Science.gov

Sample records for angled high frequency

  1. Design and Fabrication of PZN-7%PT Single Crystal High Frequency Angled Needle Ultrasound Transducers

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Jin, Jing; Hu, Chang-hong; Xu, Xiaochen; Williams, Jay; Cannata, Jonathan M.; Lim, Leongchew; Shung, K. Kirk

    2009-01-01

    A high-frequency angled needle ultrasound transducer with an aperture size of 0.4 × 0.56 mm2 was fabricated using a lead zinc niobate-lead titanate (PZN-7%PT) single crystal as the active piezoelectric material. The single crystal was bonded to a conductive silver particle matching layer and a conductive epoxy backing material through direct contact curing. A parylene outer matching layer was formed by vapor deposition. Angled needle probe configuration was achieved by dicing at 45° to the single crystal poling direction to satisfy a clinical request for blood flow measurement in the posterior portion of the eye. The electrical impedance magnitude and phase of the transducer were 42 Ω and −63°, respectively. The measured center frequency and the fractional bandwidth at −6 dB were 43 MHz and 45%, respectively. The two-way insertion loss was approximately 17 dB. Wire phantom imaging using fabricated PZN-7%PT single crystal transducers was obtained and spatial resolutions were assessed. PMID:18599429

  2. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  3. Feasibility of rotational scan ultrasound imaging by an angled high frequency transducer for the posterior segment of the eye.

    PubMed

    Paeng, Dong-Guk; Chang, Jin Ho; Chen, Ruimin; Humayun, Mark S; Shung, K Kirk

    2009-03-01

    High frequency ultrasound over 40 MHz has been used to image the anterior segment of the eye, but it is not suitable for the posterior segment due to the frequency dependent attenuation of ultrasound and thus the limitation of penetration depth. This paper proposes a novel scan method to image the posterior segment of the eye with an angled high frequency (beyond 40 MHz) ultrasound needle transducer. In this method, the needle transducer is inserted into the eye through a small incision hole (approximately 1 mm in diameter) and rotated around the axial direction to form a cone-shaped imaging plane, allowing the spatial information of retinal vessels and diagnosis of their occlusion to be displayed. The feasibility of this novel technique was tested with images of a wire phantom, a polyimide tube, and an excised pig eye obtained by manually rotating a 40-MHz PMN-PT needle transducer with a beveled tip of 45 degrees . From the results, we believe that rotational scan imaging will help expand the minimally invasive applications of high frequency ultrasound to other areas due to the capability of increased closeness of an angled needle transducer to structures of interest buried in other tissues.

  4. Feasibility of Rotational Scan Ultrasound Imaging by an Angled High Frequency Transducer for the Posterior Segment of the Eye

    PubMed Central

    Paeng, Dong-Guk; Chang, Jin Ho; Chen, Ruimin; Humayun, Mark S.; Shung, K. Kirk

    2009-01-01

    High frequency ultrasound over 40 MHz has been used to image the anterior segment of the eye, but it is not suitable for the posterior segment due to the frequency-dependent attenuation of ultrasound and thus the limitation of penetration depth. This paper proposes a novel scan method to image the posterior segment of the eye with an angled high frequency (beyond 40 MHz) ultrasound needle transducer. In this method, the needle transducer is inserted into the eye through a small incision hole (∼1 mm in diameter) and rotated around the axial direction to form a cone-shaped imaging plane, allowing the spatial information of retinal vessels and diagnosis of their occlusion to be displayed. The feasibility of this novel technique was tested with images of a wire phantom, a polyimide tube, and an excised pig eye obtained by manually rotating a 40-MHz PMN-PT needle transducer with a beveled tip of 45°. From the results, we believe that rotational scan imaging will help expand the minimally invasive applications of high frequency ultrasound to other areas due to the capability of increased closeness of an angled needle transducer to structures of interest buried in other tissues. PMID:19411226

  5. Data for phase angle shift with frequency

    PubMed Central

    Paul, T.; Banerjee, D.; Kargupta, K.

    2016-01-01

    Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C. PMID:27158655

  6. Implementation of a rotational ultrasound biomicroscopy system equipped with a high-frequency angled needle transducer--ex vivo ultrasound imaging of porcine ocular posterior tissues.

    PubMed

    Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk

    2014-09-24

    The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270°~330° and at a distance range of 6~7 mm, whereas the tissues of the other eye were observed in relative angle range of 160°~220° and at a distance range of 7.5~9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

  7. Frequency-Channelized SAR Processing For Multiple Angle Looks

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Rignot, Eric J.; Van Zyl, Jacob J.

    1995-01-01

    Technique for processing synthetic-aperture-radar (SAR) signals exploits fact that center frequency of frequency channel of data being processed linked directly to squint angle and to azimuth angle. Also exploits fact in multilook SAR data processing, total bandwidth of each SAR polarization channel divided into N (typically, N = 16) equal frequency channels, data in each of which processed separately. Technique has yielded data on directionality of radar back scatter from agricultural fields.

  8. High Angle of Attack Aerodynamics

    DTIC Science & Technology

    1979-01-01

    describe the behaviour of the air. The Symposium made it clear that the present state of knowledge in the area of high angle-of-attack aerodynamics...TESTING EXPERIENCE by C.W. Smith and C.A.Anderson S FOREBODY-WING VORTEX INTERACTIONS AND THEIR INFLUENCE ON DEPARTURE AND SPIN RESISTANCE by A.MSkow...Figure 6) caused by asymmetric flow conditions. ., s already mentioned, asymmetric flow occurs not only when an air- craft flies at non-zero sideslip

  9. Low frequency seabed scattering at low grazing angles.

    PubMed

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-04-01

    Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)].

  10. High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics.

    PubMed

    Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej

    2015-01-01

    The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.

  11. Frequency of cerebellopontine angle tumours in patients with trigeminal neuralgia. .

    PubMed

    Khan Afridi, Ehtisham Ahmed; Khan, Shahbaz Ali; Qureshi, Waqar-ur-Rehman; Bhatti, Sajid Nazir; Muhammad, Gul; Mahmood, Shakir; Rehman, Abdur

    2014-01-01

    Though the classical type of trigeminal neuralgia is the most common type with the neurovascular conflict causing the symptoms, yet quite some patients have the secondary type of trigeminal neuralgia in which space occupying lesions are responsible for the symptoms. This study was conducted to determine the frequency of cerebellopontine angle tumours in patients presenting with complaints of trigeminal neuralgia. This case series descriptive study was conducted in the department of Neurosurgery, Ayub Medical College, Abbottabad, from January 2009 to January 2012. It included patients who presented with symptoms of trigeminal neuralgia. Patients were subjected to further radiological investigation like Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to look for secondary causes of trigeminal neuralgia. Among the 134 patients with age ranges 13-64 (51?4.3) years of age, 78(58.2%) were females and 56 (41.7%) were males. Frequency of cerebellopontine angle tumours in patients was 14 (10.4%), among them epidermoid was most common lesion being present in 10 (7.4%) of patients and accounted for 75% of Cerebellopontine Angle tumours in these patients. Meningioma and vestibular schwanoma accounted for 2(1.4%) cases each. In secondary trigeminal neuralgia mean age of onset of symptoms was 39.5±5.2 years as compared to classic trigeminal neuralgia which is 53±2.1 years. Trigeminal Neuralgia can be a typical symptom in cerebellopontine angle tumours like epidermoid, especially in young patients, so all the patients with trigeminal neuralgia should be investigated for lesion in cerebellopontine region.

  12. High angle conveyors climb to the top

    SciTech Connect

    Mitchell, J.J.

    1984-11-01

    A major objective in the design of a storage facility is to have the least handling over the shortest distances and to optimize land usage by attaining the highest tons-per-acre value. The advantages of high angle conveyors become apparent when the height of lift is compared with the surface area. High angle conveyors achieve high capacities in the least amount of space. Continental Conveyor and Equipment Co., has conducted several studies that evaluate the technical and economic feasibility of using high angle conveyors in conveyor systems. A few of the high angle conveying concepts reviewed are the bucket ladder or pocket belt, belts with partitions or fin belt, and the sandwich type belt conveyors.

  13. High angle conveyors climb to the top

    SciTech Connect

    Mitchell, J.J.

    1984-11-01

    Descriptions are presented of various types of high angle conveyors, including pocket belt, fin belt, sandwich belt, snake sandwich conveyor, mechanically pressed sandwich conveyor, and pneumatically pressed sandwich conveyors. 10 references.

  14. Troposcatter dispersion measurements with angle diversity in two frequency bands

    NASA Astrophysics Data System (ADS)

    Schmitt, F.

    1981-10-01

    Measurements of received signal level as well as of multipath dispersion were carried out over a 278 km troposcatter test link. The tests were performed simultaneously in two frequency bands (UHF: 900 MHz, C-band: 4.478 GHz), using receiving channels and a combined angle diversity antenna with two diversity beams in UHF and four diversity beams in C-band. A correlation factor of 0.3 between the temporal evolution of the signal of both UHF channels was measured. A statistical analysis of the time of flight measurements (delay spread and Doppler spread) was made. The Doppler spread is clearly frequency dependent. The statistical correlation between the relative amplitude variation of the received signal and the delay spread shows a decrease of the amplitude variation with higher delay spread. The delay spread can not be determined from the amplitude variations.

  15. Dual-frequency laser displacement and angle interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Shijie; Wei, Haoyun; Li, Yan

    2014-11-01

    Traditional laser angular interferometers based on a Michelson Interferometer or its modifications have the same principle: changing the angle displacement to an optical path difference. However, measuring the angular error of stage travels is a dynamic process. The main trouble is lack of displacement information and need to be solved urgently. A obvious method is using two dual-frequency interferometers to get the displacement and angular. In this paper, a new kind of displacement and angle interferometer (DIAI) is introduced. In this DIAI, displacement and angular are measured simultaneously by special optical path. The DIAI consists of a stabilized orthogonal polarization dualfrequency laser, a monolithic prism and additional optical and electronic components. The dual-frequency laser is divided into reference light and measurement light by a beam-splitting prism. The measurement light spatially separated into horizontal polarized light and vertical polarized light by the polarization splitting prism. Changing by a fixed 45°- tilted reflector, the vertical polarized light is parallel to the horizontal polarized light. These parallel lights reflected by two corner cube retroreflectors at a moving target. Compared with the reference light, the displacement and angular are measured. Different from the traditional method, there is only one reference corner cube retroreflector in this system. Thus, the angular measurement accuracy is better. The accuracy of the DIAI is better than +/-0.25 arcsec in comparison with an autocollimator.

  16. High Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gatteschi, D.

    EPR has traditionally been used in order to obtain structural information on transition metal compounds, with exciting frequencies in the range 9-35 GHz.The recent availability of high magnetic field has prompted the use of higher frequencies. In this contribution the advantages of using High-Field-High-Frequency EPR (HF EPR) experiments are reviewed. After a brief introduction aiming to recall the fundamentals of EPR spectroscopy, a short description of the experimental apparatus needed to perform HF EPR measurements is provided. The remaining sections report selected examples showing how much information can be obtained by HF EPR spectra. They range from individual ions with integer spin to molecular clusters. Particular attention is devoted to the so called Single Molecule Magnets, SMM, i.e. to molecular clusters which show slow relaxation of the magnetization at low temperature. This effect is due to Ising type magnetic anisotropy which has been efficiently monitored through HF EPR s pectroscopy.

  17. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  18. Mandibular advancement surgery in high-angle and low-angle class II patients: different long-term skeletal responses.

    PubMed

    Mobarak, K A; Espeland, L; Krogstad, O; Lyberg, T

    2001-04-01

    The objective of this cephalometric study was to compare skeletal stability and the time course of postoperative changes in high-angle and low-angle Class II patients after mandibular advancement surgery. The subjects were 61 consecutive mandibular retrognathism patients whose treatment included bilateral sagittal split osteotomy and rigid fixation. The patients were divided according to the preoperative mandibular plane angle; the 20 patients with the lowest mandibular plane angle (20.8 degrees +/- 4.9 degrees ) constituted the low-angle group, while the 20 cases with the highest mandibular plane angle (43.0 degrees +/- 4.0 degrees ) represented the high-angle group. Lateral cephalograms were taken on 6 occasions: immediately before surgery, immediately after surgery, 2 and 6 months after surgery, and 1 and 3 years after surgery. Results demonstrated that the high-angle and low-angle groups had different patterns of surgical and postoperative changes. High-angle patients were associated with both a higher frequency and a greater magnitude of horizontal relapse. While 95% of the total relapse took place during the first 2 months after surgery in the low-angle group, high-angle patients demonstrated a more continuous relapse pattern, with a significant proportion (38%) occurring late in the follow-up period. Possible reasons for the different postsurgical response are discussed.

  19. High-frequency conductivity of photoionized plasma

    SciTech Connect

    Anakhov, M. V.; Uryupin, S. A.

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  20. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  1. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  2. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  3. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  4. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  5. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  6. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  7. Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle

    NASA Astrophysics Data System (ADS)

    Song, Q. H.; Zhu, W. M.; Wu, P. C.; Zhang, W.; Wu, Q. Y. S.; Teng, J. H.; Shen, Z. X.; Chong, P. H. J.; Liang, Q. X.; Yang, Z. C.; Tsai, D. P.; Bourouina, T.; Leprince-Wang, Y.; Liu, A. Q.

    2017-06-01

    Terahertz metasurface absorption materials, which absorb terahertz wave through subwavelength artificial structures, play a key role in terahertz wave shielding and stealth technology, etc. However, most of the metasurface absorption materials in terahertz suffer from limited tuning range and narrow incident angle characteristics. Here, we demonstrate a liquid-metal-based metasurface through microfluidic technology, which functions as a terahertz absorption material with broadband tunability and wide-angle features. The proposed terahertz metasurface absorption material exhibits an experimental tuning range from 0.246 THz to 0.415 THz (the tuning range of central frequency reaches 51.1%), and the tuning range maintains at high level with wide-angle response up to 60°.

  8. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

    PubMed Central

    Zhao, Yanyu; Tabassum, Syeda; Piracha, Shaheer; Nandhu, Mohan Sobhana; Viapiano, Mariano; Roblyer, Darren

    2016-01-01

    Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g. the tumor edge). We propose a modified Lambertian angle correction, adapted from the Minnaert correction method for satellite imagery, to account for tissue surface angles up to 75°. The method was tested in a hemisphere phantom study as well as a small animal tumor model. The proposed method reduced µa and µs` extraction errors by an average of 64% and 16% respectively compared to performing no angle correction, and provided more physiologically agreeable optical property and chromophore values on tumors. PMID:27375952

  9. Refined Monte Carlo method for simulating angle-dependent partial frequency redistributions

    NASA Technical Reports Server (NTRS)

    Lee, J.-S.

    1982-01-01

    A refined algorithm for generating emission frequencies from angle-dependent partial frequency redistribution functions R sub II and R sub III is described. The improved algorithm has as its basis a 'rejection' technique that, for absorption frequencies x less than 5, involves no approximations. The resulting procedure is found to be essential for effective studies of radiative transfer in optically thick or temperature varying media involving angle-dependent partial frequency redistributions.

  10. High Resolution Frequency Swept Imaging.

    DTIC Science & Technology

    1980-02-14

    image resolution comparable to an ordinary photographic camera. In addition to inconvenient size, the cost of filling such a large aperture with... cost of implementing a LFTDR. Because of the large difference between the high frequency imaging frequencies and the low frequency reference frequency... cost . In addition since the measured reference phase must be multiplied by a factor a equal to the ratio of the imaging to the reference frequency

  11. High-frequency broadband transformers

    NASA Astrophysics Data System (ADS)

    London, S. E.; Tomashevich, S. V.

    1981-05-01

    A systematic review of the theory and design principles of high-frequency broadband transformers is presented. It is shown that the transformers of highest performance are those whose coils consist of strips of double-wire and multiwire transmission lines. Such devices are characterized by a wide operating frequency range, and make possible operation at microwave frequencies at high levels of transmitted power.

  12. High angle of attack hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.

    1987-01-01

    A new aerodynamics force model is presented which is based on modified Newtonian theory and empirical correlations. The algebraic model was developed for complete vehicles from take off to orbital speeds and for large angles of attack. Predictions are compared to results for a wind tunnel model at a Mach number of 20, and the full scale Shuttle Orbiter for Mach numbers from 0.25 to 20 for angles of attack from 0 to 50 deg. The maximum shuttle orbiter lift/drag at Mach 10 and 20 is 1.85 at 20-deg angle-of-attack. Aerodynamic force predictions are made for a transatmospheric vehicle, which is a derivative of the Shuttle Orbiter, for Mach numbers from 4 to 27 at angles of attack from 5 to 40 deg. Predicted aerodynamic force data indicate that lift/drag ratios of 5.2 at Mach number 10 and 3.6 at Mach number 26 are obtainable. Changes in force coefficients with changes in: nose angle, sweep angle, and (volume exp 2/3)/planform area are quantified for Mach numbers of 10 and 26. Lift/drag ratios increase with decreasing nose angle and (volume exp 2/3)/planform area and increasing wing sweep angle. Lift/drag ratios are independent of these variables for angles of attack in excess of 20 deg at Mach 10 and 30 deg at Mach 26.

  13. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  14. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  15. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  16. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  17. Methodology for high accuracy contact angle measurement.

    PubMed

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  18. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O.

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle-Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  19. The Relationship between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants

    PubMed Central

    Landsberger, David M.; Svrakic, Svrakic; Roland, J. Thomas; Svirsky, Mario

    2015-01-01

    Objectives Commercially available cochlear implant systems attempt to deliver frequency information going down to a few hundred Hz, but the electrode arrays are not designed to reach the most apical regions of the cochlea which correspond to these low frequencies. This may cause a mismatch between the frequencies presented by a cochlear implant electrode array and the frequencies represented at the corresponding location in a normal hearing cochlea. In the following study, the mismatch between the frequency presented at a given cochlear angle and the frequency expected by an acoustic hearing ear at the corresponding angle is examined for the cochlear implant systems that are most commonly used in the United States. Design The angular insertion of each of the electrodes on four different electrode arrays (MED-EL Standard, MED-EL Flex28, Advanced Bionics HiFocus 1J, and Cochlear Contour Advance) was estimated from x-rays. For the angular location of each electrode on each electrode array, the predicted spiral ganglion frequency was estimated. The predicted spiral ganglion frequency was compared with the center frequency provided by the corresponding electrode using the manufacturer’s default frequency-to-electrode allocation. Results Differences across devices were observed for the place of stimulation for frequencies below 650 Hz. Longer electrode arrays (i.e. the MED-EL Standard and Flex28) demonstrated smaller deviations from the spiral ganglion map than the other electrode arrays. For insertion angles up to approximately 270°, the frequencies presented at a given location were typically approximately an octave below what would be expected by a spiral ganglion frequency map, while the deviations were larger for angles deeper than 270°. For frequencies above 650 Hz, the frequency to angle relationship was consistent across all four electrode models. Conclusions A mismatch was observed between the predicted frequency and default frequency provided by every

  20. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  1. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  2. Frequency-domain full waveform inversion with an angle-domain wavenumber filter

    NASA Astrophysics Data System (ADS)

    Luo, Jingrui; Xie, Xiao-Bi

    2017-06-01

    To mitigate the local minima problem in full waveform inversion, the iteration process can be carried out in a multi-scale way, with the inversion starting from large-scale perturbations and gradually changing to small-scale structures. However, this technique is often limited due to the lack of low-frequency information in the observed data. In a scattering process, the scale length of the velocity perturbation is not only related to the frequency, but also associated with the scattering angles. We introduce a scattering angle filter in frequency-domain full waveform inversion. Choosing proper scattering angles in the iteration process can control the wavenumber components entering into the velocity updating, and accomplish multi-scale waveform inversion. Using the slant-stacking method, we decompose the source- and receiver-side waves into local plane waves, from which the scattering angles between the incident and scattering directions are calculated and used as the constraint to determine the wavenumber components to be retrieved. Small scattering angles are related to large-scale model perturbations. Therefore, by filtering out large scattering angles, we can invert the large-scale background perturbations first. Then, by gradually increasing the band pass of scattering angles, we can retrieve fine-scale structures. Numerical examples demonstrate that when the initial model has large velocity errors and the low-frequency information is unavailable in the data, the multi-scale strategy based on the angle-domain wavenumber filter can largely improve the convergence in the initial iteration stage and make the searching towards the global minimum.

  3. Optical metasurfaces for high angle steering at visible wavelengths

    DOE PAGES

    Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...

    2017-05-23

    Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.

  4. [Principals of high frequency surgery].

    PubMed

    Bergler, W F; Hörmann, K; Hammerschmitt, N; Huber, K

    2004-10-01

    Electrosurgical instruments are routinely and daily applied at a variety of indications in Otorhinolaryngology. They can be used for cutting, coagulation and devitalisation. All have in common that the high frequency energy is transported into the tissue via an instrument and by this causes a thermal change. Depending on the duration and characteristic of the electricity a vaporisation of the tissue is effected through coagulation, devitalisation and carbonisation. The knowledge of the effects on the tissue by the choice of the different instrument parameters and application systems is essential for an ingenious therapeutically indication. In principal the following application methods for electrosurgery by modulation of the high frequency parameters are distinguished: the monopolar and the bipolar coagulation and devitalisation and the monopolar and the bipolar cutting. This article deals with the physical basis, the effects in the tissue as well as the single application methods of the high frequency surgery.

  5. High-Resolution Optoelectronic Shaft-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1994-01-01

    Improved optoelectronic encoder measures absolute angle to which shaft has been rotated. Costs little more than older, less capable encoders do, yet measures absolute angles at high resolution and does not lose absolute-angle data because generates those data anew with each reading at up to 1,000 times per second. It accumulates increments to measure total angular interval through which shaft has been turned (including unlimited number of complete turns), as long as power remains on.

  6. High-Frequency Channel Characterization

    DTIC Science & Technology

    2005-09-30

    High-Frequency Channel Characterization Michael B. Porter, Paul Hursky, Martin Siderius Heat , Light, and Sound Research, Inc. 12730 High...Physical Sciences (Bruce Abraham) • Arizona State University (Tolga Duman, Subhadeep Roy) • Heat , Light, and Sound Research, Inc.(M. Porter, A. Abawi, P...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Heat , Light, and Sound Research, Inc,12730 High

  7. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  8. Frequency dependent polarization analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  9. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  10. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    NASA Astrophysics Data System (ADS)

    Velarde, Luis; Wang, Hong-fei

    2013-10-01

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method for orientational analysis. With PNA measurement we show that the -CN group in the 4-n-pentyl-4‧-cyanoterphenyl (5CT) Langmuir monolayer is tilted around 25° ± 2° from the interface normal, while that in the 4-n-octyl-4‧-cyanobiphenyl (8CB) is tilted around 57° ± 2°, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers reported in the literature.

  11. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  12. Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle

    PubMed Central

    Guo, Junyu; Patay, Zoltan; Reddick, Wilburn E.

    2016-01-01

    Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites. PMID:27440077

  13. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p < 0.001) and in CF (p = 0.04) compared with the C protocol. Joint angle and fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  14. HOUSTON - EARTH VIEWS - LOW-ALTITUDE - HIGH-ANGLE - TX

    NASA Image and Video Library

    1975-01-01

    Low-altitude, high-angle view of Houston downtown area. This view was photographed to show convention central part of downtown to promote facilities here for hosting large conventions, etc. 1. JSC PROTOCOL - CONVENTIONS HOUSTON, TX

  15. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  16. High frequency power distribution system

    NASA Astrophysics Data System (ADS)

    Patel, Mikund R.

    1986-04-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  17. Design of Nonlinear Autopilots for High Angle of Attack Missiles

    DTIC Science & Technology

    1996-01-01

    Copyright 1996 by Optimal Synthesis . All Rights Reserved. 1 Design of Nonlinear Autopilots for High Angle of Attack Missiles By P. K. Menon* and...M. Yousefpor† Optimal Synthesis Palo Alto, CA 94306, USA Abstract Two nonlinear autopilot design approaches for a tail-controlled high angle of...Prescribed by ANSI Std Z39-18 © Copyright 1996 by Optimal Synthesis . All Rights Reserved. 2 better agility from tactical missiles. In air-to-air

  18. Frequency-dependence of the linear-polarization-angle phase-shift in the microwave radiation-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga; Wegscheider, Werner; Mani, Ramesh

    High-mobility GaAs/AlGaAs heterojunctions subjected to microwave photoexcitation in the perpendicular magnetic field configuration exhibit ¼-cycle phase-shifted oscillatory magnetoresistance and zero-resistance states at low magnetic fields or high filling factors. Recent studies showed that the amplitude of oscillatory magnetoresistance is polarization-angle sensitive and can be described by a fitting formula, Rxx(θ) = A+/-Ccos2(θ- θ0) with diagonal resistance, Rxx, polarization angle θ, and the extracted phase shift, θ0. Previous works have demonstrated that θ0 is frequency-dependent by investigating some specific frequencies. Here, we examine the continuous variation of θ0 with frequency over the bands, 36-40 GHz and 45-49 GHz. Surprisingly, the results indicate dissimilar θ0 variation within the two frequency bands. A comparison of θ0(f) with the microwave polarization reported by an in-situ polarization sensor suggests that the frequency variation of θ0 might be caused by two different mechanisms in the two examined bands.

