) through the corneoscleral limbus but is currently unable to image the angle from within the ocular anterior chamber. We developed a novel gonioscopic OCT system that images the angle circumferentially from inside the eye through a custom, radially symmetric, gonioscopic contact lens. We present, to our knowledge, the first 360° circumferential volumes (two normal subjects, two subjects with pathology) of peripheral iris and iridocorneal angle structures obtained via an internal approach not typically available in the clinic. PMID:25909021
Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng
2016-03-15
In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less
NASA Astrophysics Data System (ADS)
Fu, Qiang; Gao, Duorui; Liu, Zhi; Chen, Chunyi; Lou, Yan; Jiang, Huilin
2014-11-01
Based on partially coherent polarized light transmission characteristics of the atmosphere, an intensity expression of completely coherent flashing light is derived from Andrews scale modulation method. According to the generalized Huygens-Fresnel principle and Rytov theory, the phase fluctuation structure function is obtained on condition that the refractive index profile in the atmosphere meet Von Karman spectrum, then get the arrival Angle fluctuation variance. Through the RMS beam width of gaussian beams in turbulent atmosphere, deviation angle formula of fully coherent gaussian beams in turbulence atmosphere is attained, then get the RMS beam width of partially coherent and derivation angle expression of GSM beam in turbulent atmosphere. Combined with transmission properties of radial polarized laser beam, cross spectral density matrix of partially coherent radially polarized light can be gained by using generalized huygens-fresnel principle. And light intensity and polarization after transmission can be known according to the unity of coherence and polarization theory. On the basis of the analysis model and numerical simulation, the simulation results show that: the light spot caused by atmospheric turbulence of partially coherent polarization will be superior to completely polarized light.Taking advantage of this feature, designed a new wireless suppression technology of atmospheric turbulence, that is the optimization criterion of initial degree of coherent light beam. The optimal initial degree of coherent light beam will change along with the change of atmospheric turbulence conditions,make control the beam's initial degree of coherence to realize the initial degree of coherence of light beam in real time and dynamic control. A spatial phase screen before emission aperture of fully coherent light is to generate the partially coherent light, liquid crystal spatial light modulator is is a preferable way to realize the dynamic random phase. Finally look future of the application research of partially coherent light.
Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne
2018-06-18
Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
Accuracy of a new partial coherence interferometry analyser for biometric measurements.
Holzer, M P; Mamusa, M; Auffarth, G U
2009-06-01
Precise biometry is an essential preoperative measurement for refractive surgery as well as cataract surgery. A new device based on partial coherence interferometry technology was tested and evaluated for accuracy of measurements. In a prospective study 200 eyes of 100 healthy phakic volunteers were examined with a functional prototype of the new ALLEGRO BioGraph (Wavelight AG)/LENSTAR LS 900 (Haag Streit AG) biometer and with the IOLMaster V.5 (Carl Zeiss Meditec AG). As recommended by the manufacturers, repeated measurements were performed with both devices and the results compared using Spearman correlation calculations (WinSTAT). Spearman correlation showed high correlations for axial length and keratometry measurements between the two devices tested. Anterior chamber depth, however, had a lower correlation between the two biometry devices. In addition, the mean values of the anterior chamber depth differed (IOLMaster 3.48 (SD 0.42) mm versus BioGraph/LENSTAR 3.64 (SD 0.26) mm); however, this difference was not statistically different (p>0.05, t test). The new biometer provided results that correlated very well with those of the IOLMaster. The ALLEGRO BioGraph/LENSTAR LS 900 is a precise device containing additional features that will be helpful tools for any cataract or refractive surgeon.
Low energy X-ray grating interferometry at the Brazilian Synchrotron
NASA Astrophysics Data System (ADS)
Koch, F. J.; O'Dowd, F. P.; Cardoso, M. B.; Da Silva, R. R.; Cavicchioli, M.; Ribeiro, S. J. L.; Schröter, T. J.; Faisal, A.; Meyer, P.; Kunka, D.; Mohr, J.
