NASA Astrophysics Data System (ADS)
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
NASA Astrophysics Data System (ADS)
Amorim, B.
2018-04-01
We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun
2014-05-01
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
NASA Astrophysics Data System (ADS)
Senkovskiy, Boris V.; Usachov, Dmitry Yu; Fedorov, Alexander V.; Haberer, Danny; Ehlen, Niels; Fischer, Felix R.; Grüneis, Alexander
2018-07-01
To understand the optical and transport properties of graphene nanoribbons, an unambiguous determination of their electronic band structure is needed. In this work we demonstrate that the photoemission intensity of each valence sub-band, formed due to the quantum confinement in quasi-one-dimensional (1D) graphene nanoribbons, is a peaked function of the two-dimensional (2D) momentum. We resolve the long-standing discrepancy regarding the valence band effective mass () of armchair graphene nanoribbons with a width of N = 7 carbon atoms (7-AGNRs). In particular, angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy report ≈0.2 and ≈0.4 of the free electron mass (m e ), respectively. ARPES mapping in the full 2D momentum space identifies the experimental conditions for obtaining a large intensity for each of the three highest valence 1D sub-bands. Our detail map reveals that previous ARPES experiments have incorrectly assigned the second sub-band as the frontier one. The correct frontier valence sub-band for 7-AGNRs is only visible in a narrow range of emission angles. For this band we obtain an ARPES derived effective mass of 0.4 m e , a charge carrier velocity in the linear part of the band of 0.63 × 106 m s‑1 and an energy separation of only ≈60 meV to the second sub-band. Our results are of importance not only for the growing research field of graphene nanoribbons but also for the community, which studies quantum confined systems.
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Mario Ivan; Drumm, Clifton R.
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Layer-by-Layer Evolution of a Two-Dimensional Electron Gas Near an Oxide Interface
NASA Astrophysics Data System (ADS)
Chang, Young Jun; Moreschini, Luca; Bostwick, Aaron; Gaines, Geoffrey A.; Kim, Yong Su; Walter, Andrew L.; Freelon, Byron; Tebano, Antonello; Horn, Karsten; Rotenberg, Eli
2013-09-01
We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO3/SrTiO3 interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES.
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki
2018-02-01
Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.
NASA Astrophysics Data System (ADS)
Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.
2007-02-01
Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.
A rotationally biased upwind difference scheme for the Euler equations
NASA Technical Reports Server (NTRS)
Davis, S. F.
1983-01-01
The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.
Resolved Star Formation in Galaxies Using Slitless Spectroscopy
NASA Astrophysics Data System (ADS)
Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team
2018-06-01
The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.
Stereo-photography of streamers in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijdam, S.; Moerman, J. S.; Briels, T. M. P.
2008-03-10
Standard photographs of streamer discharges show a two-dimensional projection. Here, we present stereophotographic images that resolve their three-dimensional structure. We describe the stereoscopic setup and evaluation, and we present results for positive streamer discharges in air at 0.2-1 bar in a point-plane geometry with a gap distance of 14 cm and a voltage pulse of 47 kV. In this case, an approximately Gaussian distribution of branching angles of 43 deg. {+-}12 deg. is found; these angles do not significantly depend on the distance from the needle or on the gas pressure.
NASA Astrophysics Data System (ADS)
Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.
1994-08-01
The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.
Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
1994-01-01
Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.
Direct k-space mapping of the electronic structure in an oxide-oxide interface.
Berner, G; Sing, M; Fujiwara, H; Yasui, A; Saitoh, Y; Yamasaki, A; Nishitani, Y; Sekiyama, A; Pavlenko, N; Kopp, T; Richter, C; Mannhart, J; Suga, S; Claessen, R
2013-06-14
The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.
Electron-phonon coupling in graphene placed between magnetic Li and Si layers on cobalt
NASA Astrophysics Data System (ADS)
Usachov, Dmitry Yu.; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Ogorodnikov, Ilya I.; Kuznetsov, Mikhail V.; Grüneis, Alexander; Laubschat, Clemens; Vyalikh, Denis V.
2018-02-01
Using angle-resolved photoemission spectroscopy (ARPES), we study the electronic structure and electron-phonon coupling in a Li-doped graphene monolayer decoupled from the Co(0001) substrate by intercalation of silicon. Based on the photoelectron diffraction measurements, we disclose the structural properties of the Si/Co interface. Our density functional theory calculations demonstrate that in the studied Li/graphene/Si/Co system the magnetism of Co substrate induces notable magnetic moments on Li and Si atoms. At the same time graphene remains almost nonmagnetic and clamped between two magnetically active atomic layers with antiparallel magnetizations. ARPES maps of the graphene Fermi surface reveal strong electron doping, which may lead to superconductivity mediated by electron-phonon coupling (EPC). Analysis of the spectral function of photoelectrons reveals apparent anisotropy of EPC in the k space. These properties make the studied system tempting for studying the relation between superconductivity and magnetism in two-dimensional materials.
Material Properties of Human Ocular Tissue at 7-µm Resolution.
Rohrbach, Daniel; Ito, Kazuyo; Lloyd, Harriet O; Silverman, Ronald H; Yoshida, Kenji; Yamaguchi, Tadashi; Mamou, Jonathan
2017-09-01
Quantitative assessment of the material properties of ocular tissues can provide valuable information for investigating several ophthalmic diseases. Quantitative acoustic microscopy (QAM) offers a means of obtaining such information, but few QAM investigations have been conducted on human ocular tissue. We imaged the optic nerve (ON) and iridocorneal angle in 12-µm deparaffinized sections of the human eye using a custom-built acoustic microscope with a 250-MHz transducer (7-µm lateral resolution). The two-dimensional QAM maps of ultrasound attenuation (α), speed of sound ( c), acoustic impedance ( Z), bulk modulus ( K), and mass density (ρ) were generated. Scanned samples were then stained and imaged by light microscopy for comparison with QAM maps. The spatial resolution and contrast of scanning acoustic microscopy (SAM) maps were sufficient to resolve anatomic layers of the retina (Re); anatomic features in SAM maps corresponded to those seen by light microscopy. Significant variations of the acoustic parameters were found. For example, the sclera was 220 MPa stiffer than Re, choroid, and ON tissue. To the authors' knowledge, this is the first systematic study to assess c, Z, K, ρ, and α of human ocular tissue at the high ultrasound frequencies used in this study.
Siversson, Carl; Chan, Jenny; Tiderius, Carl-Johan; Mamisch, Tallal Charles; Jellus, Vladimir; Svensson, Jonas; Kim, Young-Jo
2012-06-01
Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T. Copyright © 2011 Wiley-Liss, Inc.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
NASA Astrophysics Data System (ADS)
Horne, Keith D.; Agn Storm Team
2015-01-01
Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.
[Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].
Kimura, Mikio; Usui, Junshi; Nozawa, Takeo
2007-03-20
In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.
NASA Astrophysics Data System (ADS)
Braun, Jürgen; Minár, Ján; Ebert, Hubert
2018-04-01
Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.
Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen
2017-07-01
Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.
Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich
2010-07-01
To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Mckinney, William S., Jr.
1989-01-01
The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.
Coolen, Bram F; Poot, Dirk H J; Liem, Madieke I; Smits, Loek P; Gao, Shan; Kotek, Gyula; Klein, Stefan; Nederveen, Aart J
2016-03-01
A novel three-dimensional (3D) T1 and T2 mapping protocol for the carotid artery is presented. A 3D black-blood imaging sequence was adapted allowing carotid T1 and T2 mapping using multiple flip angles and echo time (TE) preparation times. B1 mapping was performed to correct for spatially varying deviations from the nominal flip angle. The protocol was optimized using simulations and phantom experiments. In vivo scans were performed on six healthy volunteers in two sessions, and in a patient with advanced atherosclerosis. Compensation for patient motion was achieved by 3D registration of the inter/intrasession scans. Subsequently, T1 and T2 maps were obtained by maximum likelihood estimation. Simulations and phantom experiments showed that the bias in T1 and T2 estimation was < 10% within the range of physiological values. In vivo T1 and T2 values for carotid vessel wall were 844 ± 96 and 39 ± 5 ms, with good repeatability across scans. Patient data revealed altered T1 and T2 values in regions of atherosclerotic plaque. The 3D T1 and T2 mapping of the carotid artery is feasible using variable flip angle and variable TE preparation acquisitions. We foresee application of this technique for plaque characterization and monitoring plaque progression in atherosclerotic patients. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Page, Lance; Shen, C. N.
1991-01-01
This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.
NASA Astrophysics Data System (ADS)
Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan
We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.
Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less
Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel
2018-01-01
Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.
NASA Astrophysics Data System (ADS)
Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-10-01
technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
High-density two-dimensional electron system induced by oxygen vacancies in ZnO
NASA Astrophysics Data System (ADS)
Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K.; Kumigashira, H.; Santander-Syro, A. F.
2018-05-01
We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultrahigh vacuum and characterize its electronic structure by using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two s -type subbands, that we compare with the d -like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a two-dimensional Fermi liquid with a Debye distribution of phonons.
Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.
2018-05-01
We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1977-01-01
A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Shen, Bing; Yu, Li; Liu, Kai; ...
2017-06-01
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less
Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao
2017-11-22
Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, L. N.; Hu, Z. D.; Zheng, Y.
2014-09-15
Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun
The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. Inmore » addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).« less
NASA Astrophysics Data System (ADS)
Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko
2018-05-01
We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S
2013-10-21
Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.
High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography
Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...
2016-11-21
Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less
Observation of topological nodal fermion semimetal phase in ZrSiS
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; ...
2016-05-11
We present that unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ) point, the M point, and the X point of the BZ, respectively. We experimentally establish themore » spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.« less
Resolving runaway electron distributions in space, time, and energy
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.
2018-05-01
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
An Aeroacoustic Characterization of a Multi-Element High-Lift Airfoil
NASA Astrophysics Data System (ADS)
Pascioni, Kyle A.
The leading edge slat of a high-lift system is known to be a large contributor to the overall radiated acoustic field from an aircraft during the approach phase of the flight path. This is due to the unsteady flow field generated in the slat-cove and near the leading edge of the main element. In an effort to understand the characteristics of the flow-induced source mechanisms, a suite of experimental measurements has been performed on a two-dimensional multi-element airfoil, namely, the MD-30P30N. Particle image velocimetry provide mean flow field and turbulence statistics to illustrate the differences associated with a change in angle of attack. Phase-averaged quantities prove shear layer instabilities to be linked to narrowband peaks found in the acoustic spectrum. Unsteady surface pressure are also acquired, displaying strong narrowband peaks and large spanwise coherence at low angles of attack, whereas the spectrum becomes predominately broadband at high angles. Nonlinear frequency interaction is found to occur at low angles of attack, while being negligible at high angles. To localize and quantify the noise sources, phased microphone array measurements are per- formed on the two dimensional high-lift configuration. A Kevlar wall test section is utilized to allow the mean aerodynamic flow field to approach distributions similar to a free-air configuration, while still capable of measuring the far field acoustic signature. However, the inclusion of elastic porous sidewalls alters both aerodynamic and acoustic characteristics. Such effects are considered and accounted for. Integrated spectra from Delay and Sum and DAMAS beamforming effectively suppress background facility noise and additional noise generated at the tunnel wall/airfoil junction. Finally, temporally-resolved estimates of a low-dimensional representation of the velocity vector fields are obtained through the use of proper orthogonal decomposition and spectral linear stochastic estimation. An estimate of the pressure field is then extracted by Poissons equation. From this, Curles analogy projects the time-resolved pressure forces on the airfoil surface to further establish the connection between the dominating unsteady flow structures and the propagated noise.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
NASA Astrophysics Data System (ADS)
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
Mahatha, S K; Patel, K D; Menon, Krishnakumar S R
2012-11-28
Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).
NASA Astrophysics Data System (ADS)
Gweon, Gey-Hong
Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them better. Despite the weak EF intensity, the EF intensity map shows a FS pattern in good agreement with the expected FS and the known CDW wavevector. Li0.9Mo6O17 is a quasi-1D material, whose 24 K transition is incompatible with a CDW transition. I compare the 200 K ARPES lineshapes with the LL lineshapes calculated using the spin-independent Tomonaga-Luttinger model. I point out both strong similarities and some significant differences. (Abstract shortened by UMI.)
Metallic rare-earth silicide nanowires on silicon surfaces.
Dähne, Mario; Wanke, Martina
2013-01-09
The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Exploring 4D quantum Hall physics with a 2D topological charge pump
NASA Astrophysics Data System (ADS)
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
NASA Technical Reports Server (NTRS)
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia
2016-07-13
Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.
Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...
2015-06-15
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.
2006-12-01
It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.
Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel
The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.
Two-dimensional electronic transport and surface electron accumulation in MoS2.
Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M
2018-04-12
Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.; Pai, Woei Wu; Chan, Y. -H.
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
Vibrational cross-angles in condensed molecules: a structural tool.
Chen, Hailong; Zhang, Yufan; Li, Jiebo; Liu, Hongjun; Jiang, De-En; Zheng, Junrong
2013-09-05
The fluctuations of three-dimensional molecular conformations of a molecule in different environments play critical roles in many important chemical and biological processes. X-ray diffraction (XRD) techniques and nuclear magnetic resonance (NMR) methods are routinely applied to monitor the molecular conformations in condensed phases. However, some special requirements of the methods have prevented them from exploring many molecular phenomena at the current stage. Here, we introduce another method to resolve molecular conformations based on an ultrafast MIR/T-Hz multiple-dimensional vibrational spectroscopic technique. The model molecule (4'-methyl-2'-nitroacetanilide, MNA) is prepared in two of its crystalline forms and liquid samples. Two polarized ultrafast infrared pulses are then used to determine the cross-angles of vibrational transition moment directions by exciting one vibrational band and detecting the induced response on another vibrational band of the molecule. The vibrational cross-angles are then converted into molecular conformations with the aid of calculations. The molecular conformations determined by the method are supported by X-ray diffraction and molecular dynamics simulation results. The experimental results suggest that thermodynamic interactions with solvent molecules are not altering the molecular conformations of MNA in the solutions to control their ultimate conformations in the crystals.
ERIC Educational Resources Information Center
Kaya, Deniz
2017-01-01
The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…
Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers
2010-07-19
commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference
One-dimensional pinning behavior in Co-doped BaFe2As2 thin films
NASA Astrophysics Data System (ADS)
Mishev, V.; Seeböck, W.; Eisterer, M.; Iida, K.; Kurth, F.; Hänisch, J.; Reich, E.; Holzapfel, B.
2013-12-01
Angle-resolved transport measurements revealed that planar defects dominate flux pinning in the investigated Co-doped BaFe2As2 thin film. For any given field and temperature, the critical current depends only on the angle between the crystallographic c-axis and the applied magnetic field but not on the angle between the current and the field. The critical current is therefore limited only by the in-plane component of the Lorentz force but independent of the out-of-plane component, which is entirely balanced by the pinning force exerted by the planar defects. This one-dimensional pinning behavior shows similarities and differences to intrinsic pinning in layered superconductors.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
Photoelectron imaging using an ellipsoidal display analyzer
NASA Astrophysics Data System (ADS)
Dütemeyer, T.; Quitmann, C.; Kitz, M.; Dörnemann, K.; Johansson, L. S. O.; Reihl, B.
2001-06-01
We have built an ellipsoidal display analyzer (EDA) for angle-resolved photoelectron spectroscopy and related techniques. The instrument is an improved version of a design by Eastman et al. [Nucl. Instrum. Methods 172, 327 (1980)] and measures the angle-resolved intensity distribution of photoelectrons at fixed energy I(θ,φ)|E=const.. Such two-dimensional cuts through the Brillouin zone are recorded using a position-sensitive detector. The large acceptance angle (Δθ=43° in the polar direction and Δφ=360° in the azimuthal direction) leads to a collection efficiency which exceeds that of conventional hemispherical analyzers by a factor of about 3000. Using ray-tracing calculations we analyze the electron optical properties of the various analyzer components and optimize their arrangement. This minimizes distortions and aberrations in the recorded images and greatly improves the performance compared to previous realizations of this analyzer. We present examples demonstrating the performance of the analyzer and its versatility. Using a commercial He-discharge lamp we are able to measure complete angular distribution patterns in less than 5 s. The energy and angular resolution are ΔEEDA=85 meV and Δθ=1.2°, respectively. Complete stacks of such cuts through the Brillouin zone at different kinetic energies E can be acquired automatically using custom software. The raw data are processed leading to a three-dimensional set (I(EB,k∥) of photoelectron intensity versus binding energy E and wave vector k∥. From this all relevant information, like the dispersion relations EB(k∥) along arbitrary directions of the Brillouin zone or Fermi-surface maps, can then be computed. An additional electron gun enables low-energy electron diffraction, Auger electron spectroscopy, and electron energy-loss spectroscopy. Switching between electrons and photons as the excitation source is possible without any movement of the sample or analyzer. Because of the high acquisition speed it is possible to study the electronic structure of solids as a function of an external parameter (i.e., temperature) or to make animated movies showing, for example, the evolution of electronic states in reciprocal space. After installation of this EDA at a synchrotron providing tunable photon energy, the full power of the instrument will come into play by adding techniques like constant final state or constant initial state spectroscopy, and x-ray photoelectron diffraction.
Resolving runaway electron distributions in space, time, and energy
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...
2018-05-01
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
Resolving runaway electron distributions in space, time, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhat, A.; Wills, A.A.; Berrah, N.
1999-01-01
An extensive and detailed mapping of the resonant Auger decay of all the photoexcited 3d{sub 3/2,5/2}{sup {minus}1}np states in Kr has been performed using angle-resolved two-dimensional photoelectron spectroscopy at the Advanced Light Source at Lawrence Berkeley National Laboratory. This has allowed us to obtain angular distributions and spectator and shake probabilities for the Kr 3d{sup {minus}1}np{r_arrow}4s{sup {minus}1}4p{sup {minus}1}({sup 1}P)mp+e{sup {minus}} (n=5{endash}9, m=5{endash}11) resonance Auger decays. The results show that the spectator-core coupling is strong at lower {ital n} (n=5,6) but lessens for higher {ital n}, with a shake-up of m=n+1 preferred. The observed trend is in good agreement with themore » previous experimental and theoretical spectator and shake probabilities for these transitions and also with the analogous decay to the 4s{sup 2}4p{sup 4}mp states [H. Aksela {ital et al.}, Phys. Rev. Lett. {bold 25}, 4970 (1997)]. However, to our knowledge, no prior angular distribution measurements for the Kr 3d{sup {minus}1}np{r_arrow}4s{sup {minus}1}4p{sup {minus}1}({sup 1}P)mp+e{sup {minus}} (n=5{endash}9, m=5{endash}11) resonant Auger decay has been reported. These are found to also show similar behavior to the decay to the 4s{sup 2}4p{sup 4}mp states. {copyright} {ital 1999} {ital The American Physical Society}« less
Single-layer dual germanene phases on Ag(111)
NASA Astrophysics Data System (ADS)
Lin, Chung-Huang; Huang, Angus; Pai, Woei Wu; Chen, Wei-Chuan; Chen, Ting-Yu; Chang, Tay-Rong; Yukawa, Ryu; Cheng, Cheng-Maw; Mou, Chung-Yu; Matsuda, Iwao; Chiang, T.-C.; Jeng, H.-T.; Tang, S.-J.
2018-02-01
Two-dimensional (2D) honeycomb lattices beyond graphene promise new physical properties such as quantum spin Hall effect. While there have been claims of growth of such lattices (silicene, germanene, stanene), their existence needs further support and their preparation and characterization remain a difficult challenge. Our findings suggest that two distinct phases associated with germanene, the analog of graphene made of germanium (Ge) instead of carbon, can be grown on Ag(111) as observed by scanning tunneling microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. One such germanene exhibits an atom-resolved alternatively buckled full honeycomb lattice, which is tensile strained and partially commensurate with the substrate to form a striped phase (SP). The other, a quasifreestanding phase (QP), is also consistent with a honeycomb lattice with a lattice constant incommensurate with the substrate but very close to the theoretical value for freestanding germanene. The SP, with a lower atomic density, can be driven into the QP and coexist with the QP by additional Ge deposition. Band mapping and first-principles calculations with proposed SP and QP models reveal an interface state exists only in the SP but the characteristic σ band of freestanding germanene emerges only in the QP—this leads to an important conclusion that adlayer-substrate commensurability plays a key role to affect the electronic structure of germanene. The evolution of the dual germanene phases manifests the competitive formation of Ge-Ge covalent and Ge-Ag interfacial bonds.