  19. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  20. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  1. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  2. Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry

    NASA Astrophysics Data System (ADS)

    Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2016-06-01

    A three-dimensional numerical simulation model that considers the effect of the angle of attack was developed to evaluate plasma flows around reentry vehicles. In this simulation model, thermochemical nonequilibrium of flowfields is considered by using a four-temperature model for high-accuracy simulations. Numerical simulations were performed for the orbital reentry experiment of the Japan Aerospace Exploration Agency, and the results were compared with experimental data to validate the simulation model. A comparison of measured and predicted results showed good agreement. Moreover, to evaluate the effect of the angle of attack, we performed numerical simulations around the Atmospheric Reentry Demonstrator of the European Space Agency by using an axisymmetric model and a three-dimensional model. Although there were no differences in the flowfields in the shock layer between the results of the axisymmetric and the three-dimensional models, the formation of the electron number density, which is an important parameter in evaluating radio-frequency blackout, was greatly changed in the wake region when a non-zero angle of attack was considered. Additionally, the number of altitudes at which radio-frequency blackout was predicted in the numerical simulations declined when using the three-dimensional model for considering the angle of attack.

  3. High-speed measurement of nozzle swing angle of rocket engine based on monocular vision

    NASA Astrophysics Data System (ADS)

    Qu, Yufu; Yang, Haijuan

    2015-02-01

    A nozzle angle measurement system based on monocular vision is proposed to achieve high-speed and non-contact angle measurement of rocket engine nozzle. The measurement system consists of two illumination sources, a lens, a target board with spots, a high-speed camera, an image acquisition card and a PC. A target board with spots was fixed on the end of rocket engine nozzle. The image of the target board moved along with the rocket engine nozzle swing was captured by a high-speed camera and transferred to the PC by an image acquisition card. Then a data processing algorithm was utilized to acquire the swing angle of the engine nozzle. Experiment shows that the accuracy of swing angle measurement was 0.2° and the measurement frequency was up to 500Hz.

  4. Laser interferometric high-precision angle monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2006-06-01

    The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.

  5. High Frequency Stable Oscillate boiling

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, Silvestre Roberto; Ohl, Claus Dieter

    2015-11-01

    We present an unexpected regime of resonant bubble oscillations on a thin metal film submerged in water, which is continuously heated with a focused CW laser. The oscillatory bubble dynamics reveals a remarkably stable frequency of several 100 kHz and is resolved from the side using video recordings at 1 million frames per second. The emitted sound is measured simultaneously and shows higher harmonics. Once the laser is switched on the water in contact with the metal layer is superheated and an explosively expanding cavitation bubble is generated. However, after the collapse a microbubble is nucleated from the bubble remains which displays long lasting oscillations. Generally, pinch-off from of the upper part of the microbubble is observed generating a continuous stream of small gas bubbles rising upwards. The cavitation expansion, collapse, and the jetting of gas bubbles are detected by the hydrophone and are correlated to the high speed video. We find the bubble oscillation frequency is dependent on the bubble size and surface tension. A preliminary model based on Marangoni flow and heat transfer can explain the high flow velocities observed, yet the origin of bubble oscillation is currently not well understood.

  6. How ARCO drills high-angle wells offshore Indonesia

    SciTech Connect

    Tjondrodiputro, B.; Eddyarso, H.; Jones, K. )

    1993-03-01

    Atlantic Richfield Indonesia, Inc. (ARII) drilled and completed 28 high-angle wells since early 1986 in Bima, Papa and FF fields in the Offshore North West Java Sea (ONWJ) contract area. Early wells were drilled with conventional rotary bottomhole assemblies (BHAs); introduction of a steerable tool and MWD subsequently increased efficiency and reduced drilling costs. Both lignosulfonate and dispersed pac polymer muds have been used with good success. Cost to drill a high-angle well has been only marginally more than that of a 45[degree] directional well. Elimination of open hole logging and use of preperforated liners have reduced drilling costs by 10%. Production performance for wells has been higher than for vertical or low-angle wells. High-angle wells in Bima have outperformed offset vertical wells and are classified as a success. However, horizontal wells in Papa, which has a strong bottom-water drive, have not shown any improved recovery over conventional wells. The new well in FF field is still being evaluated. In this first of a two-part report, high-angle drilling operations including well planning, BHA selection, casing and mud programs, hole cleaning and logging are described. Specific wells in the Bima area are discussed as examples.

  7. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  8. High-Frequency Inductor Materials

    NASA Astrophysics Data System (ADS)

    Varga, L. K.

    2014-01-01

    The Finemet-type nanocrystalline alloy represents an advanced soft-magnetic metal-metal-type nanocomposite with an eddy-current-determined high- frequency limit. A survey of different heat treatments under tensile stress is presented to tailor the hysteresis loop by induced transversal anisotropy. The flattened loop having reduced effective permeability enhances the eddy- current limit in the MHz region; For example, continuous stress annealing in a tubular furnace of 1 m length at 650°C, pulling the ribbon with a velocity of 4 m/min under a tensile stress of 200 MPa, results in a wound core having a permeability of 120 and a frequency limit of 10 MHz. Careful annealing preserves the static coercivity below 10 A/m. The power loss at 0.1 T and 100 kHz is only 82 mW/cm3, which is an order of magnitude lower then the values obtained for Sendust™ cores in similar conditions.

  9. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  10. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  11. A warning system for travelling ionospheric disturbances using skywave Doppler frequency and angle-of-arrival measurements

    NASA Astrophysics Data System (ADS)

    Belehaki, Anna; Reinisch, Bodo; Galkin, Ivan

    2017-04-01

    Travelling ionospheric disturbances (TIDs) constitute a threat for operational systems using groundbased HF and trans-ionospheric VHF-UHF radiowave propagation. TIDs can impose disturbances with amplitudes of up to 20% of the ambient electron density, and a Doppler frequency shifts of the order of 0.5 Hz on HF signals. Therefore their identification and tracking is important for the reliable operation of critical systems using the ionosphere as an essential part or for systems for which the ionosphere is fundamentally a nuisance. The Net-TIDE project has developed a warning system for real-time identification of TIDs using skywave Doppler frequency and angle-of-arrival measurements. Data are collected from network-coordinated HF sounding between pairs of European DPS4D and processed in real-time for the calculation of the angles-of-arrival and Doppler frequencies of ionospherically reflected high-frequency (HF) radio signals. The outcome is provided in real-time to the users to characterise TID activity over Europe based on the measured signal parameters. Complementary methodologies based on the analysis of vertical sounding parameters are currently exploited as verification means to improve the confidence level of the warnings. The resulting map of TID activity is updated every 5 minutes to enable the end-users enabling them to put into action specific mitigation techniques to protect their systems.

  12. High-fidelity angle-modulated analog optical link.

    PubMed

    Che, Di; Yuan, Feng; Shieh, William

    2016-07-25

    There has long existed a debate over whether analog or digital optical link is more suitable for wireless convergence applications. Digital link achieves the highest fidelity, with the sacrifice of huge bandwidth due to the high resolution of digitization, and large power consumption due to the exhaustive digital data recovery. Analog link avoids these drawbacks, but it inevitably suffers from the SNR degradation. In this paper, we propose the angle modulation for analog optical link, which successfully breaks the SNR ceiling of amplitude modulation, and achieves ultrahigh link fidelity. Using the digital link (CPRI) equivalent bandwidth, angle modulation exhibits around 30-dB SNR advantage over the conventional amplitude modulation. Combined with its high tolerance on link nonlinearity, angle modulation has great potential in the future SNR-hungry analog optical applications.

  13. Amplifying High Frequency Acoustic Signals

    SciTech Connect

    Kunz, C

    2004-02-05

    In search of the hypothetical Higgs boson, a prototype electron accelerator structure has been developed for use in the Next Linear Collider (NLC), SLAC's proposed version of the machine necessary to create the predicted particle. The Next Linear Test Accelerator (NLCTA), designed to provide O.5GeV-lTeV center-of-mass collision energy, generates electromagnetic breakdowns inside its copper structure while the beam is running. The sparks vaporize the surface of the copper, and will eventually ruin the accelerator. They also create high-frequency (hf) acoustic signals (100 kHz-1 MHz). Acoustic sensors have been placed on the structure, however current knowledge regarding sound propagation in copper limits spark location to within one centimeter. A system was needed that simulates the sparks so further study of acoustic propagation can be pursued; the goal is locate them to within one millimeter. Various tests were done in order to identify an appropriate hf signal source, and to identify appropriate acoustic sensors to use. A high-voltage spark generator and the same sensors used on the actual structure proved most useful for the system. Two high-pass filters were also fabricated in order to measure signals that might be created above 2MHz. The 11-gain filter was used on the acoustic simulation system that was developed, and the 100-gain filter will be used on the NLCTA.

  14. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  15. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  16. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  17. High-frequency nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Bimberg, D.; Fiol, G.; Meuer, C.; Laemmlin, M.; Kuntz, M.

    2007-02-01

    Recent results on GaAs-based high-speed mode-locked quantum dot (QD) lasers and optical amplifiers with an operation wavelength centered at 1290 nm are reviewed and their complex dependence on device and operating parameters is discussed on the basis of experimental data obtained with integrated fiber-based QD device modules. Hybrid and passive mode-locking of QD lasers with repetition frequencies between 5 and 80 GHz, sub-ps pulse widths, ultra-low timing jitter down to 190 fs, high output peak power beyond 1 W and suppression of Q-switching are reported, showing the large potential of this class of devices for O-band optical fiber applications. Results on cw and dynamical characterization of quantum dot semiconductor optical amplifiers are presented. QD amplifiers exhibit a close-to-ideal noise figure of 4 dB and demonstrate multi-wavelength amplification of three CWDM wavelengths simultaneously. Modelling of QD polarization dependence shows that it should be possible to achieve polarization insensitive SOAs using vertically coupled QD stacks. Amplification of ultra-fast 80 GHz optical combs and bit-error-free data signal amplification at 40 Gb/s with QD SOAs show the potential for their application in future 100 Gb Ethernet networks.

  18. Wake vortex measurements of bodies at high angle of attack

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Johnson, D. A.

    1978-01-01

    Three-dimensional laser velocimeter measurements have been made of the wake vortices of a slender tangent-ogive body which had nose and body fineness ratios of 3.5 and 12, respectively. Data were obtained for an angle of attack to seminose angle ratio of 2.3 at a free-stream Mach number of 0.6 and unit Reynolds number of 2 million/ft. Details of the mean flow field are presented and features of the turbulent and unsteady nature of the vortex flow field are discussed. Problems associated with obtaining meaningful vortex measurements in high-speed flows are addressed.

  19. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    PubMed Central

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-01-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results. PMID:26830146

  20. X-31 high angle of attack control system performance

    NASA Technical Reports Server (NTRS)

    Huber, Peter; Seamount, Patricia

    1994-01-01

    The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.

  1. Atomic frequency standards for ultra-high-frequency stability

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Prestage, J. D.; Dick, G. J.

    1987-01-01

    The general features of the Hg-199(+) trapped-ion frequency standard are outlined and compared to other atomic frequency standards, especially the hydrogen maser. The points discussed are those which make the trapped Hg-199(+) standard attractive: high line Q, reduced sensitivity to external magnetic fields, and simplicity of state selection, among others.

  2. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  3. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  4. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  5. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  6. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  7. Growth of Nanowires by High-Temperature Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Minamitake, Haruhiko; Kita, Ryo; Hamachi, Kenji; Hara, Hideki; Nakajima, Kaoru; Kimura, Kenji; Hsu, Chia-Wei; Chou, Li-Jen

    2013-11-01

    We have demonstrated that nanowires of various metals, Ge, and Ga2O3 can be grown by high-temperature glancing angle deposition (HT-GLAD). The nanowires of metals including Al, Cu, Ag, Au, Mn, Fe, Co, Ni, and Zn are self-catalyzed, while the nanowires of other materials such as Ge and Ga2O3 are catalyzed by Au nanoparticles. However, once the nanowires start to grow, the growth modes of the HT-GLAD nanowires are fundamentally the same, i.e., nanowires with uniform diameter grow only when the vapor is incident at a very high glancing angle and reach a length larger than 1-8 µm even though the number of deposited atoms corresponds to the average thickness of 20-30 nm. This suggests that there is a universal growth mechanism for the nanowires grown by HT-GLAD.

  8. Pneumatic vortical flow control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Schiff, Lewis B.; Cummings, Russell M.

    1990-01-01

    The injection of thin, high-momentum jets of air into the fuselage forebody boundary layers of the F-18 aircraft is explored numerically as a means of controlling the onset of fuselage vortices and of generating yaw control forces. The study was carried out for an angle of attack of 30 deg with symmetrical and asymmetrical blowing configurations. One-sided blowing results in a strongly asymmetrical flow pattern in the fore portion of the fuselage, leading to a net lateral force.

  9. Pneumatic vortical flow control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Schiff, Lewis B.; Cummings, Russell M.

    1990-01-01

    The injection of thin, high-momentum jets of air into the fuselage forebody boundary layers of the F-18 aircraft is explored numerically as a means of controlling the onset of fuselage vortices and of generating yaw control forces. The study was carried out for an angle of attack of 30 deg with symmetrical and asymmetrical blowing configurations. One-sided blowing results in a strongly asymmetrical flow pattern in the fore portion of the fuselage, leading to a net lateral force.

  10. A propagation experiment for modelling high elevation angle land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Richharia, M.; Evans, B. G.; Butt, G.

    1990-01-01

    This paper summarizes the results of a feasibility study for conducting high elevation angle propagation experiments in the European region for land mobile satellite communication. The study addresses various aspects of a proposed experiment. These include the selection of a suitable source for transmission, possibility of gathering narrow and wide band propagation data in various frequency bands, types of useful data, data acquisition technique, possible experimental configuration, and other experimental details.

  11. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology... of High Frequency (HF) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology... less than a week; however, for environmental disasters such as the Deepwater Horizon oil spill,...

  12. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  13. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  14. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  15. Forebody tangential blowing for control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Kroo, I.; Rock, S.; Roberts, L.

    1991-01-01

    A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.

  16. From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials.

    PubMed

    Marmur, Abraham

    2008-07-15

    The possibility of making high-contact-angle, rough surfaces from low-contact-angle materials has recently been suggested and demonstrated. A thermodynamic analysis of this possibility in terms of feasibility and stability is presented. It turns out that only roughness topographies that conform to a feasibility condition which is developed in the present paper can support this phenomenon. Even under conditions that support the phenomenon, the high-contact-angle state may not be stable, and transition from the heterogeneous (Cassie-Baxter) wetting regime to the homogeneous (Wenzel) regime with a lower contact angle may occur. In addition, it is suggested to use the general terms hygrophilic and hygrophobic (based on the Greek prefix hygro- that means liquid) to describe low- and high-contact-angle surfaces, respectively.

  17. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  18. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska , has increased in total...High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  19. High-Angle Backscatter from Snow on the Ground

    NASA Astrophysics Data System (ADS)

    Knox, Joseph E.

    1983-09-01

    In January and February of 1981 and 1982, the Ballistic Research Laboratory (BRL) participated in SNOW-ONE at Camp Ethan Allen, VT, sponsored by the US Army Cold Regions Research and Engineering Laboratory (CRREL). The BRL conducted high-angle radar measurements there, measuring backscatter at 35 GHz. from various areas of undisturbed snow, acquiring time series data under varied weather conditions. A dual-polarized, 35 GHz radar was used to make the snow backscatter measurements. Polarity of the transmitted signal, vertical or horizontal, was controlled by means of an R.F. switch. The received signal was passed through an orthomode transducer to two receivers, allowing both parallel and cross polarized components to be recorded simultaneously. The sensor was supported 15 meters above the ground on an elevation-over-azimuth antenna mount. Elevation angle was adjusted so that radar beam angle was 30-degrees from vertical. Azimuth angle was varied so as to scan areas of undisturbed snow around the base of the support. The sensor was enclosed in an insulated box and heated to a fixed temperature. Signal returned to the sensor by the snow was, in large part, dependent upon the condition of the surface snow as it was affected by air temperature. When the temperature was well below freezing, sigma-zero was around -7dB with parallel polarization (-13dB, cross polarization). When the temperature increased to the freezing point, the snow became wet, packed easily, and had a lower sigma-zero (-17dB, parallel, and -22dB, cross polarization). The condition of the snow surface had a secondary effect upon the value of sigma-zero. A smoothed surface reflected less energy back to the sensor than a roughened surface. The combined effect of these two variables produced the changes that were measured in sigma-zero.

  20. Numerical investigation of ion energy distribution and ion angle distribution in a dual-frequency capacitively coupled plasma with a hybrid model

    SciTech Connect

    Wang Shuai; Xu Xiang; Wang Younian

    2007-11-15

    A one-dimensional hybrid model is developed to study the characteristics of energy and angular distributions of the ions and fast neutrals impinging on the rf-biased electrode in a dual-frequency capacitively coupled Ar discharge. The hybrid model consists of a fluid model that determines the spatiotemporal evolution of the discharge, and a Monte-Carlo model that, including the electron-neutral, ion-neutral, and fast neutral-neutral collisions, predicts the energy and angular distributions of the ions and fast neutrals on the rf-biased electrode. The influence of pressure, voltage amplitude, and frequencies of the two rf sources on the energy and angular distributions is discussed. The ion energy distributions (IEDs) appear to have multiple peaks in the dual-frequency capacitively coupled rf discharge rather than bimodal shape in a conventional single-frequency rf discharge. The ion angle distributions (IADs) have a significant peak at a small angle, and most ions strike to the process surface with the angle less than 4 deg. With the increase of the pressure, the maximum energy of IEDs and the peaks of IADs decrease. The structures of IEDs are controlled mainly by the voltage and frequency applied to the two rf sources. By decreasing the frequency or adding the voltage applied to the low-frequency (LF) source, the width of IEDs and the maximum energy increase. More ions strike to the electrode with a small angle by increasing either the voltage of LF source or the frequency of high-frequency source. The energy and angular distributions of the fast neutrals are correlative with those of the ions. Compared with the ions, the fast neutrals have a much lower energy and the scattering effect becomes more prominent.

  1. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  2. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  3. Propagation of high frequencies in Scandinavia

    SciTech Connect

    Bame, D.

    1989-04-01

    To determine if seismic signals at frequencies up to 50 Hz are useful for detecting events and discriminating between earthquakes and explosions, approximately 180 events from the three-component high-frequency seismic element (HFSE) installed at the center of the Norwegian Regional Seismic Array (NRSA) have been analyzed. The attenuation of high-frequency signals in Scandinavia varies with distance, azimuth, magnitude, and source effects. Most of the events were detected with HFSE, although detections were better on the NRSA where signal processing techniques were used. Based on a preliminary analysis, high-frequency data do not appear to be a useful discriminant in Scandinavia. 21 refs., 29 figs., 3 tabs.

  4. Reynolds Number Effects at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Cobleigh, Brent R.; Banks, Daniel W.; Hall, Robert M.; Wahls, Richard A.

    1998-01-01

    Lessons learned from comparisons between ground-based tests and flight measurements for the high-angle-of-attack programs on the F-18 High Alpha Research Vehicle (HARV), the X-29 forward-swept wing aircraft, and the X-31 enhanced fighter maneuverability aircraft are presented. On all three vehicles, Reynolds number effects were evident on the forebodies at high angles of attack. The correlation between flight and wind tunnel forebody pressure distributions for the F-18 HARV were improved by using twin longitudinal grit strips on the forebody of the wind-tunnel model. Pressure distributions obtained on the X-29 wind-tunnel model at flight Reynolds numbers showed excellent correlation with the flight data up to alpha = 50 deg. Above (alpha = 50 deg. the pressure distributions for both flight and wind tunnel became asymmetric and showed poorer agreement, possibly because of the different surface finish of the model and aircraft. The detrimental effect of a very sharp nose apex was demonstrated on the X-31 aircraft. Grit strips on the forebody of the X-31 reduced the randomness but increased the magnitude of the asymmetry. Nose strakes were required to reduce the forebody yawing moment asymmetries and the grit strips on the flight test noseboom improved the aircraft handling qualities.

  5. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  6. Lightning protection devices for high frequencies equipments

    SciTech Connect

    Pierre, J.

    1983-01-01

    Contents: Mechanism of a Lightning Stroke from Antenna to Ground; Principles of Protection Devices for Feeders; Electrical Characteristics of H.F. Protection Devices; Calculation of H.F. Protection Devices; Catalogue Devices for High Frequency Protection; Some Measurement Results for Tees; Measurement Results for Decoupling Line Devices; Installation of High Frequency Devices.

  7. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  8. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final Programmatic... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High..., for environmental disasters such as the Deepwater Horizon oil spill, SONAR equipment could be used...

  9. A high frequency silicon pressure sensor

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.; Gross, C.

    1980-01-01

    Theoretical and design considerations as well as fabrication and experimental work involved in the development of high-frequency silicon pressure sensors with an ultra-small diaphragm are discussed. A sensor is presented with a rectangular diaphragm of 0.0127 cm x 0.0254 cm x 1.06 micron; the sensor has a natural frequency of 625 kHz and a sensitivity of 0.82 mv/v-psi. High-frequency results from shock tube testing and low-frequency (less than 50 kHz) comparison with microphones are given.

  10. Radar modeling of space diversity associated with slant path rain attenuation at variable path angles, frequencies, and drop size distributions

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1983-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz were derived from radar data. Statistics were independently obtained for path angles of 20, 45, and 90 deg, in order to examine how path angle influences both single terminal and joint probability distributions. A prediction technique is demonstrated to work well for calculating both single and joint terminal distributions at other path angles. Diversity gains and autocorrelation function dependence on site spacing were determined employing the radar modeling results.

  11. Frequency Distribution of Junction Angles of Valley Networks on Mars Consistent with an Early Warm Climate

    NASA Astrophysics Data System (ADS)

    Cang, X.; Luo, W.

    2017-10-01

    The junction angles on Earth formed under different climatic conditions are different. Here, we investigated the junction angles on Mars. The results are consistent with a “warm” early Mars climate with precipitation.

  12. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  13. Effect of operating frequency and phase angle on performance of Alpha Stirling cryocooler driven by a novel compact mechanism

    NASA Astrophysics Data System (ADS)

    Sant, K. D.; Bapat, S. L.

    2015-12-01

    Amongst the mechanical cryocoolers in use, Stirling cycle cryocoolers exhibit the desirable features such as high efficiency, low specific power consumption, small size and mass and large mean time before failure. Stirling cycle cryocooler of Alpha configuration exhibits better theoretical performance as compared to Gamma. However, the theory could not be put into practice due to unavailability of compatible drive mechanism for Alpha cryocooler providing large stroke to diameter ratio. The concept of novel compact drive mechanism can be made functional to operate miniature Alpha Stirling cryocoolers. It allows the use of multicylinder system while converting rotary motion to reciprocating. This permits the drive mechanism to be employed for driving different configurations of Stirling cryocooler simultaneously. This drive is capable of providing large stroke to diameter ratio compared to other drive mechanisms generally in use for the purpose. A stroke to diameter ratio of three is chosen in the present work and the drive dimensions are calculated for four piston-cylinder arrangements with 90° phase difference between adjacent arrangements providing two Alpha Stirling cryocoolers working simultaneously. It has to be noted that the coolers operate at half the frequency of the motor used. As the two coolers operate at phase difference of 180°, during compression stroke of one unit, the suction stroke occurs for the other unit. Due to power output of second unit, the combined peak torque requirement falls by 26.81% below the peak torque needed when one unit is operated separately. This allows for use of a comparatively lower torque motor. The practicability of the drive ensuring smooth operation of the system is decided based on comparison between torque availability from the motor and torque requirement of the complete unit. The second order method of cyclic (or thermodynamic) analysis provides a simple computational procedure useful for the design of Stirling

  14. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  15. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.

  16. High-pressure magic angle spinning nuclear magnetic resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  17. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  18. Full-scale high angle-of-attack tests of an F/A-18

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Lanser, Wendy R.; James, Kevin D.

    1992-01-01

    This paper presents an overview of high angle-of-attack tests of a full-scale F/A-18 in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center at Moffett Field, California. A production aircraft was tested over an angle-of-attack range of 18 to 50 deg and at wind speeds of up to 100 knots. These tests had three primary test objectives. Pneumatic and mechanical forebody flow control devices were tested at full-scale and shown to produce significant yawing moments for lateral control of the aircraft at high angles of attack. Mass flow requirements for the pneumatic system were found to scale with freestream density and speed rather than freestream dynamic pressure. Detailed measurements of the pressures buffeting the vertical tail were made and spatial variations in the buffeting frequency were found. The LEX fence was found to have a significant effect on the frequency distribution on the outboard surface of the vertical fin. In addition to the above measurements, an extensive set of data was acquired for the validation of computational fluid dynamics codes and for comparison with flight test and small-scale wind tunnel test results.

  19. Prestin and high frequency hearing in mammals

    PubMed Central

    Zhang, Shuyi; Liu, Yang

    2011-01-01

    Recent evidence indicates that the evolution of ultrasonic hearing in echolocating bats and cetaceans has involved adaptive amino acid replacements in the cochlear gene prestin. A substantial number of these changes have occurred in parallel in both groups, suggesting that particular amino acid residues might confer greater auditory sensitivity to high frequencies. Here we review some of these findings, and consider whether similar signatures of prestin protein sequence evolution also occur in mammals that possess high frequency hearing for passive localization and conversely, whether this gene has undergone less change in mammals that lack high frequency hearing. PMID:21655450

  20. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  1. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  2. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  3. An introduction to high frequency radioteletype systems

    NASA Astrophysics Data System (ADS)

    Pinnau, Roger R.

    1989-10-01

    A basic introductory guide is provided to modern High Frequency (HF) data communications systems. Described are modern commercial radioteletype systems, data communication protocols, and various secrets of the trade.

  4. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  5. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  6. Equations for the angles of arrival and departure for multivariable root loci using frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.