2017-06-01
Grating based X-ray differential phase contrast imaging has found a large variety of applications in the last decade. Different types of samples call for different imaging energies, and efforts have been made to establish the technique all over the spectrum used for conventional X-ray imaging. Here we present a two-grating interferometer working at 8.3 keV, implemented at the bending magnet source of the IMX beamline of the Brazilian Synchrotron Light Laboratory. The low design energy is made possible by gratings fabricated on polymer substrates, and makes the interferometer mainly suited to the investigation of light and thin samples. We investigate polymer microspheres filled with Fe2O3 nanoparticles, and find that these particles give rise to a significant visibility reduction due to small angle scattering.
Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution
NASA Technical Reports Server (NTRS)
Gary, Dale E.; Hurford, G. J.
1990-01-01
Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.
NASA Astrophysics Data System (ADS)
Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.
2015-07-01
Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.
Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.
2015-01-01
The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.
2014-01-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
Design and characterization of textured surfaces for applications in the food industry
NASA Astrophysics Data System (ADS)
Lazzini, G.; Romoli, L.; Blunt, L.; Gemini, L.
2017-12-01
The aim of this work is to design, manufacture and characterize surface morphologies on AISI 316L stainless steel produced by a custom designed laser-texturing strategy. Surface textures were characterized at a micrometric dimension in terms of areal parameters compliant with ISO 25178, and correlations between these parameters and processing parameters (e.g. laser energy dose supplied to the material, repetition rate of the laser pulses and scanning velocity) were investigated. Preliminary efforts were devoted to the research of special requirements for surface morphology that, according to the commonly accepted research on the influence of surface roughness on cellular adhesion on surfaces, should discourage the formation of biofilms. The topographical characterization of the surfaces was performed with a coherence scanning interferometer. This approach showed that increasing doses of energy to the surfaces increased the global level of roughness as well as the surface complexity. Moreover, the behavior of the parameters S pk, S vk also indicates that, due to the ablation process, an increase in the energy dose causes an average increase in the height of the highest peaks and in the depth of the deepest dales. The study of the density of peaks S pd showed that none of the surfaces analyzed here seem to perfectly match the conditions dictated by the theories on cellular adhesion to confer anti-biofouling properties. However, this result seems to be mainly due to the limits of the resolving power of coherence scanning interferometry, which does not allow the resolution of sub-micrometric features which could be crucial in the prevention of cellular attachment.
Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI
NASA Astrophysics Data System (ADS)
Meilland, A.; Kanaan, S.; Borges Fernandes, M.; Chesneau, O.; Millour, F.; Stee, Ph.; Lopez, B.
2010-03-01
Context. B[e] stars are hot stars surrounded by circumstellar gas and dust which is responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. Aims: HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circumstellar envelope in the mid-infrared using long-baseline interferometry, which is the only observing technique able to spatially resolve objects smaller than a few tens of milliarcseconds. Methods: We obtained nine calibrated visibility measurements between October 2006 and January 2008 using the VLTI/MIDI instrument in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles (PA). We used geometrical models and physical modeling with a radiative transfer code to analyze these data. Results: The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI, even with the shortest baselines. The environment is flattened (a/b~1.3±0.1) and can be separated into two components: a compact one whose extension grows from 17 mas at 8 μm to 30 mas at 9.6 μm and stays almost constant up to 13 μm, and a more extended one that is over-resolved even with the shortest baselines. Using the radiative transfer code MC3D, we managed to model HD 62623's circumstellar environment as a dusty disk with an inner radius of 3.85±0.6 AU, an inclination angle of 60±10°, and a mass of 2 × 10-7 M_⊙. Conclusions: It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly constrained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion's gravitational effects remains the most probable case since the bi-stability mechanism does not seem to be efficient for this star. Based on observations made with ESO Telescopes at Paranal Observatory under programs 078.D-O511 and 080.D.0181.
Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin
2017-11-10
High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
Giga-pixel lensfree holographic microscopy and tomography using color image sensors.
Isikman, Serhan O; Greenbaum, Alon; Luo, Wei; Coskun, Ahmet F; Ozcan, Aydogan
2012-01-01
We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2). This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ± 50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3) across a sample volume of ~5 mm(3), which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.
NASA Astrophysics Data System (ADS)
Gebremichael, E.; Sultan, M.; Becker, R.; Emil, M.; Ahmed, M.; Chouinard, K.
2015-12-01
We applied Persistent scatterer interferometry (PSInSAR) to assess land deformation (subsidence and uplift) across the entire Nile delta and its surroundings and to identify possible causes of the observed deformation. For the purpose of the present study, 100 Envisat Advanced Synthetic Aperture Radar (ASAR; level 0) scenes that were acquired along four tracks and covering a time span of seven years (2004 to 2010) were used. The scenes extend from the Mediterranean coast in the north to Cairo city in the south. These scenes were focused using Repeat Orbit Interferometry PACkage (ROI_PAC) software and the subsequent PSI processing was done using the Stanford Method for Persistent Scatterers (StaMPS) method. A low coherence threshold (0.2) was used to decrease the impact of vegetation-related poor coherence and decorrelation of the scenes over the investigated time span. Subsidence was observed over: (1) the Demietta Nile River branch (3 to 14 mm/yr) where it intersects the Mediterranean coastline, (2) thick (~ 40 m) Holocene sediments in lake Manzala (up to 9 mm/yr), (3) reclaimed desert areas (west of Nile Delta; up to 12 mm/yr) of high groundwater extraction, (4) along parts of a previously proposed flexure line (up to 10 mm/yr), and (5) along the eastern sections of the Mediterranean coastline (up to 15.7 mm/yr). The city of Alexandria (underlain by carbonate platform) and the terminus of the Rosetta branch of the Nile River seem to experience almost no ground movement (mean subsidence of 0.28 mm/yr and 0.74 mm/yr respectively) while the cities of Ras Elbar and Port Said (underlain by thick Holocene sediment) exhibit the highest subsidence values (up to 14 mm/yr and 8.5 mm/yr respectively). The city of Cairo has also experienced subsidence in limited areas of up to 7.8 mm/yr. High spatial correlation was also observed between the subsiding areas and the Abu Madi incised valley; the largest gas field in the Nile Delta. Most of the area undergoing subsidence in the Nile Delta is related to sediment compaction and/or groundwater extraction, with other factors such as gas extraction and tectonic drivers correlating with smaller areas.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.
2007-04-01
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
Optimizing the laser-pulse configuration for coherent Raman spectroscopy.
Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O
2007-04-13
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
Mismatch removal via coherent spatial relations
NASA Astrophysics Data System (ADS)
Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen
2014-07-01
We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.
Temporal characterization of the wave-breaking flash in a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard
2017-10-01
Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center
2016-03-21
Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less
a Method of Generating dem from Dsm Based on Airborne Insar Data
NASA Astrophysics Data System (ADS)
Lu, W.; Zhang, J.; Xue, G.; Wang, C.
2018-04-01
Traditional methods of terrestrial survey to acquire DEM cannot meet the requirement of acquiring large quantities of data in real time, but the DSM can be quickly obtained by using the dual antenna synthetic aperture radar interferometry and the DEM generated by the DSM is more fast and accurate. Therefore it is most important to acquire DEM from DSM based on airborne InSAR data. This paper aims to the method that generate DEM from DSM accurately. Two steps in this paper are applied to acquire accurate DEM. First of all, when the DSM is generated by interferometry, unavoidable factors such as overlay and shadow will produce gross errors to affect the data accuracy, so the adaptive threshold segmentation method is adopted to remove the gross errors and the threshold is selected according to the coherence of the interferometry. Secondly DEM will be generated by the progressive triangulated irregular network densification filtering algorithm. Finally, experimental results are compared with the existing high-precision DEM results. The results show that this method can effectively filter out buildings, vegetation and other objects to obtain the high-precision DEM.