Bull, James N.; West, Christopher W.
2015-01-01
Frequency-, angle-, and time-resolved photoelectron imaging of gas-phase menadione (vitamin K3) radical anions was used to show that quasi-bound resonances of the anion can act as efficient doorway states to produce metastable ground electronic state anions on a sub-picosecond timescale. Several anion resonances have been experimentally observed and identified with the assistance of ab initio calculations, and ground state anion recovery was observed across the first 3 eV above threshold. Time-resolved measurements revealed the mechanism of electronic ground state anion formation, which first involves a cascade of very fast internal conversion processes to a bound electronic state that, in turn, decays by slower internal conversion to the ground state. Autodetachment processes from populated resonances are inefficient compared with electronic relaxation through internal conversion. The mechanistic understanding gained provides insight into the formation of radical anions in biological and astrochemical systems. PMID:29560245
Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao
2003-11-01
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin
2009-02-01
A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.
Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H
2011-11-01
In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics
2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes
Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.
2016-01-01
Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569
Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy T; Al-Mahboob, Abdullah; van der Zande, Arend M; Chenet, Daniel A; Dadap, Jerry I; Herman, Irving P; Sutter, Peter; Hone, James; Osgood, Richard M
2013-09-06
We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2.
Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus
Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; ...
2016-03-10
Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies andmore » flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.« less
2015-01-01
Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143
Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.
Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M
2005-06-15
Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.
NASA Astrophysics Data System (ADS)
Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques
2017-10-01
Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be improved by adding an outflowing component to the velocity field, as inspired by a magneto-centrifugal disk-wind scenario. Conclusions: This study combines spectroscopy, spectroastrometry, and high-spectral dispersion interferometric, providing yet the tightest constraints on the distribution and kinematics of Brγ-emitting gas in the inner few AU around a young star. All observables can be modeled assuming a disk wind scenario. Our simulations show that adding a poloidal velocity component causes the perceived system axis to shift, offering a powerful new diagnostic for detecting non-Keplerian velocity components in other systems. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 081.D-0230, 083.C-0590, 089.C-0959, and 089.C-0563.
Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface
Chen, Chaoyu; Avila, José; Frantzeskakis, Emmanouil; Levy, Anna; Asensio, Maria C.
2015-01-01
The polaron is a quasi-particle formed by a conduction electron (or hole) together with its self-induced polarization in a polar semiconductor or an ionic crystal. Among various polarizable examples of complex oxides, strontium titanate (SrTiO3) is one of the most studied. Here we examine the carrier type and the interplay of inner degrees of freedom (for example, charge, lattice, orbital) in SrTiO3. We report the experimental observation of Fröhlich polarons, or large polarons, at the bare SrTiO3 surface prepared by vacuum annealing. Systematic analyses of angle-resolved photoemission spectroscopy and X-ray absorption spectra show that these Fröhlich polarons are two-dimensional and only exist with inversion symmetry breaking by two-dimensional oxygen vacancies. Our discovery provides a rare solvable field theoretical model, and suggests the relevance of large (bi)polarons for superconductivity in perovskite oxides, as well as in high-temperature superconductors. PMID:26489376
Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems
NASA Astrophysics Data System (ADS)
Bleu, O.; Solnyshkov, D. D.; Malpuech, G.
2018-05-01
We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.
Emergence of charge density waves and a pseudogap in single-layer TiTe 2
Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Limbacher, James
2012-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.
DAVIS: A direct algorithm for velocity-map imaging system
NASA Astrophysics Data System (ADS)
Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.
2018-05-01
In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.
Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B
2011-08-01
To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.
Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?
NASA Astrophysics Data System (ADS)
Chan, L. P.; Lynn, K. G.; Harshman, D. R.
We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.
Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays
2012-01-01
In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306
Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus
NASA Astrophysics Data System (ADS)
Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su
2017-12-01
We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.
Theoretical Studies of Magnetic Systems. Final Report, August 1, 1994 - November 30, 1997
DOE R&D Accomplishments Database
Gor`kov, L. P.; Novotny, M. A.; Schrieffer, J. R.
1997-01-01
During the grant period the authors have studied five areas of research: (1) low dimensional ferrimagnets; (2) lattice effects in the mixed valence problem; (3) spin compensation in the one dimensional Kondo lattice; (4) the interaction of quasi particles in short coherence length superconductors; and (5) novel effects in angle resolved photoemission spectra from nearly antiferromagnetic materials. Progress in each area is summarized.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide
NASA Astrophysics Data System (ADS)
Jin, Wencan
The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS 2-heterostructure systems.
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
Analytical three-point Dixon method: With applications for spiral water-fat imaging.
Wang, Dinghui; Zwart, Nicholas R; Li, Zhiqiang; Schär, Michael; Pipe, James G
2016-02-01
The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Jun; Fayer, Michael D., E-mail: fayer@stanford.edu
Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary tomore » completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less
NASA Astrophysics Data System (ADS)
Olszowska, Natalia; Lis, Jakub; Ciochon, Piotr; Walczak, Łukasz; Michel, Enrique G.; Kolodziej, Jacek J.
2016-09-01
Two-dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a one-dimensional (1D) self-consistent Poisson-Schrödinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schrödinger scheme predicts the 2DEG band energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wave functions.
Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Lahrz, M.; Mathey, L.
2014-01-01
Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
Liu, Guo-hua; Rajendran, Narasimmalu; Amemiya, Takashi; Itoh, Kiminori
2011-11-01
A rapid approach based on two-dimensional DNA gel electrophroesis (2-DGE) mapping with selective primer pairs was employed to analyze bacterial community structure in sediments from upstream, midstream and downstream of Sagami River in Japan. The 2-DGE maps indicated that Alpha- and Delta-proteobacteria were major bacterial populations in the upstream and midstream sediments. Further bacterial community structure analysis showed that richness proportion of Alpha- and Delta-proteobacterial groups reflected a trend toward decreasing from the upstream to downstream sediments. The biomass proportion of bacterial populations in the midstream sediment showed a significantly difference from that in the other sediments, suggesting that there may be an environmental pressure on the midstream bacterial community. Lorenz curves, together with Gini coefficients were successfully applied to the 2-DGE mapping data for resolving evenness of bacterial populations, and showed that the plotted curve from high-resolution 2-DGE mapping became less linear and more an exponential function than that of the 1-DGE methods such as chain length analysis and denaturing gradient gel electrophoresis, suggesting that the 2-DGE mapping may achieve a more detailed evaluation of bacterial community. In conclusion, the 2-DGE mapping combined with the selective primer pairs enables bacterial community structure analysis in river sediment and thus it can also monitor sediment pollution based on the change of bacterial community structure.
Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe 2
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2016-11-29
Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe 2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232more » K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages.« less
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Kaushik; Singh, R. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in
2016-04-15
An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have beenmore » obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.« less
Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael
Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less
Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets
Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael; ...
2015-05-11
Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less
Superconductivity in few-layer stanene
Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; ...
2018-01-15
A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less
Superconductivity in few-layer stanene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong
A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less
Superconductivity in few-layer stanene
NASA Astrophysics Data System (ADS)
Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; Li, Haiwei; Gong, Yan; Zhu, Kejing; Hu, Xiao-Peng; Zhang, Ding; Xu, Yong; Wang, Ya-Yu; He, Ke; Ma, Xu-Cun; Zhang, Shou-Cheng; Xue, Qi-Kun
2018-04-01
A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.
Anisotropic two-dimensional electron gas at SrTiO3(110)
Wang, Zhiming; Zhong, Zhicheng; Hao, Xianfeng; Gerhold, Stefan; Stöger, Bernhard; Schmid, Michael; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Franchini, Cesare; Held, Karsten; Diebold, Ulrike
2014-01-01
Two-dimensional electron gases (2DEGs) at oxide heterostructures are attracting considerable attention, as these might one day substitute conventional semiconductors at least for some functionalities. Here we present a minimal setup for such a 2DEG––the SrTiO3(110)-(4 × 1) surface, natively terminated with one monolayer of tetrahedrally coordinated titania. Oxygen vacancies induced by synchrotron radiation migrate underneath this overlayer; this leads to a confining potential and electron doping such that a 2DEG develops. Our angle-resolved photoemission spectroscopy and theoretical results show that confinement along (110) is strikingly different from the (001) crystal orientation. In particular, the quantized subbands show a surprising “semiheavy” band, in contrast with the analog in the bulk, and a high electronic anisotropy. This anisotropy and even the effective mass of the (110) 2DEG is tunable by doping, offering a high flexibility to engineer the properties of this system. PMID:24591596
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Scholtes, Sara A; Salsich, Gretchen B
2017-06-01
Two=dimensional motion analysis of lower=extremity movement typically focuses on the knee frontal plane projection angle, which considers the position of the femur and the tibia. A measure that includes the pelvis may provide a more comprehensive and accurate indicator of lower=extremity movement. Hypothesis/Purpose: The purpose of the study was to describe the utility of a two=dimensional dynamic valgus index (DVI) in females with patellofemoral pain. The hypothesis was that the DVI would be more reliable and valid than the knee frontal plane projection angle, be greater in females with patellofemoral pain during a single=limb squat than in females without patellofemoral pain, and decrease in females with patellofemoral pain following instruction. Study Design: Controlled Laboratory Study. Data were captured while participants performed single limb squats under two conditions: usual and corrected. Two=dimensional hip and knee angles and a DVI that combined the hip and knee angles were calculated. Three=dimensional sagittal, frontal, and transverse plane angles of the hip and knee and a DVI combining the frontal and transverse plane angles were calculated. The two=dimensional DVI demonstrated moderate reliability (ICC=0.74). The correlation between the two=dimensional and three=dimensional DVI's was 0.635 (p<0001). Females with patellofemoral pain demonstrated a greater two=dimensional DVI (31.14 °±13.36 °) than females without patellofemoral pain (18.30 °±14.97 °; p=0.010). Females with patellofemoral pain demonstrated a decreased DVI in the corrected (19.04 °±13.70 °) versus usual (31.14 °±13.36 °) condition (p=0.001). The DVI is a reliable and valid measure that may provide a more comprehensive assessment of lower=extremity movement patterns than the knee frontal plane projection angle in individuals with lower=extremity musculoskeletal pain problems. 2b.
Aita, Takuyo; Nishigaki, Koichi
2012-11-01
To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. Copyright © 2012 Elsevier Inc. All rights reserved.
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Hidden One-Dimensional Electronic Structure of η-Mo_4O_11
NASA Astrophysics Data System (ADS)
Gweon, G.-H.; Mo, S.-K.; Allen, J. W.; Höchst, H.; Sarrao, J. L.; Fisk, Z.
2002-03-01
η-Mo_4O_11 is a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K, and is unique in showing a bulk quantum Hall effect. Research so far indicates that this material has a ``hidden one-dimensional'' (hidden-1d) Fermi surface (FS) in the normal state (T > 109 K), whose nesting property drives the 109 K CDW formation. Here, we directly confirm this picture by angle resolved photoemission spectroscopy (ARPES). We also observe a gap opening associated with the 109 K transition. Most interesting, this material shows the same ARPES line shape anomalies that suggest electron fractionalization in other hidden-1d materials like NaMo_6O_17 and KMo_6O_17. Studies of the 30 K transition are in progress.
Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves
NASA Astrophysics Data System (ADS)
Yang, Q.; Majda, A.
2017-12-01
Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive potential temperature anomalies are induced in the lower troposphere, suppressing convection in a moist environment. This simple model also reproduces convective momentum transport and CCKWs in agreement with results from a recent cloud resolving simulation.
Femtosecond timing measurement and control using ultrafast organic thin films
NASA Astrophysics Data System (ADS)
Naruse, Makoto; Mitsu, Hiroyuki; Furuki, Makoto; Iwasa, Izumi; Sato, Yasuhiro; Tatsuura, Satoshi; Tian, Minquan
2003-12-01
We show a femtosecond timing measurement and control technique using a squarylium dye J-aggregate film, which is an organic thin film that acts as an ultrafast two-dimensional optical switch. Optical pulse timing is directly mapped to space-domain position on the film, and the large area and ultrafast response offer a femtosecond-resolved, large dynamic range, real-time, multichannel timing measurement capability. A timing fluctuation (jitter, wander, and skew) reduction architecture is presented and experimentally demonstrated.
Jabbari, Keyvan; Pashaei, Fakhereh; Ay, Mohammad R.; Amouheidari, Alireza; Tavakoli, Mohammad B.
2018-01-01
Background: MapCHECK2 is a two-dimensional diode arrays planar dosimetry verification system. Dosimetric results are evaluated with gamma index. This study aims to provide comprehensive information on the impact of various factors on the gamma index values of MapCHECK2, which is mostly used for IMRT dose verification. Methods: Seven fields were planned for 6 and 18 MV photons. The azimuthal angle is defined as any rotation of collimators or the MapCHECK2 around the central axis, which was varied from 5 to −5°. The gantry angle was changed from −8 to 8°. Isodose sampling resolution was studied in the range of 0.5 to 4 mm. The effects of additional buildup on gamma index in three cases were also assessed. Gamma test acceptance criteria were 3%/3 mm. Results: The change of azimuthal angle in 5° interval reduced gamma index value by about 9%. The results of putting buildups of various thicknesses on the MapCHECK2 surface showed that gamma index was generally improved in thicker buildup, especially for 18 MV. Changing the sampling resolution from 4 to 2 mm resulted in an increase in gamma index by about 3.7%. The deviation of the gantry in 8° intervals in either directions changed the gamma index only by about 1.6% for 6 MV and 2.1% for 18 MV. Conclusion: Among the studied parameters, the azimuthal angle is one of the most effective factors on gamma index value. The gantry angle deviation and sampling resolution are less effective on gamma index value reduction. PMID:29535922
Vectorial point spread function and optical transfer function in oblique plane imaging.
Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang
2014-05-05
Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.
Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter
2006-11-01
X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.
Recent Advances in Transformation Optics
2012-01-01
posts in a SOI wafer. Light is coupled into the device via an input waveguide and reflected by the Bragg mirror towards the x–z plane . Reprinted from...coordinate in a two -dimensional (2D) plane and z* stands for the conjugate of z. Such a function defines a conformal mapping that preserves the angles...resonators with carefully designed geometries (Fig. 2(a)). In the experiment, a field-sensing antenna is used to record the field amplitude and phase inside
NASA Astrophysics Data System (ADS)
Fadley, Charles
2015-03-01
It is clear that interfaces in complex oxide heterostructures often represent emergent materials that possess surprising properties not associated with the parent oxides, such as two-dimensional electron gases (2DEGs), superconductivity, and magnetism. A detailed knowledge of the composition, atomic structure, and electronic structure through such interfaces is thus critical. Photomission (PES) and angle-resolved photoemission (ARPES) represent techniques of choice for such studies, but have certain limitations in being too surface sensitive and in not being able to focus specifically on buried interfaces or heterostructure layers. In this talk, I will discuss combining two newer elements of PES/ARPES to deal with this challenge: - the use of soft x-rays in the ca. few hundred-to-2000 eV regime, or even into the true hard x-ray regime, to probe more deeply into the structure, and - tailoring of the x-ray intensity profile into a strong standing wave (SW) through reflection from a multilayer heterostructure to provide much enhanced depth resolution. The relative advantages of soft/hard x-ray PES and ARPES and their complementarity to conventional VUV ARPES in the ca. 5-150 eV regime will be considered. As illustrative examples, by combining SW-PES and SW-ARPES, it has been possible to measure for the first time the detailed concentration profiles and momentum-resolved electronic structure at the SrTiO3/La0.67Sr0.33MnO3 interface and to directly measure the depth profile of the 2DEG at SrTiO3/GdTiO3 interfaces. Future directions for such measurements will also be discussed. Supported by US DOE Contract No. DE-AC02-05CH11231, ARO-MURI Grant W911-NF-09-1-0398, and the PALM-APTCOM Project (France).
Spatial and Temporal Evolution of Evaporation in a Drying Soil
NASA Astrophysics Data System (ADS)
Eichinger, W.; Nichols, J.; Cooper, D.; Prueger, J.
2005-12-01
The Los Alamos Scanning Raman Lidar is capable of making spatially resolved estimates of evapotranspiration over an area approaching a square kilometer, with relatively fine (25 meter) spatial resolution, using three dimensional measurements of water vapor concentrations. The method is based upon Monin-Obukhov similarity theory applied to spatially and temporally averaged data. During SMEX02, the instrument was positioned between fields of corn and soybeans. Periodic maps of evapotranspiration rates over the two fields are presented. The maps show the relatively uniform response in the early morning when surface moisture is available and progress through the day as surface water becomes increasingly limited. The change in ET rates between the two crop types is noted as are the spatial patterns as the surface dries non-uniformly.
Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.
2017-09-01
The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.
Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu
2018-04-01
Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.
Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms ofmore » the absolute density of species, are stressed.« less
Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale
NASA Astrophysics Data System (ADS)
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan
2018-04-01
This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Direct Measurement of Lung Motion Using Hyperpolarized Helium-3 MR Tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Miller, G. Wilson; Altes, Talissa A.
2007-07-01
Purpose: To measure lung motion between end-inhalation and end-exhalation using a hyperpolarized helium-3 (HP {sup 3}He) magnetic resonance (MR) tagging technique. Methods and Materials: Three healthy volunteers underwent MR tagging studies after inhalation of 1 L HP {sup 3}He gas diluted with nitrogen. Multiple-slice two-dimensional and volumetric three-dimensional MR tagged images of the lungs were obtained at end-inhalation and end-exhalation, and displacement vector maps were computed. Results: The grids of tag lines in the HP {sup 3}He MR images were well defined at end-inhalation and remained evident at end-exhalation. Displacement vector maps clearly demonstrated the regional lung motion and deformationmore » that occurred during exhalation. Discontinuity and differences in motion pattern between two adjacent lung lobes were readily resolved. Conclusions: Hyperpolarized helium-3 MR tagging technique can be used for direct in vivo measurement of respiratory lung motion on a regional basis. This technique may lend new insights into the regional pulmonary biomechanics and thus provide valuable information for the deformable registration of lung.« less
Electronic structure and relaxation dynamics in a superconducting topological material
Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...
2016-03-03
Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less
Strongly bound excitons in anatase TiO 2 single crystals and nanoparticles
Baldini, E.; Chiodo, L.; Dominguez, A.; ...
2017-04-13
Anatase TiO 2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkelmore » regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. Furthermore, the universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.« less
Measuring Speed Of Rotation With Two Brushless Resolvers
NASA Technical Reports Server (NTRS)
Howard, David E.
1995-01-01
Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.
Systems Imaging of the Immune Synapse.
Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph
2017-01-01
Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
NASA Astrophysics Data System (ADS)
Koskelo, Elise Anne C.; Flynn, Eric B.
2017-02-01
Inspection of and around joints, beams, and other three-dimensional structures is integral to practical nondestructive evaluation of large structures. Non-contact, scanning laser ultrasound techniques offer an automated means of physically accessing these regions. However, to realize the benefits of laser-scanning techniques, simultaneous inspection of multiple surfaces at different orientations to the scanner must not significantly degrade the signal level nor diminish the ability to distinguish defects from healthy geometric features. In this study, we evaluated the implementation of acoustic wavenumber spectroscopy for inspecting metal joints and crossbeams from interior angles. With this technique, we used a single-tone, steady-state, ultrasonic excitation to excite the joints via a single transducer attached to one surface. We then measured the full-field velocity responses using a scanning Laser Doppler vibrometer and produced maps of local wavenumber estimates. With the high signal level associated with steady-state excitation, scans could be performed at surface orientations of up to 45 degrees. We applied camera perspective projection transformations to remove the distortion in the scans due to a known projection angle, leading to a significant improvement in the local estimates of wavenumber. Projection leads to asymmetrical distortion in the wavenumber in one direction, making it possible to estimate view angle even when neither it nor the nominal wavenumber is known. Since plate thinning produces a purely symmetric increase in wavenumber, it also possible to independently estimate the degree of hidden corrosion. With a two-surface joint, using the wavenumber estimate maps, we were able to automatically calculate the orthographic projection component of each angled surface in the scan area.
Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M
2011-01-01
In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less
Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun
2015-01-01
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
Lüftner, Daniel; Milko, Matus; Huppmann, Sophia; Scholz, Markus; Ngyuen, Nam; Wießner, Michael; Schöll, Achim; Reinert, Friedrich; Puschnig, Peter
2014-01-01
Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky)-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface. PMID:25284953
Orbit Design Based on the Global Maps of Telecom Metrics
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming; Edwards, Chad; Noreen, Gary K.; Vaisnys, Arvydas
2004-01-01
In this paper we describe an orbit design aide tool, called Telecom Orbit Analysis and Simulation Tool(TOAST). Although it can be used for studying and selecting orbits for any planet, we solely concentrate on its use for Mars. By specifying the six orbital elements for an orbit, a time frame of interest, a horizon mask angle, and some telecom parameters such as the transmitting power, frequency, antenna gains, antenna losses, link margin, received threshold powers for the rates, etc. this tool enables the user to view the animation of the orbit in two and three-dimensional different telecom metrics at any point on the Mars, namely the global planetary map.
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
Automated sea floor extraction from underwater video
NASA Astrophysics Data System (ADS)
Kelly, Lauren; Rahmes, Mark; Stiver, James; McCluskey, Mike
2016-05-01
Ocean floor mapping using video is a method to simply and cost-effectively record large areas of the seafloor. Obtaining visual and elevation models has noteworthy applications in search and recovery missions. Hazards to navigation are abundant and pose a significant threat to the safety, effectiveness, and speed of naval operations and commercial vessels. This project's objective was to develop a workflow to automatically extract metadata from marine video and create image optical and elevation surface mosaics. Three developments made this possible. First, optical character recognition (OCR) by means of two-dimensional correlation, using a known character set, allowed for the capture of metadata from image files. Second, exploiting the image metadata (i.e., latitude, longitude, heading, camera angle, and depth readings) allowed for the determination of location and orientation of the image frame in mosaic. Image registration improved the accuracy of mosaicking. Finally, overlapping data allowed us to determine height information. A disparity map was created using the parallax from overlapping viewpoints of a given area and the relative height data was utilized to create a three-dimensional, textured elevation map.
Lightning Mapping With an Array of Fast Antennas
NASA Astrophysics Data System (ADS)
Wu, Ting; Wang, Daohong; Takagi, Nobuyuki
2018-04-01
Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.
Duarte, Regina M B O; Barros, Ana C; Duarte, Armando C
2012-08-03
For the purpose of resolving the chemical heterogeneity of natural organic matter (NOM), comprehensive two-dimensional liquid chromatography (LC×LC) was employed for the first time to map the hydrophobicity versus molecular weight (MW) distribution of two well-known complex organic mixtures: Suwannee River Fulvic Acids (SR-FA) and Pony Lake Fulvic Acids (PL-FA). Two methods have been developed using either a conventional reversed-phase (RP) silica column or a mixed-mode hydrophilic interaction column operating under aqueous RP mode in the first dimension, and a size-exclusion column in the second dimension. The LC×LC fractions were screened on-line by UV at 254 nm, molecular fluorescence at excitation/emission wavelengths (λ(Exc)/λ(Em)) of 240/450 nm, and by evaporative light scattering. The MW distributions of these two NOM samples were further characterized by number (Mn) and weight (Mw) average MW, and by polydispersity (Mw/Mn). Findings suggest that the combination of two independent separation mechanisms is promising in extend the range of NOM separation. For the cases where NOM separation was accomplished, smaller Mw group fractions seem to be related to a more hydrophobic nature. Regardless of the detection method, the complete range of MW distribution provided by both comprehensive LC×LC methods was found to be lower than those reported in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Four-dimensional maps of the human somatosensory system
Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.
2016-01-01
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579
Four-dimensional maps of the human somatosensory system.
Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A
2016-03-29
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon
Alam, Todd M.; Osborn Popp, Thomas M.
2016-06-04
High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.
Roewer, Ben D.; Di Stasi, Stephanie L.; Snyder-Mackler, Lynn
2011-01-01
The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction. PMID:21592482
Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei
2006-02-06
We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.
NASA Astrophysics Data System (ADS)
Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph
2014-05-01
An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.
Hidden phase in parent Fe-pnictide superconductors
NASA Astrophysics Data System (ADS)
Ali, Khadiza; Adhikary, Ganesh; Thakur, Sangeeta; Patil, Swapnil; Mahatha, Sanjoy K.; Thamizhavel, A.; De Ninno, Giovanni; Moras, Paolo; Sheverdyaeva, Polina M.; Carbone, Carlo; Petaccia, Luca; Maiti, Kalobaran
2018-02-01
We investigate the origin of exoticity in Fe-based systems via studying the fermiology of CaFe2As2 employing angle-resolved photoemission spectroscopy. While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two-dimensional and three-dimensional (3D) topology, respectively, the FSs at intermediate temperatures reveal the emergence of the 3D topology at a temperature much lower than the structural and magnetic phase transition temperature (170 K, for the sample under scrutiny). This leads to the conclusion that the evolution of FS topology is not directly driven by the structural transition. In addition, we discover the existence in ambient conditions of energy bands related to the cT phase. These bands are distinctly resolved in the high-photon energy spectra exhibiting strong Fe 3 d character. They gradually move to higher binding energies due to thermal compression with cooling, leading to the emergence of 3D topology in the Fermi surface. These results reveal the so-far hidden existence of a cT phase under ambient conditions, which is argued to lead to quantum fluctuations responsible for the exotic electronic properties in Fe-pnictide superconductors.
Mapping morphological shape as a high-dimensional functional curve
Fu, Guifang; Huang, Mian; Bo, Wenhao; Hao, Han; Wu, Rongling
2018-01-01
Abstract Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000–4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of ‘function’ instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do. PMID:28062411
NASA Astrophysics Data System (ADS)
Bharti, Rishikesh; Ramakrishnan, D.; Singh, K. D.
2014-02-01
This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2
Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...
2016-02-29
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less
Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111).
Matetskiy, A V; Ichinokura, S; Bondarenko, L V; Tupchaya, A Y; Gruznev, D V; Zotov, A V; Saranin, A A; Hobara, R; Takayama, A; Hasegawa, S
2015-10-02
A one-atom-layer compound made of one monolayer of Tl and one-third monolayer of Pb on a Si(111) surface having √3×√3 periodicity was found to exhibit a giant Rashba-type spin splitting of metallic surface-state bands together with two-dimensional superconducting transport properties. Temperature-dependent angle-resolved photoelectron spectroscopy revealed an enhanced electron-phonon coupling for one of the spin-split bands. In situ micro-four-point-probe conductivity measurements with and without magnetic field demonstrated that the (Tl, Pb)/Si(111) system transformed into the superconducting state at 2.25 K, followed by the Berezinskii-Kosterlitz-Thouless mechanism. The 2D Tl-Pb compound on Si(111) is believed to be the prototypical object for prospective studies of intriguing properties of the superconducting 2D system with lifted spin degeneracy, bearing in mind that its composition, atomic and electron band structures, and spin texture are already well established.
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Quantum spin Hall state in monolayer 1T '-WTe 2
Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...
2017-06-26
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less
Chiral tunneling in gated inversion symmetric Weyl semimetal.
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-02-18
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.
Chiral tunneling in gated inversion symmetric Weyl semimetal
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-01-01
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491
NASA Astrophysics Data System (ADS)
Smith, D. M. P.; Young, A.; Davidson, D. B.
2017-07-01
Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.
Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation.
Helms, Gunther; Dathe, Henning; Dechent, Peter
2008-03-01
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. (c) 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Manoel; Diaz, Marcos
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less
Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.
Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng
2017-05-10
Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.
NASA Astrophysics Data System (ADS)
Zhuo, Guan-Yu; Chen, Mei-Yu; Yeh, Chao-Yuan; Guo, Chin-Lin; Kao, Fu-Jen
2017-01-01
Polarization-resolved second harmonic generation (SHG) microscopy is appealing for studying structural proteins and well-organized biophotonic nanostructures, due to its highly sensitized structural specificity. In recent years, it has been used to investigate the chiroptical effect, particularly SHG circular dichroism (SHG-CD) in biological tissues. Although SHG-CD attributed to macromolecular structures has been demonstrated, the corresponding quantitative analysis and interpretation on how SHG correlates with second-order susceptibility χ(2) under circularly polarized excitations remains unclear. In this study, we demonstrate a method based on macroscopic chirality to elucidate the correlation between SHG-CD and the orientation angle of the molecular structure. By exploiting this approach, three-dimensional (3D) molecular orientation of type-I collagen is revealed with only two cross polarized SHG images (i.e., interactions of left and right circular polarizations) without acquiring an image stack of varying polarization.
Analysis of students’ spatial thinking in geometry: 3D object into 2D representation
NASA Astrophysics Data System (ADS)
Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.
2018-05-01
The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.
Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Souibgui, Mourad; Ajlani, Hosni; Cavanna, Antonnella; Oueslati, Meherzi; Meftah, Abdelaziz; Madouri, Ali
2017-12-01
In this paper, we investigate stacked 2D graphene layers on hexagonal boron nitride (h-BN). The graphene is obtained by high-quality chemical vapor deposition (CVD) and transferred to the h-BN substrate. We focus our attention on annealing effect at 1040 °C on single graphene layer (SGL) and bilayer graphene (BLG) on h-BN substrate using Raman spectroscopy. Our results show, before annealing, a twist angle θ = 0.63 ° between the SGL and the h-BN substrate and a twist angle 3 ° <θG1G2 < 8 ° between the two graphene layers of the BLG. After annealing, the analysis of the graphene G and 2D bands show a rotational reorientation of the graphene layer with respect to the h-BN substrate. Raman mapping also shows that the rotational reorientation is spatially dependent.
Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population.
Ding, Junqiang; Zhang, Luyan; Chen, Jiafa; Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu
2015-01-01
Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.
Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population
Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu
2015-01-01
Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize. PMID:26509792
Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.
Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre
2006-02-01
Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
NASA Astrophysics Data System (ADS)
Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.
2006-01-01
We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.
Surface Design Based on Discrete Conformal Transformations
NASA Astrophysics Data System (ADS)
Duque, Carlos; Santangelo, Christian; Vouga, Etienne
Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.
Persistent Charge-Density-Wave Order in Single-Layer TaSe2.
Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan
2018-02-14
We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
Tachometer Derived From Brushless Shaft-Angle Resolver
NASA Technical Reports Server (NTRS)
Howard, David E.; Smith, Dennis A.
1995-01-01
Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.
Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale
Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki
2014-01-01
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910
Three-dimensionality of the bulk electronic structure in WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Jo, Na Hyun; Mou, Daixiang
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Three-dimensionality of the bulk electronic structure in WTe 2
Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...
2017-05-18
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
A Quantitative Visual Mapping and Visualization Approach for Deep Ocean Floor Research
NASA Astrophysics Data System (ADS)
Hansteen, T. H.; Kwasnitschka, T.
2013-12-01
Geological fieldwork on the sea floor is still impaired by our inability to resolve features on a sub-meter scale resolution in a quantifiable reference frame and over an area large enough to reveal the context of local observations. In order to overcome these issues, we have developed an integrated workflow of visual mapping techniques leading to georeferenced data sets which we examine using state-of-the-art visualization technology to recreate an effective working style of field geology. We demonstrate a microbathymetrical workflow, which is based on photogrammetric reconstruction of ROV imagery referenced to the acoustic vehicle track. The advantage over established acoustical systems lies in the true three-dimensionality of the data as opposed to the perspective projection from above produced by downward looking mapping methods. A full color texture mosaic derived from the imagery allows studies at resolutions beyond the resolved geometry (usually one order of magnitude below the image resolution) while color gives additional clues, which can only be partly resolved in acoustic backscatter. The creation of a three-dimensional model changes the working style from the temporal domain of a video recording back to the spatial domain of a map. We examine these datasets using a custom developed immersive virtual visualization environment. The ARENA (Artificial Research Environment for Networked Analysis) features a (lower) hemispherical screen at a diameter of six meters, accommodating up to four scientists at once thus providing the ability to browse data interactively among a group of researchers. This environment facilitates (1) the development of spatial understanding analogue to on-land outcrop studies, (2) quantitative observations of seafloor morphology and physical parameters of its deposits, (3) more effective formulation and communication of working hypotheses.
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
Nonplanar wing load-line and slender wing theory
NASA Technical Reports Server (NTRS)
Deyoung, J.
1977-01-01
Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.
Imin, Nijat; De Jong, Femke; Mathesius, Ulrike; van Noorden, Giel; Saeed, Nasir A; Wang, Xin-Ding; Rose, Ray J; Rolfe, Barry G
2004-07-01
Using a combination of two-dimensional gel electrophoresis (2-DE) protein mapping and mass spectrometry (MS) analysis, we have established proteome reference maps of Medicago truncatula embryogenic tissue culture cells. The cultures were generated from single protoplasts, which provided a relatively homogeneous cell population. We used these to analyze protein expression at the globular stages of somatic embryogenesis, which is the earliest morphogenetic embryonic stage. Over 3000 proteins could reproducibly be resolved over a pI range of 4-11. Three hundred and twelve protein spots were extracted from colloidal Coomassie Blue-stained 2-DE gels and analyzed by matrix-assisted laser desorption/ionization-time of flight MS analysis and tandem MS sequencing. This enabled the identification of 169 protein spots representing 128 unique gene products using a publicly available expressed sequence tag database and the MASCOT search engine. These reference maps will be valuable for the investigation of the molecular events which occur during somatic embryogenesis in M. truncatula. The proteome reference maps and supplementary materials will be available and updated for public access at http://semele.anu.edu.au/.
7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals.
Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas
2007-12-01
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.
NASA Astrophysics Data System (ADS)
Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou
2016-07-01
The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the National Natural Science Foundation of China (Grant No. 11574367), the National Basic Research Program of China (Grant Nos. 2013CB921700, 2013CB921904, and 2015CB921300), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The synchrotron radiation experiments have been done under the HiSOR Proposal numbers, 12-B-47 and 13-B-16.
Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale.
Kautz, J; Jobst, J; Sorger, C; Tromp, R M; Weber, H B; van der Molen, S J
2015-09-04
Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benthem, Mark H.
2016-05-04
This software is employed for 3D visualization of X-ray diffraction (XRD) data with functionality for slicing, reorienting, isolating and plotting of 2D color contour maps and 3D renderings of large datasets. The program makes use of the multidimensionality of textured XRD data where diffracted intensity is not constant over a given set of angular positions (as dictated by the three defined dimensional angles of phi, chi, and two-theta). Datasets are rendered in 3D with intensity as a scaler which is represented as a rainbow color scale. A GUI interface and scrolling tools along with interactive function via the mouse allowmore » for fast manipulation of these large datasets so as to perform detailed analysis of diffraction results with full dimensionality of the diffraction space.« less
Huang, Huaqing; Jin, Kyung-Hwan; Zhang, Shunhong; Liu, Feng
2018-03-14
Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y 2 C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y 2 C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y 2 C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.
Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111).
Lexow, Matthias; Talwar, Timo; Heller, Bettina S J; May, Benjamin; Bhuin, Radha G; Maier, Florian; Steinrück, Hans-Peter
2018-05-09
Various amounts of the ionic liquids (ILs) [C1C1Im][Tf2N] and [C8C1Im][Tf2N] were deposited in vacuo by physical vapour deposition (PVD) on single crystalline Ag(111) at room temperature and subsequently monitored by angle-resolved X-ray photoelectron spectroscopy (ARXPS) as a function of time. For very low coverages of up to one closed molecular layer, an initial wetting layer was rapidly formed for both ILs. Deposition of higher amounts of [C1C1Im][Tf2N] revealed an initial three-dimensional film morphology. On the time scale of hours, characteristic changes of the XPS signals were observed. These are interpreted as island spreading and a transformation towards a nearly two dimensional [C1C1Im][Tf2N] film as the final state. In contrast, a film morphology close to 2D was found from the very beginning for [C8C1Im][Tf2N] deposited on Ag(111) demonstrating the influence of the alkyl chain length on the growth kinetics. These studies also highlight the suitability of time-resolved ARXPS for the investigation of IL/solid interfaces, which play a crucial role in IL thin film applications such as in catalysis, sensor, lubrication, and coating technologies.
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization. PMID:24621588
Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.
Design, fabrication, and verification of a three-dimensional autocollimator.
Yin, Yanhe; Cai, Sheng; Qiao, Yanfeng
2016-12-10
The autocollimator is an optical instrument for noncontact angle measurement with high resolution and a long detection range. It measures two-dimensional angles, i.e., pitch and yaw, but not roll. In this paper, we present a novelly structured autocollimator capable of measuring three-dimensional (3D) angles simultaneously. In this setup, two collimated beams of different wavelengths are projected onto a right-angle prism. One beam is reflected by the hypotenuse of the prism and received by an autocollimation unit for detecting pitch and yaw. The other is reflected by the two legs of the right-angle prism and received by a moiré fringe imaging unit for detecting roll. Furthermore, a prototype is designed and fabricated. Experiments are carried out to evaluate its basic performance. Calibration results show that this prototype has angular RMS errors of less than 5 arcsec in all 3Ds over a range of 1000 arcsec at a working distance of 2 m.
Homans, S W; Dwek, R A; Fernandes, D L; Rademacher, T W
1984-01-01
A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and H3) within this main envelope by using 1H-1H correlated spectroscopy. However, the tight coupling (J congruent to delta) between further protons results in poor spectral dispersion with consequent assignment ambiguities. We describe here three-step two-dimensional relayed correlation spectroscopy and show how it can be used to correlate the resolved anomeric (H1) and H2 protons with remote (H4, H5) protons directly through a linear network of couplings using sequential magnetization transfer around the oligosaccharide rings. Resonance assignments are then obtained by inspection of cross-peaks that appear in well-resolved regions of the two-dimensional spectrum. This offers a general solution to the assignment problem in oligosaccharides and, importantly, these assignments will subsequently allow for the three-dimensional solution conformation to be determined by using one-dimensional and two-dimensional nuclear Overhauser experiments. PMID:6593701
THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Lazarian, A.
2016-08-10
Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less
Schlieren Cinematography of Current Driven Plasma Jet Dynamics
NASA Astrophysics Data System (ADS)
Loebner, Keith; Underwood, Thomas; Cappelli, Mark
2016-10-01
Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.
NASA Astrophysics Data System (ADS)
Farhat, Ahmad H.
This dissertation, which is in the area of atomic physics, concentrates on the study of the interaction between VUV-soft X-ray radiation and atoms in the gas phase. The main area of interest is the study of Auger decay in atoms utilizing the process known as the resonance Auger effect, where an inner shell electron is excited to an unfilled orbital followed by the ejection of an Auger electron. The measurements in this thesis were performed by using the high resolution Atomic, Molecular and Optical Physics undulator beam line, which utilizes a spherical grating monochromator at the Advanced Light Source at Lawrence Berkeley National Laboratory. The research focused on three rare gases, argon, krypton and xenon. For argon, high resolution angular-resolved measurements of the 2p → 4s, 3d, 4d resonant Auger lines have been achieved. By measuring photoelectron spectra simultaneously at two different angles using efficient time of flight spectrometers, the angular distributions anisotropy parameters β have been measured, and relative intensities have been evaluated for each of the resolved final ionic states. For krypton, the resonant Auger decay of all the photoexcited Kr 3d3/2,5/2-1 nl (n = 5-9) states have been studied using an angle resolved two dimensional photoelectron spectroscopic technique, in which the electron yield was measured as a function of both photon energy and electron kinetic energy. Angular distributions, spectator and shake probabilities have been derived for the Kr 3d-1np/to4s- 14p-1mp + e/sp- (n = 5-9, m = 5-11) resonance Auger decay. The results show that the spectator-core coupling is strong at lower n (n = 5,6) but it lessens for higher n, with a shake up of m = n + 1 preferred. Finally for xenon, the autoionization resonances and angular distribution of the 4d → 6p decay spectrum were studied utilizing the Auger resonant Raman effect. Using this technique, β parameters of almost all 5p4/ (3P,/ 1D,/ 1S) 6p final ionic states were determined. These results contribute to our understanding of atomic structure and dynamics of inner shell processes and hopefully will stimulate further experimental and theoretical work.
Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucy, J. M.; Hauser, A. J.; Liu, Y.
2015-03-01
Structural relaxation in a Sr2CrReO6 epitaxial film, which exhibits strong spin-orbit coupling, leads to depth-dependent magnetism. We combine two depth-resolved synchrotron x-ray techniques, two-dimensional reciprocal space mapping and x-ray magnetic circular dichroism, to quantitatively determine this effect. An 800 nm thick film of Sr2CrReO6, grown with tensile epitaxial strain on SrCr0:5Nb0:5O3(225 nm)/LSAT, relaxes away from the Sr2CrReO6/SrCr0:5Nb0:5O3 interface to its bulk lattice parameters, with much of the film being fully relaxed. Grazing incidence xray diffraction measurements of the film elucidate the in-plane strain relaxation near the film- substrate interface while depth-resolved x-ray magnetic circular dichroism at the Re L edgemore » reveals the magnetic contributions of the Re site. The smooth relaxation of the film near the interface correlates with changes in the magnetic anisotropy. This provides a systematic and powerful way to probe the depth-varying structural and magnetic properties of a complex oxide with synchrotronsource x-ray techniques.« less
Microorganism billiards in closed plane curves.
Krieger, Madison S
2016-12-01
Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.
A New Perspective on Surface Weather Maps
ERIC Educational Resources Information Center
Meyer, Steve
2006-01-01
A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Todd M.; Liao, Zuolei; Nyman, May
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Alam, Todd M.; Liao, Zuolei; Nyman, May; ...
2016-04-27
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-11-19
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-01-01
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595
Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-09-01
Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Gregorio L.; Lao, Lang L.; Evans, Todd E.
The Small Angle Slot (SAS) was recently installed on DIII-D as an advanced divertor, promising easier plasma detachment and lower temperatures across the whole target. A twofold study of the SAS magnetic topology is presented in this paper. On one hand, a twodimensional uncertainty quantification analysis is carried out through a Monte Carlo approach in order to understand the level of accuracy of two-dimensional equilibrium computations in reconstructing the strike point and angle onto the divertor. Under typical experimental conditions, the uncertainties are found to be roughly 6.8 mm and 0.56 deg, respectively. On the other hand, a three-dimensional “vacuum”more » analysis is carried out to understand the effects of typical external perturbation fields on the scrape-off layer topology. When the threedimensional I-coils are switched on, poloidally-localized lobes are found to appear, grow, and hit the SAS target, although barely, even for 5 kA; at the same time, the strike point modulation is found to be roughly 1.8 mm and thus negligible for most purposes. Furthermore, such results complement previous two-dimensional analyses in characterizing typical SAS equilibria and provide useful background information for planning and interpreting SAS experiments.« less
Trevisan, Gregorio L.; Lao, Lang L.; Evans, Todd E.; ...
2018-01-04
The Small Angle Slot (SAS) was recently installed on DIII-D as an advanced divertor, promising easier plasma detachment and lower temperatures across the whole target. A twofold study of the SAS magnetic topology is presented in this paper. On one hand, a twodimensional uncertainty quantification analysis is carried out through a Monte Carlo approach in order to understand the level of accuracy of two-dimensional equilibrium computations in reconstructing the strike point and angle onto the divertor. Under typical experimental conditions, the uncertainties are found to be roughly 6.8 mm and 0.56 deg, respectively. On the other hand, a three-dimensional “vacuum”more » analysis is carried out to understand the effects of typical external perturbation fields on the scrape-off layer topology. When the threedimensional I-coils are switched on, poloidally-localized lobes are found to appear, grow, and hit the SAS target, although barely, even for 5 kA; at the same time, the strike point modulation is found to be roughly 1.8 mm and thus negligible for most purposes. Furthermore, such results complement previous two-dimensional analyses in characterizing typical SAS equilibria and provide useful background information for planning and interpreting SAS experiments.« less
Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays
NASA Astrophysics Data System (ADS)
Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei
2016-12-01
In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies
NASA Astrophysics Data System (ADS)
Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu
2015-09-01
Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.
Wang, Zhiming; Zhong, Z.; Walker, S. McKeown; ...
2017-03-10
Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO 2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities thatmore » are confined within a few TiO 2 layers below the surface. Subsequent in situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. Furthermore, this causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.« less
Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C
2017-10-31
Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.
King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F
2014-02-27
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.
Sub-10 fs Time-Resolved Vibronic Optical Microscopy
2016-01-01
We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Frequency domain technique for a two-dimensional mapping of optical tissue properties
NASA Astrophysics Data System (ADS)
Bocher, Thomas; Beuthan, Juergen; Minet, Olaf; Naber, Rolf-Dieter; Mueller, Gerhard J.
1995-12-01
Locally and individually varying optical tissue parameters (mu) a, (mu) s, and g are responsible for non-neglectible uncertainties in the interpretation of spectroscopic data in optical biopsy techniques. The intrinsic fluorescence signal for instance doesn't depend only on the fluorophore concentration but also on the amount of other background absorbers and on alterations of scattering properties. Therefore neither a correct relative nor an absolute mapping of the lateral fluorophore concentration can be derived from the intrinsic fluorescence signal alone. Using MC-simulations it can be shown that in time-resolved LIFS the simultaneously measured backscattered signal of the excitation wavelength (UV) can be used to develop a special, linearized rescaling algorithm to take into account the most dominant of these varying tissue parameters which is (mu) a,ex. In combination with biochemical calibration measurements we were able to perform fiberbased quantitative NADH- concentration measurements. In this paper a new rescaling method for VIS and IR light in the frequency domain is proposed. It can be applied within the validity range of the diffusion approximation and provides full (mu) a and (mu) s rescaling possibility in a 2- dimensional, non-contact mapping mode. The scanning device is planned to be used in combination with a standard operation microscope of ZEISS, Germany.
Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi
2016-02-19
In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.
Crossed-beam velocity map imaging of collisional autoionization processes
NASA Astrophysics Data System (ADS)
Delmdahl, Ralph F.; Bakker, Bernard L. G.; Parker, David H.
2000-11-01
Applying the velocity map imaging technique Penning ion formation as well as generation of associative ions is observed in autoionizing collisions of metastable neon atoms (Ne* 2p5 3s 3P2,0) with ground state argon targets in a crossed molecular beam experiment. Metastable neon reactants are obtained by nozzle expansion through a dc discharge ring. The quality of the obtained results clearly demonstrates the suitability of this new, particularly straightforward experimental approach with respect to angle and kinetic energy resolved investigations of Penning processes in crossed-beam studies which are known to provide the highest level of detail.
EGRAM- ECHELLE SPECTROGRAPH DESIGN AID
NASA Technical Reports Server (NTRS)
Dantzler, A. A.
1994-01-01
EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.
Chocolate tablet aspects of cytherean Meshkenet Tessera
NASA Technical Reports Server (NTRS)
Raitala, J.
1993-01-01
Meshkenet Tessera structures were mapped from Magellan data and several resemblances to chocolate tablet boudinage were found. The complex fault sets display polyphase tectonic sequences of a few main deformation phases. Shear and tension have contributed to the areal deformation. Main faults cut the 1600-km long Meshkenet Tessera highland into bar-like blocks which have ridge and groove pattern oriented along or at high angles to the faults. The first approach to the surface block deformation is an assumption of initial parallel shear faulting followed by a chocolate tablet boudinage. Major faults which cut Meshkenet Tessera into rectangular blocks have been active repetitively while two progressive or superposed boudinage set formations have taken place at high angles during the relaxational or flattening type deformation of the area. Chocolate tablet boudinage is caused by a layer-parallel two-dimensional extension resulting in fracturing of the competent layer. Such structures, defined by two sets of boudin neck lines at right angles to each other, have been described by a number of authors. They develop in a flattening type of bulk deformation or during superposed deformation where the rock is elongated in two dimensions parallel to the surface. This is an attempt to describe and understand the formation and development of structures of Meshkenet Tessera which has complicated fault structures.
Xu, Min; Wang, Li -Min; Peng, Rui; ...
2015-02-01
With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less
A polarimetric investigation of Jupiter: Disk-resolved imaging polarimetry and spectropolarimetry
NASA Astrophysics Data System (ADS)
McLean, W.; Stam, D. M.; Bagnulo, S.; Borisov, G.; Devogèle, M.; Cellino, A.; Rivet, J. P.; Bendjoya, P.; Vernet, D.; Paolini, G.; Pollacco, D.
2017-05-01
Context. Polarimetry is a powerful remote sensing tool to characterise solar system planets and, potentially, to detect and characterise exoplanets. The linear polarisation of a planet as a function of wavelength and phase angle is sensitive to the cloud and haze particle properties in planetary atmospheres, as well as to their altitudes and optical thicknesses. Aims: We present for the first time polarimetric signals of Jupiter mapped over the entire disk, showing features such as contrasts between the belts and zones, the polar regions, and the Great Red Spot. We investigate the use of these maps for atmospheric characterisation and discuss the potential application of polarimetry to the study of the atmospheres of exoplanets. Methods: We have obtained polarimetric images of Jupiter, in the B, V, and R filters, over a phase angle range of α = 4°-10.5°. In addition, we have obtained two spectropolarimetric datasets, over the wavelength range 500-850 nm. An atmospheric model was sought for all of the datasets, which was consistent with the observed behaviour over the wavelength and phase angle range. Results: The polarimetric maps show clear latitudinal structure, with increasing polarisation towards the polar regions, in all filters. The spectropolarimetric datasets show a decrease in polarisation as a function of wavelength along with changes in the polarisation in methane absorption bands. A model fit was achieved by varying the cloud height and haze optical thickness; this can roughly produce the variation across latitude for the V and R filters, but not for the B filter data. The same model particles are also able to produce a close fit to the spectropolarimetric data. The atmosphere of Jupiter is known to be complex in structure, and data taken at intermediate phase angles (unreachable for Earth-based telescopes) seems essential for a complete characterisation of the atmospheric constituents. Because exoplanets orbit other stars, they are observable at intermediate phase angles and thus promise to be better targets for Earth-based polarimetry. Based on data obtained with ToPol at the one-metre "Omicron" (West) telescope of the C2PU (Centre Pédagogique Planète et Univers) facility (Calern plateau, Observatoire de la Côte d'Azur, France), and FoReRo2, at the two-metre RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria.
Visual Image Sensor Organ Replacement
NASA Technical Reports Server (NTRS)
Maluf, David A.
2014-01-01
This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.
Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui
2012-02-01
The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America
Theory of Parabolic Arcs in Interstellar Scintillation Spectra
NASA Astrophysics Data System (ADS)
Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.
2006-01-01
Interstellar scintillation (ISS), observed as time variation in the intensity of a compact radio source, is caused by small-scale structure in the electron density of the interstellar plasma. Dynamic spectra of ISS show modulation in radio frequency and time. Here we relate the (two-dimensional) power spectrum of the dynamic spectrum-the secondary spectrum-to the scattered image of the source. Recent work has identified remarkable parabolic arcs in secondary spectra. Each point in a secondary spectrum corresponds to interference between points in the scattered image with a certain Doppler shift and a certain delay. The parabolic arc corresponds to the quadratic relation between differential Doppler shift and delay through their common dependence on scattering angle. We show that arcs will occur in all media that scatter significant power at angles larger than the rms angle. Thus, effects such as source diameter, steep spectra, and dissipation scales, which truncate high angle scattering, also truncate arcs. Arcs are equally visible in simulations of nondispersive scattering. They are enhanced by anisotropic scattering when the spatial structure is elongated perpendicular to the velocity. In weak scattering the secondary spectrum is directly mapped from the scattered image, and this mapping can be inverted. We discuss additional observed phenomena including multiple arcs and reverse arclets oriented oppositely to the main arc. These phenomena persist for many refractive scattering times, suggesting that they are due to large-scale density structures, rather than low-frequency components of Kolmogorov turbulence.
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
A model reduction approach to numerical inversion for a parabolic partial differential equation
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Obst, Martin; Schmid, Gregor
2014-01-01
The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.
NASA Astrophysics Data System (ADS)
Ohta, Taisuke; Robinson, Jeremy; Feibelman, Peter; Beechem, Thomas; Diaconescu, Bogdan; Bostwick, Aaron; Rotenberg, Eli; Kellogg, Gary
2013-03-01
A worldwide effort is underway to learn how to build devices that take advantage of the remarkable electronic properties of graphene and other two-dimensional crystals. An outstanding question is how stacking two or a few such crystals affects their joint electronic behavior. Our talk concerns ``twisted bilayer graphene (TBG),'' that is, two graphene layers azimuthally misoriented. Applying angle-resolved photoemission spectroscopy and density functional theory, we have found van Hove singularities (vHs) and associated mini-gaps in the TBG electronic spectrum, which represent unambiguous proof that the layers interact. Of particular interest is that the measured and calculated electronic dispersion manifests the periodicity of the moiré superlattice formed by the twist. Thus, there are vHs not just where the Dirac cones of the two layers overlap, but also at the boundaries of the moiré superlattice Brillouin zone. Moirés, ubiquitous in hybrid solids based on two-dimensional crystals, accordingly present themselves as tools for manipulating the electronic behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2012-02-01
We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.
Geometry of the Large Magellanic Cloud Using Multi- wavelength Photometry of Classical Cepheids
NASA Astrophysics Data System (ADS)
Deb, Sukanta; Ngeow, Chow-Choong; Kanbur, Shashi M.; Singh, Harinder P.; Wysocki, Daniel; Kumar, Subhash
2018-05-01
We determine the geometrical and viewing angle parameters of the Large Magellanic Cloud (LMC) using the Leavitt law based on a sample of more than 3500 common classical Cepheids (FU and FO) in optical (V, I), near-infrared (JHKs) and mid-infrared ([3.6] μm and [4.5] μm) photometric bands. Statistical reddening and distance modulus free from the effect of reddening to each of the individual Cepheids are obtained using the simultaneous multi-band fit to the apparent distance moduli from the analysis of the resulting Leavitt laws in these seven photometric bands. A reddening map of the LMC obtained from the analysis shows good agreement with the other maps available in the literature. Extinction free distance measurements along with the information of the equatorial coordinates (α, δ) for individual stars are used to obtain the corresponding Cartesian coordinates with respect to the plane of the sky. By fitting a plane solution of the form z = f(x, y) to the observed three dimensional distribution, the following viewing angle parameters of the LMC are obtained: inclination angle i = 25°.110 ± 0°.365, position angle of line of nodes θlon = 154°.702 ± 1°.378. On the other hand, modelling the observed three dimensional distribution of the Cepheids as a triaxial ellipsoid, the following values of the geometrical axes ratios of the LMC are obtained: 1.000 ± 0.003: 1.151 ± 0.003: 1.890 ± 0.014 with the viewing angle parameters: inclination angle of i = 11°.920 ± 0°.315 with respect to the longest axis from the line of sight and position angle of line of nodes θlon = 128°.871 ± 0°.569. The position angles are measured eastwards from north.
Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A
2013-03-01
Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.
Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.
2014-01-01
Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We find that the features in the 2D COS maps that derive from overlapping bands are determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identify the conditions required to resolve overlapping bands. In particular, 2D COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands. PMID:23452492
Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.
Han, Youkyung; Oh, Jaehong
2018-05-17
For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Discussion on the 3D visualizing of 1:200 000 geological map
NASA Astrophysics Data System (ADS)
Wang, Xiaopeng
2018-01-01
Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.
NASA Astrophysics Data System (ADS)
Bahramy, M. S.; Clark, O. J.; Yang, B.-J.; Feng, J.; Bawden, L.; Riley, J. M.; Marković, I.; Mazzola, F.; Sunko, V.; Biswas, D.; Cooil, S. P.; Jorge, M.; Wells, J. W.; Leandersson, M.; Balasubramanian, T.; Fujii, J.; Vobornik, I.; Rault, J. E.; Kim, T. K.; Hoesch, M.; Okawa, K.; Asakawa, M.; Sasagawa, T.; Eknapakul, T.; Meevasana, W.; King, P. D. C.
2018-01-01
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Novel angle estimation for bistatic MIMO radar using an improved MUSIC
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Xiaofei; Chen, Han
2014-09-01
In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.
NASA Astrophysics Data System (ADS)
Valbuena, M. A.; Avila, J.; Pantin, V.; Drouard, S.; Guyot, H.; Asensio, M. C.
2006-05-01
Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo 6O 17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ˜40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ˜120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K 0.3MoO 3 blue bronze.
Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope
NASA Astrophysics Data System (ADS)
Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan
2018-04-01
In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.
Ahmed, Afaz Uddin; Arablouei, Reza; Hoog, Frank de; Kusy, Branislav; Jurdak, Raja; Bergmann, Neil
2018-05-29
Channel state information (CSI) collected during WiFi packet transmissions can be used for localization of commodity WiFi devices in indoor environments with multipath propagation. To this end, the angle of arrival (AoA) and time of flight (ToF) for all dominant multipath components need to be estimated. A two-dimensional (2D) version of the multiple signal classification (MUSIC) algorithm has been shown to solve this problem using 2D grid search, which is computationally expensive and is therefore not suited for real-time localisation. In this paper, we propose using a modified matrix pencil (MMP) algorithm instead. Specifically, we show that the AoA and ToF estimates can be found independently of each other using the one-dimensional (1D) MMP algorithm and the results can be accurately paired to obtain the AoA⁻ToF pairs for all multipath components. Thus, the 2D estimation problem reduces to running 1D estimation multiple times, substantially reducing the computational complexity. We identify and resolve the problem of degenerate performance when two or more multipath components have the same AoA. In addition, we propose a packet aggregation model that uses the CSI data from multiple packets to improve the performance under noisy conditions. Simulation results show that our algorithm achieves two orders of magnitude reduction in the computational time over the 2D MUSIC algorithm while achieving similar accuracy. High accuracy and low computation complexity of our approach make it suitable for applications that require location estimation to run on resource-constrained embedded devices in real time.
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Z.; Lawson, B.; Asaba, T.
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Bulk Rotational Symmetry Breaking in Kondo Insulator SmB 6
Xiang, Z.; Lawson, B.; Asaba, T.; ...
2017-09-25
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Two-dimensional grating guided-mode resonance tunable filter.
Kuo, Wen-Kai; Hsu, Che-Jung
2017-11-27
A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.
The blind student’s interpretation of two-dimensional shapes in geometry
NASA Astrophysics Data System (ADS)
Andriyani; Budayasa, I. K.; Juniati, D.
2018-01-01
The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.
Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheis, M.; Zasowski, G.; Allende Prieto, C.
Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-09-02
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-01-01
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170
NASA Astrophysics Data System (ADS)
Venolia, Dan S.; Williams, Lance
1990-08-01
A range of stereoscopic display technologies exist which are no more intrusive, to the user, than a pair of spectacles. Combining such a display system with sensors for the position and orientation of the user's point-of-view results in a greatly enhanced depiction of three-dimensional data. As the point of view changes, the stereo display channels are updated in real time. The face of a monitor or display screen becomes a window on a three-dimensional scene. Motion parallax naturally conveys the placement and relative depth of objects in the field of view. Most of the advantages of "head-mounted display" technology are achieved with a less cumbersome system. To derive the full benefits of stereo combined with motion parallax, both stereo channels must be updated in real time. This may limit the size and complexity of data bases which can be viewed on processors of modest resources, and restrict the use of additional three-dimensional cues, such as texture mapping, depth cueing, and hidden surface elimination. Effective use of "full 3D" may still be undertaken in a non-interactive mode. Integral composite holograms have often been advanced as a powerful 3D visualization tool. Such a hologram is typically produced from a film recording of an object on a turntable, or a computer animation of an object rotating about one axis. The individual frames of film are multiplexed, in a composite hologram, in such a way as to be indexed by viewing angle. The composite may be produced as a cylinder transparency, which provides a stereo view of the object as if enclosed within the cylinder, which can be viewed from any angle. No vertical parallax is usually provided (this would require increasing the dimensionality of the multiplexing scheme), but the three dimensional image is highly resolved and easy to view and interpret. Even a modest processor can duplicate the effect of such a precomputed display, provided sufficient memory and bus bandwidth. This paper describes the components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.
Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts
NASA Astrophysics Data System (ADS)
Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei
2015-03-01
Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.
Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru
2016-06-15
Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.
Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region
NASA Astrophysics Data System (ADS)
Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.
2016-03-01
(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.
Self-Organizing-Map Program for Analyzing Multivariate Data
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.
2005-01-01
SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.
Bound states of dipolar bosons in one-dimensional systems
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.
2013-04-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.
Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.
2002-01-01
A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.
Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.
2013-01-01
The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Wu, Yun; Lee, Yongbin; Kong, Tai; ...
2017-07-15
Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Lee, Yongbin; Kong, Tai
Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less
New Display-type Analyzer for Three-dimensional Fermi Surface Mapping and Atomic Orbital Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Nobuaki; Matsuda, Hiroyuki; Shigenai, Shin
2007-01-19
We have developed and installed a new Display-type ANAlyzer (DIANA) at Ritsumeikan SR center BL-7. We measured the angle-integrated energy distribution curve of poly-crystal gold and the photoelectron intensity angular distribution (PIAD) of HOPG to estimate the total energy resolution and to check the condition of the analyzer. The total energy resolution ({delta}E/E) is up to 0.78%, which is much higher than the old type. The PIAD of HOPG we obtained was the ring pattern as expected. Therefore, a detailed three-dimensional Fermi surface mapping and an analysis of the atomic orbitals constituting the electron energy bands are possible by combiningmore » them with a linearly polarized synchrotron radiation.« less
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
Zhou, Jing; Li, Yan; Zahl, Percy; ...
2015-03-14
The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, butmore » exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions« less
Stall behavior of a scaled three-dimensional wind turbine blade
NASA Astrophysics Data System (ADS)
Mulleners, Karen; Melius, Matthew; Cal, Raul Bayoan
2014-11-01
The power generation of a wind turbine is influenced by many factors including the unsteady incoming flow characteristics, pitch regulation, and the geometry of the various turbine components. Within the framework of maximizing energy extraction, it is important to understand and tailor the aerodynamics of a wind turbine. In the interest of seeking further understanding into the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. A wind tunnel experiment has been carried out in the 2.2 m × 1.8 m cross-section closed loop wind tunnel at DLR in Göttingen by means of time-resolved stereoscopic PIV. An extensive coherent structure analysis of the time-resolved velocity field over the suction side of the blade was performed to study stall characteristics under a geometrically induced pressure gradient. In particular, the radial extent and propagation of stalled flow regions were characterized for various static angles of attack.
Near-integrable behaviour in a family of discretized rotations
NASA Astrophysics Data System (ADS)
Reeve-Black, Heather; Vivaldi, Franco
2013-05-01
We consider a one-parameter family of invertible maps of a two-dimensional lattice, obtained by discretizing the space of planar rotations. We let the angle of rotation approach π/2, and show that the limit of vanishing discretization is described by an integrable piecewise-smooth Hamiltonian flow, whereby the plane foliates into families of invariant polygons with an increasing number of sides. Considered as perturbations of the flow, the lattice maps assume a different character, described in terms of strip maps, a variant of those found in outer billiards of polygons. The perturbation introduces phenomena reminiscent of the Kolmogorov-Arnold-Moser scenario: a positive fraction of the unperturbed curves survives. We prove this for symmetric orbits, under a condition that allows us to obtain explicit values for their density, the latter being a rational number typically less than 1. This result allows us to conclude that the infimum of the density of all surviving curves—symmetric or not—is bounded away from zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Lindner, F; Bin, J
2016-06-15
Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by anmore » online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser pulses with nanometer thin target foils to accelerate protons and ions to multi-MeV kinetic energy. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics”.« less
Jung, H.-S.; Lu, Z.; Lee, C.-W.
2011-01-01
Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.
Identification of cardiac rhythm features by mathematical analysis of vector fields.
Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K
2005-01-01
Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.
NASA Astrophysics Data System (ADS)
Lyo, In-Whan
Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is critically discussed against other explanations.
Conventions and workflows for using Situs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wriggers, Willy, E-mail: wriggers@biomachina.org
2012-04-01
Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs tomore » be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.« less
NASA Astrophysics Data System (ADS)
Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori
2018-05-01
We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.
Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi
2015-02-01
In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.
Design, implementation and characterization of a quantum-dot-based volumetric display.
Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi
2015-02-16
In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.
Origin and Correction of Magnetic Field Inhomogeneity at the Interface in Biphasic NMR Samples
Martin, Bryan T.; Chingas, G. C.
2012-01-01
The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Line widths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software. PMID:22459062
Incidence loss for a core turbine rotor blade in a two-dimensional cascade
NASA Technical Reports Server (NTRS)
Stabe, R. G.; Kline, J. F.
1974-01-01
The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.
Incidence loss for fan turbine rotor blade in two-dimensional cascade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Moffitt, T. P.; Stabe, R. G.
1983-01-01
The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.
Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation
NASA Astrophysics Data System (ADS)
Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.
2018-05-01
By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements
NASA Astrophysics Data System (ADS)
Liburdy, James
2017-11-01
Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.
Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.
1987-01-01
A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.
Servomotor and Controller Having Large Dynamic Range
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott
2007-01-01
A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).
Detection and characterization of singly deuterated silylene, SiHD, via optical spectroscopy
Damian L. Kokkin; Sears, Trevor J.; Ma, Tongmei; ...
2016-06-27
Singly deuterated silylene has been detected and characterized in the gas-phase using high-resolution, two-dimensional, optical spectroscopy. Rotationally resolved lines in the 0 0 0X˜ 1A'→A˜ 1A" band are assigned to both c-type perpendicular transition and additional parallel, axis-switching induced bands. The extracted rotational constants were combined with those for SiH 2 and SiD 2 to determine an improved equilibrium bond length, r SiH, and bond angle, θ, of 1.5137 ± 0.0003 Å and 92.04° ± 0.05°, and 1.4853 ± 0.0005 Å and 122.48° ± 0.08° for the X˜ 1A'(0,0,0) and A˜ 1A"(0,0,0) state respectively. The dispersed fluorescence consists of amore » long progression in the A˜ 1A"(0,0,0)→X˜ 1A'(0,ν 2,0) emission which was analyzed to produce vibrational parameters. Furthermore, a strong quantum level dependence of the rotationally resolved radiative decay curves is analyzed.« less
Diffusion maps for high-dimensional single-cell analysis of differentiation data.
Haghverdi, Laleh; Buettner, Florian; Theis, Fabian J
2015-09-15
Single-cell technologies have recently gained popularity in cellular differentiation studies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such high-dimensional single-cell data has its own statistical and computational challenges. Popular multivariate approaches are based on data normalization, followed by dimension reduction and clustering to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clusters to be present but instead expect the cells to follow continuous branching lineages. Here, we propose the use of diffusion maps to deal with the problem of defining differentiation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and inclusion of uncertainties or missing measurement values, which enables the establishment of a pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect this output to reflect cell differentiation trajectories, where the data originates from intrinsic diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the transcriptional landscape towards more differentiated states with some stochasticity along their path. We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement noise) and sampling density heterogeneities on simulated toy data as well as two single-cell quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that diffusion maps perform considerably better than Principal Component Analysis and are advantageous over other techniques for non-linear dimension reduction such as t-distributed Stochastic Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells. The Matlab implementation of diffusion maps for single-cell data is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map. fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Four-Dimensional Respiratory Motion-Resolved Whole Heart Coronary MR Angiography
Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P.; Schwitter, Juerg; Sodickson, Daniel K.; Otazo, Ricardo; Stuber, Matthias
2016-01-01
Purpose Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Methods Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Results Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. Conclusion XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. PMID:27052418
Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.
Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H
2017-09-18
A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.
NASA Technical Reports Server (NTRS)
Currie, J. R.; Kissel, R. R.
1986-01-01
A system for the measurement of shaft angles is disclosed wherein a synchro resolver is sequentially pulsed, and alternately, a sine and then a cosine representative voltage output of it are sampled. Two like type, sine or cosine, succeeding outputs (V sub S1, V sub S2) are averaged and algebraically related to the opposite type output pulse (V sub c) occurring between the averaged pulses to provide a precise indication of the angle of a shaft coupled to the resolver at the instant of the occurrence of the intermediately occurring pulse (V sub c).
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-08-19
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-01-01
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1980-01-01
A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).
Flow measurements in two cambered vane diffusers with different passage widths
NASA Astrophysics Data System (ADS)
Stein, W.; Rautenberg, M.
1985-03-01
To investigate the influence of the vaneless space between impeller exit and the diffuser vanes, detailed flow measurements in two diffusers with the same vane geometry but different passage width are compared. The three-dimensional character of the flow changes between impeller exit and the entry to the two dimensional vanes depending on the shape of the shroud. After initial measurements with a constant area vaneless space, the width of the vaned diffuser was later on reduced by 10 percent. The compressor maps show increases in overall pressure rise and efficiency with the width reduction. To get further details of the flow field, measurements of the static pressure distribution at hub and shroud have been performed at several operation points for both diffusers. At the same points, the flow angle and total pressure distribution between hub and shroud upstream and downstream of the vanes have been measured with probes. The maximum efficiency of the narrow diffuser is nearly 2 percent higher than for the wide diffuser. The measurements give further details to explain this improvement.
NASA Astrophysics Data System (ADS)
Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.
2017-05-01
Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.
1992-01-01
Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.
Radar imaging using electromagnetic wave carrying orbital angular momentum
NASA Astrophysics Data System (ADS)
Yuan, Tiezhu; Cheng, Yongqiang; Wang, Hongqiang; Qin, Yuliang; Fan, Bo
2017-03-01
The concept of radar imaging based on orbital angular momentum (OAM) modulation, which has the ability of azimuthal resolution without relative motion, has recently been proposed. We investigate this imaging technique further in greater detail. We first analyze the principle of the technique, accounting for its resolving ability physically. The phase and intensity distributions of the OAM-carrying fields produced by phased uniform circular array antenna, which have significant effects on the imaging results, are investigated. The imaging model shows that the received signal has the form of inverse discrete Fourier transform with the use of OAM and frequency diversities. The two-dimensional Fourier transform is employed to reconstruct the target images in the case of large and small elevation angles. Due to the peculiar phase and intensity characteristics, the small elevation is more suitable for practical application than the large one. The minimum elevation angle is then obtained given the array parameters. The imaging capability is analyzed by means of the point spread function. All results are verified through numerical simulations. The proposed staring imaging technique can achieve extremely high azimuthal resolution with the use of plentiful OAM modes.
Anomalous electron doping independent two-dimensional superconductivity
NASA Astrophysics Data System (ADS)
Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang
2017-07-01
Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Fleeter, S.
1983-01-01
To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.
Are X-rays the key to integrated computational materials engineering?
Ice, Gene E.
2015-11-01
The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less
Method of orthogonally splitting imaging pose measurement
NASA Astrophysics Data System (ADS)
Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong
2018-01-01
In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
Inverse full state hybrid projective synchronization for chaotic maps with different dimensions
NASA Astrophysics Data System (ADS)
Ouannas, Adel; Grassi, Giuseppe
2016-09-01
A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).
Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions
NASA Astrophysics Data System (ADS)
Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong
2018-01-01
Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.
NASA Astrophysics Data System (ADS)
Nagashima, Hiroki; Trébosc, Julien; Calvez, Laurent; Pourpoint, Frédérique; Mear, François; Lafon, Olivier; Amoureux, Jean-Paul
2017-09-01
We introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space correlation experiments. Such correlations are achieved using (i) the J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as (ii) the J- or dipolar-mediated Hetero-nuclear Multiple-Quantum Correlation (J- or D-HMQC) schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are applied to the crystalline β-Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. Such glass leads to a homogeneous and reproducible glass-ceramic, which is a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. We show that 2D 71Ga-77Se correlation experiments allow resolving the 77Se signals of molecular units, which are not resolved in the 1D 77Se CPMG spectrum. Additionally, the build-up curves of the J-RINEPT and the J-HMQC experiments allow the estimate of the 71Ga-77Se J-couplings via one and three-bonds in the three-dimensional network of β-Ga2Se3. Furthermore, these build-up curves show that the one-bond 1J71Ga-77Se couplings in the 0.2Ga2Se3-0.8GeSe2 glass are similar to those measured for β-Ga2Se3. We also report 2D 71Ga Satellite Transition Magic-Angle Spinning (STMAS) spectrum of β-Ga2Se3 using QCPMG detection at high magnetic field and high Magic-Angle Spinning frequency using large radio frequency field. Such spectrum allows separating the signal of β-Ga2Se3 and that of an impurity.
Scanning system for angle-resolved low-coherence interferometry.
Steelman, Zachary A; Ho, Derek; Chu, Kengyeh K; Wax, Adam
2017-11-15
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm 2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm 2 without repositioning. By utilizing a reflection-only three-optic rotator prism and a two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health.
A scanning system for angle-resolved low-coherence interferometry
Steelman, Zachary A.; Ho, Derek; Chu, Kengyeh K.; Wax, Adam
2018-01-01
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm2 without repositioning. By utilizing a reflection-only three-optic rotator (ROTOR) prism and two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health. PMID:29140317
NASA Astrophysics Data System (ADS)
Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao
2018-06-01
The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.
A Glimpse in the Third Dimension for Electrical Resistivity Profiles
NASA Astrophysics Data System (ADS)
Robbins, A. R.; Plattner, A.
2017-12-01
We present an electrode layout strategy designed to enhance the popular two-dimensional electrical resistivity profile. Offsetting electrodes from the traditional linear layout and using 3-D inversion software allows for mapping the three-dimensional electrical resistivity close to the profile plane. We established a series of synthetic tests using simulated data generated from chosen resistivity distributions with a three-dimensional target feature. All inversions and simulations were conducted using freely-available ERT software, BERT and E4D. Synthetic results demonstrate the effectiveness of the offset electrode approach, whereas the linear layout failed to resolve the three-dimensional character of our subsurface feature. A field survey using trench backfill as a known resistivity contrast confirmed our synthetic tests. As we show, 3-D inversions of linear layouts for starting models without previously known structure are futile ventures because they generate symmetric resistivity solutions with respect to the profile plane. This is a consequence of the layout's inherent symmetrical sensitivity patterns. An offset electrode layout is not subject to the same limitation, as the collective measurements do not share a common sensitivity symmetry. For practitioners, this approach presents a low-cost improvement of a traditional geophysical method which is simple to use yet may provide critical information about the three dimensional structure of the subsurface close to the profile.
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
A supersonic three-dimensional code for flow over blunt bodies: Program documentation and test cases
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Mcmillan, O. J.
1980-01-01
The use of a computer code for the calculation of steady, supersonic, three dimensional, inviscid flow over blunt bodies is illustrated. Input and output are given and explained for two cases: a pointed code of 20 deg half angle at 15 deg angle of attack in a free stream with M sub infinite = 7, and a cone-ogive-cylinder at 10 deg angle of attack with M sub infinite = 2.86. A source listing of the computer code is provided.
Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin
2018-02-15
The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.
Ma, Ya-Jun; Lu, Xing; Carl, Michael; Zhu, Yanchun; Szeverenyi, Nikolaus M; Bydder, Graeme M; Chang, Eric Y; Du, Jiang
2018-08-01
To develop an accurate T 1 measurement method for short T 2 tissues using a combination of a 3-dimensional ultrashort echo time cones actual flip angle imaging technique and a variable repetition time technique (3D UTE-Cones AFI-VTR) on a clinical 3T scanner. First, the longitudinal magnetization mapping function of the excitation pulse was obtained with the 3D UTE-Cones AFI method, which provided information about excitation efficiency and B 1 inhomogeneity. Then, the derived mapping function was substituted into the VTR fitting to generate accurate T 1 maps. Numerical simulation and phantom studies were carried out to compare the AFI-VTR method with a B 1 -uncorrected VTR method, a B 1 -uncorrected variable flip angle (VFA) method, and a B 1 -corrected VFA method. Finally, the 3D UTE-Cones AFI-VTR method was applied to bovine bone samples (N = 6) and healthy volunteers (N = 3) to quantify the T 1 of cortical bone. Numerical simulation and phantom studies showed that the 3D UTE-Cones AFI-VTR technique provides more accurate measurement of the T 1 of short T 2 tissues than the B 1 -uncorrected VTR and VFA methods or the B 1 -corrected VFA method. The proposed 3D UTE-Cones AFI-VTR method showed a mean T 1 of 240 ± 25 ms for bovine cortical bone and 218 ± 10 ms for the tibial midshaft of human volunteers, respectively, at 3 T. The 3D UTE-Cones AFI-VTR method can provide accurate T 1 measurements of short T 2 tissues such as cortical bone. Magn Reson Med 80:598-608, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Process for combining multiple passes of interferometric SAR data
Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.
2000-11-21
Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.
Conformal mapping in optical biosensor applications.
Zumbrum, Matthew E; Edwards, David A
2015-09-01
Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.
Murad-Regadas, S M; Regadas, F S P; Barreto, R G L; Rodrigues, L V; de Souza, M H L P
2009-10-01
The aim of this prospective study was to test two-dimensional dynamic anorectal ultrasonography (2D-DAUS) in the assessment of anismus and compare it with echodefecography (ECD). Fifty consecutive female patients with outlet delay were submitted to 2D and 3D-DAUS, measuring the relaxing or contracting puborectalis muscle angle during straining. The patients were assigned to one of two groups based on ECD findings. Group I consisted of 29 patients without anismus and group II included 21 patients diagnosed with anismus. Subsequently 2D-DAUS images were checked for anismus and compared with ECD findings. Upon straining, the angle produced by the movement of the puborectalis muscle decreased in 26 out of the 29 (89.6%) patients of group I and increased 19 out of the 21 (90.4%) patients of group II. The mean angle during straining differed significantly between group I and group II. The index of agreement between the two scanning modes was 89.6% (26/29) for group I (Kappa: 0.796; CI: 95%; range: 0.51-1.0) and 90.4% (19/21) for group II (Kappa: 0.796; CI: 95%; range: 0.51-1.0). Two-dimensional dynamic anal ultrasonography can be used as an alternative method to assess patients with anismus, although the 3-D modality is more precise to evaluate the PR angle as the sphincters integrity as the whole muscle length is clearly visualized.
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
NASA Astrophysics Data System (ADS)
Cordry, Sean
2003-10-01
Textbooks almost always have a stroboscopic photograph of a ball falling alongside of one with an initial horizontal speed. These photos are great for showing how the two objects experience the same vertical acceleration; however, the photos don't usually illustrate what happens if a projectile is launched at some angle. There are a number of ways to illustrate the effects of the launch angle: shooting a ball or stream of water through hoops, for example. Those demonstrations, though, do not allow for side-by-side comparison of the effects of various launch angles. Thus, a few years ago I constructed this three-dimensional projectile model to do just that. The model is composed of two three-dimensional "stroboscopic sculptures" representing the trajectory of two projectiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.
Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less
NASA Technical Reports Server (NTRS)
Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.
1996-01-01
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng
2008-07-01
In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.