    1981-01-01

    Frequency domain methods are used to study the angles of arrival and departure for multivariable root loci. Explicit equations are obtained. For a special class of poles and zeros, some simpler equations that are generalizations of the single input/single output equations are presented.

  7. High frequency conductivity in carbon nanotubes

    SciTech Connect

    Abukari, S. S. Mensah, S. Y.; Twum, A.; Mensah, N. G.; Adu, K. A.; Rabiu, M.

    2012-12-15

    We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ω{sub B} for metallic zigzag CNs and ω < ω{sub B} for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  8. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.

  9. Learning effect of Humphrey Matrix frequency doubling technology perimetry in patients with open-angle glaucoma.

    PubMed

    De Tarso Pierre-Filho, Paulo; Gomes, Paulo R P; Pierre, Erika T L; Pierre, Leandro M

    2010-01-01

    To evaluate the learning effect of frequency doubling technology (FDT) perimetry using the Humphrey Matrix perimeter in patients with open-angle glaucoma with no perimetric experience. One eye each of 30 glaucoma patients who had no history of visual field testing underwent 3 Matrix tests using 24-2 program with full-threshold strategy. The parameters investigated to detect learning effect were test duration, reliability indexes, mean deviation (MD), pattern standard deviation (PSD), and the number of points with a p of <5% and <1% in the total and pattern deviation maps. MD showed a larger defect at the first test (-13.64 +/- 1.63 dB) than at the second (-12.68 +/- 1.45 dB) and third (-11.69 +/- 1.48 dB) tests (p<0.05). A statistically significant reduction (p<0.05) in the number of points with a p <5% and <1% in the total deviation map was observed when repeating the examination. The values of test duration, PSD, fixation losses, false-positive rate, false-negative rate, and number of points with a p <5% and <1% in the pattern deviation map were not changed significantly (p>0.05). Humphrey Matrix FDT perimetry showed a statistically significant learning effect on MD and the number of significantly depressed points of the total deviation map in glaucoma patients with no perimetric experience. It is probably necessary to obtain at least 3 repetitions to rule out the presence of a learning effect in such patients before providing useful results.

  10. Accuracy of High Frequency Maximum Usable Frequencies (MUF) Prediction.

    DTIC Science & Technology

    1981-09-15

    shown in Figure 35 to be rat er constant at about 20 percent for MINIMUF-3.5. Whereas for HFMUFES 4 it is above 30 per- 57 CL - a / C 4L 4’ w I Z. LL U...Predictin2 the Performance of High-Frequency Skywave Telecomunication Systems (the use of the HFMJFES 4 Program), by GW Haydon, M Leftin , and R Rosich...in Ionospheric Maping by Numerical Methods, by WB Jones, RP Graham, and M Leftin , 12 May 1966. (Also Environmental Science Services Administration

  11. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  12. High power, high frequency, vacuum flange

    DOEpatents

    Felker, Brian; McDaniel, Michael R.

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  13. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  14. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  15. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  16. Phase calibration of interferometer arrays at high-frequency radars

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Yeoman, Timothy K.; Milan, Stephen E.; Lester, Mark

    2016-09-01

    Elevation angles of backscattered signals are calculated at the Super Dual Auroral Radar Network (SuperDARN) high-frequency radars using interferometric techniques. These elevation angles make it possible to estimate the geographic location of the scattering point, an essential piece of information for many ionospheric studies. One of the most difficult parameters to measure is the effective time delay caused by the difference in the electrical path length that connects the main array and the interferometer arrays to the correlator (δtc). This time delay causes a bias in the measured difference in the signal phase, also known as a phase bias. Phase calibration is difficult due to unknown physical attributes of the hardware and the remote location of many radars. This leads to the possibility of sudden external changes, slow temporal drift, and a dependence on transmission frequency. However, it is possible to estimate δtc using the radar observations themselves. This article presents a method for estimating δtc using backscatter with a known location, such as backscatter from artificially generated irregularities, meteor echoes, or distinct groundscatter, which incorporates the uncertainty in the observations and may be used autonomously. Applying the estimated δtc is shown to improve elevation angle uncertainties at one of the SuperDARN radars from their current potential tens of degrees to less than a degree.

  17. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  18. Influence of pore roughness on high-frequency permeability

    NASA Astrophysics Data System (ADS)

    Cortis, Andrea; Smeulders, David M. J.; Guermond, Jean Luc; Lafarge, Denis

    2003-06-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev. Lett. 61, 1591 (1988)] and Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)]. For wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension proposed by Achdou and Avellaneda [Phys. Fluids A 4, 2561 (1992)]. The dependency of the nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations for various apex angles in two-dimensional channels confirmed this theoretical dependency, which is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found that the contribution of the singularities does not alter the parameters of the classical theory by Johnson et al..

  19. Apollo 11 Launched Via Saturn V Rocket - High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Modified sine bar device measures small angles with high accuracy

    NASA Technical Reports Server (NTRS)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  1. Blade Pitch Angle Control and its Capacity Reduction Effect on Battery for Load Frequency Control in Power System with a Large Capacity of Wind Power Generation

    NASA Astrophysics Data System (ADS)

    Nishizaki, Yasushi; Irie, Hiroshi; Yokoyama, Akihiko; Tada, Yasuyuki

    Considering interconnection of a large-capacity of wind power generation to the utility grid, it is of great concern that its output power fluctuation has adverse influences, e.g. frequency fluctuation. There have so far been some research works on installation of battery energy storage systems (BESS), as a solution of these problems. However, owing to very high cost of the BESS, its capacity should be as small as possible. In this paper, not only the installation of the BESS as one of measures of suppressing the frequency fluctuation caused by wind power generation, but also blade pitch angle control for blunting the output power of wind turbine generators (WTGs) is also considered. This paper proposes a coordinated control method of the BESS and the blade pitch angle, and evaluates reduction of the capacity of the BESS and the power generation loss caused by blunting the output power which should be originally generated by WTGs.

  2. High frequency ultrasonic scattering by biological tissues

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk; Maruvada, Subha

    2002-05-01

    High frequency (HF) diagnostic ultrasonic imaging devices at frequencies higher than 20 MHz have found applications in ophthalmology, dermatology, and vascular surgery. To be able to interpret these images and to further the development of these devices, a better understanding of ultrasonic scattering in biological tissues such as blood, liver, myocardium in the high frequency range is crucial. This work has previously been hampered by the lack of suitable transducers. With the availability of HF transducers going to 90 MHz, HF attenuation and backscatter experiments have been made on porcine red blood cell (RBC) suspensions, for which much data on attenuation and backscatter can be found in the literature in the lower frequency range for frequencies, from 30 to 90 MHz and on bovine tissues for frequencies from 10 to 30 MHz using a modified substitution method that allow the utilization of focused transducers. These results will be reviewed in this talk along with relevant theoretical models that could be applied to interpreting them. The relevance of the parameter that has been frequently used in the biomedical ultrasound literature to describe backscattering, the backscattering coefficient, will be critically examined.

  3. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  4. High-frequency micromechanical columnar resonators

    PubMed Central

    Kehrbusch, Jenny; Ilin, Elena A; Bozek, Peter; Radzio, Bernhard; Oesterschulze, Egbert

    2009-01-01

    High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10−6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately −173 Hz °C− 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency. PMID:27877296

  5. Measurements of angles of elevation of HF by a high resolution method using polarization diversity

    NASA Astrophysics Data System (ADS)

    Demeure, Cedric; Ferreol, Anne; Rogier, Jean-Luc

    1994-07-01

    In this paper, we present the use of high resolution techniques and polarization diversity in order to analyze HF links in ionospheric propagation, links which are characterized in general by the presence of several modes of propagation giving rise to several incident waves with the reception. These modes are strongly correlated and can have very different polarizations. The high resolution techniques have the capacity to simultaneously measure several incident waves present in a given frequency channel of analysis, and are thus adapted particularly to the situation of jamming where a frequency and/or temporal separation is no longer possible. The use of a network with polarization diversity allows, beyond obtaining certain parameters of polarization, an increase in the resolution of the methods considered, because of the difference in polarization of the modes. A better knowledge of the phenomenon of propagation waves in this medium is the anticipated result of the application of these techniques. For a given connection and at first approximation (one neglects the effects due to the 'tilt', or the rebound on a tilted ground), the modes arrive under the same azimuth with different angles of elevation. In the experiment described in this paper, the measurement of the angles of elevation is made by supposing a knowledge of azimuth. Thus we use a linear network and let us direct it in order to obtain good performances for the estimate of the angles of elevation. The method high resolution with diversity of polarization used is method MUSIC adapted in order to take account of the use of sensors having gains different according to polarization from the received wave.

  6. RF Breakdown in High Frequency Accelerators

    SciTech Connect

    Doebert, S

    2004-05-27

    RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, operating frequency and fabrication material will be described. Since reliability is extremely important for large scale accelerators such as a linear collider, the measurements of breakdown rate as a function of the operating gradient will be highlighted.

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  8. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  9. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  10. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  11. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  12. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  13. Experimental Observation of Flow Structure and Resistance over High- and Low-angle Dunes

    NASA Astrophysics Data System (ADS)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2015-12-01

    A prominent control on the flow over dunes in sedimentary environments is the slope of the downstream lee-side. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation ('high-angle dunes'), little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent ('low-angle dunes'). Here, we use laboratory experiments to systematically vary and isolate the effect of the dune lee-slope on the turbulent flow field over dunes. Three sets of fixed dunes with lee-slope angles of 10°, 20° and 30° were separately installed in a 15 m long and 1 m wide flume and subjected to flow 0.20 m deep. At present, no clear hydraulic scaling has been demonstrated for low- and high-angle dunes as both dune configurations occur at the same Froude and Reynolds numbers. However, observations indicate that low-angle dunes are more frequent in environments dominated by suspension of bed material. Therefore, we focus on matching the transport stage between field conditions and our experiments using field observations of bedform morphology and flow stage. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV) along one dune-length and Particle Image Velocimetry (PIV) of the flow field. We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope and may be fully absent for lee-slopes <<10°, only. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower turbulence production for gentle lee-slopes. Consequently, flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune shape plays an important, but often

  14. Fabrication of nanoelectromechanical systems via the integration of high surface area glancing angle deposition thin films

    NASA Astrophysics Data System (ADS)

    Westwood, J. N.; Sauer, V. T. K.; Kwan, J. K.; Hiebert, W. K.; Sit, J. C.

    2014-06-01

    Nanoelectromechanical systems (NEMS) coated with a high surface area thin film are fabricated. Glancing angle deposition (GLAD) is used to uniformly deposit high surface area, nanostructured SiO2 films on top of released NEMS. The resonance frequencies and quality factors are measured to assess the potential of the high surface area NEMS for sensing experiments. Resonance frequencies of coated cantilevers, although reduced by mass loading, can be predicted accurately using our derived model. Compressive stress makes the resonance frequencies of coated doubly-clamped beams difficult to predict. The quality factors of the coated NEMS are reduced by one order of magnitude by a quasi-continuous layer at the base of the GLAD film, which also introduces an estimated compressive stress of 5.3-9.3 MPa. The limit of detection is demonstrated to be ˜2 pg cm-2. With this successful proof-of-concept demonstration, we anticipate the future use of these devices as high surface area gravimetric mass sensors for applications such as gas chromatography.

  15. Equations for the angles of arrival and departure for multivariable root loci using frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.; Levy, B. C.

    1983-01-01

    Frequency domain methods are developed to obtain explicit equations for the angles of arrival and departure for multivariable root loci. The techniques involve an evaluation of polynomials formulated within the transfer function matrix. The equations defined require simpler computations than the state-space results of Shaked (1976). A class of higher order poles and zeros is formulated in terms of simpler equations than Shaked's, and the equations are shown to be generalizations of the single-input-single-output root locus equations.

  16. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  17. Extending reference scan drift correction to high-magnification high-cone-angle tomography.

    PubMed

    Myers, Glenn R; Kingston, Andrew M; Varslot, Trond K; Sheppard, Adrian P

    2011-12-15

    The reference scan method is a simple yet powerful method for measuring spatial drift of the x-ray spot during a low-cone-angle μ-CT experiment. As long as the drift is smooth, and occurring on a time scale that is long compared to the acquisition time of each projection, this method provides a way to compensate for the drift by applying 2D in-plane translations to the radiographs. Here we show that this compensation may be extended to the regime of high-magnification, high-cone-angle CT experiments where source drift perpendicular to the detector plane can cause significant magnification changes throughout the acquisition.

  18. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  19. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  20. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  1. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  2. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  3. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  4. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  5. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  6. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  7. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  8. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  9. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  10. Characteristics of grain boundaries in YBCO and BSCCO-2212 bicrystals lying in the low angle to high angle crossover regime

    NASA Astrophysics Data System (ADS)

    Larbalestier, David C.

    1996-03-01

    The characteristics of grain boundaries lying in the low angle to high angle crossover regime in thin film and bulk scale YBCO and bulk BSCCO-2212 bicrystals have been studied. Such grain boundaries can be considered as periodic or quasi-periodic structures consisting of grain boundary dislocation barriers separated by channels of strong coupling. This description is valid up to some critical cut off angle at which the whole grain boundary becomes a weak link. The cutoff occurs at lower angles for thin films than for bulk samples and also varies somewhat from one sample to another and from one material to another. Recent study of BSCCO-2212 bicrystals has shown that [100] tilt boundaries containing basal plane facets can be distinguished from those without them because the former have linear components characteristic of c axis transport in them. Both the electromagnetic and the microstructural aspects of our recent studies will be reviewed. My principal collaborators are S. Babcock, X. Y. Cai, M. Field, D. L. Kaiser (NIST), A. Gurevich, N. Heinig, J.E. Nordman, I-Fei Tsu, J. L. Vargas and Jyh-Lih Wang Work primarily supported by NSF Materials Research Group Program with additional support by EPRI and ARPA.

  11. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  12. High-resolution NMR of anisotropic samples with spinning away from the magic angle

    SciTech Connect

    Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander

    2003-03-31

    High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.

  13. Protection circuitry for high frequency ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Chaggares, N. Chris; Tang, Raymond K.; Sinclair, A. N., Prof.; Foster, F. S., Prof.; Haraierciwz, Kasia; Starkoski, Brian

    2000-05-01

    Most commercial ultrasonic NDE equipment employs a voltage spike to stimulate a piezoelectric transducer. To protect the signal processing unit from damage from this spike, a voltage limiter or "diode clamp" is included in the pulser-receiver, and limits the voltage reaching the amplifier or oscilloscope. In this project, the deleterious effects of such limiters on the ultrasonic echo in the high frequency (50-100 MHz range) have been quantified: these effects include significant distortion in the frequency content, and oscillations causing a drop in timing resolution by over a factor of 2. To address these problems, a high-voltage high-frequency switch has been designed to replace the voltage limiter; the switch directs the high-voltage spike away from the signal processing/display unit, towards an impedance-matched termination. A prototype circuit has been built, based on two high-voltage MOSFET's acting as a switch for the bi-polar stimulation pulse. The reduction in echo distortion and improvement in time resolution have been successfully modeled with the CAD tool HSPICE, although parasitic capacitance in the current generation of commercial MOSFET's is a continuing concern.

  14. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  15. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  16. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  17. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  18. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  19. Modeling and Analysis of Phase Fluctuation in a High-Precision Roll Angle Measurement Based on a Heterodyne Interferometer

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao

    2016-01-01

    Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552

  20. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  1. High Grazing Angle Sea-Clutter Literature Review

    DTIC Science & Technology

    2013-03-01

    Research, 1986. 91(C11): p. 13065-13083. [45] Stacy, N.J.S., D. Crisp, A. Goh, D. Badger , and M. Preiss. Polarimetric Analysis of Fine Resolution X... Badger , A.S. Goh, M. Preiss, and M.L. Williams. The DSTO Ingara airbone X-Band SAR polarimetric upgrade: first results. IEEE International Geoscience...2012. [65] Rosenberg, L. Persistent Sea-spike Detection in Medium Grazing Angle X-band Sea- clutter. European SAR conference, 2012. [66] Rosenberg, L

  2. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  3. High Frequency Guided Wave Virtual Array SAFT

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  4. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    physiologic and clin- ical outcomes. Pediatric and adult inhalational injury studies have linked HFPV to an improvement in static lung compliance...sedation–analgesic combinations (usually fentanyl with the individual or combined use of midazolam and propofol and/or dexmedetomidine), patient...1998;84:1174–7. 34. Frantz ID III, Close RH. Alveolar pressure swings during high frequency ventilation in rabbits. Pediatr Res 1985;19:162–6. 35. Pillow

  5. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  6. High tip angle approximation based on a modified Bloch-Riccati equation.

    PubMed

    Boulant, Nicolas; Hoult, David I

    2012-02-01

    When designing a radio-frequency pulse to produce a desired dependence of magnetization on frequency or position, the small flip angle approximation is often used as a first step, and a Fourier relation between pulse and transverse magnetization is then invoked. However, common intuition often leads to linear scaling of the resulting pulse so as to produce a larger flip angle than the approximation warrants--with surprisingly good results. Starting from a modified version of the Bloch-Riccati equation, a differential equation in the flip angle itself, rather than in magnetization, is derived. As this equation has a substantial linear component that is an instance of Fourier's equation, the intuitive approach is seen to be justified. Examples of the accuracy of this higher tip angle approximation are given for both constant- and variable-phase pulses. Copyright © 2011 Wiley Periodicals, Inc.

  7. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  8. Successful high angle drilling in the Statfjord Field

    SciTech Connect

    Wilson, R.C.; Willis, D.N.

    1986-01-01

    The original drilling design criteria for Statfjord field development set an upper limit on wellbore inclination of 60/sup 0/. This figure was derived by considering the special drilling problems found on Statfjord and technological limitations. By developing engineering operational procedures and introducing new technology, wells can be drilled routinely at sail angles between 60/sup 0/ - 70/sup 0/. This paper, therefore, elaborates upon the special drilling problems encountered in the area and describes engineering and operational solutions which were developed to extend the maximum reach of wells. In addition, it describes the evolution of drilling on Statfjord and documents the impact of advances.

  9. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  10. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, Gaoya; Yao, Jianquan

    2016-12-01

    A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than -10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices.

  11. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies

    PubMed Central

    Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan

    2016-01-01

    A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than −10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices. PMID:27982089

  12. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Tian, Xiaoyong; Yin, Ming; Li, Dichen; Tang, Yiping

    2013-08-01

    Traditional Luneburg lens is a dielectric spherical antenna. It can focus the incoming collimated electromagnetic waves on its spherical surface, which causes the incompatibility with the planar feeding and receiving devices. Furthermore, the difficulties in the fabrication process also limited its applications. In this paper, a three-dimensional flattened Luneburg lens with a field-of-view angle up to 180° has been realized based on a liquid medium approach and a 3D-printing process. The fabricated three-dimensional lens showed a broadband transmission characteristic from 12.4 GHz to 18 GHz. The performance of the proposed lens was demonstrated by simulation and experimental results.

  13. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  14. Quasi-periodic dynamics of a high angle of attack aircraft

    NASA Astrophysics Data System (ADS)

    Rohith, G.; Sinha, Nandan K.

    2017-01-01

    High angle of attack maneuvers closer to stall is a commonly accessed flight regime especially in case of fighter aircrafts. Stall and post-stall dynamics are dominated by nonlinearities which make the analysis difficult. Presence of external factors such as wind makes the system even more complex. Rich nonlinearities point to the possibility of existence of chaotic solutions. Past studies in this area confirm the development of such solutions. These studies are mainly concentrated on very high angle of attack regimes, which may not be practically easily accessible. This paper examines the possibility of existence of chaotic solutions in the lower, more accessible areas in the post stall domain. The analysis is composed of the study of effect of external wind as an agent to drive the system towards the possibility of a chaotic solution. Investigations reveal presence of quasi-periodic solutions, which are characterized by two incommensurate frequencies. This solution appears in the time simulation by varying the control parameter viz., wind. The solutions correspond to the values in the lower region of the angle of attack versus elevator bifurcation curve in the post-stall region. A steady wind is considered for the analysis and explores the possibility of chaotic motion by increasing the wind in a step wise manner. It is found that wind adds extra energy to the system which in turn drives the system in to chaos. The analysis is done with the help of phase portrait, Poincare map and amplitude spectrum and a quasi-periodic route to chaos via torus doubling is also presented.

  15. Compact reflection holographic recording system with high angle multiplexing

    NASA Astrophysics Data System (ADS)

    Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu

    2011-02-01

    Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.

  16. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  17. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  18. Separation control over an airfoil at high angles of attack by sound emanating from the surface

    NASA Technical Reports Server (NTRS)

    Huang, L. S.; Maestrello, L.; Bryant, T. D.

    1987-01-01

    Active control by sound emanating from a narrow gap in the vicinity of the leading edge of a symmetrical airfoil is used to study the influence of sound on the pressure distribution and the wake at high angles of attack. The results from experiments conducted at a Reynolds number based on the chord of 35,000 show that, with injection of sound at twice the shedding frequency of the shear layer, the region of separation becomes drastically reduced. The shear layer is found to be very sensitive to sound excitation in the vicinity of the separation point. The excitation sufficiently alters the global circulation to cause an increase in lift and reduction in drag. Furthermore, experimental results describing stall and post-stall conditions compare well with the limited data available and indicate that stall is delayed by sound injection into the separated region.

  19. Flutter Clearance of the F-18 High-angle-of-attack Research Vehicle with Experimental Wingtip Instrumentation Pods

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1989-01-01

    An F-18 aircraft was modified with wingtip instrumentation pods for use in NASA's high-angle-of-attack research program. Ground vibration and flight flutter testing were performed to clear an acceptable flight envelope for the aircraft. Flight test utilized atmospheric turbulence for structural excitation; the aircraft displayed no adverse aeroelastic trends within the envelope tested. The data presented in this report include mode shapes from the ground vibration and estimates of frequency and damping as a function of Mach number.

  20. High-power femtosecond Raman frequency shifter.

    PubMed

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P

    2016-10-15

    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  1. Pressure-wave energy relationship during IABP counterpulsation in a mock circulation: changes with angle and assisting frequency.

    PubMed

    Biglino, Giovanni; Kolyva, Christina; Khir, Ashraf W

    2012-01-01

    Despite decades of successful clinical use of the intra aortic balloon pump (IABP), certain aspects of its operation are not yet fully understood. This work aims to investigate in vitro the mechanism underlying balloon inflation and deflation with varying assisting frequency and operating angle with respect to the horizontal, by studying the corresponding pressure and wave energy changes. A mock circulatory system (MCS), with physiological distribution of peripheral resistance and compliance, presented a controllable test bed. We used Wave Intensity Analysis (WIA) to identify balloon-generated waves and quantify their energy. Conventional hemodynamic parameters were also calculated. Tests were repeated at varying operating angles (0°-45°), resembling the semi-recumbent position in the ICU, and at different assisting frequencies (1:1, 1:2, 1:3). Two balloons (25 cc and 40 cc in volume) were tested. The main waves associated with counterpulsation were identified as a backward compression wave associated with balloon inflation and a backward expansion wave associated with balloon deflation. Results showed that the IABP inflation and deflation benefits are reduced with increasing angle, in terms of the size of the inflation and deflation waves as well as in terms of diastolic pressure augmentation and end-diastolic pressure reduction. Both WIA findings and pressure parameters indicated 1:1 as the most effective mode of pumping. This study shows that, in vitro, a greater benefit of counterpulsation can be achieved in the horizontal position at 1:1 assisting frequency, with a good correlation between wave and pressure results.

  2. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  3. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  4. Use of Piloted Simulation for High-Angle-of-Attack Agility Research and Design Criteria Development

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    1991-01-01

    The use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP) to provide methods and concepts for the design of advanced fighter aircraft is discussed. A major focus is to develop the design process required to fully exploit the benefits from advanced control concepts for high-angle-of attack agility.

  5. A numerical analysis applied to high angle of attack three-dimensional inlets

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.

    1986-01-01

    The three-dimensional analytical methods used to analyze subsonic high angle of attack inlets are described. The methods are shown to be in good agreement with experimental results for various three-dimensional high angle of attack inlets. The methods are used to predict aerodynamic characteristics of scarf and slotted-lip inlets.

  6. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  7. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  8. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  9. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  10. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  11. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  12. The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil

    1992-01-01

    The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.

  13. Note: High precision angle generator using multiple ultrasonic motors and a self-calibratable encoder

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Bong Eom, Tae

    2011-11-01

    We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20″) effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005″ resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03″, which included the calibrated scale error and the nonlinearity error.

  14. High Frequency Self-pulsing Microplasmas

    NASA Astrophysics Data System (ADS)

    Lassalle, John; Pollard, William; Staack, David

    2014-10-01

    Pulsing behavior in high-pressure microplasmas was studied. Microplasmas are of interest because of potential application in plasma switches for robust electronics. These devices require fast switching. Self-pulsing microplasmas were generated in a variable-length spark gap at pressures between 0 and 220 psig in Air, Ar, N2, H2, and He for spark gap lengths from 15 to 1810 μm. Resulting breakdown voltages varied between 90 and 1500 V. Voltage measurements show pulse frequencies as high as 8.9 MHz in argon at 100 psig. These findings demonstrate the potential for fast switching of plasma switches that incorporate high-pressure microplasmas. Work was supported by the National Science Foundation, Grant #1057175, and the Department of Defense, ARO Grant #W911NF1210007.