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus
2011-03-01
Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.
Holography as a tool for widespread industrial applications: analysis and comments
NASA Astrophysics Data System (ADS)
Smigielski, Paul
1991-10-01
During the last national meeting of the Holographic Club of the French Optical Society held at SAUMUR, 22-23 November 1990, on `Vibration analysis with the help of holographic and associated methods,' more than 80% of attendees were industrialists. Some scientists who specialized in coherent optics said that it is not necessary to be an optician to use holography in the industry. That means that veritable progress has been achieved since the discovery of holographic interferometry in 1965. But, on the other hand, too few industrialists use holographic techniques. This paper critically examines the evolution of holographic interferometry through concrete examples and shows that hopes of industrial uses of holography are more credible today than yesterday because of new developments expected in hardwares (lasers, recording materials, etc.) and softwares.
Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C
2017-07-13
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
Adolf Friedrich Fercher: a pioneer of biomedical optics.
Hitzenberger, Christoph K
2017-11-01
Adolf Friedrich Fercher, an outstanding pioneer of biomedical optics, passed away earlier this year. He was a brilliant and visionary researcher who pioneered various fields of biomedical optics, such as laser speckle flowgraphy, tissue interferometry, and optical coherence tomography (OCT). On the occasion of the 25th anniversary of OCT, this paper reviews and commemorates Fercher's pioneering work. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
NASA Astrophysics Data System (ADS)
Ekberg, Peter; Mattsson, Lars
2018-03-01
Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175 × 175 µm2 FOV of ~2.3 nm (1σ) using the 50× objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.
Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project
NASA Astrophysics Data System (ADS)
Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas
2015-11-01
We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.
Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery
NASA Astrophysics Data System (ADS)
Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed
2011-01-01
Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in moremore » efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.« less
Liu, Z. K.; Yi, M.; Zhang, Y.; ...
2015-12-22
The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe 1+ySe xTe 1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective massmore » of bands dominated by the d xy orbital character significantly decreases with increasing selenium ratio, as compared to the d xz/d yz orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe 1+ySe xTe 1-x.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdaway, David I. H., E-mail: d.holdaway@ucl.ac.uk; Olaya-Castro, Alexandra, E-mail: a.olaya@ucl.ac.uk; Collini, Elisabetta, E-mail: elisabetta.collini@unipd.it
We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probemore » spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.« less
Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations
Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David
2000-01-01
ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
Opposition effect of the Moon from LROC WAC data
NASA Astrophysics Data System (ADS)
Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden
2016-09-01
LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.
Release of Continuous Representation for S(α,β) ACE Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlin, Jeremy Lloyd; Parsons, Donald Kent
2014-03-20
For low energy neutrons, the default free gas model for scattering cross sections is not always appropriate. Molecular effects or crystalline structure effects can affect the neutron scattering cross sections. These effects are included in the S(α; β) thermal neutron scattering data and are tabulated in file 7 of the ENDF6 format files. S stands for scattering. α is a momentum transfer variable and is an energy transfer variable. The S(α; β) cross sections can include coherent elastic scattering (no E change for the neutron, but specific scattering angles), incoherent elastic scattering (no E change for the neutron, but continuousmore » scattering angles), and inelastic scattering (E change for the neutron, and change in angle as well). Every S(α; β) material will have inelastic scattering and may have either coherent or incoherent elastic scattering (but not both). Coherent elastic scattering cross sections have distinctive jagged-looking Bragg edges, whereas the other cross sections are much smoother. The evaluated files from the NNDC are processed locally in the THERMR module of NJOY. Data can be produced either for continuous energy Monte Carlo codes (using ACER) or embedded in multi-group cross sections for deterministic (or even multi-group Monte Carlo) codes (using GROUPR). Currently, the S(α; β) files available for MCNP use discrete energy changes for inelastic scattering. That is, the scattered neutrons can only be emitted at specific energies— rather than across a continuous spectrum of energies. The discrete energies are chosen to preserve the average secondary neutron energy, i.e., in an integral sense, but the discrete treatment does not preserve any differential quantities in energy or angle.« less
Phase-resolved acoustic radiation force optical coherence elastography
NASA Astrophysics Data System (ADS)
Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping
2012-11-01
Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.
ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x
NASA Astrophysics Data System (ADS)
Liu, Zhongkai
2014-03-01
The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.
Imaging birefringent crystals using micro optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sharma, Gargi; Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Uric acid crystals have recently been identified as a possible therapeutic target for coronary artery disease. Being subcellular in size, it is difficult to identify these crystals in situ. Micro optical coherence tomography (Micro-OCT) allows one to image subcellular structures with 1-micron resolution. Even though Micro-OCT should be capable of resolving urate crystals, it's difficult to differentiate these structures from other scattering particles within tissue. In this work we developed a novel polarization sensitive micro OCT (ps-Micro-OCT) system for identification of uric acid crystals. Methods: A spectrometer based ps-Micro-OCT system was developed using a broadband light source. The broadband input light was divided into reference and sample signals using a beam splitter. The reference signal was further divided into two polarized signals with different polarization states. Reflected reference and sample signals were combined and sent to a spectrometer that recorded the interference signal. Results: To test the performance of system, a mirror was used as sample and a quarter wave-plate was placed in the sample path. The measured quarter wave-plate angle values matched closely to actual angle values. Next we prepared uric acid crystals in our lab and imaged them using this system.We were able to image and identify these crystals based on polarization measurements. Conclusion: In this work we imaged and identified uric acid crystals using a newly developed ps-Micro-OCT system. The proposed technique will enable imaging uric acid crystals in coronary artery.
Probing myocardium biomechanics using quantitative optical coherence elastography
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.
Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest
NASA Technical Reports Server (NTRS)
Brugarolas, Paul B.; Kang, Bryan
2006-01-01
This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.
Central serous chorioretinopathy treatment with spironolactone: a challenge-rechallenge case.
Ryan, Edwin H; Pulido, Christine M
2015-01-01
To present a case of central serous chorioretinopathy (CSC) treatment with spironolactone in a challenge-rechallenge pattern. At presentation, fundus photography, fluorescein angiography, spectral domain optical coherence tomography, and enhanced depth imaging ocular coherence tomography were performed in both eyes. The patient was prescribed 25 mg spironolactone daily along with serum potassium monitoring. At follow-ups, spectral domain optical coherence tomography and enhanced depth imaging ocular coherence tomography were performed. A 37-year-old white male accountant presenting with CSC. Spironolactone treatment resolved the CSC. After the patient discontinued treatment, it returned. After returning to daily treatment, the CSC again resolved. Spironolactone was an effective treatment of CSC in this case. Other groups have reported similar findings with eplerenone, a similar drug.
The Coherent Interlayer Resistance of a Single, Misoriented Interface between Two Graphite Stacks
NASA Astrophysics Data System (ADS)
Lake, Roger K.; Habib, K. M. Masum; Sylvia, Somaia; Ge, Supeng; Neupane, Mahesh
2014-03-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles ranging from 0° to 27 .29° . The quantum-resistance of the ideal AB stack is on the order of 1 to 10 m Ωμm2 depending on the Fermi energy. For small rotation angles <= 7 .34° , the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with primitive cell size for minimum size cells. A change of misorientation angle by one degree can increase the primitive cell size by three orders of magnitude. These large cell sizes may not follow the exponential trend of the minimal cells especially at energies a few hundred meV away from the charge neutrality point. At such energies, their coherent interlayer resistance is likely to coincide with that of a nearby rotation angle with a much smaller primitive cell. The energy dependence of the interlayer transmission is described and analyzed. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
NASA Astrophysics Data System (ADS)
Shirai, Tomohiro; Friberg, Ari T.