Sankar, R; Neupane, M; Xu, S-Y; Butler, C J; Zeljkovic, I; Panneer Muthuselvam, I; Huang, F-T; Guo, S-T; Karna, Sunil K; Chu, M-W; Lee, W L; Lin, M-T; Jayavel, R; Madhavan, V; Hasan, M Z; Chou, F C
2015-08-14
The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and transport property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.
Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5
Zhang, Yan; Wang, Chenlu; Yu, Li; Liu, Guodong; Liang, Aiji; Huang, Jianwei; Nie, Simin; Sun, Xuan; Zhang, Yuxiao; Shen, Bing; Liu, Jing; Weng, Hongming; Zhao, Lingxiao; Chen, Genfu; Jia, Xiaowen; Hu, Cheng; Ding, Ying; Zhao, Wenjuan; Gao, Qiang; Li, Cong; He, Shaolong; Zhao, Lin; Zhang, Fengfeng; Zhang, Shenjin; Yang, Feng; Wang, Zhimin; Peng, Qinjun; Dai, Xi; Fang, Zhong; Xu, Zuyan; Chen, Chuangtian; Zhou, X. J.
2017-01-01
The topological materials have attracted much attention for their unique electronic structure and peculiar physical properties. ZrTe5 has host a long-standing puzzle on its anomalous transport properties manifested by its unusual resistivity peak and the reversal of the charge carrier type. It is also predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. Here we report high-resolution laser-based angle-resolved photoemission measurements on the electronic structure and its detailed temperature evolution of ZrTe5. Our results provide direct electronic evidence on the temperature-induced Lifshitz transition, which gives a natural understanding on underlying origin of the resistivity anomaly in ZrTe5. In addition, we observe one-dimensional-like electronic features from the edges of the cracked ZrTe5 samples. Our observations indicate that ZrTe5 is a weak topological insulator and it exhibits a tendency to become a strong topological insulator when the layer distance is reduced. PMID:28534501
NASA Astrophysics Data System (ADS)
Plumb, Nicholas C.; Radović, Milan
2017-11-01
Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.
Aerodynamic Design of Axial-flow Compressors. Volume 2
NASA Technical Reports Server (NTRS)
1956-01-01
Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.
NASA Astrophysics Data System (ADS)
Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio
2012-04-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Three-dimensional representation of curved nanowires.
Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S
2004-12-01
Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.
NASA Astrophysics Data System (ADS)
Hermann, A. J.; Moore, C.; Soreide, N. N.
2002-12-01
Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean
NASA Technical Reports Server (NTRS)
Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-09-01
Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of two-dimensional Fermi surface and Dirac dispersion in the new material YbMnSb2
NASA Astrophysics Data System (ADS)
Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinead; John, Caolan; Doyle, Spencer; Neaton, Jeffrey; Analytis, James G.; Denlinger, J. D.; Benavides, Katherine; Chan, Julia
We present the synthesis, crystal structure, electronic structure, and transport properties of the new material YbMnSb2. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a 3D Dirac dispersion. This Fermi surface is consistent with the predictions of antiferromagnetic density functional theory calculations and the Fermi surface observed via angle-resolved photoemission spectroscopy. The quantitative agreement between these measurements and calculations indicates that YbMnSb2 may be a new topological semimetal in the presence of magnetic order. R. K. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. C. J., J. G. A., and much of this work received support from the Gordon and Betty Moore Foundation Grant No. GBMF4374.
Tunable transmittance in anisotropic two-dimensional materials
NASA Astrophysics Data System (ADS)
Nualpijit, Phusit; Sinner, Andreas; Ziegler, Klaus
2018-06-01
A uniaxial strain applied to graphenelike materials moves the Dirac nodes along the boundary of the Brillouin zone. An extreme case is the merging of the Dirac node positions to a single degenerate spectral node, which gives rise to a new topological phase. Then isotropic Dirac nodes are replaced by a node with a linear behavior in one and a parabolic behavior in the other direction. This anisotropy influences substantially the optical properties. We propose a method to determine characteristic spectral and transport properties in black phosphorus layers, which were recently studied by several groups with angle-resolved photoemission spectroscopy, and discuss how the transmittance, the reflectance, and the optical absorption of this material can be tuned. In particular, we demonstrate that the transmittance of linearly polarized incident light varies from nearly 0% to almost 100% in the microwave and far-infrared regime.
Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Tashiro, Yasutaka; Nakahara, Hiroyuki; Iwamoto, Yukihide
2016-01-01
The first purpose of this study was to compare the reproducibility of two-dimensional (2D) and three-dimensional (3D) measurements for preoperative planning of the femoral side in total knee arthroplasty (TKA). The second purpose was to evaluate the factors affecting the differences between the 2D and 3D measurements. Two-dimensional and 3D measurements for preoperative planning of the femoral side in TKA were evaluated in 75 varus knees with osteoarthritis. The femoral valgus angle, defined as the angle between the mechanical and anatomical axes of the femur, and the clinical rotation angle and surgical rotation angle, defined by the angles between the posterior condylar line and the clinical or surgical transepicondylar axes, respectively, were analysed using 2D (radiographs and axial CT slices) and 3D (3D bone models reconstructed from CT images) measurements. For all variables, 3D measurements were more reliable and reproducible than 2D measurements. The medians and ranges of the clinical rotation angle and surgical rotation angle were 6.6° (-1.7° to 12.1°) and 2.3° (-2.5° to 8.6°) in 2D, and 7.1° (2.7° to 11.4°) and 3.0° (-2.0° to 7.5°) in 3D. Varus/valgus alteration of the CT scanning direction relative to the mechanical axis affected the difference in clinical rotation angles between 2D and 3D measurements. Significantly, smaller values of the clinical rotation angle and surgical rotation angle were obtained by 2D compared to 3D measurements, which could result in internal rotation of the femoral component even if the surgeon performs the bone cutting precisely. Regarding clinical relevance, first, this study confirmed the reliability of 3D measurements. Second, it underscored the risk of internal rotation of the femoral component when using 2D measurement, even with precise bone cutting technique. These results will help surgeons avoid malpositioning of the femoral component if 2D measurements are used for preoperative planning in TKA. Prospective comparative study, Level Ш.
Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.
Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan
2008-03-28
Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.
Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines
USDA-ARS?s Scientific Manuscript database
Two-dimensional electrophoresis (2-DE) reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. Results showed...
WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, L; Thomas, C; Syme, A
2016-06-15
Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Estimating B1+ in the breast at 7 T using a generic template.
van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J
2018-05-01
Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Estimating B 1 + in the breast at 7 T using a generic template
Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.
2018-01-01
Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Wagner, Norman J.; Porcar, Lionel
2015-05-15
The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couettemore » gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.« less
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
NASA Astrophysics Data System (ADS)
Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.
2018-04-01
We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.
Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas
NASA Astrophysics Data System (ADS)
Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.
2017-10-01
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Gjorevski, Nikolce; Nelson, Celeste M.
2012-01-01
Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342
Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L
2018-04-26
Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.
NASA Astrophysics Data System (ADS)
Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi
2018-07-01
Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.
Development of new flux splitting schemes. [computational fluid dynamics algorithms
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1992-01-01
Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.
Two-dimensional steady bow waves in water of finite depth
NASA Astrophysics Data System (ADS)
Kao, John
1998-12-01
In this study, the two-dimensional steady bow flow in water of arbitrary finite depth has been investigated. The two-dimensional bow is assumed to consist of an inclined flat plate connected downstream to a horizontal semi-infinite draft plate. The bottom of the channel is assumed to be a horizontal plate; the fluid is assumed to be inviscid, incompressible; and the flow irrotational. For the angle of incidence α (held by the bow plate) lying between 0o and 60o, the local flow analysis near the stagnation point shows that the angle lying between the free surface and the inclined plate, β, must always be equal to 120o, otherwise no solution can exist. Moreover, we further find that the local flow solution does not exist if /alpha > 60o, and that on the inclined plate there exists a negative pressure region adjacent to the stagnation point for /alpha < 30o. Singularities at the stagnation point and the upstream infinity are found to have multiple branch-point singularities of irrational orders. A fully nonlinear theoretical model has been developed in this study for evaluating the incompressible irrotational flow satisfying the free-surface conditions and two constraint equations. To solve the bow flow problem, successive conformal mappings are first used to transform the flow domain into the interior of a unit semi-circle in which the unknowns can be represented as the coefficients of an infinite series. A total error function equivalent to satisfying the Bernoulli equation is defined and solved by minimizing the error function and applying the method of Lagrange's multiplier. Smooth solutions with monotonic free surface profiles have been found and presented here for the range of 35o < /alpha < 60o, a draft Froude number Frd less than 0.5, and a water-depth Froude number Frh less than 0.4. The dependence of the solution on these key parameters is examined. Our results may be useful in designing the optimum bow shape.
Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.
1999-01-01
Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000
Four-dimensional respiratory motion-resolved whole heart coronary MR angiography.
Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P; Schwitter, Juerg; Sodickson, Daniel K; Otazo, Ricardo; Stuber, Matthias
2017-04-01
Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Lamy, P.
2014-04-01
Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global photometric properties of the nucleus of comet 67P/C-G, albedo, phase function and spectral reflectivity and compare with previous results obtained with the Hubble and Spitzer space telescopes [2, 3, 4]. Then observations during the approach and first bound orbits in July-August 2014 will allow mapping the surface of the nucleus with OSIRIS at a scale of up to 1 meter per pixel. The images will be used to reconstruct the 3D surface of the nucleus at highresolution allowing separating true photometric variations from topographic effects. We will present results on the spatially resolved photometric properties of the nucleus based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins [5] has the advantage of automatically tracking the same local surface element on a series of images. The analysis will then proceed with the determination of the global Hapke and other standard photometric parameters as well as their two-dimensional variations across the surface. This allows defining, in the body-fixed reference frame, ``high residual regions'' (HRRs) which correspond to significant relative differences between the observed and modeled photometric parameters such as the singlescattering albedo (SSA), the mean roughness slope angle, and the reflectivity gradient. Of particular interest will be the search for ice patches and possible mineralogical differences resulting from the past activity of the comet.
Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays.
Zhuang, Zhenfeng; Surman, Phil; Cheng, Qijia; Thibault, Simon; Zheng, Yuanjin; Sun, Xiao Wei
2017-07-01
A subpixel area-based evaluation method for an improved slanted lenticular film that minimizes the crosstalk in a quasi-three-dimensional (Q3D) display is proposed in this paper. To identify an optimal slant angle of the film, a subpixel area-based measurement is derived to evaluate the crosstalk among viewing regions of the intended subpixel and adjacent unintended subpixel by taking the real subpixel shape and black matrix into consideration. The subpixel mapping, which corresponds to the optimal slant angle of the film, can then be determined. Meanwhile, the viewing zone characteristics are analyzed to balance the light intensity in both right and left eye channels. A compact and portable Q3D system has been built and appropriate experiments have been applied. The results indicate that significant improvements in both crosstalk and resolution can be obtained with the proposed technique.
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-11-01
A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.
Bow and Oblique Shock Formation in Soap Film
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Mandre, Shreyas; Sane, Aakash
2015-11-01
In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.
A 3D visualization and simulation of the individual human jaw.
Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo
2003-01-01
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.
Hard Two-Body Photodisintegration of He3
NASA Astrophysics Data System (ADS)
Pomerantz, I.; Ilieva, Y.; Gilman, R.; Higinbotham, D. W.; Piasetzky, E.; Strauch, S.; Adhikari, K. P.; Aghasyan, M.; Allada, K.; Amaryan, M. J.; Anefalos Pereira, S.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Beck, A.; Beck, S.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Boeglin, W.; Bono, J.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bubis, N.; Burkert, V.; Camsonne, A.; Canan, M.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chirapatpimol, K.; Cisbani, E.; Cole, P. L.; Contalbrigo, M.; Crede, V.; Cusanno, F.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Jager, C. W.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Dutta, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Fradi, A.; Garibaldi, F.; Geagla, O.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glister, J.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, X.; Jo, H. S.; Joo, K.; Katramatou, A. T.; Keller, D.; Khandaker, M.; Khetarpal, P.; Khrosinkova, E.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lee, B.; LeRose, J. J.; Lewis, S.; Lindgren, R.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McCullough, E.; McKinnon, B.; Meekins, D.; Meyer, C. A.; Michaels, R.; Mineeva, T.; Mirazita, M.; Moffit, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Petratos, G. G.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rodriguez, I.; Ron, G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saha, A.; Saini, M. S.; Sarty, A. J.; Sawatzky, B.; Saylor, N. A.; Schott, D.; Schulte, E.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Shneor, R.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Subedi, R.; Sulkosky, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wang, Y.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wojtsekhowski, B.; Wood, M. H.; Yan, X.; Yao, H.; Zachariou, N.; Zhan, X.; Zhang, J.; Zhao, Z. W.; Zheng, X.; Zonta, I.
2013-06-01
We have measured cross sections for the γHe3→pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
Hard two-body photodisintegration of 3He.
Pomerantz, I; Ilieva, Y; Gilman, R; Higinbotham, D W; Piasetzky, E; Strauch, S; Adhikari, K P; Aghasyan, M; Allada, K; Amaryan, M J; Anefalos Pereira, S; Anghinolfi, M; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Beck, A; Beck, S; Bedlinskiy, I; Berman, B L; Biselli, A S; Boeglin, W; Bono, J; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Bubis, N; Burkert, V; Camsonne, A; Canan, M; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chirapatpimol, K; Cisbani, E; Cole, P L; Contalbrigo, M; Crede, V; Cusanno, F; D'Angelo, A; Daniel, A; Dashyan, N; de Jager, C W; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Dutta, C; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Fradi, A; Garibaldi, F; Geagla, O; Gevorgyan, N; Giovanetti, K L; Girod, F X; Glister, J; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, X; Jo, H S; Joo, K; Katramatou, A T; Keller, D; Khandaker, M; Khetarpal, P; Khrosinkova, E; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Lee, B; LeRose, J J; Lewis, S; Lindgren, R; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Martinez, D; Mayer, M; McCullough, E; McKinnon, B; Meekins, D; Meyer, C A; Michaels, R; Mineeva, T; Mirazita, M; Moffit, B; Mokeev, V; Montgomery, R A; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Petratos, G G; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Procureur, S; Protopopescu, D; Puckett, A J R; Qian, X; Qiang, Y; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rodriguez, I; Ron, G; Rosner, G; Rossi, P; Sabatié, F; Saha, A; Saini, M S; Sarty, A J; Sawatzky, B; Saylor, N A; Schott, D; Schulte, E; Schumacher, R A; Seder, E; Seraydaryan, H; Shneor, R; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S S; Stepanyan, S; Stoler, P; Subedi, R; Sulkosky, V; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Walford, N K; Wang, Y; Watts, D P; Weinstein, L B; Weygand, D P; Wojtsekhowski, B; Wood, M H; Yan, X; Yao, H; Zachariou, N; Zhan, X; Zhang, J; Zhao, Z W; Zheng, X; Zonta, I
2013-06-14
We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
Loop models, modular invariance, and three-dimensional bosonization
NASA Astrophysics Data System (ADS)
Goldman, Hart; Fradkin, Eduardo
2018-05-01
We consider a family of quantum loop models in 2+1 spacetime dimensions with marginally long-ranged and statistical interactions mediated by a U (1 ) gauge field, both purely in 2+1 dimensions and on a surface in a (3+1)-dimensional bulk system. In the absence of fractional spin, these theories have been shown to be self-dual under particle-vortex duality and shifts of the statistical angle of the loops by 2 π , which form a subgroup of the modular group, PSL (2 ,Z ) . We show that careful consideration of fractional spin in these theories completely breaks their statistical periodicity and describe how this occurs, resolving a disagreement with the conformal field theories they appear to approach at criticality. We show explicitly that incorporation of fractional spin leads to loop model dualities which parallel the recent web of (2+1)-dimensional field theory dualities, providing a nontrivial check on its validity.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
NASA Astrophysics Data System (ADS)
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-12-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-01-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane. PMID:27929085
Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2018-06-21
An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from λ = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58°. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Gorozhankin, D. F.; Napolskii, K. S.; Petukhov, A. V.; Sapoletova, N. A.; Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Byelov, D. V.; Bouwman, W. G.; Kvashnina, K. O.; Chernyshov, D. Yu.; Bosak, A. A.; Grigoriev, S. V.
2009-10-01
The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of artificial opals can be satisfactorily described in the Wilson probability model with the prevalence of layers in the fcc environment. The diffraction patterns observed for a natural opal confirm the presence of sufficiently long unequally occupied fcc domains.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
An Interdisciplinary Theme: Topographic Maps and Plate Tectonics
ERIC Educational Resources Information Center
Concannon, James P.; Aulgur, Linda
2011-01-01
This is an interdisciplinary lesson designed for middle school students studying landforms and geological processes. Students create a two-dimensional topographic map from a three-dimensional landform that they create using clay. Students then use other groups' topographic maps to re-create landforms. Following this, students explore some basic…
Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho
2018-05-22
Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.
The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars
NASA Astrophysics Data System (ADS)
Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.
2014-04-01
The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.
Overview of the Shuttle Imaging Radar-B preliminary scientific results
NASA Technical Reports Server (NTRS)
Elachi, C.; Cimino, J.; Settle, M.
1986-01-01
Data collected with the Shuttle Imaging Radar-B (SIR-B) on the October 5, 1985 Shuttle mission are discussed. The design and capabilities of the sensor which operates in a fixed illumination geometry and has incidence angles between 15 and 60 deg with 1 deg increments are described. Problems encountered with the SIR-B during the mission are examined. the The radar stereo imaging capability of the sensor was verified and three-dimensional images of the earth surface were obtained. The oceanography experiments provided significant data on ocean wave and internal wave patterns, oil spills, and ice zones. The geological images revealed that the sensor can evaluate penetration effect in dry soil from buried receivers and the existence of subsurface dry channels in the Egyptian desert was validated. The use of multiincidence angle imaging to classify terrain units and derive vegetation maps and the development of terrain maps are confirmed.
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
NASA Astrophysics Data System (ADS)
Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo
2018-04-01
A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.
2017-12-01
Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.
A global cloud map of the nearest known brown dwarf.
Crossfield, I J M; Biller, B; Schlieder, J E; Deacon, N R; Bonnefoy, M; Homeier, D; Allard, F; Buenzli, E; Henning, Th; Brandner, W; Goldman, B; Kopytova, T
2014-01-30
Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.
Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time
NASA Astrophysics Data System (ADS)
Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan
1998-10-01
Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.
Bauer, Sondes; Lazarev, Sergey; Molinari, Alan; Breitenstein, Andreas; Leufke, Philipp; Kruk, Robert; Hahn, Horst; Baumbach, Tilo
2014-03-01
A highly sophisticated pulsed laser deposition (PLD) chamber has recently been installed at the NANO beamline at the synchrotron facility ANKA (Karlsruhe, Germany), which allows for comprehensive studies on the PLD growth process of dielectric, ferroelectric and ferromagnetic thin films in epitaxial oxide heterostructures or even multilayer systems by combining in situ reflective high-energy diffraction with the in situ synchrotron high-resolution X-ray diffraction and surface diffraction methods. The modularity of the in situ PLD chamber offers the opportunity to explore the microstructure of the grown thin films as a function of the substrate temperature, gas pressure, laser fluence and target-substrate separation distance. Ba0.5Sr0.5TiO3 grown on MgO represents the first system that is grown in this in situ PLD chamber and studied by in situ X-ray reflectivity, in situ two-dimensional reciprocal space mapping of symmetric X-ray diffraction and acquisition of time-resolved diffraction profiles during the ablation process. In situ PLD synchrotron investigation has revealed the occurrence of structural distortion as well as domain formation and misfit dislocation which all depend strongly on the film thickness. The microstructure transformation has been accurately detected with a time resolution of 1 s. The acquisition of two-dimensional reciprocal space maps during the PLD growth has the advantage of simultaneously monitoring the changes of the crystalline structure as well as the formation of defects. The stability of the morphology during the PLD growth is demonstrated to be remarkably affected by the film thickness. A critical thickness for the domain formation in Ba0.5Sr0.5TiO3 grown on MgO could be determined from the acquisition of time-resolved diffraction profiles during the PLD growth. A splitting of the diffraction peak into two distinguishable peaks has revealed a morphology change due to modification of the internal strain during growth.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuanhu
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combiningmore » the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.« less
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
NASA Technical Reports Server (NTRS)
Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.