  15. Flow structure and resistance over subaquaeous high- and low-angle dunes

    NASA Astrophysics Data System (ADS)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2016-03-01

    A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee slope angles for which flow separation is absent or intermittent. Here we present a laboratory investigation where we systematically varied the dune lee slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee slopes of 10°, 20°, and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter. We show that the temporal and spatial occurrence of flow separation decreases with dune lee slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee slopes. Aperiodic, strong ejection events dominate the shear layer but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee slope; the transition being nonlinear. Over the 10°, 20°, and 30° dunes, shear stress is 8%, 33%, and 90% greater than a flat bed, respectively. Our results demonstrate that dune lee slope plays an important but often ignored role in flow resistance.

  16. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  17. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  18. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  19. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  20. A study of roll attractor and wing rock of delta wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.

    1993-01-01

    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.

  1. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  2. Next Generation Angle Control for Medium Current and High Energy Implanters

    SciTech Connect

    Olson, Joseph C.; Gupta, Atul; Gossmann, Hans-Joachim L.; Rodier, Dennis

    2008-11-03

    Angle control continues to increase in importance with device scaling. For instance, threshold voltage and on-state current in advanced logic devices depend critically on the angle accuracy of medium current halo implants. TCAD simulation results, showing that on-state current changes of greater than 1% per degree of implant angle are possible, are presented. We report here on improvements to angle performance and control in both the horizontal and vertical directions. Beam data covering the full operating space of the VIISta 900XP is presented, demonstrating total angle control of better than {+-}0.2 deg. The data set is chosen to emphasize performance of typical halo implants. Single wafer high energy angle control data is also presented.

  3. High bending curvature withstanding one-dimensional angle sensor with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jang, Minsu; Kim, Ockchul; Yang, Sungwook; Kim, Jinseok

    2017-04-01

    We report on the development of an angle sensor which can measure at high bending curvature. Unlike the other sensors, the novel angle sensor can be durable and flexible. The sensors consist of one fiber Bragg grating (FBG) fiber which is located in the middle of each sensor, and are fabricated in varying thickness to confirm the relation between the distance of the center of the angle sensor to the core of the FBG node and the radii of curvature at which the sensor can measure. The thinnest sensor has the thickness of 200 μm and can measure at the bending radius of 5 mm. However, its angle measurement error is the largest with 1.25°, because of high sensitivity. Regulating the thickness of sensor, the angles at high curvatures can be measured reliably.

  4. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  5. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  6. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  7. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  8. Plasma effects in high frequency radiative transfer

    SciTech Connect

    Alonso, C.T.

    1981-02-08

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.

  9. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  10. High frequency oscillators for chaotic radar

    NASA Astrophysics Data System (ADS)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  11. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  12. HIGH-EFFICIENCY PHOTOSPHERIC EMISSION OF LONG-DURATION GAMMA-RAY BURST JETS: THE EFFECT OF THE VIEWING ANGLE

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Begelman, Mitchell C.

    2011-05-01

    We present the results of a numerical investigation of the spectra and light curves of the emission from the photospheres of long-duration gamma-ray burst jets. We confirm that the photospheric emission has high efficiency and show that the efficiency increases slightly with the off-axis angle. We show that the peak frequency of the observed spectrum is proportional to the square root of the photosphere's luminosity, in agreement with the Amati relation. However, a quantitative comparison reveals that the thermal peak frequency is too small for the corresponding total luminosity. As a consequence, the radiation must be out of thermal equilibrium with the baryons in order to reproduce the observations. Finally, we show that the spectrum integrated over the emitting surface is virtually indistinguishable from a Planck law, and therefore an additional mechanism has to be identified to explain the non-thermal behavior of the observed spectra at both high and low frequencies.

  13. Investigation of Flying Qualities of Military Aircraft at High Angles of Attack. Volume 2. Appendices

    DTIC Science & Technology

    1974-06-01

    IWP^P^WW»» .1 9« »iitfUumiimm^mw^mMini^ ’mi AD-A015 830 INVESTIGATION OF FLYING QUALITIES OF MILITARY AIRCRAFT AT HIGH ANGLES OF ATTACK ...l l I ITTI \\ AFFDLre-7*61 \\- 296063 e CO 00 INVESTIGATION OF FLYING QUALITIES OF tO MILITARY AIRCRAFT AT HIGH ANGLES OF ^ ATTACK ^ Volume II...high Angles of Attack , Vol. II: Appendices 1. *UTMORf.J Donald E. Johnston Jeffrey R. Hogge Gary L. Teper ». PERFORMING ORGANIZATION NAME

  14. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    SciTech Connect

    Liqiu, Wei E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang; Jing, Li; Yong, Cao; Daren, Yu; Jianhua, Du

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  15. X-29 High Angle-of-Attack Flying Qualities

    DTIC Science & Technology

    1991-06-01

    flhit and closure rate. Limited military utility tesIs ith thw variable gain capability. Predicted large amplitude increased roll-rate .apability... Fiscal Year Test Organization (PTO). The program consisted of an 1991 for resumption of high AOA flight testing. The intcgrated test team of AFFTC

  16. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    PubMed

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis.

  17. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  18. Extremely high-frequency therapy in oncology.

    PubMed

    Teppone, Mikhail; Avakyan, Romen

    2010-11-01

    This article represents a review of the literature, mainly from Russian sources, dealing with the therapeutic application of low-intensity electromagnetic radiation in the millimeter band applied to experimental and clinical oncology. At the early stage of these studies, efficacy and safety of millimeter electromagnetic radiation (extremely high frequency [EHF]) was proved for various types of malignant tumors. The majority of the further studies demonstrated the high efficacy and safety of millimeter wave radiation in treating patients suffering from both benign and malignant tumors. Developments led to treatment on skin melanoma, cancer of the ear-nose-throat, bowel and breast cancer, cancer of the uterus, lung, and stomach, solid tumors, as well as lymphoma. The main indications for this therapy are (1) preparation prior to radical treatment; (2) prevention and treatment of side-effects and complications from chemotherapy and radiotherapy; (3) prevention of metastases, relapses, and dissemination of the tumor; (4) treatment of the paraneoplastic syndrome; and (5) palliative therapy of incurable patients. In spite of the fact that not all mechanisms underlying effects of EHF therapy are known as yet, this therapeutic modality has been shown to have great potential in clinical oncology from studies performed in Eastern Europe and Russia.

  19. Numerical simulation of the flow about the F-18 HARV at high angle of attack

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    1994-01-01

    As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.

  20. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development

    NASA Astrophysics Data System (ADS)

    Morley, Chris K.

    2009-10-01

    At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.

  1. Development of an engineering level prediction method for high angle of attack aerodynamics

    NASA Technical Reports Server (NTRS)

    Reisenthel, Patrick H.; Rodman, Laura C.; Nixon, David

    1993-01-01

    The present work is concerned with predicting the unsteady flow considered to be the cause of the structural failure of twin vertical tail aircraft. An engineering tool has been produced for high angle of attack aerodynamics using the simplest physical models. The main innovation behind this work is its emphasis on the modeling of two key aspects of the dominant physics associated with high angle-of-attack airflows, namely unsteady separation and vortex breakdown.

  2. Development of a pneumatic high-angle-of-attack flush airdata sensing system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    A nonintrusive high-angle-of-attack flush airdata sensing system was installed and flight tested in the F-18 High Alpha Research Vehicle. This system consists of a matrix of 25 pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack and sideslip, Mach number, and pressure altitude. During the course of the flight tests, it was determined that satisfactory results could be achieved using a subset of just nine ports.

  3. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    A nonintrusive high-angle-of-attack flush airdata sensing system was installed and flight tested in the F-18 High Alpha Research Vehicle. This system consists of a matrix of 25 pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack and sideslip, Mach number, and pressure altitude. During the course of the flight tests, it was determined that satisfactory results could be achieved using a subset of just nine ports.

  4. Development of a pneumatic high-angle-of-attack flush airdata sensing system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    A nonintrusive high-angle-of-attack flush airdata sensing system was installed and flight tested in the F-18 High Alpha Research Vehicle. This system consists of a matrix of 25 pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack and sideslip, Mach number, and pressure altitude. During the course of the flight tests, it was determined that satisfactory results could be achieved using a subset of just nine ports.

  5. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-02-05

    This project attempts to demonstrate the effectivensss of exploiting thin-layered, low energy deposits at the distal margin of a propagating turbinite complex through u se of hydraulically fractgured horizontal of high-angle wells. TGhe combinaton of a horizontal or high-angle weoo and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

  6. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-05-29

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

  7. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-08

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

  8. Identification of an unsteady aerodynamic model up to high angle of attack regime

    NASA Astrophysics Data System (ADS)

    Fan, Yigang

    1997-12-01

    The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described and analyzed. The corresponding data reduction methods are developed on the basis of multirate digital signal processing techniques. Since the model is sting-mounted to the support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify the frequencies of the elastic modes of sting. Then the sampling rate conversion systems are built up in digital domain to resample the data at a lower rate without introducing distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR) filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics responses to the programmed motions from the resampled measurements. These data reduction procedures are also illustrated through examples. The results obtained from the harmonic oscillatory tests are then illustrated and the associated flow mechanisms are discussed. Since no significant hysteresis loops are observed for the lift and the drag coefficients for the current angle of attack range and the tested reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the current oscillatory tests. However, large hysteresis loops are observed for pitch moment coefficient in the current tests. This observation suggests that at current flow conditions, pitch moment has large pitch rate dotalpha dependencies. Then the nondimensional maximum pitch rate \\ qsb{max} is introduced to characterize these harmonic oscillatory motions. It is found that at current flow conditions, all the hysteresis loops of pitch moment coefficient with same \\ qsb{max} are tangential to one another at both top and bottom of the loops, implying approximately same maximum offset of these loops from static values. Several cases are also illustrated. Based on the results obtained and

  9. High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.

    1987-01-01

    As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.

  10. High Frequency Electromagnetic Propagation/Scattering Codes

    DTIC Science & Technology

    2000-09-01

    Journal of Mathematical Analysis and Applications , 77...Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [12] Y.T. Lo, S.W. Lee, editors, Antenna Handbook, Theory...Widom, Eigenvalue Distribution of Time and Frequency Limiting, Journal of Mathematical Analysis and Applications , 77, 469-481 (1980). [20] D.

  11. ENGLISH WORDS OF VERY HIGH FREQUENCY.

    ERIC Educational Resources Information Center

    CARD, WILLIAM; MCDAVID, VIRGINIA

    THE BIAS OF THE FREQUENCY OF THE 122 MOST COMMONLY USED ENGLISH WORDS WAS STUDIED. THE METHOD USED TO ASSEMBLE THESE DATA IS DESCRIBED FULLY. THE MOST FREQUENTLY USED WORDS WERE TAKEN FROM A DISSERTATION BY GEORGE K. MONROE, "PHONEMIC TRANSCRIPTION OF GRAPHIC POSTBASE AFFIXES IN ENGLISH," GODFREY DEWEY, "RELATIVE FREQUENCY OF ENGLISH SPEECH…

  12. Clinical Utilisation of High-frequency DPOAEs.

    PubMed

    Poling, Gayla; Lee, Jungmee; Siegel, Jonathan; Dhar, Sumitrajit

    2012-01-01

    The value of assessing auditory function at frequencies above 8kHz to detect age-related changes and ototoxic damage in the cochlea is well established but not commonplace. Physiological changes in the auditory periphery due to age and ototoxicity are initially evident, and most prominent, at frequencies above 8kHz [1]. The most well investigated use of hearing thresholds and otoacoustic emissions above 8kHz is in monitoring auditory function in patients undergoing chemotherapy [2]. Ototoxic changes in hearing thresholds at frequencies between 10-14kHz prior to the manifestation of any changes at lower frequencies have been consistently documented in these patients. Age-related changes in hearing also appear at frequencies above 8kHz prior to any observable changes at regular audiometric frequencies [3]. The value of using hearing thresholds at frequencies above 8kHz to detect noise-induced hearing loss is debated in the literature with some reports of hearing thresholds at frequencies above 8kHz demonstrating more sensitivity to noise-induced damage than others [4].

  13. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  14. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  15. Laser for high frequency modulated interferometry

    DOEpatents

    Mansfield, Dennis K.; Vocaturo, Michael; Guttadora, Lawrence J.

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  16. Microstructural Modeling of Intergranular Fracture in Tricrystals With Random Low- and High-Angle Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Bond, David M.; Zikry, Mohammed A.

    2017-03-01

    Intergranular (IG) fracture behavior near triple junctions (TJs) in f.c.c. tricrystals with a variety of grain boundary (GB) misorientations has been investigated. Based on a dislocation-density GB interaction scheme, critical fracture conditions were coupled to evolving dislocation-density pileups and local stresses by using a dislocation-density-based crystalline plasticity formulation within a nonlinear finite-element framework to elucidate the effects of local GB structure, dislocation-GB interactions, and misorientations on IG crack propagation in f.c.c. crystalline materials. Tricrystals with low-angle GBs had higher fracture toughness than tricrystals with high-angle GBs. In TJs with a combination of random low- and high-angle GBs, the formation of dislocation-density pileups in the high-angle GB led to IG crack propagation along the high-angle GB rather than along the low-angle GB. These predictions, which are consistent with experimental observations, indicate that fracture behavior near TJs is controlled by highly local, evolving, and interrelated events, such as dislocation-density pileups and GB misorientations.

  17. Long-term evolution of nourished beaches under high angle wave conditions

    NASA Astrophysics Data System (ADS)

    van den Berg, Niels; Falqués, Albert; Ribas, Francesca

    2011-10-01

    A nonlinear numerical model for large-scale dynamics of shoreline and nearshore bathymetry under wave action is applied to investigate the long-term evolution of a rectilinear coast dominated by high angle wave incidence, which is perturbed by a nourishment or an offshore borrow pit. Previous studies show that a coastline can be unstable due to high angle wave instability, which results from the feedback between shoreline changes and the wave field. In contrast to traditional one-line shoreline models, which always predict a diffusional behaviour, this instability can lead to the growth of shoreline perturbations. Model results suggest that due to high angle wave instability a nourishment or a borrow pit could trigger the formation of a shoreline sand wave train (alternating accretional and erosional zones). Its formation is a self-organised response of the morphodynamic system and can be seen as a spatial-temporal instability. New sand waves are formed downdrift while the old sand waves migrate downdrift and increase in amplitude and wavelength. Instability develops only if the bathymetric changes related to shoreline perturbations extend to a depth where the wave angle is greater than the critical angle of 42°. The potential for coastline instability is therefore limited by the wave incidence angle at the depth of closure and not the angle at deep water as suggested in previous studies. Including a fraction of low angle waves to the wave climate causes saturation of the amplitudes of the sand waves and limits the formation of the sand wave train. Even on a stable coast dominated by low angle waves, the feedback between morphology and the wave field can be crucial for the prediction of nourishment evolution. This feedback leads to relatively slow diffusion of shoreline perturbations and it can lead to downdrift migration. While some existing observations describe downdrift advection, no satisfactory explanation had been provided previously.

  18. A combination probe for high-frequency unsteady aerodynamic measurements in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Ng, Wing F.; Popernack, Thomas G., Jr.

    1987-01-01

    A combination probe for time-resolved measurements for unsteady compressible flows is described. The probe measures stagnation (total) temperature and pressure, static pressure, and flow angles in two planes. From these, the fluctuating mass flux, Mach number, and velocity as well as their components in three directions can be deduced. The combination probe consists of a dual hot-wire aspirating temperature and pressure probe mounted piggyback with a high-frequency angle probe. The angle probe has four surface-mounted silicon pressure sensors. A scheme is described for retrieving from the four pressure signals the stagnation and static pressures, Mach number, and flow angles in two planes. The calibrations forming the basis for this procedure, obtained from steady-state tests, are given. Typical data obtained in the Karman vortex street shed from a cylinder and at the exit of a Mach-0.4 air jet are presented.

  19. Coherent light-driven electron transport through polycyclic aromatic hydrocarbon: laser frequency, field intensity, and polarization angle dependence.

    PubMed

    Hsu, Liang-Yan; Rabitz, Herschel

    2015-08-28

    A laser field is a potential control tool for operating ultrafast electronic devices due to a wide variety of options such as field strength, frequency, and polarization. To investigate these variables upon electron transport through a single-molecule device, we simulate a phenyl-acetylene macrocycle (PAM) within a linear-polarized laser field using single-particle Green's functions combined with the non-Hermitian Floquet theory. In the absence of the laser field, the PAM behaves as a perfect insulator due to destructive quantum interference. In the weak-field regime, field-amplitude power laws for one-, two-, and three-photon assisted tunneling are evident in the computational results. The study reveals a range of experimentally feasible field strengths for the observation of picoampere current caused by photon assisted tunneling. In addition, we find that the light-driven current is proportional to the cosine square of the polarization angle, and molecular electronic structure is revealed by the current-frequency characteristics. The origin of these behaviors is established using non-Hermitian Floquet perturbation analysis. The computations show that PAM-based optoelectronic switches have robust large on-off switching ratios under weak-field operating conditions, which are not sensitive to asymmetric molecule-lead couplings.

  20. POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. V. EFFECTS OF ANGLE-DEPENDENT PARTIAL FREQUENCY REDISTRIBUTION

    SciTech Connect

    Anusha, L. S.; Nagendra, K. N.

    2012-02-10

    The solution of polarized radiative transfer equation with angle-dependent (AD) partial frequency redistribution (PRD) is a challenging problem. Modeling the observed, linearly polarized strong resonance lines in the solar spectrum often requires the solution of the AD line transfer problems in one-dimensional or multi-dimensional (multi-D) geometries. The purpose of this paper is to develop an understanding of the relative importance of the AD PRD effects and the multi-D transfer effects and particularly their combined influence on the line polarization. This would help in a quantitative analysis of the second solar spectrum (the linearly polarized spectrum of the Sun). We consider both non-magnetic and magnetic media. In this paper we reduce the Stokes vector transfer equation to a simpler form using a Fourier decomposition technique for multi-D media. A fast numerical method is also devised to solve the concerned multi-D transfer problem. The numerical results are presented for a two-dimensional medium with a moderate optical thickness (effectively thin) and are computed for a collisionless frequency redistribution. We show that the AD PRD effects are significant and cannot be ignored in a quantitative fine analysis of the line polarization. These effects are accentuated by the finite dimensionality of the medium (multi-D transfer). The presence of magnetic fields (Hanle effect) modifies the impact of these two effects to a considerable extent.

  1. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.

    PubMed

    Mote, Kaustubh R; Madhu, Perunthiruthy K

    2015-12-01

    (1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays.

    PubMed

    Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Hanein, Yael; Boag, Amir; Scheuer, Jacob

    2014-05-14

    We demonstrate wide-angle, broadband, and efficient reflection holography by utilizing coupled dipole-patch nanoantenna cells to impose an arbitrary phase profile on the reflected light. High-fidelity images were projected at angles of 45 and 20° with respect to the impinging light with efficiencies ranging between 40-50% over an optical bandwidth exceeding 180 nm. Excellent agreement with the theoretical predictions was found at a wide spectral range. The demonstration of such reflectarrays opens new avenues toward expanding the limits of large-angle holography.

  3. Research on high precision equal-angle scanning method in rotary kiln temperature measurement system

    NASA Astrophysics Data System (ADS)

    Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming

    2016-05-01

    Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.

  4. Fibre Bragg gratings subject to high strain at high frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.

    2011-05-01

    A simple optical interrogation scheme based on an erbium doped fibre super-fluorescent source and a high Finesse Fabry Perot driven at effective frequencies of 20 kHz over ~ 60nm range is used to recover the output signals from Fibre Bragg Gratings (FBG) that can be deployed in a serial array. The FBG were modulated at frequencies up to 10 kHz and strains up to ~4000μstrain. These signals were recovered in the time domain with a very high bandwidth digital scope using a two dimensional waterfall display consisting of a number of segments where the time between segments is equal to the inverse of the system scanning frequency; essentially the sequential 'x' axis tick markers in a conventional x-y graph format. The amplitude induced changes in the wavelength of the FBG are converted to different times and observed as sequential horizontal scans along the time axis of the waterfall, correspond to the variations in the wavelength of the FBG (y axis). Signals from serial FBG arrays appear at different time slices on the time axis enabling near simultaneous determination of the induced strain of each grating.

  5. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  6. Angled-cavity lasers with photonic-crystal structure and high-order surface gratings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Qu, H. W.; Zhao, S. Y.; Zhou, X. Y.; Wang, Y. F.; Zheng, W. H.

    2017-01-01

    980 nm angled-cavity laser diodes with photonic-crystal structures and high-order surface gratings (HSGs) were first designed and fabricated. These lasers were fabricated using standard photolithography on a single-growth wafer with a photonic crystal structure. In addition, the angled-cavity lasers with asymmetric HSGs offer a simple solution for laser emission with a high power, low divergence angle, and narrow spectral width. A continuous-wave output power of 848 mW facet-1 was experimentally obtained for a 100 μm-wide and 1 mm-long device. The lowest divergence angle and narrowest spectral width exhibited by these devices were 1.5° × 10.6° and 0.07 nm, respectively.

  7. High-precision rotation angle measurement method based on monocular vision.

    PubMed

    Jin, Jing; Zhao, Lingna; Xu, Shengli

    2014-07-01

    To accurately measure the attitude angles (pitch, roll, and yaw) of a rigid object that rotates in a space, we propose a high-precision rotation angle measurement method based on monocular vision. This method combines camera self-calibration, multiview geometry, and 3D measurement. This monocular vision measuring system consists of an area scan CCD, a prime lens, and a spots array target, which are fixed on the measured object. We can calculate the rotation angle according to the rebuilt rotating spots array target by using this monocular vision measuring system. The measurement precision of rotation angle can reach 1 arc sec in this paper's experiments. This method has high measurement precision and good stability. Therefore we can widely use this method in machinery manufacturing, engineering measurement, aerospace, and the military.

  8. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  9. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  10. High-Frequency and Very-high-Frequency (HF&VHF) above-groundelectromagnetic impedance measurements

    SciTech Connect

    Frangos, William; Becker, Alex; Lee, K.H.

    2002-09-20

    We have field-tested an apparatus for measuring the electromagnetic impedance above the ground at a plurality of frequencies in the 0.3 - 30 MHz range. This window in the frequency spectrum, which lies between frequencies used for GPR and those used for conventional loop-loop EM soundings, has not been used because of difficulties in fielding equipment for making absolute and accurate measurements. Model and physical parameter studies however confirm that data in this frequency band can be used to construct high-resolution maps of electrical conductivity and permittivity of near-surface material. Our equipment was assembled using commercial electric and magnetic antennas. The magnetic loop source is excited by a conventional signal generator - power amplifier assembly. Signal detection is accomplished using RF lock-in amplifiers. All system elements are appropriately isolated by optic - fiber links. We estimate a measurement accuracy of about {+-} 10% for an 8-m separation between source and detector. Field tests were done at the University of California Richmond Field Station where the near surface electrical structure is well known. The experimental data at this site are mainly a function of electrical conductivity. In this context, we have obtained good agreement with the known local variations in resistivity both with depth and with position along a 35-m traverse. Additional tests in more resistive regimes where dielectric permittivity is not negligible yield spectral data compatible with the less well known near-surface electrical properties.

  11. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  12. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  13. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  14. Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.

    2016-05-01

    For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.

  15. High frequency guided wave propagation in monocrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  16. Attenuation estimation using the peak frequency method with high-resolution time-frequency transforms

    NASA Astrophysics Data System (ADS)

    Tary, J. B.; Van der Baan, M.; Herrera, R. H.

    2016-12-01

    Seismic waves attenuate during their propagation due to Earth anelasticity. Attenuation is usually estimated by frequency domain methods such as the spectral ratio and frequency shift methods. These methods compare large frequency bandwidths of the spectra of two waveforms to compute attenuation. Time-frequency distribution resulting from high-resolution time-frequency transforms are highly localized which prevent their use to compute attenuation with these methods.The peak frequency method only requires the estimation of peak frequencies for a pair of waveforms to estimate attenuation, which is then compatible with high-resolution transforms. We here employ three transforms, namely basis pursuit, synchrosqueezing transform, and complete ensemble empirical mode decomposition (CEEMD). We evaluate their performance regarding attenuation estimation using synthetic examples with different signal-to-noise ratios, and compare their results to those of the spectral ratio and frequency shift methods. In most cases basis pursuit and the synchrosqueezing transform provide accurate results, while CEEMD show a higher sensitivity to the presence of noise.We then apply the three high-resolution transforms and the peak frequency method to two case studies, a seismic reflection profile and a vertical seismic profile (VSP). We employ centroid frequencies instead of peak frequencies because they provide stabler frequency estimates which are then transferred to stabler attenuation estimates. In the case of the seismic reflection profile, the three time-frequency transforms show small increases in centroid frequencies superimposed on a general decreasing trend. This likely corresponds to local tuning effects due to the layering superimposed on the effect of intrinsic attenuation. For the VSP, the three time-frequency transforms show consistent patterns in centroid frequencies and quality factors. These results show the worth of high-resolution transforms for attenuation estimation.

  17. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    SciTech Connect

    Wang, Hao Ido, Takeshi; Osakabe, Masaki; Todo, Yasushi

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  18. High frequency acoustic reflections from an air-snow interface

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.

    2016-12-01

    High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.