2018-04-01
Dispersion-canceled optical coherence tomography (OCT) based on spectral intensity interferometry was devised as a classical counterpart of quantum OCT to enhance the basic performance of conventional OCT. In this paper, we demonstrate experimentally that an alternative method of realizing this kind of OCT by means of two optical fiber couplers and a single spectrometer is a more practical and reliable option than the existing methods proposed previously. Furthermore, we develop a recipe for reducing multiple artifacts simultaneously on the basis of simple averaging and verify experimentally that it works successfully in the sense that all the artifacts are mitigated effectively and only the true signals carrying structural information about the sample survive.
Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2015-08-01
Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.
Science objectives for ground- and space-based optical/IR interferometry
NASA Technical Reports Server (NTRS)
Ridgway, Stephen T.
1992-01-01
Ground-based interferometry will make spectacular strides in the next decade. However, it will always be limited by the turbulence of the terrestrial atmosphere. Some of the most exciting and subtle problems may only be addressed from a stable platform above the atmosphere. The lunar surface offers such a platform, nearly ideal in many respects. Once built, such a telescope array will not only resolve key fundamental problems, but will revolutionize virtually every topic in observational astronomy. Estimates of the possible performance of lunar and ground-based interferometers of the 21st century shows that the lunar interferometer reaches the faintest sources of all wavelengths, but has the most significant advantage in the infrared.
Atom-optics knife-edge: Measuring sub-nanokelvin momentum distributions
NASA Astrophysics Data System (ADS)
Ramos, Ramon; Spierings, David; Steinberg, Aephraim
2017-04-01
Temperatures below 1 nanokelvin have been achieved in the recent years, enabling new classes of experiments which benefit from the resulting long coherence times. This achievement comes hand in hand with the challenge of measuring such low temperatures. By employing the equivalent of a knife-edge measurement for matter-waves, we have been able to characterize ultra-low momentum widths. We measured a momentum width corresponding to an effective temperature of 900 +/- 200 pK, only limited by our cooling performance. We show that this technique compares favourably with more traditional methods, which would require expansion times of 100's of ms or frequency stability of 10's of Hz. Finally, we show that the effective knife-edge, created by a potential barrier, begins to become ''blunt'' due to tunneling for thin barriers, and we obtain quantitative agreement with a theoretical model. This method is a useful tool for atomic interferometry and other areas in ultracold atoms where a robust and precise technique for characterizing the momentum distribution is required.
X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy
NASA Technical Reports Server (NTRS)
Skinner, G. K.; Krismanic, John F.
2009-01-01
Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.
Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi
2018-01-01
The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Crepaldi, A.; Autès, G.; Gatti, G.; Roth, S.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Seddon, E. A.; Bugnon, Ph.; Magrez, A.; Berger, H.; Vobornik, I.; Kalläne, M.; Quer, A.; Rossnagel, K.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.
2017-12-01
MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.