1992-01-01
Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.
Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J
2015-09-01
We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghiringhelli, G.; Piazzalunga, A.; Dallera, C.
We present a 5 m long spectrometer for soft x rays to be used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic x-ray scattering in the 400-1600 eV energy range. It is based on a variable line spacing spherical grating (average groove density of 3200 mm{sup -1}, R=58.55 m) and a charge coupled device two dimensional detector. With an x-ray spot on the sample of 10 {mu}m, the targeted resolving power is higher than 10 000 at all energies below 1100 eV and better than 7000 at 1500 eV. The off-line tests made with Almore » and Mg K{alpha}{sub 1,2} fluorescence emissions indicate that the spectrometer can actually work at 12 000 and 17 000 resolving power at the L{sub 3} edges of Cu (930 eV) and of Ti (470 eV), respectively. SAXES (superadvanced x-ray emission spectrometer) is mounted on a rotating platform allowing to vary the scattering angle from 25 degree sign to 130 degree sign . The spectrometer will be operational at the ADRESS (advanced resonant spectroscopies) beamline of the Swiss Light Source from 2007.« less
Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A.; Yagi, M.
2016-06-15
To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electronmore » generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.« less
The Grand Tour via Geodesic Interpolation of 2-frames
NASA Technical Reports Server (NTRS)
Asimov, Daniel; Buja, Andreas
1994-01-01
Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.
New modes of electron microscopy for materials science enabled by fast direct electron detectors
NASA Astrophysics Data System (ADS)
Minor, Andrew
There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.
Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J
2017-12-29
Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Jing-Xin; Su, Xiu-Yun; Zhao, Zhe; Xiao, Ruo-Xiu; Zhang, Li-Cheng; Tang, Pei-Fu
2018-02-17
The aim of this study is to demonstrate the varying rules of radiographic angles following varying three-dimensional (3D) orientations and locations of cup using an accurate mathematical model. A cone model is established to address the quantitative relationship between the opening circle of cup and its ellipse projection on radiograph. The varying rules of two-dimensional (2D) radiographic anteversion (RA) and inclination (RI) angles can be analyzed. When the centre of cup is located above X-ray source, with proper 3D RI/RA angles, 2D RA angle can be equal to its 3D counterpart, and 2D RI angle is usually greater than its 3D counterpart. Except for the original point on hip-centered anterior-posterior radiograph, there is no area on radiograph where both 2D RA and RI angles are equal to their 3D counterparts simultaneously. This study proposes an innovative model for accurately explaining how 2D RA/RI angles of cup are varying following different 3D RA/RI angles and location of cup. The analysis results provide clinicians an intuitive grasp of knowledge about 2D RA/RI angles greater or smaller than their 3D counterparts post-operatively. The established model may allow determining the effects of pelvic rotations on 2D radiographic angles of cup.
Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability
NASA Technical Reports Server (NTRS)
Mason, M. L.; Burley, J. R., II
1986-01-01
A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.
Optimal Electrodynamic Tether Phasing Maneuvers
NASA Technical Reports Server (NTRS)
Bitzer, Matthew S.; Hall, Christopher D.
2007-01-01
We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.
NASA Astrophysics Data System (ADS)
Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Zhang, Kai-Wen; Li, Xiang-Bing; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Li, Shao-Chun; Chen, Yan-Feng
2018-03-01
The study of ZrT e5 crystals is revived because of the recent theoretical prediction of topological phase in bulk ZrT e5 . However, the current conclusions for the topological character of bulk ZrT e5 are quite contradictory. To resolve this puzzle, we here identify the Berry phase on both b - and c planes of high-quality ZrT e5 crystals by the Shubnikov-de-Hass (SdH) oscillation under tilted magnetic field at 2 K. The angle-dependent SdH oscillation frequency, both on b - and c planes of ZrT e5 , demonstrates the two-dimensional feature. However, phase analysis of SdH verifies that a nontrivial π-Berry phase is observed in the c -plane SdH oscillation, but not in the b -plane one. Compared to bulk Fermi surface predicted by the first-principle calculation, the two-dimensional-like behavior of SdH oscillation measured at b plane comes from the bulk electron. Based on these analyses, it is suggested that bulk ZrT e5 at low temperature (˜2 K) belongs to a weak topological insulator, rather than Dirac semimetal or strong topological insulator as reported previously.
Saitô, Hazime
2004-11-01
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.
NASA Astrophysics Data System (ADS)
Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.
2015-08-01
A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.
Three-dimensional cathodoluminescence characterization of a semipolar GaInN based LED sample
NASA Astrophysics Data System (ADS)
Hocker, Matthias; Maier, Pascal; Tischer, Ingo; Meisch, Tobias; Caliebe, Marian; Scholz, Ferdinand; Mundszinger, Manuel; Kaiser, Ute; Thonke, Klaus
2017-02-01
A semipolar GaInN based light-emitting diode (LED) sample is investigated by three-dimensionally resolved cathodoluminescence (CL) mapping. Similar to conventional depth-resolved CL spectroscopy (DRCLS), the spatial resolution perpendicular to the sample surface is obtained by calibration of the CL data with Monte-Carlo-simulations (MCSs) of the primary electron beam scattering. In addition to conventional MCSs, we take into account semiconductor-specific processes like exciton diffusion and the influence of the band gap energy. With this method, the structure of the LED sample under investigation can be analyzed without additional sample preparation, like cleaving of cross sections. The measurement yields the thickness of the p-type GaN layer, the vertical position of the quantum wells, and a defect analysis of the underlying n-type GaN, including the determination of the free charge carrier density. The layer arrangement reconstructed from the DRCLS data is in good agreement with the nominal parameters defined by the growth conditions.
Bending wavefunctions for linear molecules
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-01-01
The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.
Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L
2014-07-01
To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.
Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Balakumar, Ponnampalam
2007-01-01
Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.
Lunar Reconnaissance Orbiter Camera (LROC) instrument overview
Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.
2010-01-01
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.
Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption
NASA Astrophysics Data System (ADS)
Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.
2018-04-01
The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.
The relationship between three-dimensional imaging and group decision making: an exploratory study.
Litynski, D M; Grabowski, M; Wallace, W A
1997-07-01
This paper describes an empirical investigation of the effect of three dimensional (3-D) imaging on group performance in a tactical planning task. The objective of the study is to examine the role that stereoscopic imaging can play in supporting face-to-face group problem solving and decision making-in particular, the alternative generation and evaluation processes in teams. It was hypothesized that with the stereoscopic display, group members would better visualize the information concerning the task environment, producing open communication and information exchanges. The experimental setting was a tactical command and control task, and the quality of the decisions and nature of the group decision process were investigated with three treatments: 1) noncomputerized, i.e., topographic maps with depth cues; 2) two-dimensional (2-D) imaging; and 3) stereoscopic imaging. The results were mixed on group performance. However, those groups with the stereoscopic displays generated more alternatives and spent less time on evaluation. In addition, the stereoscopic decision aid did not interfere with the group problem solving and decision-making processes. The paper concludes with a discussion of potential benefits, and the need to resolve demonstrated weaknesses of the technology.
Velocity distributions on two-dimensional wing-duct inlets by conformal mapping
NASA Technical Reports Server (NTRS)
Perl, W; Moses, H E
1948-01-01
The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitrary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading edge stagger, inlet-velocity ratio, and section lift coefficients on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.
Fragile surface zero-energy flat bands in three-dimensional chiral superconductors
NASA Astrophysics Data System (ADS)
Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2015-12-01
We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.
Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5
Chen, R. Y.; Gu, G. D.; Zhang, S. J.; ...
2015-08-05
Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe 5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak showsmore » up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito
A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less
2016-01-09
studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room
Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.
DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu
We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less
2002-06-03
resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as
Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O
Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...
2015-04-30
The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Enhanced superconductivity due to forward scattering in FeSe thin films on SrTiO 3 substrates
Rademaker, Louk; Wang, Yan; Berlijn, Tom; ...
2016-02-10
In this paper, we study the consequences of an electron–phonon (e–ph) interaction that is strongly peaked in the forward scattering (more » $${\\bf{q}}=0$$) direction in a two-dimensional superconductor using Migdal–Eliashberg theory. We find that strong forward scattering results in an enhanced T c that is linearly proportional to the strength of the dimensionless e–ph coupling constant $${\\lambda }_{m}$$ in the weak coupling limit. This interaction also produces distinct replica bands in the single-particle spectral function, similar to those observed in recent angle-resolved photoemission experiments on FeSe monolayers on SrTiO 3 and BaTiO 3 substrates. Finally, by comparing our model to photoemission experiments, we infer an e–ph coupling strength that can provide a significant portion of the observed high T c in these systems.« less
Widespread spin polarization effects in photoemission from topological insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.
2011-06-22
High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less
Phase-resolved acoustic radiation force optical coherence elastography
NASA Astrophysics Data System (ADS)
Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping
2012-11-01
Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.
Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings
NASA Astrophysics Data System (ADS)
Zhu, Dong
2017-10-01
Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameau, J. D.; Freutel, S.; Kemper, A. F.
We report that in complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can bemore » used to separate electron–boson interactions from electron–electron interactions. In conclusion, we demonstrate a quantitative analysis of a well-defined electron–boson interaction in the unoccupied spectrum of the cuprate Bi 2Sr 2CaCu 2O 8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.« less
Atrioventricular depolarization differences identify coronary artery anomalies in Kawasaki disease.
Cortez, Daniel; Sharma, Nandita; Jone, Pei-Ni
2017-03-01
Kawasaki disease (KD) is the leading cause of acquired heart disease in children. Signal average electrocardiogram changes in patients during the acute phase of KD with coronary artery anomalies (CAA) include depolarization changes. We set out to determine if 12-lead-derived atrioventricular depolarization differences can identify CAA in patients with KD. A blinded, retrospective case-control study of patients with KD was performed. Deep Q waves, corrected QT-intervals (QTc), spatial QRS-T angles, T-wave vector magnitudes (RMS-T), and a novel parameter for assessment of atrioventricular depolarization difference (the spatial PR angle) and a two dimensional PR angle were assessed. Comparisons between groups were performed to test for significant differences. One hundred one patients with KD were evaluated, with 68 having CAA (67.3%, mean age 3.6 ± 3.0 years, 82.6% male), and 32 without CAA (31.7%, mean age 2.7 ± 3.2 years, 70.4% male). The spatial PR angle significantly discriminated KD patients with CAA from those without, 59.7° ± 31.1° versus 41.6° ± 11.5° (p < .001). A spatial PR angle cutoff value of 56.9° gave positive/negative predictive values and odds ratios of 93.8%, 43.5%, and 11.5% (95% confidence interval (CI) 2.6-52.2). The two dimensional PR angle either below 7° or above 92° gave positive/negative predictive values and odds ratios of 100.0%, 38.8%, and 21.1% (95% CI 1.2-362.8). No other parameters significantly differentiated the groups. Atrioventricular depolarization differences, measured by the spatial or two dimensional PR angle differentiate KD patients with CAA versus those without. © 2016 Wiley Periodicals, Inc.
Wells, Jered R.; Dobbins, James T.
2012-01-01
Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm−1) and approximate circular symmetry at frequencies below 4 mm−1. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm−1. Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm × 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm−1) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Conclusions: Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation. PMID:23039654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Jered R.; Dobbins, James T. III; Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705
2012-10-15
Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1Dmore » test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm{sup -1}) and approximate circular symmetry at frequencies below 4 mm{sup -1}. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm{sup -1}. Slit measurement near 45 Degree-Sign revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm Multiplication-Sign 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm{sup -1}) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Conclusions: Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation.« less
Wells, Jered R; Dobbins, James T
2012-10-01
The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ∕i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm(-1)) and approximate circular symmetry at frequencies below 4 mm(-1). While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm(-1). Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm × 0.2 mm), a characteristic which was not necessarily appreciated with the orthogonal 1D MTF measurements. In simulation experiments, both slit- and edge-based measurements resolved the radial asymmetries in the 2D MTF. The average absolute relative accuracy error in the 2D MTF between the DC and cutoff (2.5 mm(-1)) frequencies was 0.13% with average relative precision error of 0.11%. Other simulation results were similar to those derived from physical data. Overall, the general availability, acceptance, accuracy, and ease of implementation of 1D test devices for MTF assessment make this a valuable technique for 2D MTF estimation.
Chen, Chen; Gladden, Lynn F; Mantle, Michael D
2014-02-03
This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.
Three dimensional rock microstructures: insights from FIB-SEM tomography
NASA Astrophysics Data System (ADS)
Drury, Martyn; Pennock, Gill; de Winter, Matthijs
2016-04-01
Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved. Quadruple point junctions between four grains cannot be investigated in 2D studies. 3D microstructural studies suggest that triple lines and quadruple points are important sites for the initiation of recrystallization, reaction and fracture.
NASA Technical Reports Server (NTRS)
Watanabe, M.; Actor, G.; Gatos, H. C.
1977-01-01
Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.
Alphatome--Enhancing Spatial Reasoning: A Simulation in Two and Three Dimensions
ERIC Educational Resources Information Center
LeClair, Elizabeth E.
2003-01-01
Using refrigerator magnets, foam blocks, ink pads, and modeling clay, students manipulate the letters of the alphabet at multiple angles, reconstructing three-dimensional forms from two-dimensional data. This exercise increases students' spatial reasoning ability, an important component in many scientific disciplines. (Contains 5 figures.)
Assessment of Ice Shape Roughness Using a Self-Orgainizing Map Approach
NASA Technical Reports Server (NTRS)
Mcclain, Stephen T.; Kreeger, Richard E.
2013-01-01
Self-organizing maps are neural-network techniques for representing noisy, multidimensional data aligned along a lower-dimensional and nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. Prior investigations of ice shapes have focused on using self-organizing maps to characterize mean ice forms. The Icing Research Branch has recently acquired a high resolution three dimensional scanner system capable of resolving ice shape surface roughness. A method is presented for the evaluation of surface roughness variations using high-resolution surface scans based on a self-organizing map representation of the mean ice shape. The new method is demonstrated for 1) an 18-in. NACA 23012 airfoil 2 AOA just after the initial ice coverage of the leading 5 of the suction surface of the airfoil, 2) a 21-in. NACA 0012 at 0AOA following coverage of the leading 10 of the airfoil surface, and 3) a cold-soaked 21-in.NACA 0012 airfoil without ice. The SOM method resulted in descriptions of the statistical coverage limits and a quantitative representation of early stages of ice roughness formation on the airfoils. Limitations of the SOM method are explored, and the uncertainty limits of the method are investigated using the non-iced NACA 0012 airfoil measurements.
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
NASA Technical Reports Server (NTRS)
Dugundji, J.; Chopra, I.
1975-01-01
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.
High frequency estimation of 2-dimensional cavity scattering
NASA Astrophysics Data System (ADS)
Dering, R. S.
1984-12-01
This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.
VizieR Online Data Catalog: Investigating Tully-Fisher relation with KMOS3D (Ubler+,
NASA Astrophysics Data System (ADS)
Ubler, H.; Forster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.
2018-02-01
This work is based on the first 3yr of observations of KMOS3D multiyear near-infrared (near-IR) IFS survey of more than 600 mass-selected star-forming galaxies (SFGs) at 0.6<~z<~2.6 with the K-band Multi Object Spectrograph (KMOS; Sharples+ 2013Msngr.151...21S) on the Very Large Telescope. The KMOS3D survey and data reduction are described in detail by Wisnioski et al. 2015ApJ...799..209W The results presented in this paper build on the KMOS3D sample as of 2016 January, with 536 observed galaxies. Of these, 316 are detected in, and have spatially resolved, Hα emission free from skyline contamination from which two-dimensional velocity and dispersion maps are produced. (1 data file).
Acousto-optic infrared spectral imager for Pluto fast flyby
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Hillman, J. J.
1993-01-01
Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.
Spin-imbalance in a 2D Fermi-Hubbard system
NASA Astrophysics Data System (ADS)
Brown, Peter T.; Mitra, Debayan; Guardado-Sanchez, Elmer; Schauß, Peter; Kondov, Stanimir S.; Khatami, Ehsan; Paiva, Thereza; Trivedi, Nandini; Huse, David A.; Bakr, Waseem S.
2017-09-01
The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.
Strauss, Charlie E.
1997-01-01
Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.
Strauss, C.E.
1997-11-18
Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.
Agemura, Toshihide; Sekiguchi, Takashi
2018-02-01
Collection efficiency and acceptance maps of typical detectors in modern scanning electron microscopes (SEMs) were investigated. Secondary and backscattered electron trajectories from a specimen to through-the-lens and under-the-lens detectors placed on an electron optical axis and an Everhart-Thornley detector mounted on a specimen chamber were simulated three-dimensionally. The acceptance maps were drawn as the relationship between the energy and angle of collected electrons under different working distances. The collection efficiency considering the detector sensitivity was also estimated for the various working distances. These data indicated that the acceptance maps and collection efficiency are keys to understand the detection mechanism and image contrast for each detector in the modern SEMs. Furthermore, the working distance is the dominant parameter because electron trajectories are drastically changed with the working distance.
Compensated electron and hole pockets in an underdoped high- Tc superconductor
NASA Astrophysics Data System (ADS)
Sebastian, Suchitra E.; Harrison, N.; Goddard, P. A.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Andersen, O. K.; Lonzarich, G. G.
2010-06-01
We report quantum oscillations in the underdoped high-temperature superconductor YBa2Cu3O6+x over a wide range in magnetic field 28≤μ0H≤85T corresponding to ≈12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian [Nature (London) 454, 200 (2008)10.1038/nature07095], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at ≈535T to be clearly resolved into three separate peaks at ≈460 , ≈532 , and ≈602T , in reasonable agreement with the reported frequencies of Audouard [Phys. Rev. Lett. 103, 157003 (2009)10.1103/PhysRevLett.103.157003]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted α ) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted γ ). On comparison with band structure, the d -wave symmetry of the interlayer dispersion locates the minimally corrugated α pocket at the “nodal” point knodal=(π/2,π/2) , and the significantly corrugated γ pocket at the “antinodal” point kantinodal=(π,0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking—a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (α) pocket corresponding to holes, with the weaker antinodal (γ) pocket corresponding to electrons—likely responsible for the negative Hall coefficient reported by LeBoeuf [Nature (London) 450, 533 (2007)10.1038/nature06332]. Given the similarity in α and γ pocket volumes, their opposite carrier type and the previous report of a diverging effective mass in Sebastian [Proc. Nat. Am. Soc. 107, 6175 (2010)10.1073/pnas.0913711107], we discuss the possibility of a secondary Fermi surface instability at low dopings of the excitonic insulator type, associated with the metal-insulator quantum critical point. Its potential involvement in the enhancement of superconducting transition temperatures is also discussed.
NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.
1987-01-01
As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
USDA-ARS?s Scientific Manuscript database
A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...
Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT
NASA Astrophysics Data System (ADS)
Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.
1993-07-01
Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Chen, T; Yang, C
Low-dimensional nanoparticles have a strong ability to induce the crystallization of polymer matrices. One-dimensional carbon nanotubes (CNTs) and two-dimensional graphene nanosheets (GNSs), both of which are both carbon-based nanoparticles, provide a good opportunity to investigate the effects of differently dimensional nanoparticles on the crystallization behavior of a polymer. For this purpose, respective nanocomposites of CNTs and GNSs with poly(L-lactide) (PLLA) as matrix were prepared by solution coagulation. Time-resolved Fourier-transform infrared spectroscopy (FTIR) and synchrotron wide-angle X-ray diffraction (WAXD) were performed to probe chain conformational changes and to determine the crystallization kinetics during the isothermal crystallization of the PLLA nanocomposites andmore » neat PLLA, especially in the early stages. Both CNTs and GNSs could serve as nucleating agents in accelerating the crystallization kinetics of PLLA; however, the ability of CNTs to induce crystallization was stronger than that of GNSs. On increasing the content of CNTs from 0.05 to 0.1 wt %, the induction period was shortened and the crystallization rate was enhanced, but the reverse situation was found for GNSs nanocomposites. In the case of neat PLLA, -CH{sub 3} interchain interactions preceded -(COC + CH{sub 3}) interchain interactions during the crystallization. Conversely, in the CNTs and GNSs nanocomposites, the conformational ordering began with -(COC + CH{sub 3}) interchain interactions, which resulted directly in a reduced induction period. Interchain interactions of this type could be explained in terms of surface-induced conformational order (SICO). Finally, the effect of the dimensionality of the nanoparticles on the crystallization behavior of PLLA is discussed.« less
Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin
2010-03-10
Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.