  19. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    NASA Astrophysics Data System (ADS)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  20. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  1. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  2. Three-port binary reflective grating with high efficiency under second Bragg angle incidence

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Wang, Bo

    2016-10-01

    A binary three-port reflective grating under second Bragg angle incidence is designed in this paper. Under second Bragg angle incidence, the grating can separate nearly 33% light wave energy into the 2nd order, the 1st order and the 0th diffractive orders, respectively. Rigorous coupled-wave analysis can give numerical calculation to optimize the three-port grating depths and periods. For the optimized reflective three-port grating, TE polarization and TM polarization can have different values of grating depth and period. Compared with the reported three-port binary grating under Bragg angle incidence, the diffraction efficiencies can be improved. Moreover, the modal method is applied to explain the propagating mechanism. The highly efficient three-port binary reflective grating under second Bragg angle incidence would be manufactured in the emerging industry for its novel performance.

  3. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers

    NASA Astrophysics Data System (ADS)

    Liu, Hong-You; Bo, Tian-Li; Liang, Yi-Rui

    2017-03-01

    Field observations were performed to explore the variation of large-scale structure inclination angles in the high Reynolds number atmospheric surface layer (ASL). The high Reynolds number flow measurements [Reτ ˜ Ο (106)] were acquired at the Qingtu Lake observation array site. The structure inclination angles inferred from two-point correlations of the fluctuating streamwise velocity were obtained for different friction velocities in the neutral regime and different thermal stability conditions. Results indicate that, in addition to the Monin- Obukhov stability parameter, the structure inclination angle varies systematically with the friction velocity in the neutral surface layer. An empirical model is proposed to parametrize the variation of the inclination angle with the normalized friction velocity. The empirical formula agrees well with both the current ASL results and the previously documented results. Further analysis suggests that the inclination angle is dominated by the vertical velocity gradient (vertical wind shear) for both neutral and non-neutral regimes. The present work contributes to a better understanding of the inclination angle for the large-scale structures and may be used to improve the existing wall-models in the large-eddy simulation of the ASL.

  4. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  5. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  6. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  7. High permeability-high frequency stable MnZn ferrites

    NASA Astrophysics Data System (ADS)

    Kalarus, J.; Kogias, G.; Holz, D.; Zaspalis, V. T.

    2012-09-01

    Modern MnZn ferrite applications require high magnetic initial permeability and exceptional frequency stability; the former implies large grains, while the latter high grain boundary resistivity. In this article the optimization of the final firing process is described for achieving both. The optimization is based on the homogeneous dissolution of dopants under oxidative conditions and their subsequent precipitation along grain boundaries. This was accomplished by integrating isothermal plateaus at the upper stadia of the cooling stage of the final firing process. MnZn ferrites of the basic composition [Mn0.47Zn0.47Fe0.062+]Fe23+O4 were synthesized with initial permeability (measured at f=10 kHz, B<0.1 mT, T=25 °C) 12,600 and losses, expressed as tan(δ)/μi, of 3.1×10-6 at 10 kHz and 20.5×10-6 at 100 kHz (B<0.1 mT, T=25 °C), that reflect good frequency stability. These results could be reproduced in pilot production scale.

  8. Improving spatial-resolution in high cone-angle micro-CT by source deblurring

    NASA Astrophysics Data System (ADS)

    Li, Heyang; Kingston, Andrew; Myers, Glenn; Recur, Benoit; Turner, Michael; Sheppard, Andrian

    2014-09-01

    Micro scale computed tomography (CT) can resolve many features in cellular structures, bone formations, minerals properties and composite materials not seen at lower spatial-resolution. Those features enable us to build a more comprehensive model for the object of interest. CT resolution is limited by a fundamental trade off between source size and signal-to-noise ratio (SNR) for a given acquisition time. There is a limit on the X-ray flux that can be emitted from a certain source size, and fewer photons cause a lower SNR. A large source size creates penumbral blurring in the radiograph, limiting the effective spatial-resolution in the reconstruction. High cone-angle CT improves SNR by increasing the X-ray solid angle that passes through the sample. In the high cone-angle regime current source deblurring methods break down due to incomplete modelling of the physical process. This paper presents high cone-angle source de-blurring models. We implement these models using a novel multi-slice Richardson-Lucy (M-RL) and 3D Conjugate Gradient deconvolution on experimental high cone-angle data to improve the spatial-resolution of the reconstructed volume. In M-RL, we slice the back projection volume into subsets which can be considered to have a relative uniform convolution kernel. We compare these results to those obtained from standard reconstruction techniques and current source deblurring methods (i.e. 2D Richardson-Lucy in the radiograph and the volume respectively).

  9. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  10. High vs low frequency neural oscillations in schizophrenia.

    PubMed

    Moran, Lauren V; Hong, L Elliot

    2011-07-01

    There is growing recognition that neural oscillations are important in a wide range of perceptual and cognitive functions. One of the key issues in electrophysiological studies of schizophrenia is whether high or low frequency oscillations, or both, are related to schizophrenia because many brain functions are modulated with frequency specificities. Many recent electrophysiological studies of schizophrenia have focused on high frequency oscillations at gamma band and in general support gamma band dysfunction in schizophrenia. We discuss the concept that gamma oscillation abnormalities in schizophrenia often occur in the background of oscillation abnormalities of lower frequencies. The review discusses the basic neurobiology for the emergence of oscillations of all frequency bands in association with networks of inhibitory interneurons and the convergence and divergence of such mechanisms in generating high vs low frequency oscillations. We then review the literature of oscillatory frequency abnormalities identified in each frequency band in schizophrenia. By describing some of the key functional roles exerted by gamma, low frequencies, and their cross-frequency coupling, we conceptualize that even isolated alterations in gamma or low frequency oscillations may impact the interactions of high and low frequency bands that are involved in key cognitive functions. The review concludes that studying the full spectrum and the interaction of gamma and low frequency oscillations may be critical for deciphering the complex electrophysiological abnormalities observed in schizophrenia patients.

  11. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  12. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  13. Assessment of satellite retrieval algorithms for chlorophyll-a concentration under high solar zenith angle

    NASA Astrophysics Data System (ADS)

    Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng

    2016-10-01

    Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.

  14. High Frequency Shock During Random Vibration Testing

    DTIC Science & Technology

    2016-05-10

    Testing Level Natural Frequency (Hz) Ch. 17 Q Factor Test 1: White Noise 192.5 47.97 Test 2: -18 dB 192.5 51.11 Test 3: -15 dB 192.5 50.14 Test 4...12 dB 192.5 52.55 Test 5: -9 dB 192.5 44.99 Test 6: -6 dB 190 47.22 Test 7: White Noise 192.5 48.78 • -6dB Random Input • Shock origination...c o u s ti c P re s s u re ( P a ) Pre and Post White Noise Comparison Resonant frequencies and damping are unchanged after the shock event during

  15. High frequency model of stacked film capacitors

    NASA Astrophysics Data System (ADS)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  16. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal.

    PubMed

    Xu, Daming; Tan, Guanjun; Wu, Shin-Tson

    2015-05-04

    We propose a switchable phase grating using fringe field switching (FFS) cells. The FFS phase grating possesses several attractive features: large diffraction angle, high diffraction efficiency, fast response time, and high contrast ratio. It can diffract >32% light to ± 2nd orders with a large diffraction angle of 12.1°. Meanwhile, its response time remains relatively fast even at -40°C. A simulation model is developed to explain the experimental results and good agreement is obtained. We also demonstrate a blazed phase grating to achieve tunable beam steering between 0th, 1st and 2nd orders.

  17. Wide-angle near infrared polarizer with extremely high extinction ratio.

    PubMed

    Liu, X L; Zhao, B; Zhang, Z M

    2013-05-06

    An infrared polarizer is designed with a predicted extremely high extinction ratio exceeding 3 × 10(16) and transmittance higher than 89% for one polarization in the wavelength region from 1.6 to 2.3 µm. Moreover, the performance does not start to deteriorate until 60° tilting angle. The wide-angle high transmission is attributed to the excitation of magnetic polaritons and suitable LC circuit models, which could predict the resonance wavelengths quantitatively, are developed to better understand the underlying mechanisms. The proposed structure can be tuned by controlling the geometrical parameters for different potential applications such as polarizers, beamsplitters, filters, and transparent electrodes.

  18. Study of High Temperature Superconductors with Angle-Resolved Photoemission Spectroscopy

    SciTech Connect

    Dunn, Lisa

    2003-05-13

    The Angle Resolved Photoemission Spectroscopy (ARPES) recently emerged as a powerful tool for the study of highly correlated materials. This thesis describes the new generation of ARPES experiment, based on the third generation synchrotron radiation source and utilizing very high resolution electron energy and momentum analyzer. This new setup is used to study the physics of high temperature superconductors. New results on the Fermi surfaces, dispersions, scattering rate and superconducting gap in high temperature superconductors are presented.

  19. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    SciTech Connect

    Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken

    2009-07-15

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  20. Micromachined high Q inductors for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Y.; Allen, Mark G.

    1998-09-01

    To meet requirements in mobile communication and microwave integrated circuits, miniaturization of the inductive components that many of these systems require is of key importance. At present, active circuitry is used which simulates inductor performance and which has high Q-factor and inductance; however, such circuitry has higher power consumption and higher potential for noise injection than passive inductive components. An alternate approach is to fabricate integrated inductors, in which lithographic techniques are used to pattern an inductor directly on a substrate or a chip. However, integrated inductors can suffer from low Q-factor and high parasitic effects due to substrate proximity. To expand the applications of integrated inductors, these characteristics must be improved. High Q integrated spiral inductors are investigated using olymer/metal multilayer processing techniques and surface micromachining techniques. These inductors have spiral geometry with an air core and a large air gap (4Oim height) between the coils and the substrate (to reduce substrate capacitance), and thick, highly conductive electroplated copper conductor lines (to increase the quality factor). Various inductor geometries are investigated by designing and fabricating several inductors with differing core areas and numbers of turns. The fabricated inductors have a Q-factor of 40-75 at 300-700 MHz and an inductance at these frequencies between 30-7OnH.

  1. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  2. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  3. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  4. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  5. Calculation of the flow on a blunted cone at high angle of attack

    NASA Technical Reports Server (NTRS)

    Lubard, S. C.; Rakich, J. V.

    1975-01-01

    A new technique for calculating the entire flow-field on spherically blunted circular cones at high angles of attack and high Reynolds numbers is described. The calculations are based on a single-layer system of three-dimensional parabolic equations which are approximations to the full steady Navier-Stokes equations. Initial conditions at the sphere-cone tangency plane are provided by using an inviscid time-dependent solution added to a viscous nonsimilar boundary layer solution. Calculated results are compared with experimental heat transfer and pressure data for a 15 deg half-angle cone with a 1-in. spherical nose at 15 deg angle of attack. The free-stream Mach number is 10.6, and the free-stream Reynolds number is 1,200,000 per foot. Excellent agreement between the calculated and experimental data for both pressure and heat transfer is obtained.

  6. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  7. High Frequency Acoustic Suppression - Experimental & Computational Overview

    DTIC Science & Technology

    2003-02-01

    mechanisms were the same. One of the drawbacks to the microjet impinging jet experiments was, however, that there was no obvious forcing frequency...Reduced In Impinging Jet Problem With 110 psi (Ref. 31) Application of Supersonic Microjets (Ref. 31). -s3 ~100. i 1 0 r 14’ ~10 100 10’ log top...cavity problem. The first step was to use the same actuator as in the Wiltse & Glezer experiment (Figure 5) and to modify the original free -jet

  8. A high frequency resonance gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Bezrukov, L. B.; Kvashnin, N. L.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Rudenko, V. N.; Samoilenko, A. A.; Skvortsov, M. N.; Yudin, I. S.

    2014-06-01

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  9. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  10. A high frequency resonance gravity gradiometer.

    PubMed

    Bagaev, S N; Bezrukov, L B; Kvashnin, N L; Krysanov, V A; Oreshkin, S I; Motylev, A M; Popov, S M; Rudenko, V N; Samoilenko, A A; Skvortsov, M N; Yudin, I S

    2014-06-01

    A new setup OGRAN--the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events--gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  11. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  12. Analysis of High Frequency Seismic Data

    DTIC Science & Technology

    1990-10-01

    2 -4 iv 2.3 Relative noise power ia, narrow frequency bands as a function of time for noise segments at NORESS and KKL...Central Sweden Figure 2. The upper perspective diagram shows the number of events (ill all 5946) as a function of geograp ~hical location out to 1500 kml...al. (1986) obtained 1-18 I~igure i2. Number of events with magnitude ML>2.O and ML>3.Q as a fUnction of geograp ~hical location in relation to NORr.SS

  13. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  14. High-frequency asymptotics of circular dichroism

    NASA Astrophysics Data System (ADS)

    Pospelov, M. E.

    1996-07-01

    Circular dichroism of optically active isotropic media of chiral molecules Im(n+-n-)/Im(n++n-) falls off as ω-2 at frequencies Ry<<ω<>Z2Ry, where Z is a typical nuclear charge of atoms in the chiral group. The contribution of the spin of electron to the circular dichroism appears in the second order in spin-orbit perturbation only. The polarization of photoelectrons in the absorption of unpolarized light is connected with the chirality of molecule and constitutes Z2α3 from the degree of geometrical asymmetry.

  15. High resolution and stability roll angle measurement method for precision linear displacement stages

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  16. Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays.

    PubMed

    Qaderi, Kamran; Smalley, Daniel E

    2016-09-05

    Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays (with the exception of eye-tracked systems) must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation (i.e. angle magnification and optical multiplexing). We report a leaky mode waveguide spatial light modulator with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This high angle was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5° (corresponding to only 70 MHz of input bandwidth) for 632.8 nm light which is above the 15° required for direct view display. Device geometries are proposed which might achieve greater than 20° of total angular sweep for red, green, and blue light.

  17. Variable flip angle 3D-GRASE for high resolution fMRI at 7 tesla.

    PubMed

    Kemper, Valentin G; De Martino, Federico; Yacoub, Essa; Goebel, Rainer

    2016-09-01

    To evaluate the use of variable flip angle refocusing pulse trains in single-shot three-dimensional gradient and spin-echo (3D-GRASE) to reduce blurring and increase the spatial coverage for high spatial resolution T2 -weighted functional MRI at 7 Tesla. Variable flip angle refocusing schemes in 3D-GRASE were calculated based on extended phase graph theory. The blurring along the slice (partition) direction was evaluated in simulations, as well as phantom and in vivo experiments. Furthermore, temporal stability and functional sensitivity at 0.8 mm isotropic resolution were assessed. Variable flip angle refocusing schemes yielded significantly reduced blurring compared with conventional refocusing schemes, with the full width at half maximum being approximately 30-40% narrower. Simultaneously, spatial coverage could be increased by 80%. The temporal signal-to-noise ratio was slightly reduced, but functional sensitivity was largely maintained due to increased functional contrast in the variable flip angle acquisitions. Signal-to-noise ratio and functional sensitivity were reduced more strongly in areas with insufficient radiofrequency transmission indicating higher sensitivity to experimental imperfections. Variable flip angle refocusing schemes increase usability of 3D-GRASE for high-resolution functional MRI by reducing blurring and allowing increased spatial coverage. Magn Reson Med 76:897-904, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.

    PubMed

    Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme

    2017-01-01

    In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software (openGelPhoto.tcl) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.

  19. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  20. High frequency properties of resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.

  1. Interfacial properties of avian stratum corneum monolayers investigated by Brewster angle microscopy and vibrational sum frequency generation.

    PubMed

    Adams, Ellen M; Champagne, Alex M; Williams, Joseph B; Allen, Heather C

    2017-08-12

    The outermost layer of skin, the stratum corneum (SC), contains a complex mixture of lipids, which controls the rate of cutaneous water loss (CWL) in reptiles, mammals, and birds. However, the molecular structure of SC lipids and how molecular configurations influence CWL is poorly understood. Here, the organization and structure of SC lipids extracted from birds were investigated by means of Langmuir films. Properties of lipids from the SC of arid and semi-arid adapted larks, known to have a low CWL, were compared with lipids extracted from the SC of mesic lark species with higher CWL to gain insight into how structure impacts CWL. Film properties were probed with surface pressure-area isotherms, Brewster angle microscopy (BAM), and vibrational sum frequency generation (VSFG). Results indicate organization and ordering of SC lipids in the arid-adapted hoopoe lark was vastly different from all other species, forming a miscible, rigid monolayer, whereas monolayers from semi-arid and mesic species were immiscible and disordered. Probing of interfacial water structure reveals that film morphology determines organization of water molecules near the monolayer; monolayers with a porous morphology had an increased population of water molecules that are weakly hydrogen-bonded. In general, CWL appears related to the miscibility and ordering of lipid components within the SC, as well as the ability of these lipids to interact with water molecules. From a broader perspective, CWL in larks appears linked to both the SC lipid composition and the aridity of the species' environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cylindrical dye-sensitized solar cells with high efficiency and stability over time and incident angle.

    PubMed

    Tang, Qunwei; Zhang, Lei; He, Benlin; Yu, Liangmin; Yang, Peizhi

    2016-02-28

    We present here the realization of cylindrical dye-sensitized solar cells composed of Ti wire supported TiO2 nanotube anodes and transparent metal selenide counter electrodes. The optimized device yields a high efficiency of 6.63%, good stability over time, and identical efficiency output at arbitrary incident angles.

  3. A robust smart window: reversibly switching from high transparency to angle-independent structural color display.

    PubMed

    Ge, Dengteng; Lee, Elaine; Yang, Lili; Cho, Yigil; Li, Min; Gianola, Daniel S; Yang, Shu

    2015-04-17

    A smart window is fabricated from a composite consisting of elastomeric poly(dimethylsiloxane) embedded with a thin layer of quasi-amorphous silica nanoparticles. The smart window can be switched from the initial highly transparent state to opaqueness and displays angle-independent structural color via mechanical stretching. The switchable optical property can be fully recovered after 1000 stretching/releasing cycles.

  4. Exploring High-Achieving Sixth Grade Students' Erroneous Answers and Misconceptions on the Angle Concept

    ERIC Educational Resources Information Center

    Bütüner, Suphi Önder; Filiz, Mehmet

    2017-01-01

    The aim of this research was to investigate high achievers' erroneous answers and misconceptions on the angle concept. The participants consisted of 233 grade 6 students drawn from eight classes in two well-established elementary schools of Trabzon, Turkey. All the participants were considered to be current achievers in mathematics, graded 4 or 5…

  5. Aerodynamic surface distension system for high angle of attack forebody vortex control

    NASA Technical Reports Server (NTRS)

    Zell, Peter T. (Inventor)

    1994-01-01

    A deployable system is introduced for assisting flight control under certain flight conditions, such as at high angles of attack, whereby two inflatable membranes are located on the forebody portion of an aircraft on opposite sides thereof. The members form control surfaces for effecting lateral control forces if one is inflated and longitudinal control forces if both are inflated.

  6. Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.

    DTIC Science & Technology

    1982-11-01

    indicators of symmetry since the wings were unbanked within the limits of tolerances and flow angularity. Longitudinal, spanwise, and vertical... unbanked wings at subsonic and transonic speeds from low to high angles of attack. The wing planforms varied in aspect ratio and taper ratio with

  7. Self-demodulation of high-frequency ultrasound.

    PubMed

    Vos, Hendrik J; Goertz, David E; de Jong, Nico

    2010-03-01

    High-frequency (>10 MHz) ultrasound is used in, e.g., small animal imaging or intravascular applications. Currently available ultrasound contrast agents (UCAs) have a suboptimal response for high frequencies. This study therefore investigates the nonlinear propagation effects in a high-frequency ultrasound field (25 MHz) and its use for standard UCA and diagnostic frequencies (1-3 MHz). Nonlinear mixing of two high-frequency carrier waves produces a low-frequency wave, known as the self-demodulation or parametric array effect. Hydrophone experiments showed that the self-demodulated field of a focused 25 MHz transducer (850 kPa source pressure) has an amplitude of 45 kPa at 1.5 MHz in water. Such pressure level is sufficient for UCA excitation. Experimental values are confirmed by numerical simulations using the Khokhlov-Zabolotskaya-Kuznetsov equation on a spatially convergent grid.

  8. Magnus effects at high angles of attack and critical Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  9. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    SciTech Connect

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  10. Interference of high-order harmonics generated from molecules at different alignment angles

    NASA Astrophysics Data System (ADS)

    Qin, Meiyan; Zhu, Xiaosong; Li, Yang; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2014-01-01

    We theoretically investigate the interference effect of high-order harmonics generated from molecules at different alignment angles. It is shown that the interference of the harmonic emissions from molecules aligned at different angles can significantly modulate the spectra and result in the anomalous harmonic cutoffs observed in a recent experiment Nat. Phys. 7, 822 (2011), 10.1038/nphys2029]. The shift of the spectral minimum position with decreasing the degree of alignment is also explained by the interference effect of the harmonic emissions.

  11. Magnus effects at high angles of attack and critical Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  12. Side-force alleviation on slender, pointed forebodies at high angles of attack

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1978-01-01

    A new device was proposed for alleviating high angle-of-attack side force on slender, pointed forebodies. A symmetrical pair of separation strips in the form of helical ridges are applied to the forebody to disrupt the primary lee-side vortices and thereby avoid the instability that produces vortex asymmetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds no. 5,250,000 on a variety of forebody configurations and on a wing-body combination at angles of attack up to 56 degrees, demonstrated the effectiveness of the device.

  13. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    NASA Astrophysics Data System (ADS)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  14. Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1988-01-01

    Calculation of longitudinal and lateral directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with corrections of high angle of attack phenomena; namely, vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the three dimensional lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at higher angles of attack are discussed.

  15. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  16. Spatial and frequency coherence of oblique, one-hop, high-frequency paths

    SciTech Connect

    Fitzgerald, T.J.

    1995-10-01

    We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.

  17. Phase velocity limit of high-frequency photon density waves

    NASA Astrophysics Data System (ADS)

    Haskell, Richard C.; Svaasand, Lars O.; Madsen, Sten; Rojas, Fabio E.; Feng, T.-C.; Tromberg, Bruce J.

    1995-05-01

    In frequency-domain photon migration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, high frequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to re-examine the derivation of the standard diffusion equation (SDE) from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, can be significant above 1 GHz for some biological tissue. The revised diffusion equation, including the second-order time-derivative, is often termed the P1 equation. We compare the dispersion relation of the P1 equation with that of the SDE. The P1 phase velocity is slower than that predicted by the SDE; in fact, the SDE phase velocity is unbounded with increasing modulation frequency, while the P1 phase velocity approaches c/sqrt(3) is attained only at modulation frequencies with periods shorter than the mean time between scatterings of a photon, a frequency regime that probes the medium beyond the applicability of diffusion theory. Finally we caution that values for optical properties deduced from FDPM data at high frequencies using the SDE can be in error by 30% or more.

  18. Specialized drilling systems set new world records in high-angle holes

    SciTech Connect

    Gates, R.L.; Schwab, G.A.

    1984-02-01

    Sound well planning and carefully chosen drilling systems have proved successful in completing two high-angle holes through troublesome formations in the Gippsland basin offshore Victoria, Australia. Located about 60 miles (97 km) out in the Bass Strait, Mackerel Wells A-14 and A-16 set new records for being the longest horizontal displacement wells drilled to an angle of up to 72/sup 0/ (1.26 rad) to the vertical. Both wells are producing oil from a previously fault-isolated reservoir southwest of the platform. The use of invert oil emulsion and aluminum drill pipe represented a significant change from normal Bass Strait drilling operations. This, in conjunction with tightly controlled angle buildup and directional control, ensured that the projected well paths were achieved. Completion procedures peculiar to highly deviated holes also were employed to bring the wells on stream successfully. A ''controlled activity'' oil-continuous mud system was chosen to alleviate problems associated with shale hydration and to increase wellbore lubricity. Rig modifications for cuttings disposal were essential before mud systems could be changed over. In combination with aluminum drill pipe for reduced string weight (Well A-16), the oil mud helped minimize torque, drag, and wall-sticking tendencies. With similar drilling systems and well-planned completion techniques, the drilling of high-angle holes will play a vital role in deepwater development.

  19. High frequency properties of a CNT-based nanorelay

    NASA Astrophysics Data System (ADS)

    Jonsson, L. M.; Axelsson, S.; Nord, T.; Viefers, S.; Kinaret, J. M.

    2004-11-01

    We have theoretically investigated the high frequency properties of a carbon-nanotube-based three-terminal nanoelectromechanical relay. The intrinsic mechanical frequency of the relay is in the GHz regime, and the electromechanical coupling shows a non-linear resonant behaviour in this frequency range. We discuss how these resonances may be detected and show that the resonance frequencies can be tuned by the bias voltage. Also, we show that the influence of external electromagnetic fields on the relay is negligible at all frequencies.

  20. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  1. Influence of Smoking on Ultra-High-Frequency Auditory Sensitivity.

    PubMed

    Prabhu, Prashanth; Varma, Gowtham; Dutta, Kristi Kaveri; Kumar, Prajwal; Goyal, Swati

    2017-04-01

    In this study, an attempt was made to determine the effect of smoking on ultra-high-frequency auditory sensitivity. The study also attempted to determine the relationship between the nature of smoking and ultra-high-frequency otoacoustic emissions (OAEs) and thresholds. The study sample included 25 smokers and 25 non-smokers. A detailed history regarding their smoking habits was collected. High-frequency audiometric thresholds and amplitudes of high-frequency distortion-product OAEs were analyzed for both ears from all participants. The results showed that the ultra-high-frequency thresholds were elevated and that there was reduction in the amplitudes of ultra-high-frequency OAEs in smokers. There was an increased risk of auditory damage with chronic smoking. The study results highlight the application of ultra-high-frequency OAEs and ultra-high-frequency audiometry for the early detection of auditory impairment. However, similar studies should be conducted on a larger population for better generalization of the results.