, colloidal quantum dots, and single-walled carbon nanotubes. Laser-based experiments (time-resolved fluorescence spectroscopy; time-resolved resonance Raman spectroscopy; laser-induced fluorescence spectroscopy ; time-resolved evanescent wave-induced fluorescence spectroscopy; picosecond coherent anti-Stokes Raman
Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry
2005-02-01
Hensley, H. A. Zebker, F. H. Webb, and E. Fielding, 1996, "Surface deformation and coherence measurements of Kilauea Volcano , Hawaii from SIR-C radar...topography, tectonic surface deformation, bulging and subsidence (earthquakes, volcanoes , geo-thermal fields and artesian irrigation, ice fields), glacial...J.J. and Y-J. Kim, 2000, "The relationship between radar polarimetric and interferometric phase," Presented at IGARSS, Honolulu, Hawaii , July
Jung, Hyung-Sup; Lee, Won-Jin; Zhang, Lei
2014-01-01
The measurement of precise along-track displacements has been made with the multiple-aperture interferometry (MAI). The empirical accuracies of the MAI measurements are about 6.3 and 3.57 cm for ERS and ALOS data, respectively. However, the estimated empirical accuracies cannot be generalized to any interferometric pair because they largely depend on the processing parameters and coherence of the used SAR data. A theoretical formula is given to calculate an expected MAI measurement accuracy according to the system and processing parameters and interferometric coherence. In this paper, we have investigated the expected MAI measurement accuracy on the basis of the theoretical formula for the existing X-, C- and L-band satellite SAR systems. The similarity between the expected and empirical MAI measurement accuracies has been tested as well. The expected accuracies of about 2–3 cm and 3–4 cm (γ = 0.8) are calculated for the X- and L-band SAR systems, respectively. For the C-band systems, the expected accuracy of Radarsat-2 ultra-fine is about 3–4 cm and that of Sentinel-1 IW is about 27 cm (γ = 0.8). The results indicate that the expected MAI measurement accuracy of a given interferometric pair can be easily calculated by using the theoretical formula. PMID:25251408
Trägårdh, Johanna; Gersen, Henkjan
2013-07-15
We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.
Coherence in the presence of absorption and heating in a molecule interferometer
Cotter, J. P.; Eibenberger, S.; Mairhofer, L.; Cheng, X.; Asenbaum, P.; Arndt, M.; Walter, K.; Nimmrichter, S.; Hornberger, K.
2015-01-01
Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053
Fast and error-resilient coherent control in an atomic vapor
NASA Astrophysics Data System (ADS)
He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun
2017-04-01
Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.
Spaceborne SAR Imaging Algorithm for Coherence Optimized.
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...
2017-10-20
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less
Effect of Atmospheric Turbulence on Synthetic Aperture LADAR Imaging Performance
NASA Astrophysics Data System (ADS)
Schumm, Bryce Eric
Synthetic aperture LADAR (SAL) has been widely investigated over the last 15 years with many studies and experiments examining its performance. Comparatively little work has been done to investigate the effect of atmospheric turbulence on SAL performance. The turbulence work that has been accomplished is in related fields or under weak turbulence assumptions. This research investigates some of the fundamental limits of turbulence on SAL performance. Seven individual impact mechanisms of atmospheric turbulence are examined including: beam wander, beam growth, beam breakup, piston, coherence diameter/length, isoplanatic angle (anisoplanatism) and coherence time. Each component is investigated separately from the others through modeling to determine their respective effect on standard SAL image metrics. Analytic solutions were investigated for the SAL metrics of interest for each atmospheric impact mechanism. The isolation of each impact mechanism allows identification of mitigation techniques targeted at specific, and most dominant, sources of degradation. Results from this work will be critical in focusing future research on those effects which prove to be the most deleterious. Previous research proposed that the resolution of a SAL system was limited by the SAL coherence diameter/length r˜_0 which was derived from the average autocorrelation of the SAL phase history data. The present research confirms this through extensive wave optics simulations. A detailed study is conducted that shows, for long synthetic apertures, measuring the peak widths of individual phase histories may not accurately represent the true resolving power of the synthetic aperture. The SAL wave structure function and degree of coherence are investigated for individual turbulence mechanisms. Phase is shown to be an order of magnitude stronger than amplitude in its impact on imaging metrics. In all the analyses, piston variation and coherence diameter make up the majority of errors in SAL image formation.
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Michelson-type Radio Interferometer for University Education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.
2013-01-01
Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.