2015-08-31
A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz,more » with photon energies that cover the first Brillouin zone of most materials.« less
Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang
2017-10-01
In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.
A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †
Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung
2017-01-01
We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770
Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.
Zhang, Yi; Ugeda, Miguel M; Jin, Chenhao; Shi, Su-Fei; Bradley, Aaron J; Martín-Recio, Ana; Ryu, Hyejin; Kim, Jonghwan; Tang, Shujie; Kim, Yeongkwan; Zhou, Bo; Hwang, Choongyu; Chen, Yulin; Wang, Feng; Crommie, Michael F; Hussain, Zahid; Shen, Zhi-Xun; Mo, Sung-Kwan
2016-04-13
High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.
Electronic structure, surface doping, and optical response in epitaxial WSe 2 thin films
Zhang, Yi; Ugeda, Miguel M.; Jin, Chenhao; ...
2016-03-14
High quality WSe 2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe 2/BLG. We observe that a bilayer of WSe 2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct–indirect band gap crossover to trilayer WSe 2. In the monolayer limit, WSe 2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observedmore » among all the MX 2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe 2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Lastly, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.« less
Effects of Controlled Three-Dimensional Perturbations on Boundary Layer Transition
1989-03-10
49 3.3.1.3 Measured Angles .................... 61 3.3.2 Nonlinear Oblique Waves ................... .67 3.3.2.1 Higher...can be seen from the fact that there is still no well-grounded method for predicting transition point location, even for a two-dimensional airfoil ...Experiment is at F 9.2 x 10-’ and Re 6- = 1400, which is not quite the same. However, the trend with oblique angle should be quite similar. - 61
Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.
Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A
2016-12-15
The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO 2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 C 1 im][PF 6 ]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO 2 -[C 4 C 1 im][PF 6 ] clusters extracted from an MD simulation. When the map was tested on 500 different CO 2 -[C 4 C 1 im][PF 6 ] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm -1 . The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO 2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO 2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.
Crossflow in two-dimensional asymmetric nozzles
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Lee, L. P.
1975-01-01
An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
A new fundamental type of conformational isomerism
NASA Astrophysics Data System (ADS)
Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.
2018-06-01
Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.
Fast IR laser mapping ellipsometry for the study of functional organic thin films.
Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten
2015-03-21
Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm(-1), was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.
Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Jr.
1996-02-01
In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation ofmore » maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.« less
Watanabe, H; Takaya, N; Mitsumori, F
2008-06-01
Localized two-dimensional constant-time correlation spectroscopy (CT-COSY) was used to resolve glutamate (Glu), gamma-aminobutyric acid (GABA), and glutamine (Gln) in the human brain at 4.7 T. In this method, three-dimensional localization was achieved using three radio frequency pulses of the CT-COSY module for slice selection. As this sequence could decouple JHH along the F1 direction, peak resolution of metabolites was improved even on a magnitude-mode display. In experiments on a phantom containing N-acetylaspartate, creatine, Glu, Gln, and GABA with a constant time delay (Tct) of 110 ms, cross peaks of Glu, Gln, and GABA were obtained on a spectrum processed with standard sine-bell windows, which emphasize sine-dependent signals along the t2 direction. In contrast, diagonal peaks of Glu C4H at 2.35 ppm, GABA C2H at 2.28 ppm, and Gln C4H at 2.44 ppm were resolved on a spectrum processed with Gaussian windows, which emphasize cosine-dependent signals along t2. Human brain spectra were obtained from a 27 mL voxel within the parieto-occipital region using a volume transverse electromagnetic (TEM) coil for both transmission and reception. Tct was 110 ms; the total scan time was 30 min. Diagonal peaks of Glu C4H, GABA C2H, and Gln C4H were also resolved on the spectrum processed with Gaussian windows. These results show that the localized two-dimensional CT-COSY method featuring 1H decoupling along the F1 direction could resolve Glu, GABA, and Gln signals in the human brain. Copyright (c) 2008 John Wiley & Sons, Ltd.
Polychromatic plots: graphical display of multidimensional data.
Roederer, Mario; Moody, M Anthony
2008-09-01
Limitations of graphical displays as well as human perception make the presentation and analysis of multidimensional data challenging. Graphical display of information on paper or by current projectors is perforce limited to two dimensions; the encoding of information from other dimensions must be overloaded into the two physical dimensions. A number of alternative means of encoding this information have been implemented, such as offsetting data points at an angle (e.g., three-dimensional projections onto a two-dimensional surface) or generating derived parameters that are combinations of other variables (e.g., principal components). Here, we explore the use of color to encode additional dimensions of data. PolyChromatic Plots are standard dot plots, where the color of each event is defined by the values of one, two, or three of the measurements for that event. The measurements for these parameters are mapped onto an intensity value for each primary color (red, green, or blue) based on different functions. In addition, differential weighting of the priority with which overlapping events are displayed can be defined by these same measurements. PolyChromatic Plots can encode up to five independent dimensions of data in a single display. By altering the color mapping function and the priority function, very different displays that highlight or de-emphasize populations of events can be generated. As for standard black-and-white dot plots, frequency information can be significantly biased by this display; care must be taken to ensure appropriate interpretation of the displays. PolyChromatic Plots are a powerful display type that enables rapid data exploration. By virtue of encoding as many as five dimensions of data independently, an enormous amount of information can be gleaned from the displays. In many ways, the display performs somewhat like an unsupervised cluster algorithm, by highlighting events of similar distributions in multivariate space.
Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.
Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis
2012-02-01
Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lignell, David O.; Lansinger, Victoria B.; Medina, Juan; Klein, Marten; Kerstein, Alan R.; Schmidt, Heiko; Fistler, Marco; Oevermann, Michael
2018-06-01
The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.
Experimental discovery of nodal chains
NASA Astrophysics Data System (ADS)
Yan, Qinghui; Liu, Rongjuan; Yan, Zhongbo; Liu, Boyuan; Chen, Hongsheng; Wang, Zhong; Lu, Ling
2018-05-01
Three-dimensional Weyl and Dirac nodal points1 have attracted widespread interest across multiple disciplines and in many platforms but allow for few structural variations. In contrast, nodal lines2-4 can have numerous topological configurations in momentum space, forming nodal rings5-9, nodal chains10-15, nodal links16-20 and nodal knots21,22. However, nodal lines are much less explored because of the lack of an ideal experimental realization23-25. For example, in condensed-matter systems, nodal lines are often fragile to spin-orbit coupling, located away from the Fermi level, coexist with energy-degenerate trivial bands or have a degeneracy line that disperses strongly in energy. Here, overcoming all these difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear band-touching rings chained across the entire Brillouin zone. These nodal chains are protected by mirror symmetry and have a frequency variation of less than 1%. We use angle-resolved transmission measurements to probe the projected bulk dispersion and perform Fourier-transformed field scans to map out the dispersion of the drumhead surface state. Our results establish an ideal nodal-line material for further study of topological line degeneracies with non-trivial connectivity and consequent wave dynamics that are richer than those in Weyl and Dirac materials.
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne
2008-01-01
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
SAR Processing Based On Two-Dimensional Transfer Function
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Function approximation using combined unsupervised and supervised learning.
Andras, Peter
2014-03-01
Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.
Balouch, F; Jalalian, E; Nikkheslat, M; Ghavamian, R; Toopchi, Sh; Jallalian, F; Jalalian, S
2013-01-01
Statement of Problem: Various impression techniques have different effects on the accuracy of final cast dimensions. Meanwhile; there are some controversies about the best technique. Purpose: This study was performed to compare two kinds of implant impression methods (open tray and closed tray) on 15 degree angled implants. Materials and Method: In this experimental study, a steel model with 8 cm in diameter and 3 cm in height were produced with 3 holes devised inside to stabilize 3 implants. The central implant was straight and the other two implants were 15° angled. The two angled implants had 5 cm distance from each other and 3.5 cm from the central implant. Dental stone, high strength (type IV) was used for the main casts. Impression trays were filled with poly ether, and then the two impression techniques (open tray and closed tray) were compared. To evaluate positions of the implants, each cast was analyzed by CMM device in 3 dimensions (x,y,z). Differences in the measurements obtained from final casts and laboratory model were analyzed using t-Test. Results: The obtained results indicated that closed tray impression technique was significantly different in dimensional accuracy when compared with open tray method. Dimensional changes were 129 ± 37μ and 143.5 ± 43.67μ in closed tray and open tray, while coefficient of variation in closed- tray and open tray were reported to be 27.2% and 30.4%, respectively. Conclusion: Closed impression technique had less dimensional changes in comparison with open tray method, so this study suggests that closed tray impression technique is more accurate. PMID:24724130
Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.
Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge
2006-09-01
We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; ...
2017-02-21
Here, the unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply themore » recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.
2017-01-01
The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recentlymore » developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.« less
Yarnykh, Vasily L.; Tartaglione, Erica V.; Ioannou, George N.
2015-01-01
Macromolecular proton fraction (MPF) is a quantitative MRI parameter determining the magnetization transfer (MT) effect in tissues and defined as a relative amount of immobile macromolecular protons involved into magnetization exchange with mobile water protons. MPF has a potential for quantitative assessment of fibrous tissue due to intrinsically high MPF specific for collagen. The goal of this study was to investigate a relationship between histologically determined fibrosis stage and MPF in the liver parenchyma measured using a recently developed fast single-point clinically-targeted MPF mapping method. Optimal saturation parameters for single-point liver MPF measurements were determined from the analysis of liver Z-spectra in vivo based on the error propagation model. Sixteen patients with chronic hepatitis C viral infection underwent 3T MRI using an optimized liver MPF mapping protocol. Fourteen patients had prior liver biopsy with histologically staged fibrosis (METAVIR scores F0-F3), and two patients had clinically diagnosed cirrhosis (score F4 was assigned). The protocol included four breath-hold three-dimensional scans with 2×3×6 mm3 resolution and 10 transverse sections: 1) dynamic acquisition of MT-weighted and reference images; 2) dynamic acquisition of three images for variable flip angle T1 mapping; 3) dual-echo B0 map; and 4) actual flip-angle imaging B1 map. Average liver MPF was determined as the mode of MPF histograms. MPF was significantly increased in patients with clinically significant fibrosis (scores F2-F4, n=6) compared to patients with no or mild fibrosis (scores F0-F1, n=10): 6.49±0.36% vs. 5.94±0.26%, P<0.01 (Mann-Whitney test). MPF and fibrosis score were strongly positively correlated with the Spearman's rank correlation coefficient 0.80 (P<0.001). This study demonstrates the feasibility of fast MPF mapping of the human liver in vivo and confirms the hypothesis that MPF is increased in hepatic fibrosis and associated with fibrosis stage. MPF may be useful as a non-invasive imaging biomarker of hepatic fibrosis. PMID:26503401
A Method for Computing Three-Dimensional Viscous Flows over an Ogival Body at Angle of Attack
1976-02-01
the ogival body problems; however, some gen- erality is still maintained by considering coordinate systems that are generated from any two ...transformation. We shall assume that the covariant derivative is the natural one derivable from the metric. This is known as the Levi - Civita connection (Ref...MV..»^^.^ R76-91202^-8 I A Method for Computing Three-Dimensional Viscoua Flows Over an Ogival Body at Angle of Attack TABLE OF CONTENTS
Free-energy landscape of RNA hairpins constructed via dihedral angle principal component analysis.
Riccardi, Laura; Nguyen, Phuong H; Stock, Gerhard
2009-12-31
To systematically construct a low-dimensional free-energy landscape of RNA systems from a classical molecular dynamics simulation, various versions of the principal component analysis (PCA) are compared: the cPCA using the Cartesian coordinates of all atoms, the dPCA using the sine/cosine-transformed six backbone dihedral angles as well as the glycosidic torsional angle chi and the pseudorotational angle P, the aPCA which ignores the circularity of the 6 + 2 dihedral angles of the RNA, and the dPCA(etatheta), which approximates the 6 backbone dihedral angles by 2 pseudotorsional angles eta and theta. As representative examples, a 10-nucleotide UUCG hairpin and the 36-nucleotide segment SL1 of the Psi site of HIV-1 are studied by classical molecular dynamics simulation, using the Amber all-atom force field and explicit solvent. It is shown that the conformational heterogeneity of the RNA hairpins can only be resolved by an angular PCA such as the dPCA but not by the cPCA using Cartesian coordinates. Apart from possible artifacts due to the coupling of overall and internal motion, this is because the details of hydrogen bonding and stacking interactions but also of global structural rearrangements of the RNA are better discriminated by dihedral angles. In line with recent experiments, it is found that the free energy landscape of RNA hairpins is quite rugged and contains various metastable conformational states which may serve as an intermediate for unfolding.
Second Class Resolver: a retrospective analysis.
D'Attilio, M; Rodolfino, D; Filippakos, A; Saccucci, M; Festa, F; Tripodi, D
2014-03-01
To evaluate the use of Second Class Resolver (SCR), a new fixed orthopaedic appliance, for the treatment of skeletal Class II malocclusion in growing subjects. Design Retrospective analysis. Forty subjects were treated with Second Class Resolver (SCR). The mean age was 8 years at the beginning of treatment and 10 years at the end of treatment. Digital cephalometric superimpositions on lateral radiographs taken at start and end of treatment were assessed. The cephalometric values were statistically analysed. Cephalometric analysis of changes during treatment shows reduction of ANB angle (mean 2°); reduction of Witts Index (mean 3 mm); reduction of Maxillo-Mandibular angle (MM) (mean 1°); reduction of SNA (angle mean 3°); reduction of gonial angle (mean 1.8°); increase of the mandibular branch length (mean 5 mm); increase of mandibular body (mean 2.9°). The Second Class Resolver can be beneficially used for the treatment of Class II malocclusion.
A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence
NASA Astrophysics Data System (ADS)
Liu, Hui; Jin, Cong
2017-03-01
In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.
Spatial Studies of Ion Beams in an Expanding Plasma
NASA Astrophysics Data System (ADS)
Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek
2017-10-01
We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.
Particle Heating in Space and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.
2017-12-01
We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.
On seismic resolution of lateral heterogeneity in the Earth's outermost core
NASA Astrophysics Data System (ADS)
Garnero, Edward J.; Helmberger, Donald V.
1995-03-01
Issues concerning resolution of seismically determined outermost core properties are presented with an example from three earthquakes in the Fiji-Tonga region. Travel time behavior of the commonly used family of S mKS waves, which travel as S in the mantle, P in the core, reflecting m - 1 times at the underside of the core-mantle boundary (CMB), are analyzed over a large distance range (125-165°). Data having wavepaths through an area of known D″ heterogeneity (±2%) exhibit systematic anomalies in S mKS differential times. Two-dimensional wave propagation experiments demonstrate how large-scale lower-mantle velocity perturbations can explain long-wavelength behavior of such anomalous S mKS times, though heterogeneity on smaller scales may be responsible for the observed scatter about these trends. If lower-mantle heterogeneity is not properly accounted for in deriving a core model, misfit of the mantle model maps directly into core structure. The existence of outermost core heterogeneity is difficult to resolve at present, owing to uncertainties in global lower-mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult, owing to the same uncertainties. Inclusion of the slowly accruing broadband data should help in this regard. Restricting study to higher multiples of S mKS ( m = 2, 3, 4) can help reduce the effect of mantle heterogeneity, because of the closeness of the mantle legs of the wavepaths. S mKS waves are ideal in providing additional information on the details of lower-mantle heterogeneity.
Two-Year-Old Children Interpret Abstract, Purely Geometric Maps
ERIC Educational Resources Information Center
Winkler-Rhoades, Nathan; Carey, Susan C.; Spelke, Elizabeth S.
2013-01-01
In two experiments, 2.5-year-old children spontaneously used geometric information from 2D maps to locate objects in a 3D surface layout, without instruction or feedback. Children related maps to their corresponding layouts even though the maps differed from the layouts in size, mobility, orientation, dimensionality, and perspective, and even when…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin
Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less
Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.
Rad, Kamiar Rahnama; Paninski, Liam
2010-01-01
Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.
Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.
Chen, Xin; Liu, Zhen; Wei, Xizhang
2017-05-11
Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.
Aerodynamic performance of high turning core turbine vanes in a two dimensional cascade
NASA Technical Reports Server (NTRS)
Schwab, J. R.
1982-01-01
Experimental and theoretical aerodynamic performance data are presented for four uncooled high turning core turbine vanes with exit angles of 74.9, 75.0, 77.5, and 79.6 degrees in a two dimensional cascade. Data for a more conservative 67.0 degree vane are included for comparison. Correction of the experimental aftermix kinetic energy losses to a common 0.100 centimeter trailing edge thickness yields a linear trend of increased loss from 0.020 to 0.025 as the vane exit angle increases from 67.0 to 79.6 degrees. The theoretical losses show a similar trend. The experimental and theoretical vane surface velocity distributions generally agree within approximately five percent, although the suction surface theoretical velocities are generally higher than the experimental velocities as the vane exit angle increases.
A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.
Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G
2017-08-01
Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Classical and quantum fold catastrophe in the presence of axial symmetry
NASA Astrophysics Data System (ADS)
Dhont, G.; Zhilinskií, B. I.
2008-11-01
We introduce a family of Hamiltonians with two degrees of freedom, axial symmetry and complete integrability. The potential function depends on coordinates and one control parameter. A fold catastrophe typically occurs in such a family of potentials and its consequences on the global dynamics are investigated through the energy-momentum map which defines the singular fibration of the four-dimensional phase space. The two inequivalent local canonical forms of the catastrophe are presented: the first case corresponds to the appearance of a second sheet in the image of the energy-momentum map while the second case is associated with the breaking of an already existing second sheet. A special effort is placed on the description of the singularities. In particular, the existence of cuspidal tori is related to a second-order contact point between the energy level set and the reduced phase space. The quantum mechanical aspects of the changes induced by the fold catastrophe are investigated with the quantum eigenstates computed for an octic potential and are interpreted through the quantum-classical correspondence. We note that the singularity exposed in this paper is not an obstruction to a global definition of action-angle variables.
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles
NASA Astrophysics Data System (ADS)
Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2005-03-01
Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.
Two Dimensional Mechanism for Insect Hovering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitudemore » above which the averaged forces are sufficient. (c) 2000 The American Physical Society.« less
Time resolved PIV and flow visualization of 3D sheet cavitation
NASA Astrophysics Data System (ADS)
Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.
2006-04-01
Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.
NASA Technical Reports Server (NTRS)
Fortin, Paul; Kumagai, Hiroyuki
1989-01-01
A wind tunnel test was conducted in the NASA Ames 7 x 10 Foot Wind Tunnel to investigate the lift distribution on a semi-span wing with a discontinuous change in spanwise twist. The semi-span wing had a tip with an adjustable pitch angle independent on the inboard section pitch angle simulating the free-tip rotor blade when its free-tip is at a deflected position. The spanwise lift distribution over the wing and the tip were measured and three component velocity surveys behind the wing were obtained with a three dimensional laser Doppler velocimeter (LV) with the wing at one angle of attack and the tip deflected at different pitch angles. A six component internal strain gage balance was also used to measure total forces and moments on the tip. The three dimensional lift was computed from the two dimensional life distributions obtained from the LV and from the strain gage balance. The results from both experimental methods are shown to be in agreement with predictions made by a steady, three dimensional panel code, VSAERO.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.