  2. Parametric excitation of high-frequency electromagnetic waves by the lower-frequency dipole pumping

    SciTech Connect

    Gamayunov, K.V. ); Khazanov, G.V. ); Krivorutsky, E.N.; Veryaev, A.A. )

    1993-01-01

    The possibility of parametric excitation of high-frequency electromagnetic waves by lower-frequency dipole pumping is studied. It is shown that the obtained general dispersive equation may be reduced to the Mathieu equation, provided the case of the flux instability is neglected. In the framework of the developed approach, the excitation of magnetohydrodynamic waves and whistler oscillations is examined.

  3. Wettability of a surface subjected to high frequency mechanical vibrations.

    PubMed

    Galleguillos-Silva, R; Vargas-Hernández, Y; Gaete-Garretón, L

    2017-03-01

    Ultrasonic radiation can modify some physical properties in liquid/solid interactions, such as wettability. The dependence of solid surface wettability on its vibrational state was studied. Experiments with an interface formed by distilled water deposited on a titanium alloy and surrounded by air were carried out. It is shown that it is possible to control the apparent wettability of a given liquid/solid/gas system by applying sonic-ultrasonic vibrations of controlled amplitude at the interface. The system studied is composed of a drop of distilled water deposited on a flat titanium surface in air. The contact angle was used as an indicator of apparent wettability. It is shown that the apparent wettability of a surface is linearly dependent on the peak vibration velocity and independent of the vibration frequency. Higher vibration speed lowers the contact angle and therefore causes greater surface wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structural drilling using the high-frequency (sonic) rotary method

    NASA Astrophysics Data System (ADS)

    Šporin, Jurij; Vukelić, Željko

    2017-03-01

    In Slovenia, there is widespread use of structural drilling along with classical core drilling. Recently, however, the need has arisen for a highly effective core drilling method with the aid of which high-quality core might be obtained. In order to achieve this aim, one among several Slovenian companies dealing with geological surveying has decided to implement structural drilling using a high-frequency drilling method. The following article presents the theoretical foundations for such a high-frequency method, as well as the manner of its implementation. In the final part of the article, a practical comparison between the conventional and the high-frequency core drilling methods is also provided.

  5. Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test

    NASA Technical Reports Server (NTRS)

    Larkin, Michael J.; Schweiger, Paul S.

    1992-01-01

    A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.

  6. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  7. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  8. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  9. Frictional controls on high-angle reverse faulting during compressional basin inversion

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Alder, S.; Tesei, T.; Collettini, C.

    2015-12-01

    Large normal faults are often reactivated as high-angle reverse faults during compressional basin inversion. Prevailing models to explain steep reverse slip call upon significant fluid overpressure. Though such models are consistent with some seismological data and field observations from incipient (low-displacement) reverse faults, they remain largely untested in the case of basin-scale faults. We present field and experimental data from the >200 km long Moonlight Fault Zone in New Zealand, an Oligocene basin-bounding normal fault that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Excellent exposures of the fault zone exhumed from c. 4-8 km depth are found in creek sections along the entire strike length. Wall rocks are mainly quartz-albite-muscovite-chlorite schists with a strong foliation that is everywhere sub-parallel to the Moonlight Fault (i.e. dip angle 65°-75°). Although the overall structure of the fault zone changes significantly along strike in response to wall rock composition, the <5 metre thick fault core everywhere contains interconnected layers of foliated cataclasite rich in authigenically-grown chlorite and muscovite/illite. Microstructural evidence suggests deformation in the fault core by a combination of cataclasis, frictional slip along phyllosilicate seams and dissolution-precipitation. Single-direct and double-direct friction experiments were performed with the BRAVA apparatus (INGV, Rome) on saturated wafers (e.g. with intact foliation) of foliated cataclasite at normal stresses up to 75 MPa. The foliated cataclasites have a friction coefficient of <0.25 and negligible frictional healing. In combination with dissolution-precipitation mechanisms, a friction coefficient of <0.25 can account for slip on high-angle reverse faults if accompanied by only moderately high fluid pressures. Our results indicate that friction may be equally as important as fluid pressure during compressional basin inversion.

  10. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  11. High Power HF Excitation of Low Frequency Stimulated Electrostatic Waves in the Ionospheric Plasma over HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul; Selcher, Craig A.

    High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.

  12. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-01-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  13. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  14. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    NASA Technical Reports Server (NTRS)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  15. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    NASA Technical Reports Server (NTRS)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  16. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  17. Effects of rain attenuation on satellite EHF (Extremely High Frequency) communications in the US

    NASA Astrophysics Data System (ADS)

    Tattelman, Paul; Larson, Kevin P.

    1989-01-01

    One-minute rain rate data over a 10-year period-of-record at each of 41 locations in the contiguous U.S., and for a 6 1/2-year period-of-record at 1 location in Puerto Rico, were extracted from original weighing raingage recordings. The data were analyzed to determine monthly, seasonal, and annual rain-rate frequencies, durations, and probabilities at locations representing a large variety of climatic rainfall regimes. These analyses are particularly useful for estimating EHF (Extremely High Frequency) communication outages due to the increasing effects of attenuation caused by rain at frequencies above 10 GHz. An attenuation model was used to estimate the effects of rain attenuation at all 42 locations. Analyses of the 1-min rain rates, and outage estimates for various frequencies and propagation-path elevation angles are presented.

  18. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  19. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  20. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  1. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  2. High frequency microbubble-switched oscillations modulated by microfluidic transistors

    NASA Astrophysics Data System (ADS)

    Yang, Fanghao; Dai, Xianming; Li, Chen

    2012-08-01

    Creating high frequency two-phase oscillations (HF-TPOs) remains an important goal in advancing microscale fluidic logic devices, micro-mixers, micro-actuators, and flow controls. However, thermally driven TPO frequency has been hindered by confinements of compressible vapor bubbles and low thermal diffusivity in microfluidic systems. In this study, a mechanism creating high frequency microbubbles growth/collapse cycle has been developed to achieve HF-TPOs. A "microfluidic transistor" was conceptualized and fabricated to passively sustain and modulate HF-TPOs. Three orders of magnitude higher TPO frequency has been achieved compared to TPOs reported in literatures under similar working conditions.

  3. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  4. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  5. Broadband high-frequency waves detected at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cao, J. B.; Fu, H. S.; Wang, T. Y.; Liu, W. L.; Yao, Z. H.

    2017-04-01

    Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well.

  6. Aerodynamic control of slender bodies from low to high angles of attack through flow manipulation

    NASA Astrophysics Data System (ADS)

    Lopera, Javier

    2007-12-01

    This dissertation presents experimental investigations of several novel active flow control methodologies that have been implemented for aerodynamic control and maneuvering of slender bodies at low and high angles of attack through flow manipulation. For low angles of attack, a U.S. Army Smart Cargo projectile was examined. For high angles of attack a U.S. Air Force countermeasure concept projectile termed DEX (Destructive Expendable) was examined. Low angle of attack control was attempted using two novel separation control techniques: reconfigurable porosity and miniature deployable spoilers. Results show that significant aerodynamic forces are generated by implementing reconfigurable porosity and can be effectively used to steer and maneuver air vehicles. Porous patterns with a "saw-tooth" configuration seem to be the most effective in generating consistent control forces over a wide range of angles of attack. Miniature deployable spoilers successfully demonstrated their ability in producing both positive and negative pitch and yaw controls by modulating the spoiler height and length when used on the boattail and Aero Control Fins (ACFs) of a projectile. The effect of aftbody strake parameters such as shape, locations (axial and azimuthal), deployment height, and number of strakes implemented was examined on a short blunt-nose projectile. Large yaw control authority was attained for alpha > 40 deg. The largest yaw control authority was produced by a rectangular-shaped strake. A robust closed-loop feedback controller was successfully tested using dynamic wind tunnel experiments to control the coning motion of a projectile. The controller showed good control authority and was capable of attaining and maintaining the commanded roll angle with a tolerance of +/-10 deg. A study was conducted to gain some insights into the fluid mechanics of short blunt-nose bodies of revolution at high angles of attack. Off- and on-surface flow visualization records are collected to

  7. Usefulness of frequency-doubling technology for perimetrically normal eyes of open-angle glaucoma patients with unilateral field loss.

    PubMed

    Fan, Xiang; Wu, Ling-Ling; Ma, Zhi-Zhong; Xiao, Ge-Ge; Liu, Feng

    2010-08-01

    To determine whether frequency-doubling technology (FDT) perimetry detects visual field loss in perimetrically normal eyes of patients with open-angle glaucoma (OAG) and whether these visual field defects subsequently are detected by standard automated perimetry (SAP), and to explore the relating factors of the progression from abnormalities based on FDT to visual field loss based on SAP. Prospective cohort study. Sixty-eight OAG patients with unilateral field loss detected by SAP (Octopus, G2 program; Interzeig, Schlieren, Switzerland). Perimetrically normal eyes of participants were examined with the FDT N-30 threshold program (Humphrey Instruments, Welch-Allyn, Skaneateles, NY). The visual field examination was followed by a series of SAP examinations administered over 3 years. The relationship between FDT and subsequent SAP results in perimetrically normal eyes was analyzed. Glaucomatous optic neuropathy (GON), visual field indices, intraocular pressure (IOP), and central corneal thickness (CCT) were compared between converters (eyes with subsequent SAP abnormality) and nonconverters within perimetrically normal eyes with abnormal FDT results. Finally, the SAP test points were matched to the abnormal FDT sectors. The relative risk (RR) of subsequent SAP abnormality corresponding to FDT abnormal sectors was calculated. Sixty perimetrically normal eyes of 60 participants had complete data and a qualifying follow-up. Baseline FDT results were abnormal in 65%. Of the eyes with abnormal FDT results, 51% developed abnormal SAP results after 4 to 27 months, whereas none of the eyes with normal FDT results developed abnormal SAP results (P<0.05). In perimetrically normal eyes with abnormal FDT results, converters had a greater cup-to-disc ratio, more eyes with GON, larger and deeper cups, and worse FDT mean deviation than nonconverters (P<0.05). The IOP and CCT did not differ between the 2 groups. The RR of subsequent SAP abnormality corresponding to abnormal FDT

  8. Polarization Properties of AGN at High Frequencies

    NASA Astrophysics Data System (ADS)

    Jorstad, S. G.

    2009-08-01

    I discuss variability of polarization in the core region of parsec scale radio jets and connections between 7 mm polarization in the VLBI core and polarization at shorter wavelengths from the whole source for a sample of AGN with highly relativistic jets known as blazars. The sources show pronounced diversity in polarization behavior that is not clearly understood. I discuss possible reasons for these differences as well as the role that VSOP-2 can play in exploring the magnetic field in the most compact regions of jets.

  9. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  10. HF (High-Frequency) Channel Probe.

    DTIC Science & Technology

    1985-05-31

    ionosphere can be calculated from the relation [Basler and Scott, 19731 (~ 2R(R + [’ -Cos (D-)] +h’(5.1) where R is the radius of the earth (6359 km for...emanating from the earth at high latitudes are a convected sunward on the dawn- and dusk-sides of the auroral zones. When they reach the noon sector, the...for refracting HF radio waves back to the earth , the plasma is essentially swept along with the flux tubes delineated by the magnetic field lines. The

  11. High luminosity operation of large solid angle scintillator arrays in Jefferson Lab Hall A

    SciTech Connect

    Shneor, Ran

    2003-12-01

    This thesis describes selected aspects of high luminosity operation of large solid angle scintillator arrays in Hall A of the CEBAF (Central Electron Beam Accelerator Facility) at TJNAF (Thomas Jefferson National Accelerator Facility ). CEBAF is a high current, high duty factor electron accelerator with a maximum beam energy of about 6 GeV and a maximum current of 200 μA. Operating large solid angle scintillator arrays in high luminosity environment presents several problems such as high singles rates, low signal to noise ratios and shielding requirements. To demonstrate the need for large solid angle and momentum acceptance detectors as a third arm in Hall A, we will give a brief overview of the physics motivating five approved experiments, which utilize scintillator arrays. We will then focus on the design and assembly of these scintillator arrays, with special focus on the two new detector packages built for the Short Range Correlation experiment E01-015. This thesis also contains the description and results of different tests and calibrations which where conducted for these arrays. We also present the description of a number of tests which were done in order to estimate the singles rates, data reconstruction, filtering techniques and shielding required for these counters.

  12. Transient high-frequency ultrasonic water atomization

    NASA Astrophysics Data System (ADS)

    Barreras, F.; Amaveda, H.; Lozano, A.

    2002-06-01

    An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.

  13. Development of Graphene for High Frequency Electronics

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua; Snyder, David; Fanton, Mark; Hollander, Matthew; Labella, Michael; Trumbull, Kathleen; Cavalero, Randall; Weiland, Brian; The Pennsylvania State University Team

    2011-03-01

    The practicality and success of a graphene technology depends on the ability to regularly and controllably synthesize graphene; integrate it with metals and dielectrics; and to develop device designs that take advantage of graphene's unique properties. We demonstrate graphene synthesis on SiC(0001) and Sapphire with 1.5% variation in sheet resistance across 100mm wafers. Hall mobility measurements indicate that direct growth of graphene on sapphire leads to a 2x increase in mobility (2200 cm2 /Vs) compared to silicon sublimation from SiC(0001). Additionally, we have developed high quality ohmic contacts to graphene, which improves the contact resistance by nearly 6000x (5 x 10-8 Ohm-cm2) compared to untreated metal/graphene interfaces. Finally, we discuss integration of ultra-thin high-k dielectrics and their impact on graphene transport. Atomic layer deposited oxide heterostructures (seed not equal to overlayer) have deleterious effects on Hall mobility while homostructures lead to an increase in Hall mobility. Importantly, 5nm thick EBPVD Hf O2 gate dielectrics are successfully demonstrated and show improved Hall mobility, on-off ratio, and transconductance relative to Al 2 O3 gates and heterostructure gates.

  14. High frequency fishbones excited by near perpendicular neutral beam injection

    SciTech Connect

    Zhou Deng

    2006-07-15

    The high frequency fishbone instability observed in experiments with near perpendicular neutral beam injection is interpreted as the ideal internal kink mode destabilized by circulating energetic ions. The mode frequency is close to the transit frequency of circulating ions. The beta value of the circulating ions is required to peak on the magnetic axis and the average value within the q=1 magnetic surface must exceed a critical value for the mode to grow up.

  15. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  16. The ADMX-HF (High Frequency) Experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, K. W.

    2013-04-01

    For many years, the Axion Dark Matter eXperiment (ADMX) has searched for dark-matter axions by their resonant conversion to photons in a high-Q microwave cavity embedded in a strong magnetic field; to date focusing on the ˜1 GHz range, or ma˜ few micro-eV. A second platform, ADMX-HF is now being constructed at Yale University which will focus on technology development and a first look at data in the ˜10 GHz range. Consisting of a 9T superconducting magnet (40 cm long x 14 cm diameter), a dilution refrigerator and a quantum-limited receiver based on Josephson Parametric Amplifiers (JPA) ADMX-HF is projected to achieve sensitivity within the axion model band, despite its smaller volume than ADMX. ADMX-HF is a collaboration of Yale, JILA/Colorado, UC Berkeley and LLNL, and by agreement will create a unified data set with ADMX.

  17. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  18. [Experiences in high frequency audiometry and possible applications (author's transl)].

    PubMed

    Dieroff, H G

    1976-09-01

    Observations on the ultrasonic perception of noise-impaired persons gave rise to use the high frequency audiometry described by Fletcher for the early recognition of noise-induced damages. Using commercial equipment we found that the earpiece was not adapted to high frequency conditions. The adaptation problem and ways of modification are described in detail. After having improved the coupling features reproducible hearing curves were obtained. Examinations were carried out on workers, whose noise exposure exceeded the critical intensity by only a few dB. The following 3 categories of impairment were found: 1. Normal hearing between 125 and 8,000 Hz as well as in the high frequency region. 2. Unsignificant noise-induced impairments between 125 and 8,000 Hz; no high frequency hearing. 3. Acoustic hearing; no high frequency hearing. The results are discussed. It is supposed that high frequency hearing losses due to noise and chemical noxious exposure (streptomycin) are valuable in diagnostics and prognostics. Accordingly persons are to be assessed as noise sensitive, when there is no more high frequency hearing before practising noise work.

  19. SCATTTERING OF HIGH-ENERGY PARTICLES AT A COLLISIONLESS SHOCK FRONT: DEPENDENCE ON THE SHOCK ANGLE

    SciTech Connect

    Gedalin, M.; Dröge, W.; Kartavykh, Y. Y.

    2015-07-10

    Many shock acceleration theories deal with gyrophase-averaged particle distributions that depend only on the energy and pitch angle of the particles. Diffusive shock acceleration includes shock crossing as a necessary component. As long as the shock width is much smaller than the mean free path of a particle, the crossing is governed by the macroscopic fields inside the transition layer. The dynamics of high-energy particles in these fields is non-adiabatic and gyrophase dependent. The magnetic moment is not conserved in a wide range of shock angles, nor is the condition of reflection determined by the magnetic bottle relation. Instead, for a pitch angle and unknown gyrophase of an incident particle there is a finite probability of reflection. This probability varies between zero and unity in a wide range of pitch angles. In this work we investigate how the matching conditions at the shock front could be modified with the gyrophase dependence taken into account, e.g., in the form of the scattering probabilities.

  20. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  1. Application of distal metaphyseal osteotomy for treatment of high intermetatarsal angle bunion deformities.

    PubMed

    Oloff, L M; Bocko, A P

    1998-01-01

    This is a retrospective study of 10 patients (13 feet) with moderate to severe hallux valgus who underwent a chevron or modified chevron osteotomy with multiple adjunctive soft-tissue releases for surgical treatment. Radiographic and subjective results were evaluated with an average follow-up of 24 months (range, 10-41). Preoperative criteria included an intermetatarsal (IM) angle of greater than 16 degrees (average of 18.4 degrees) and painful hallux valgus deformity. Average preop hallux abductus was 35.4 degrees (range, 25 degrees-48 degrees). The average reduction in the actual IM angle was (-) 5.2 degrees with a relative IM correction of (-) 11.6 degrees. Average postoperative hallux abductus angle was 7.0 degrees (range, 0 degree-22 degrees). Subjectively, all patients were satisfied with their results and stated they would have the procedure again. No complications were noted in this patient population, including, infection, avascular necrosis, hallux varus, and recurrence of deformity. The chevron osteotomy was found to be successful in this population with high intermetatarsal angles when appropriate consideration was given to correction of soft-tissue-deforming forces and contractures.

  2. High-Flip-Angle slice-selective parallel RF transmission with 8 channels at 7 Tesla

    PubMed Central

    Setsompop, Kawin; Alagappan, Vijayanand; Zelinski, Adam C.; Potthast, Andreas; Fontius, Ulrich; Hebrank, Franz; Schmitt, Franz; Wald, Lawrence L.; Adalsteinsson, Elfar

    2008-01-01

    At high magnetic field, B1+ non-uniformity causes undesired inhomogeneity in SNR and image contrast. Parallel RF transmission using tailored 3D k-space trajectory design has been shown to correct for this problem and produce highly uniform in-plane magnetization with good slice selection profile within a relatively short excitation duration. However, at large flip angles the excitation k-space based design method fails. Consequently, several large-flip-angle parallel transmission designs have recently been suggested. In this work, we propose and demonstrate a large-flip-angle parallel excitation design for 90° and 180° spin-echo slice-selective excitations that mitigate severe B1+ inhomogeneity. The method was validated on an 8-channel transmit array at 7T using a water phantom with B1+ inhomogeneity similar to that seen in human brain in vivo. Slice-selective excitations with parallel RF systems offer means to implement conventional high-flip excitation sequences without a severe pulse-duration penalty, even at very high B0 field strengths where large B1+ inhomogeneity is present. PMID:18799336

  3. Optimized x-ray source scanning trajectories for iterative reconstruction in high cone-angle tomography

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.

    2016-10-01

    With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.

  4. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  5. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  6. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  7. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  8. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise.

    PubMed

    Schubotz, Wiebke; Brand, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4-8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception.

  9. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  10. High-frequency threshold measurements using insert earphones.

    PubMed

    Tang, H; Letowski, T

    1992-10-01

    Several recent studies have reported large intersubject variability of high-frequency thresholds measured with circumaural earphones. In the present study, high-frequency thresholds of 10 subjects were measured with circumaural (Sennheiser HD-250) and insert (Etymotic ER-1) earphones at 10, 12, 14, and 16 kHz. Overall results show significantly smaller variability of the threshold data obtained with insert earphones than with circumaural earphones. The above data indicate that insert earphones may be more suitable for high-frequency testing than circumaural earphones.

  11. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  12. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    PubMed Central

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-01-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000

  14. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  15. Reconfigurable flight control for high angle of attack fighter aircraft, with wind tunnel study

    NASA Astrophysics Data System (ADS)

    Siddiqui, Bilal Ahmed

    In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology combining experimental and numerical aerodynamic prediction was proposed and implemented. For this a wind-tunnel study of a similar configuration was carried out to study the aerodynamics at low speeds and high angle of attack. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage.

  16. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.

    2012-11-01

    We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC) captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size.

  17. Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.

    2012-07-01

    We describe here a new instrument for imaging hydrometeors in freefall. The Multi-Angle Snowflake Camera (MASC) captures high resolution photographs of hydrometeors from three angles while simultaneously measuring their fallspeed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fallspeed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than graupel particles of similar size.

  18. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    NASA Astrophysics Data System (ADS)

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-07-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.

  19. Radio-frequency (RF) electromagnetic emissions from materials under high-frequency mechanical excitation

    NASA Astrophysics Data System (ADS)

    Sorensen, Christian; Moore, David

    2017-01-01

    Direct contact piezoelectric transducers were used to excite compacted polycrystalline dielectric material samples with high amplitude but short duration ultrasound through a frequency range of 50 kHz to 10 MHz, while near field RF emissions were measured in 12 frequency bands from 18 to 750 GHz using a suite of detectors. Emissions were observed only in three detectors, covering the 40-75 GHz, 110-170 GHz, and 170-260 GHz frequency ranges. Emission amplitudes appear to rise nonlinearly with applied ultrasound amplitude, and the emission amplitudes versus ultrasound frequency are different than the thermal responses of these samples. Data comparing thermal responses and electromagnetic emissions versus ultrasound frequency and amplitude for several sample types (oxidizers and energetic materials) are reported.

  20. Aerial, high-angle view of Apollo 10 on Pad B, Launch Complex 39, KSC

    NASA Image and Video Library

    1969-05-04

    S69-33854 (4 May 1969) --- Aerial (high-angle, clasp) view of the Apollo 10 (Spacecraft 106/Lunar Module 4/Saturn 505) space vehicle on Pad B, Launch Complex 39, Kennedy Space Center. This photograph of the 363-feet tall Apollo/Saturn V stack was taken during pull back of the mobile service structure. The Apollo 10 crew will be astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan.

  1. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  2. Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack

    DTIC Science & Technology

    2017-08-07

    of downrange travel ) is also evident in the horizontal data. Fig. 3 Center-of-gravity motion The rolling motion is captured in Fig. 4. These...data are strongly linear with distance travelled because the launch spin rate is around 90 Hz and roll decelerates slightly due to aerodynamic damping...This vehicle rolls about 70 times over 200 m of downrange travel . For some of the high-angle-of-attack flights a significant amount of roll data

  3. Computational Investigation of Incompressible Airfoil Flows at High Angles of Attack

    DTIC Science & Technology

    1988-12-01

    Incompressible Airfoil Flows at High Angles of Attack by John Mark Mathre Lieutenant, United States Navy B.S., United States Naval Academy, 1978 Submitted...Similarly, in the y-direction the Navier-Stokes equation is ODv v 3v I P Z) v 32v - + U- + v- =- - + V(- + -). (2.24) Zt Zx zy p Dy x 2 Y2 11 III. STEADY

  4. Differential Game Based Guidance Law for High Angle of Attack Missiles

    DTIC Science & Technology

    1996-01-01

    Copyright 1996 by Optimal Synthesis . All Rights Reserved. Differential Game Based Guidance Law for High Angle of Attack Missiles By P. K. Menon and...G.B. Chatterji* Optimal Synthesis 450 San Antonio Road, Suite 53 Palo Alto, CA 94303 Abstract A nonlinear differential game theoretic intercept...Scientists, Optimal Synthesis Inc. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is

  5. Small-angle stability analysis of a linear control system for a high power communication satellite

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1972-01-01

    A small angle stability analysis is presented for one particular configuration of a high power communication satellite having a linear control system. Both the central body and the solar array are treated as rigid bodies. The control system studied consists of three-axis control of the central body and one-axis control of the solar array rotation relative to the central body. The results yield preliminary indications of the relation of stability to satellite inertias and control gains.

  6. NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations

    NASA Astrophysics Data System (ADS)

    Holly, R.; Damyanovich, A.; Peemoeller, H.

    2006-05-01

    A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.

  7. The influence of the magnetron frequency, the servo settings and the gantry angle on the flatness and the dose calibration of a linear accelerator.

    PubMed

    Blad, B; Jacobsson, L; Wendel, P

    1998-01-01

    For the Philips SL75/5, we have noticed that the performance of the beam (e.g. the hump) varies with the settings of the magnetron frequency and the gantry angle. This study investigated these changes and the optimum magnetron frequency setting was determined. The relation between the relative absorbed dose measured by the accelerator and the relative absorbed dose measured for different amounts of the hump in the centre of the beam was found. Results from a model and from measured values were compared. The beam was studied for different gantry angles and for different adjustments of the beam servo systems. The profiles obtained showed some variations, but were reduced when optimal adjustments of the servos were performed.

  8. Coexistence of low-angle normal and high-angle strike- to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy)

    NASA Astrophysics Data System (ADS)

    Liotta, Domenico; Brogi, Andrea; Meccheri, Marco; Dini, Andrea; Bianco, Caterina; Ruggieri, Giovanni

    2015-10-01

    In this paper we deal with the kinematic and chronological relationships among low angle normal faults and high angle strike- to oblique-slip faults in an exhumed mineralized area, where shear veins and minor associated structures filled with the same mineral assemblage has been interpreted as indicators of coeval fault activities. The study area is located in the eastern Elba Island, where a mineralized late Miocene-early Pliocene low-angle normal fault (Zuccale fault) and high-angle strike- to oblique-slip faults extensively crop out, the latter giving rise to the Capoliveri-Porto Azzurro shear zone. The field study highlighted that: (a) the damage zones of both fault sets are mineralized by syn-kinematic tourmaline, graphite, Fe-oxides and/or Fe-oxyhydroxides shear veins, thus indicating their coeval activity during the hydrothermal event (5.9-5.4 Ma); (b) the Capoliveri-Porto Azzurro shear zone is constituted by a network of fractures, whose geometry and kinematics display the evolution of a NE-trending left-lateral oblique-slip transtensional shear zone; (c) its internal architecture is defined by tourmaline and Fe-oxides and/or Fe-oxyhydroxides mineralized veins, framed in the same kinematic field characterizing the Zuccale fault evolution; for this reason, the Capoliveri-Porto Azzurro shear zone is interpreted as a transfer zone active during the low-angle fault activity; (d) the Capoliveri-Porto Azzurro shear zone played the role of a significant normal fault during the Late Pliocene-Pleistocene, therefore favouring the deepening of the Tyrrhenian Basin with respect to the uplift and exhumation of the mid-crustal rocks of the Elba Island. It is finally argued that the interaction between the low-angle normal fault and the almost vertical shear zone determined an increase of permeability, favouring the mineralizing fluid flow during the hydrothermal stage and, reasonably, the previous emplacement of the Porto Azzurro magmatic body.

  9. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-10-30

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

  10. Size estimates of Titan's aerosols based on Voyager high-phase-angle images

    NASA Technical Reports Server (NTRS)

    Rages, K.; Pollack, J. B.; Smith, P. H.

    1983-01-01

    Limits on the physical properties of the scattering haze near the top of Titan's atmosphere are derived from data obtained from seven high-phase-angle images from Voyager 1 and 2. From the ratio of the intensities observed at two different high phase angles, an estimate can be made of the forward-scattering lobe of the single-scattering phase function. Comparing the forward-scattering estimate with diffraction lobes from particles of different radii, it is concluded that the average radius of the particles found in the upper few tenths of an optical depth exceeds 0.19 micron. Judging from data observed at four different phase angles, the haze particles probably have a refractive index near 1.6 and a mean size of about 0.5 micron, if the widths of their diffraction peaks are close to those for equal-volume spheres. However, the highly polarizing nature of the particles over a broad wavelength-bandpass (Tomasko and Smith, 1982; West et al, 1983) combined with their forward-scattering behavior makes it very unlikely that the particles are spherical. The nonsphericity contributes to the uncertainty about the radii of the particles, but it is thought that the average radius is several tenths of a micron.

  11. High-frequency thresholds: circumaural earphone versus insert earphone.

    PubMed

    Valente, M; Valente, M; Goebel, J

    1992-11-01

    Benefits of high-frequency audiometry in monitoring hearing sensitivity of patients administered ototoxic medications are well established. High-frequency thresholds have been reported to be variable, due in part to small differences in the placement of the earphone diaphragm over the opening of the ear canal. Reliability may be improved by using insert earphones (ER-2) when obtaining high-frequency thresholds. The purposes of this study were to determine high-frequency threshold test-retest reliability using Koss HV/1A+ and ER-2 earphones and to determine if significant differences are present between high-frequency thresholds obtained using these two earphones. Results obtained on 40 ears of 20 normal hearing adults revealed that differences between the test and retest thresholds for each earphone were not significant. Intrasubject threshold differences between the test and retest thresholds for each earphone were, for the most part, within +/- 10 dB at all test frequencies. Further, significantly greater intensity was required to measure threshold when using the ER-2 earphone when compared to the Koss HV/1A+ at all test frequencies.

  12. High-frequency subband compressed sensing MRI using quadruplet sampling.

    PubMed

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-11-01

    To present and validate a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, compressed sensing can be used for high-spatial-frequency regions, whereas parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for compressed sensing and regular undersampling for parallel imaging. Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution three-dimensional breast imaging with a net acceleration of 11-12. The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. Copyright © 2012 Wiley Periodicals, Inc.

  13. Research on controlling middle spatial frequency error of high gradient precise aspheric by pitch tool

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan; Zhong, Xianyun

    2016-09-01

    Extreme optical fabrication projects known as EUV and X-ray optic systems, which are representative of today's advanced optical manufacturing technology level, have special requirements for the optical surface quality. In synchroton radiation (SR) beamlines, mirrors of high shape accuracy is always used in grazing incidence. In nanolithograph systems, middle spatial frequency errors always lead to small-angle scattering or flare that reduces the contrast of the image. The slope error is defined for a given horizontal length, the increase or decrease in form error at the end point relative to the starting point is measured. The quality of reflective optical elements can be described by their deviation from ideal shape at different spatial frequencies. Usually one distinguishes between the figure error, the low spatial error part ranging from aperture length to 1mm frequencies, and the mid-high spatial error part from 1mm to 1 μm and from1 μm to some 10 nm spatial frequencies, respectively. Firstly, this paper will disscuss the relationship between slope error and middle spatial frequency error, which both describe the optical surface error along with the form profile. Then, experimental researches will be conducted on a high gradient precise aspheric with pitch tool, which aim to restraining the middle spatial frequency error.

  14. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  15. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  16. 200 Hz repetition frequency joule-level high beam quality Nd:YAG nanosecond laser

    NASA Astrophysics Data System (ADS)

    Qiu, Jisi; Tang, Xiongxin; Fan, Zhongwei; Wang, Haocheng

    2016-06-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed out. The laser is designed as a MOPA system mainly including single longitudinal mode seed, pre-amplifier unit an d power amplifier unit. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate the laser beam distortion. Under the condition of 200 Hz high repetition frequency and 8.19 μJ single pulse energy injected by the single longitudinal mode seed, 1.53 J output energy is gained. The output laser beam is of 9 mm diameter, 7.41 ns pulse width, the far field beam spot 1.32 times the value of the diffraction limit, 1.2% energy stability (RMS) and less than 13 μrad far field beam spot angle shift.

  17. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  18. Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation

    DTIC Science & Technology

    2010-06-01

    resurveyed the harbor with both sidescan sonar (on REMUS) and SAS (on the SSAM AUV) provided by NAVSEA Costal Systems Command. NOMWC, NAVOCEANO and...Synthetic Aperture Sonar Low Frequency vs. High Frequency Automatic Contact Generation J. R. Dubberley and M. L. Gendron Naval Research...Laboratory Code 7440.1 Building 1005 Stennis Space Center, MS 39529 USA Abstract- Synthetic Aperture Sonar (SAS) bottom mapping sensors are on the

  19. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  20. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  1. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  2. The transient roll moment response due to forebody tangential blowing at high angles of attack

    NASA Astrophysics Data System (ADS)

    Chow, Jonathan Kwokching

    The sustained ability for controlled flight at high angles of attack is desirable for future aircraft. For combat aircraft, enhancing maneuverability is important to increasing its survivability. For future supersonic commercial aircraft, an increase in lift at high angles of attack leads to improved performance during take-offs and landing, and a reduction in noise pollution. However, nonlinear and unsteady phenomena, such as flow separation and vortex shedding dominate the aerodynamics in the high angle of attack regime. These phenomena cause the onset of lateral loads and decrease the effectiveness of conventional control surfaces. For conventional aircraft, controlled flight at high angle of attack is difficult or unfeasible without augmented means of control and a good understanding of their impact on vehicle characteristics and dynamics. The injection of thin sheets of air tangentially to the forebody of the vehicle has been found to be an extremely promising method for augmenting the control of a flight vehicle at high angles of attack. Forebody Tangential Blowing (FTB) allows the flow structure to be altered in a rational manner and increase the controllability of the vehicle under these flight conditions. The feasibility of using FTB to control the roll-yaw motion of flight vehicles has been demonstrated. Existing knowledge of FTB's nonlinear impact on the aerodynamic moment responses is limited. Currently available dynamic models predict the general trends in the behavior but do not capture important transient effects that dominate the responses when small amounts of blowing is used. These transients can be large in comparison to the steady-state values. This thesis summarizes the experimental and theoretical results of an investigation into the transient effects of Forebody Tangential Blowing. The relationship between the aerodynamic roll moment, vortical flowfield, and blowing strength is examined to obtain a fundamental understanding of the physics of

  3. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    PubMed

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

  4. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Tobak, M.; Malcolm, G. N.

    1980-01-01

    This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.

  5. The use of low departure aspheric surfaces in high quality wide angle lenses

    NASA Astrophysics Data System (ADS)

    Dalzell, Kristen E.; Jonas, Reginald P.; Wallace, Brian P.

    2015-09-01

    Modern lens designs for digital sensors, such as those required in medium volumes for cinematography, often require the use of one or two high departure aspheric surfaces. With departures from best fit sphere of up to a few millimeters, the use of such surfaces are accompanied by a number of consequences: high cost metrology, very tight opto-mechanical tolerances and image artifacts due to the sub-aperture grinding and polishing process. Previously we examined the use of multiple aspheric surfaces with very low departures from best fit sphere (BFS) and concluded that advantages may be gained in standard and telephoto lenses, but not in wide angle lens designs1. In this work we consider the potential benefits of low departure aspheric surfaces, as applied to wide angle lenses in particular. We review the number, placement, and nature of aspheric surfaces in some wide angle lens design examples, and look at the potential to redesign with an increased number of low departure aspheric surfaces that have the potential to be manufactured without the need for computer generated holograms (CGH's). The use and limitations of modern interferometers capable of measuring aspheric surfaces without the use of CGH's will be considered. In one example we examine the performance, manufacturing, and cost perspective, paying particular attention to testing and mechanical alignment tolerances.

  6. Aerodynamic parameters of High-Angle-of attack Research Vehicle (HARV) estimated from flight data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Ratvasky, Thomas R.; Cobleigh, Brent R.

    1990-01-01

    Aerodynamic parameters of the High-Angle-of-Attack Research Aircraft (HARV) were estimated from flight data at different values of the angle of attack between 10 degrees and 50 degrees. The main part of the data was obtained from small amplitude longitudinal and lateral maneuvers. A small number of large amplitude maneuvers was also used in the estimation. The measured data were first checked for their compatibility. It was found that the accuracy of air data was degraded by unexplained bias errors. Then, the data were analyzed by a stepwise regression method for obtaining a structure of aerodynamic model equations and least squares parameter estimates. Because of high data collinearity in several maneuvers, some of the longitudinal and all lateral maneuvers were reanalyzed by using two biased estimation techniques, the principal components regression and mixed estimation. The estimated parameters in the form of stability and control derivatives, and aerodynamic coefficients were plotted against the angle of attack and compared with the wind tunnel measurements. The influential parameters are, in general, estimated with acceptable accuracy and most of them are in agreement with wind tunnel results. The simulated responses of the aircraft showed good prediction capabilities of the resulting model.

  7. High-angle-of-attack stability and control improvements for the EA-6B Prowler

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L.; Hahne, David E.; Masiello, Matthew F.; Gato, William

    1987-01-01

    The factors involved in high-angle-of-attack directional divergence phenomena for the EA-6B ECM aircraft have been investigated in NASA-Langley wind tunnel facilities in order to evaluate airframe modifications which would eliminate or delay such divergence to angles-of-attack farther removed from the operational flight envelope of the aircraft. The results obtained indicate that an adverse sidewash at the aft fuselage and vertical tail location is responsible for the directional stability loss, and that the sidewash is due to a vortex system generated by the fuselage-wing juncture. Modifications encompassing a wing inboard leading edge droop, a wing glove strake, and a vertical fin extension, have significantly alleviated the stability problem.

  8. Supermassive Black Hole Mass and Spiral Galaxy Pitch Angle at Intermediate to High Redshift

    NASA Astrophysics Data System (ADS)

    Hughes, John A.; Barrows, R. S.; Berrier, J. C.; Davis, B. L.; Kennefick, D.; Kennefick, J. D.; Lacy, C. H. S.; Seigar, M. S.; Shields, D. W.; Zoldak, K. A.

    2012-01-01

    A possible correlation between spiral galaxy pitch angle (P) and the mass of the central supermassive black hole (SMBH) of the galaxy (M) was reported (Seigar et al. 2008) from a sample of 27 nearby galaxies. Here we investigate the extension of this result to intermediate and high redshifts. We have selected AGN showing spiral structure in their host galaxies from the GOODS fields and from a sample of AGN with reverberation mapping SMBH mass estimates. After careful measure of the pitch angle of these galaxies, we compare the mass found from the M-P relation to that reported from reverberation mapping or estimated from their MgII profiles. By extending the sample to higher redshift, we demonstrate how the M-P relationship can be used to estimate the mass of SMBHs in the center of galaxies with imaging data alone, a useful tool in the study of galaxy evolution.

  9. Dislocation structures in high angle 001 twist boundaries in magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sun, C. P.

    1980-12-01

    A systematic transmission electron microscope (TEM) investigation of possible secondary grain boundary dislocation (GBD) structures in 001 high angle twist boundaries in MgO was carried out using bicrystals of controlled geometry. Techniques were developed to fabricate an extensive series of MgO bicrystals containing 001 twist boundaries with twist angle, theta, covering the entire possible range, 0 theta less than or equal to 45 deg. Tables of MgO single crystals with cleaved 100 faces were welded together by hot pressing. The TEM specimens were prepared by a combination of mechanical and chemical jet polishing using phosphoric acid. Weak beam microscopy was used extensively since this technique is capable of producing a characteristic narrow defect image width, and hence allows complicated GBD networks to be resolved more readily than by use of conventional microscopy.

  10. Angled cavity photonic crystal lasers with asymmetrical high-order surface gratings

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Wang, Yufei; Qu, Hongwei; Zhao, Shaoyu; Li, Lunhua; Zheng, Wanhua

    2017-03-01

    980 nm angled cavity photonic crystal (PC) laser diodes with asymmetrical high-order surface gratings (aHSGs) are proposed and fabricated. The one-dimensional PC structure in the epitaxy is used to expand the fundamental transverse mode and reduce the vertical divergence. An angled cavity with aHSGs is fabricated to achieve a nearly diffraction-limited beam quality and narrow spectral width. Experimentally, a continuous-wave output of 0.85 W/facet, a low divergence of 1.5 × 10.6°, and a narrow spectral width of 0.07 nm are achieved. The lateral beam quality is superior with an M\\| 2 of 1.96.

  11. A review of some Reynolds number effects related to bodies at high angles of attack

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1984-01-01

    A review of some effects of Reynolds number on selected aerodynamic characteristics of two- and three-dimensional bodies of various cross sections in relation to fuselages at high angles of attack at subsonic and transonic speeds is presented. Emphasis is placed on the Reynolds number ranges above the subcritical and angles of attack where lee side vortex flow or unsteady wake type flows predominate. Lists of references, arranged in subject categories, are presented with emphasis on those which include data over a reasonable Reynolds number range. Selected Reynolds number data representative of various aerodynamic flows around bodies are presented and analyzed and some effects of these flows on fuselage aerodynamic parameters are discussed.

  12. High and low spatial frequencies in website evaluations.

    PubMed

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  13. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  14. Microscale capillary wave turbulence excited by high frequency vibration.

    PubMed

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  15. High-frequency current oscillations in graphene-boron nitride resonant tunnel diodes

    NASA Astrophysics Data System (ADS)

    Greenaway, Mark; Gaskell, Jenn; Eaves, Laurence; Novoselov, Kostya; Mishchenko, Artem; Geim, Andre; Fromhold, Mark

    The successful realisation of multilayer graphene-hBN-graphene resonant tunnelling diodes (graphene- RTDs) with negative differential conductance (NDC) and MHz current oscillations offers the exciting possibility of exploiting them as high-frequency oscillators and mixers. In this paper, we examine their potential for generating higher frequencies by simulating the oscillations in the tunnel current and charge that arise when the device is biased in the NDC region and placed in a resonant circuit. Using the Bardeen transfer Hamiltonian method, we examine the effect on the device characteristics of the twist angle, θ, between the two graphene electrodes, the hBN barrier thickness and of the carrier density in the graphene electrodes, which can be adjusted by chemical doping or by an applied bias voltage. The simulations accurately reproduce our recently-reported measurements on these RTDs (Fig. 4,). The results of simulations show that frequencies of tens of GHz are achievable by optimising the device parameters. Leverhulme Trust, UK.

  16. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    DOEpatents

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  17. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  18. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  19. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    PubMed

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  20. Frequencies of Inaudible High-Frequency Sounds Differentially Affect Brain Activity: Positive and Negative Hypersonic Effects

    PubMed Central

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. PMID:24788141

  1. Global Stability and Control Analysis of Aircraft at High Angles-of-Attack.

    DTIC Science & Technology

    1979-08-31

    6601ISOSLT 70 / .. ,.-j4tY CLASSIrIgCATION OF THIS PAGlVt’Whg Doea Knta.e) 20. (cont.) standing of the dynamic instabilities at high angles-of-attack. A basic...and this agrees with flight test results. The other groups have Cnr > 0 for high a, and so are less realistic. In addition to Cnr, the effects on...Silver Spring, MD 20910 Dover, NJ 07801 J. Wingate , Code R44 1 N. Coleman, DRDAR-SCFCC 1 ""Naval Air Test Center NASA Langley Research Center

  2. Extended high frequency audiometry in users of personal listening devices.

    PubMed

    Kumar, Poornima; Upadhyay, Prabhakar; Kumar, Ashok; Kumar, Sunil; Singh, Gautam Bir

    Noise exposure leads to high frequency hearing loss. Use of Personal Listening Devices may lead to decline in high frequency hearing sensitivity because of prolonged exposure to these devices at high volume. This study explores the changes in hearing thresholds by Extended High Frequency audiometry in users of personal listening devices. A descriptive, hospital based observational study was performed with total 100 subjects in age group of 15-30years. Subjects were divided in two groups consisting of 30 subjects (Group A) with no history of Personal Listening Devices use and (Group B) having 70 subjects with history of use of Personal Listening Devices. Conventional pure tone audiometry with extended high frequency audiometry was performed in all the subjects. Significant differences in hearing thresholds of Personal Listening Device users were seen at high frequencies (3kHz, 4kHz and 6kHz) and extended high frequencies (9kHz, 10kHz, 11kHz, 13kHz, 14kHz, 15kHz and 16kHz) with p value <0.05. Elevated hearing thresholds were observed in personal listening devices users which were directly proportional to volume and duration of usage. In present study no significant changes were noted in hearing thresholds in PLD users before 5years of PLD use. However, hearing thresholds were significantly increased at 3kHz, 10kHz, 13kHz in PLD users having >5years usage at high volume. Thus, it can be reasonably concluded that extended high frequencies can be used for early detection of NIHL in PLD users. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. THE RELATION OF FREQUENCY TO THE PHYSIOLOGICAL EFFECTS OF ULTRA-HIGH FREQUENCY CURRENTS

    PubMed Central

    Christie, Ronald V.; Loomis, Alfred L.

    1929-01-01

    1. Biological effects of electromagnetic waves emitted by a vacuum tube oscillator have been studied at frequencis ranging from 8,300,000 to 158,000,000 cycles per second (1.9 to 38 meters wave-length). 2. The effects produced on animals can be fully explained on the basis of the heat generated by high frequency currents which are induced in them. 3. No evidence was obtained to support the theory that certain wave-lengths have a specific action on living cells. 4. At frequencies below 50,000,000 cycles, the effect of these radiations on animals is proportionate to the intensity of the electro-magnetic field. As the frequency is increased beyond this point, the amount of induced current is diminished and the apparent lethality of the radiation is decreased. This can be explained by changes occurring in the dielectric properties of tissues at low wave-lengths. PMID:19869549

  4. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  5. Small angle scattering methods to study porous materials under high uniaxial strain

    NASA Astrophysics Data System (ADS)

    Le Floch, Sylvie; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-01

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  6. Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods.

    PubMed

    Dong, Jie; Wang, Qin; Zhang, Yujie; Zhu, Zhaoqi; Xu, Xianghong; Zhang, Junping; Wang, Aiqin

    2017-01-18

    Superamphiphobic coatings with low sliding angles (SAs) and high durability are very attractive in academic and industrial areas but are very challenging to invent. Here, inspired by Maya Blue, we report for the first time colorful superamphiphobic coatings with low SAs and high durability by the combination of natural palygorskite (PAL) nanorods and organosilanes. The coatings were characterized using a wide range of electron microscopy and other analytical techniques. Different from the previously reported methods, the micro/nanostructure of the superamphiphobic coatings were constructed by using the abundant natural PAL nanorods as the building blocks. Superamphiphobicity of the coatings depends on surface morphology and chemical composition of the coatings, which can be regulated by the concentrations of PAL and organosilanes. The colorful superamphiphobic coatings feature high contact angles and low SAs for various liquids, including water and n-decane. The coatings also showed high mechanical, environmental, chemical, and thermal durability even under harsh conditions. Moreover, the coatings in different colors with comparable superamphiphobicity and durability can be prepared using different cationic dyes applied onto various substrates via the same approach. The colorful superamphiphobic coatings with low SAs and high durability may be useful in various fields, e.g., anticreeping of oils and restoration of cultural relics.

  7. Small angle scattering methods to study porous materials under high uniaxial strain

    SciTech Connect

    Le Floch, Sylvie Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  8. Local time variations of high-energy plasmaspheric ion pitch angle distributions

    DOE PAGES

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; ...

    2016-07-01

    Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupledmore » with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. Here, these results characterize the nature of the dearth of the near 90° pitch angle 1–10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1–10 eV H+ fluxes at different levels of geomagnetic activity.« less

  9. Local time variations of high-energy plasmaspheric ion pitch angle distributions

    SciTech Connect

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Larsen, Brian Arthur; Moldwin, Mark B.; Katus, Roxanne M.; Wygant, John R.

    2016-07-01

    Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. Here, these results characterize the nature of the dearth of the near 90° pitch angle 1–10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1–10 eV H+ fluxes at different levels of geomagnetic activity.

  10. Local time variations of high-energy plasmaspheric ion pitch angle distributions

    SciTech Connect

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Larsen, Brian Arthur; Moldwin, Mark B.; Katus, Roxanne M.; Wygant, John R.

    2016-07-01

    Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. Here, these results characterize the nature of the dearth of the near 90° pitch angle 1–10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1–10 eV H+ fluxes at different levels of geomagnetic activity.

  11. Local time variations of high-energy plasmaspheric ion pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Larsen, Brian A.; Moldwin, Mark B.; Katus, Roxanne M.; Wygant, John R.

    2016-07-01

    Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1-10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results characterize the nature of the dearth of the near 90° pitch angle 1-10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1-10 eV H+ fluxes at different levels of geomagnetic activity.

  12. Low-frequency and high-frequency all-fiber modulators based on birefringence modulation.

    PubMed

    Boyain, A R; Martínez-León, L; Cruz, J L; Diez, A; Andrés, M V

    1999-10-20

    In-line optical modulators with low insertion losses and high maximum optical powers are required for Q switching and cavity dumping of fiber lasers as well as for nonlinear optical-fiber experiments. We report the design of polarimetric all-fiber modulators based on optical-fiber birefringence modulation combined with an all-fiber polarizer. Birefringence modulation involves a piezoelectric ceramic tube. This simple technique permits efficient low-frequency and high-frequency harmonic modulation, up to the megahertz range, as well as modulation of pulses shorter than 1 micros.

  13. Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation.

    PubMed

    Wang, Huaiyu; Kwok, Dixon T K; Wang, Wei; Wu, Zhengwei; Tong, Liping; Zhang, Yumei; Chu, Paul K

    2010-01-01

    Polytetrafluoroethylene (PTFE) is a commonly used medical polymer due to its biological stability and other attractive properties such as high hardness and wear resistance. However, the low surface energy and lack of functional groups to interact with the cellular environment have severely limited its applications in bone or cartilage replacements. Plasma immersion ion implantation (PIII) is a proven effective surface modification technique. However, when conducted on polymeric substrates, conventional PIII experiments typically employ a low pulsing frequency and short pulse duration in order to avoid sample overheating, charging, and plasma sheath extension. In this paper, a long pulse, high frequency O(2) PIII process is described to modify PTFE substrates by implementing a shielded grid in the PIII equipment without these aforementioned adverse effects. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements are carried out to reveal the surface effects of PTFE after long pulse, high frequency O(2) PIII and the results are compared to those obtained from conventional short pulse, low frequency O(2) PIII, O(2) plasma immersion, and the untreated control samples. Our results show that less oxygen-containing, rougher, and more hydrophobic surfaces are produced on PTFE after long pulse, high frequency O(2) PIII compared to the other 2 treatments. Cell viability assay, ALP activity test, and real-time PCR analysis are also performed to investigate the osteoblast behavior. It is clear that all 3 surface modification techniques promote osteoblast adhesion and proliferation on the PTFE substrates. Improvements on the ALP, OPN, and ON expression of the seeded osteoblasts are also obvious. However, among these treatments, only long pulse, high frequency O(2) PIII can promote the OCN expression of osteoblasts when the incubation time is 12 days. Our data unequivocally disclose that the long pulse, high frequency O(2) PIII

  14. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  15. A high frequency transformer model for the EMTP

    SciTech Connect

    Morched, A.; Marti, L.; Ottevangers, J. )

    1993-07-01

    A model to simulate the high frequency behavior of a power transformer is presented. This model is based on the frequency characteristics of the transformer admittance matrix between its terminals over a given range of frequencies. The transformer admittance characteristics can be obtained from measurements or from detailed internal models based on the physical layout of the transformer. The elements of the nodal admittance matrix are approximated with rational functions consisting of real as well as complex conjugate poles and zeros. These approximations are realized in the form of an RLC network in a format suitable for direct use with EMTP. The high frequency transformer model can be used as a stand-alone linear model or as an add-on module of a more comprehensive model where iron core nonlinearities are represented in detail.

  16. High-frequency jet ventilation in a neonatal foal.

    PubMed

    Bain, F T; Brock, K A; Koterba, A M

    1988-04-01

    High-frequency jet ventilation was performed on a premature foal for respiratory difficulty attributable to in utero-acquired pneumonia. The procedure involves delivery of compressed gas through a small-bore cannula at frequencies up to 400 cycles/min. Ventilation settings of drive pressure, frequency, and FIO2 were varied to optimize PaO2 and PaCO2 values. The foal was ventilated with this equipment for 14 hours. Evidence of a favorable response to this method of ventilation was observed in the form of improvement in arterial blood gas values as well as the foal's attitude and degree of respiratory effort. High-frequency jet ventilation appears to be a useful method of ventilation for respiratory disease in neonatal foals; however, there remains no clear-cut advantage over conventional positive-pressure ventilation.

  17. Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Martin, Rachel W.; Paulson, Eric K.; Zilm, Kurt W.

    2003-06-01

    Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature operation is integral to the mechanical design, enabling the temperature control necessary for investigation of biological macromolecules. Accurate measurement of the air temperature near the sample rotor is achieved using a fiber optic thermometer, which does not interfere with the rf electronics. We also demonstrate that acceptable line shapes are only readily achieved using zero magnetic susceptibility wire in construction of the sample coil. Computer simulation of the circuit aided in the physical design of the probe. Representative data illustrating the efficiency, rf homogeneity, and signal to noise factor of the probe are presented.

  18. High-Frequency-Induced Cathodic Breakdown during Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Nominé, A.; Nominé, A. V.; Braithwaite, N. St. J.; Belmonte, T.; Henrion, G.

    2017-09-01

    The present communication shows the possibility of observing microdischarges under cathodic polarization during plasma electrolytic oxidation at high frequency. Cathodic microdischarges can ignite beyond a threshold frequency found close to 2 kHz. The presence (respectively, absence) of an electrical double layer is put forward to explain how the applied voltage can be screened, which therefore prevents (respectively, promotes) the ignition of a discharge. Interestingly, in the conditions of the present study, the electrical double layer requires between 175 and 260 μ s to form. This situates the expected threshold frequency between 1.92 and 2.86 kHz, which is in good agreement with the value obtained experimentally.

  19. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  20. A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli

    2017-06-01

    The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.

  1. High frequency fluoroptic thermometry current sensing for weapon susceptibility testing

    SciTech Connect

    Cernosek, R.W.

    1988-01-01

    A high frequency current measurement technique for susceptibility testing is proposed. This technique uses a resistive element to produce a temperature change that is sensed by a fluoroptic thermometer. Laboratory testing has shown that RF currents as small as 1.5 mA are measureable for frequencies up to 10 GHz. Errors bounds in determining the current are 6 dB. 7 refs., 6 figs.

  2. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  3. Design of matching layers for high-frequency ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  4. Design of matching layers for high-frequency ultrasonic transducers.

    PubMed

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K; Shung, K Kirk; Zhou, Qifa

    2015-09-21

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  5. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  6. ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES

    SciTech Connect

    Mike L. Laue

    2001-09-28

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

  7. The Compact Structure of Blazars at High Frequencies

    NASA Astrophysics Data System (ADS)

    Marscher, A. P.

    2009-08-01

    VSOP-2 will provide a quantum leap in angular resolution at 43 GHz. Whether we can make use of this technological breakthrough depends critically on whether everything from the core of the jet to the central engine is opaque at this frequency. I argue that current data from the VLBA indicate that the core is often a physical structure rather than the location in the jet where the optical depth becomes unity. New superluminal knots identified by their polarization position angle are sometimes seen upstream in 43 GHz VLBA images. X-ray and γ-ray flares in BL Lac occur both as a knot propagates down a region with helical magnetic field and when it passes through the core. This bodes very well for the ability of VSOP-2 to explore the most interesting regions of blazar jets.

  8. Effects of High-Frequency Torsional Impacts on Rock Drilling

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohua; Tang, Liping; Tong, Hua

    2014-07-01

    High-frequency torsional impact drilling (HFTID) is a new technology which provides stable and efficient drilling. The goal of the present study is to investigate the effects of high-frequency torsional impacts on rock drilling. The impact parameters of the high-frequency torsional impact generator (HFTIG) are obtained by conducting a series of laboratory tests. The results of the tests reveal that the impact time decreases and the impact force increases with increasing impact frequency. The parameters are used as input for simulations of the rock crushing process, and a series of models for investigating the respective performance of HFTID and conventional drilling are developed. In addition, the Drucker-Prager criterion is used to describe the constitutive laws of the rock element, and the equivalent plastic strain criterion is adopted as the damage criterion. The models are run to simulate the dynamic rock crushing processes. The results of the simulations show that increase of the impact frequency results in a significant improvement in the rate of penetration (ROP), and a decrease in the life of the HFTIG. Considering the tool life and ROP, the optimum impact frequency of the HFTIG is 15 Hz. Finally, the performance of the HFTID technique is evaluated.

  9. Impedance Matching Network for High Frequency Ultrasonic Transducer for Cellular Applications

    PubMed Central

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K. Kirk

    2015-01-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber = 1.23) and 2.6 mm (fnumber = 0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (∣Y∣) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic

  10. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  11. NDE of friction stir welds of Al alloys using high-frequency acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Palit Sagar, S.; Miyasaka, C.; Ghosh, M.; Tittmann, B. R.

    2012-12-01

    This paper presents results on high-frequency ultrasonic imaging of bonds between different materials with application to friction stir welding (FSW). The unique feature of this paper is the use of high numerical aperture lenses that allow the excitation of leaky surface acoustic waves. These interact with weak bonds to produce wave interference of incident and reflected waves at weak bond interfaces. The interference provides a vivid contrast marking the weak interface bond as an easily recognisable feature. Presented are a description of the high-frequency lenses, simulation of the contrast phenomenon and the application to friction stir welds. The welds were between cast A356 and wrought 6061 Al alloys obtained under four different processing conditions. The selected sections of these were imaged at high frequencies in the GHz range by bringing the acoustic lenses towards the specimen's surface far enough so that the peripheral lens rays were incident at large enough angles to exceed the first and second critical angles and to excite leaky surface acoustic waves. The interference of these waves allowed the imaging of the bond details with a resolution of about 1.5-3 μm. The features and flaws observed in the images were correlated with those reported on in the literature as well as those obtained from scanning electron microscopy and tensile property evaluation. The quality of weld bonds inferred from the images was correlated to the tensile fracture experiments, which showed that improperly bonded specimens showed a relatively larger number of flaws. The results suggest that high-frequency acoustic microscopy is indeed a useful method for the diagnostic evaluation of FSW, especially since acoustic microscopes are now available as portable instruments commercially.

  12. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  13. High frequency ocean acoustic tomography observation at coastal estuary areas

    NASA Astrophysics Data System (ADS)

    Zhao, Zongxi; Zhang, Yu; Yang, Wuyi; Chen, Dongsheng

    2012-11-01

    The ocean acoustic tomography (OAT) technique can obtain oceanographic information and has received much interest. High frequency OAT (in a narrow kHz range) can be used for small and confined areas, such as estuaries and bays, with complicated hydrological conditions. In this study, we investigate the application of high-frequency reciprocal transmission OAT to assess the sound speed, temperature, and current field in the Xiamen sea area using computer simulations and sea experiments. Based on the temperature data obtained from remote sensing and the predefined stream function, high frequency OAT is employed to reconstruct the two-dimensional sound speed, temperature, and current fields of a 1.2km×1.2km small-scale region. The correlation coefficient of the computer inversion result and the original data is higher than 0.8. The result shows that increasing the number of acoustic stations decreases the influence of the travel-time errors in high frequency OAT; however, excessively increasing the number of stations could not significantly improve the inversion accuracy. Furthermore, this method has been tested by a sea experiment on monitoring the shallow water temperature of Wuyuan Bay. High frequency OAT might provide an effective method for temperature and current observation at coastal estuary areas.

  14. High-pressure structural studies of dysprosium using angle-dispersive x-ray diffraction

    SciTech Connect

    Shen Yongrong; Kumar, Ravhi S.; Cornelius, Andrew L.; Nicol, Malcolm F.

    2007-02-01

    We present structural results under pressure for elemental dysprosium (Dy) up to 87 GPa using in situ angle-dispersive x-ray diffraction measurements with synchrotron x rays and a diamond-anvil cell. Dy exhibits the structural transition sequence, hP2{yields}hR9{yields}hP4{yields}distorted cF4, from Rietveld full-profile refinements. Clear evidence is documented for the high-pressure distorted cF4 phase observed above 45 GPa to be an orthorhombic oS8 (Cmmm) structure for Dy in the lanthanide phase diagram.

  15. High-pressure structural studies of dysprosium using angle-dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Shen, Yong Rong; Kumar, Ravhi S.; Cornelius, Andrew L.; Nicol, Malcolm F.

    2007-02-01

    We present structural results under pressure for elemental dysprosium (Dy) up to 87GPa using in situ angle-dispersive x-ray diffraction measurements with synchrotron x rays and a diamond-anvil cell. Dy exhibits the structural transition sequence, hP2→hR9→hP4→distorted cF4, from Rietveld full-profile refinements. Clear evidence is documented for the high-pressure distorted cF4 phase observed above 45GPa to be an orthorhombic oS8 (Cmmm) structure for Dy in the lanthanide phase diagram.

  16. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54127 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  17. High angle view of Apollo 14 space vehicle on way to Pad A

    NASA Image and Video Library

    1970-11-09

    S70-54119 (9 Nov. 1970) --- A high-angle view at Launch Complex 39, Kennedy Space Center (KSC), showing the Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle on the way from the Vehicle Assembly Building (VAB) to Pad A. The Saturn V stack and its mobile launch tower sit atop a huge crawler-transporter. The Apollo 14 crewmen will be astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.

  18. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  19. Prediction of Aerodynamic Characteristics of Fighter Wings at High Angles of Attack.

    DTIC Science & Technology

    1984-03-01

    method coupled with iterative routines for wake location, viscous effects and vortex flows. Applications of the techniques to a number of...AD-A145 1@7 PREDICTION OF AERODYNAMIC CHARACTERISTICS OF FIGHTER i/2 WIINGS AT HIGH ANGLES OF ATTACK(U) ANALYTICAL METHODS INC REDMOND WA B MASKEW ET...ATTACK I B. !4askew T.S. Vaidyanathan J.K. Nathman F.A. Dvorak Analytical Methods , Inc. 2047 - 152nd Avenue N.E. Redmond, Washington 98052 CONTRACT

  20. Nonlinear light-matter interaction with femtosecond high-angle Bessel beams

    NASA Astrophysics Data System (ADS)

    Faccio, D.; Rubino, E.; Lotti, A.; Couairon, A.; Dubietis, A.; Tamošauskas, G.; Papazoglou, D. G.; Tzortzakis, S.

    2012-03-01

    We show that high-angle Bessel beams may significantly reduce nonlinear pulse distortions due, for example, to nonlinear Kerr effects (self-phase-modulation and self-focusing) yet enhance ionization and plasma generation. Holographic reconstruction of Bessel beams in water show intensity clamping at increased intensities and evidence of nontrivial plasma dynamics as the input energy is increased. The solvated electron density increases significantly and the cavitation-induced bubbles are ejected from the focal region indicating a significant excess plasma heating in the Bessel-pulse wake.

  1. High light extraction efficiency LEDs with asymmetric obtuse angle micro-structured roofs

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Jiang; Chao, Ju-Hung; Zhu, Wenbin; Yin, Stuart

    2016-09-01

    This study reports a high light extraction efficiency (LEE) light emitting diode (LED) by harnessing asymmetric obtuse angle micro-structured roofs. In comparison to conventional symmetric micro-structured roofs, the LEE has been improved from 62% to 73%. This represents an 11% improvement in LEE, which is significant for LED. It is speculated that this improvement is largely due to the increased surface area and better randomization on the direction of transmitted/reflected light, which enhances the escaping probability after multiple reflections.

  2. Electron self-energy of high temperature superconductors as revealed by angle-resolved photoemission.

    SciTech Connect

    Ding, H.; Norman, M. R.; Randeria, M.

    1997-12-05

    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essence of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.

  3. Intercalibration of High Frequency Channels on GPM Constellation

    NASA Astrophysics Data System (ADS)

    Ebrahimi, H.; Datta, S.; Jones, L.

    2014-12-01

    The Global Precipitation Measuring (GPM) mission is an international effort to measure precipitation worldwide every three hours. The research objective is to reduce errors in global rainfall estimates associated with temporal/spatial sampling by using a constellation of satellites. Inter-calibration of microwave radiometer channels using the GPM Microwave Imager (GMI) is a challenging task. In GPM constellation we have a combination of cross track and conical scanner sensors, the goal is to make a consistent measurement between all the sensors in this constellation. GMI is a conical scanner and is going to be a reference for the calibration of all the other sensors in the constellation., almost all the sensors with channels lower than 89 GHz are conical scanners, the inter-calibration between conical scanners have been done successfully over years, But for frequencies equal and higher than 89GHz, there is SSMIS on the Defense Meteorological Satellite Program (DMSP) which is a conical scanner, other sensors such as ATMS on AMSU, MHS on NOAA 18, NOAA 19, METOP A and METOP B and SAPHIR on Megha -Tropique , are cross track sensors. For these sensors each Instantaneous Field of View (IFOV) has different Earth incidence angles (EIA) and different slant paths through the atmosphere while conical scanner has constant earth incidence angle for all IFOVs. Here the double difference (DD) technique, which has been successfully applied for imager channel calibration before, has been applied to sounder channels, also the effect of using different surface emissivity models such as Elsasser's and RSS model and atmosphere models such as Rosenkranz and MonoRTM models, in these frequencies has been investigated.

  4. Investigation of iron cobalt nanocomposites for high frequency applications

    NASA Astrophysics Data System (ADS)

    Miller, Kelsy J.

    FeCo-based nanocomposite soft magnetic materials were developed in collaboration with Magnetics, Division of Spang and Co., for high frequency and high temperature application. Excellent soft magnetic properties include: low coercivity, high permeability, low energy losses, etc. These and large saturation inductions make these alloys attractive for fundamental studies and industrial applications. In this thesis, nanocrystalline composites will be developed from amorphous precursors for applications in two frequency regimes: 1) High frequency (0.01-30 MHz) such as high temperature power inductors, pulsed power transformers, and radio frequency (rf) magnetic heating; and 2) Ultra high frequency (30 MHz - 30 GHz) for radio frequency materials and electromagnetic interference (EMI) or radio frequency interference (RFI) absorption. New nanocomposites with higher saturation induction and high-temperature stability were developed with reduced glass forming elements such as Zr, Nb, Si and B. The amounts of the magnetic transition metals and early transition metal growth inhibitors were varied to determine trade-offs between higher inductions and fine microstructures and consequently low magnetic losses. Alloys having (Fe1-xCox)80+y+zNb4-y B13-zSi2Cu1 (25 ≤ x ≤ 50 and y = 0-4 and z = 0-3) nominal compositions were cast using planar flow casting (PFC) at Magnetics. Technical magnetic properties: permeability, maximum induction, remanence ratio, coercive field and high frequency magnetic losses as a function of composition and annealing temperature are reported after primary crystallization for 1 hr in a transverse magnetic field (TMF). Of note is the development of inductor cores with maximum inductions in excess of 1.76 T and 1.67 T in cores that exhibit power losses comparable with state of the art commercial soft magnetic alloys. For application in EMI/RFI absorption, FeCo-based alloys have the largest saturation induction and a tunable magnetic anisotropy which may

  5. High-frequency wave diffraction by an impedance segment at oblique incidence

    NASA Astrophysics Data System (ADS)

    Korol'kov, A. I.; Shanin, A. V.

    2016-11-01

    The plane problem of high-frequency acoustic wave diffraction by a segment with impedance boundary conditions is considered. The angle of incidence of waves is assumed to be small (oblique). The paper generalizes the method previously developed by the authors for an ideal segment (with Dirichlet or Neumann boundary conditions). An expression for the directional pattern of the scattered field is derived. The optical theorem is proved for the case of the parabolic equation. The surface wave amplitude is calculated, and the results are numerically verified by the integral equation method.

  6. Compressive inverse scattering: I. High-frequency SIMO/MISO and MIMO measurements

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert C.

    2010-03-01

    Inverse scattering from discrete targets with the single-input-multiple-output (SIMO), multiple-input-single-output (MISO) or multiple-input-multiple-output (MIMO) measurements is analyzed by compressed sensing theory with and without the Born approximation. High-frequency analysis of (probabilistic) recoverability by the L1-based minimization/regularization principles is presented. In the absence of noise, it is shown that the L1-based solution can recover exactly the target of sparsity up to the dimension of the data either with the MIMO measurement for the Born scattering or with the SIMO/MISO measurement for the exact scattering. The stability with respect to noisy data is proved for weak or widely separated scatterers. Reciprocity between the SIMO and MISO measurements is analyzed. Finally a coherence bound (and the resulting recoverability) is proved for diffraction tomography with high-frequency, few-view and limited-angle SIMO/MISO measurements.

  7. Fast-Ion Losses due to High-Frequency MHD Perturbations in the ASDEX Upgrade Tokamak

    SciTech Connect

    Garcia-Munoz, M.; Fahrbach, H.-U.; Guenter, S.; Igochine, V.; Maraschek, M.; Zohm, H.; Mantsinen, M. J.; Martin, P.; Piovesan, P.; Sassenberg, K.

    2008-02-08

    Time-resolved energy and pitch angle measurements of fast-ion losses correlated in frequency and phase with high-frequency magnetohydrodynamic perturbations have been obtained for the first time in a magnetic fusion device and are presented here. A detailed analysis of fast-ion losses due to toroidal Alfven eigenmodes has revealed the existence of a new core-localized magnetohydrodynamic perturbation, the sierpes mode. The sierpes mode is a non-Alfvenic instability which dominates the losses of fast ions in ion cyclotron resonance heated discharges, and it is named for its footprint in the spectrograms ('sierpes' means 'snake' in Spanish). The sierpes mode has been reconstructed by means of highly resolved multichord soft-x-ray measurements.

  8. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  9. Music students: conventional hearing thresholds and at high frequencies.

    PubMed

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Fuzzy and conventional control of high-frequency ventilation.

    PubMed

    Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

    1994-07-01

    A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

  11. Dynamics of high-frequency synchronization during seizures.

    PubMed

    Krishnan, Giri P; Filatov, Gregory; Bazhenov, Maxim

    2013-05-01

    Pathological synchronization of neuronal firing is considered to be an inherent property of epileptic seizures. However, it remains unclear whether the synchrony increases for the high-frequency multiunit activity as well as for the local field potentials (LFPs). We present spatio-temporal analysis of synchronization during epileptiform activity using wide-band (up to 2,000 Hz) spectral analysis of multielectrode array recordings at up to 60 locations throughout the mouse hippocampus in vitro. Our study revealed a prominent structure of LFP profiles during epileptiform discharges, triggered by elevated extracellular potassium, with characteristic distribution of current sinks and sources with respect to anatomical structure. The cross-coherence of high-frequency activity (500-2,000 Hz) across channels was reduced during epileptic bursts compared with baseline activity and showed the opposite trend for lower frequencies. Furthermore, the magnitude of cross-coherence during epileptiform activity was dependent on distance: electrodes closer to the epileptic foci showed increased cross-coherence and electrodes further away showed reduced cross-coherence for high-frequency activity. These experimental observations were re-created and supported in a computational model. Our study suggests that different intrinsic and synaptic processes can mediate paroxysmal synchronization at low, medium, and high frequencies.

  12. High frequency optical pulse generation by frequency doubling using polarization rotation

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-05-01

    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  13. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  14. High frequency amplitude detector for GMI magnetic sensors.

    PubMed

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-12-19

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  15. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  16. Frequency and temperature dependence of high damping elastomers

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1993-08-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between {minus}20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer`s response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between {minus}20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping.

  17. Determination of gas-trapping during high frequency oscillatory ventilation.

    PubMed

    Alexander, J; Milner, A D

    1997-03-01

    To determine the effect of frequency and percent inspiratory time on tidal volume and gas-trapping during high-frequency oscillatory ventilation (HFOV). Nine preterm infants with respiratory distress syndrome tested in the first 48 h of life. Tidal volumes and the presence of gas-trapping were measured by respiratory jacket plethysmography at frequencies of 10, 14, and 17.8 Hz and at inspiratory times of 30%, 50% and 70%, using a commercially available high frequency oscillator.74 Mean (SD) tidal volumes were 2.40 (1.06) ml/kg at 10 Hz, 2.52 (1.07) ml/kg at 14 Hz and fell significantly to 1.96 (0.92) at 17.8 Hz (p < 0.05). Tidal volumes at 50% inspiratory time were significantly greater than at 30% inspiratory time [2.81 (1.42) ml/kg and 2.32 (1.18) ml/kg, respectively] but fell to baseline levels at 70% inspiratory time. There was no significant gas-trapping with increases in either frequency or percent inspiratory time. Gas-trapping is not a significant problem during HFOV in premature infants. Changes in tidal volume with increases in frequency and percent inspiratory time are similar to that seen in animal models.

  18. Acoustic-seismic coupling for a wide range of angles of incidence and frequencies using signals of jet-aircraft overflights

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Altmann, Jürgen

    2016-12-01

    We present the excitation of soil vibration at the surface and at depths to 0.6 m caused by the sound of jet-aircraft overflights. By evaluating a multitude of overflight events we show that the coupling coefficient between soil velocity and sound pressure is only dependent on the angle of incidence of the acoustic wave and the frequency and thus can be averaged over the events. While previous publications presented only pointwise measurements we present signals for a wide range of angles of incidence and frequencies. In the seismic signal we found frequency bands of increased and decreased soil velocity caused by interference of the directly excited seismic wave with waves propagating in the ground and reflected at an underground boundary and at the surface. We use this seismic response to the broadband acoustic excitation to estimate soil characteristics e.g. P-wave velocity and depth of the boundary. The behaviour at depths > 0 m can be explained by an additional reflection at the surface. Here the reflection coefficient from theory was used successfully. The reflection coefficient of the P wave at that boundary - where insufficient information is available for its derivation from theory - was estimated from amplitude ratios at the surface.

  19. High-Frequency Wave Measurements in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bjorkqvist, J. V.; Kahma, K. K.; Pettersson, H.; Drennan, W. M.

    2016-02-01

    The high-frequency part of the wave field is essential for the understanding of air-sea exchange related processes and the turbulent energy dissipation of breaking waves. The quantification of the dimensionless spectra will aid wave model development and contribute to a better understanding of the fundamental laws governing the evolution of wind driven waves. However, typical wave observation devices, such as wave buoys, are limited to observing frequencies under e.g. 0.6 Hz. Dedicated experiments with devices suitable for high-frequency measurements are, in comparison, rare.We have made high-frequency wave measurements with capacitive wave staffs from RV Aranda. Air turbulence and wind speed measurements are also available and a full motion correction was applied to all measurements. A frequency rage up to 2-3 Hz is enough to study the tail of the wave spectra even during its early development. The unusually high sampling frequency of 200 Hz guarantees that spurious spectral shapes that could be the joint effect of noise and the anti-aliasing filter can be excluded. Directional measurements were made using four wave staffs located 15 or 50 cm apart in the grid.The mobility of the research vessel has enabled measurements in a wide variety of conditions from the Baltic Proper to the irregular Finnish coastal archipelagos. The aim is to determine the conditions and frequency ranges when the shape of the dimensionless spectra is wind dependent. Especially, it's still not clear whether the use of the wind speed or the friction velocity as the scaling parameter produces better results, or where the transition to the Phillips spectra takes place. The directional measurements can shed light on theories that use the directional spread of the two-dimensional spectrum to explain the shape of the one-dimensional spectrum.

  20. High-frequency oscillations in the Belousov-Zhabotinsky reaction.

    PubMed

    Bánsági, Tamás; Leda, Marcin; Toiya, Masahiro; Zhabotinsky, Anatol M; Epstein, Irving R

    2009-05-14

    Chemical oscillations in the classic Belousov-Zhabotinsky (BZ) system typically have a period of a few minutes, which can be increased significantly by changing the organic substrate. Here we show that by changing the temperature and concentrations, an increase of 3-4 orders of magnitude in the frequency of BZ oscillations can be obtained. At elevated temperatures, in high concentration mixtures, the cerium-catalyzed reaction exhibits sinusoidal oscillations with frequencies of 10 Hz or greater. We report the effect of temperature on the frequency and shape of oscillations in experiments under batch conditions and in a four-variable model. We show that our simple model accurately captures the complex temporal behavior of the system and suggests paths toward even higher frequencies.