Sample records for angular anisotropy parameters

  1. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    NASA Astrophysics Data System (ADS)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  2. LETTER TO THE EDITOR: Relation between the longitudinal spin polarization of Auger electrons and the anisotropy of their angular distribution

    NASA Astrophysics Data System (ADS)

    Kabachnik, N. M.; Sazhina, I. P.

    2001-09-01

    New relations between the intrinsic parameters δk which describe the longitudinal spin polarization of Auger electrons and αk which describe the anisotropy of their angular distribution are found. The relations are valid for arbitrary Auger transitions with initial (Ji) and final (Jf) angular momenta satisfying the condition Ji > Jf.

  3. Spatial distribution characteristics of magnetization in exchange-coupled bilayers with mutually orthogonal anisotropies

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Chen, C. W.

    2017-05-01

    The magnetization distribution of a bilayer exchange spring system with mutually orthogonal anisotropies was investigated by micromagnetic simulation. Results showed that the spatial change rate of the magnetization direction could be engineered by varying the material parameters, layer thicknesses, and magnetic field. When no magnetic field is applied, this angular change rate is determined by three parameter ratios: a ratio of the exchange energy and anisotropy constants of both layers and two thickness ratios of both layers. If these three ratios are kept invariant, the ratio of the angular change of the soft layer over the hard layer will remain the same. When a magnetic field is applied, two more ratios concerning the magnetic field should be added to determine the spatial angular change of the magnetization direction.

  4. Large angular scale CMB anisotropy from an excited initial mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Yusofi, E.

    2016-07-01

    According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit ℓ < 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H << M * < M p and on the slow-roll parameter ɛ. Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

  5. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  6. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  7. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  8. Implications of the measured angular anisotropy at the hidden order transition of URu2Si2

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Coleman, P.; Flint, R.; Trinh, J.; Ramirez, A. P.

    2018-05-01

    The heavy fermion compound URu2Si2 continues to attract great interest due to the long-unidentified nature of the hidden order that develops below 17.5 K. Here we discuss the implications of an angular survey of the linear and nonlinear susceptibility of URu2Si2 in the vicinity of the hidden order transition [1]. While the anisotropic nature of spin fluctuations and low-temperature quasiparticles was previously established, our recent results suggest that the order parameter itself has intrinsic Ising anisotropy, and that moreover this anisotropy extends far above the hidden order transition. Consistency checks and subsequent questions for future experimental and theoretical studies of hidden order are discussed.

  9. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    PubMed

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  10. A two-fluid approximation for calculating the cosmic microwave background anisotropies

    NASA Technical Reports Server (NTRS)

    Seljak, Uros

    1994-01-01

    We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.

  11. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  12. Micromagnetic simulation of static magnetic properties and tuning of anisotropy strength in two dimensional square antidot elements

    NASA Astrophysics Data System (ADS)

    Dash, S.; Satish, S.; Parida, B.; Satapathy, S.; Ipsita, N. S.; Joshi, R. S.

    2018-04-01

    We demonstrate the tailoring of anisotropy in magnetic nano-wire element using finite element method based micromagnetic simulation. We calculate the magentostatic properties for the structure by simulating hysteresis for these nano wire elements. The angular variation of remanence for the structures of different dimensions is used as the depiction to establish fourfold magnetic anisotropy. The change of anisotropy strength, which is the ratio of squareness of hysteresis loop in hard axis to easy axis, is demonstrated in this study which is one of the most important parameters to utilize these nanowire elements in multi state magnetic memory application.

  13. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    NASA Technical Reports Server (NTRS)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  14. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  15. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of themore » generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.« less

  16. Far Infrared All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1998-01-01

    Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradientmore » field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.« less

  18. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  19. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  20. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  1. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuan; Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculationsmore » on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.« less

  2. Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Chen, Jun; Wang, Wubao

    2014-02-01

    The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.

  3. Ferromagnetic resonance and spin-wave resonances in GaMnAsP films

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.

    2018-05-01

    A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.

  4. Dipole and nondipole photoionization of molecular hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, B.; McKoy, V.; Southworth, S. H.

    2015-05-01

    We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less

  5. Thickness and angular dependent magnetic anisotropy of La0.67Sr0.33MnO3 thin films by Vectorial Magneto Optical Kerr Magnetometry

    NASA Astrophysics Data System (ADS)

    Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.

    2017-10-01

    We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.

  6. The Cosmic Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  7. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  8. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  9. Tidal interactions in the expanding universe - The formation of prolate systems

    NASA Technical Reports Server (NTRS)

    Binney, J.; Silk, J.

    1979-01-01

    The study estimates the magnitude of the anisotropy that can be tidally induced in neighboring initially spherical protostructures, be they protogalaxies, protoclusters, or even uncollapsed density enhancements in the large-scale structure of the universe. It is shown that the linear analysis of tidal interactions developed by Peebles (1969) predicts that the anisotropy energy of a perturbation grows to first order in a small dimensionless parameter, whereas the net angular momentum acquired is of second order. A simple model is presented for the growth of anisotropy by tidal interactions during the nonlinear stage of the development of perturbations. A possible observational test is described of the alignment predicted by the model between the orientations of large-scale perturbations and the positions of neighboring density enhancements.

  10. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Meinhold, Peter; Lubin, Philip; Muciaccia, Pio Francesco; Silk, Joseph

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass.

  11. Consistency criteria for generalized Cuddeford systems

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Morganti, Lucia

    2010-01-01

    General criteria to check the positivity of the distribution function (phase-space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans-based modelling. Here, we substantially extend previous results, and present the inversion formula and the analytical necessary and sufficient conditions for phase-space consistency of the family of multicomponent Cuddeford spherical systems: the distribution function of each density component of these systems is defined as the sum of an arbitrary number of Cuddeford distribution functions with arbitrary values of the anisotropy radius, but identical angular momentum exponent. The radial trend of anisotropy that can be realized by these models is therefore very general. As a surprising byproduct of our study, we found that the `central cusp-anisotropy theorem' (a necessary condition for consistency relating the values of the central density slope and of the anisotropy parameter) holds not only at the centre but also at all radii in consistent multicomponent generalized Cuddeford systems. This last result suggests that the so-called mass-anisotropy degeneracy could be less severe than what is sometimes feared.

  12. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6x10{sup 6} cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from {approx}10 deg. up to 90 deg., and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. Themore » upper limits for a dipole anisotropy ranged from {approx}0.5% to {approx}10%.« less

  13. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1?}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  14. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' to 5 degrees

    DOE R&D Accomplishments Database

    Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hanany, S.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant,C. D.; Wu, J. H. P.

    2005-06-04

    We present a map and an angular power spectrum of the anisotropy of the cosmic microwave background (CMB) from the first flight of MAXIMA. MAXIMA is a balloon-borne experiment with an array of 16 bolometric photometers operated at 100 mK. MAXIMA observed a 124 deg{sup 2} region of the sky with 10' resolution at frequencies of 150, 240 and 410 GHz. The data were calibrated using in-flight measurements of the CMB dipole anisotropy. A map of the CMB anisotropy was produced from three 150 and one 240 GHz photometer without need for foreground subtractions.

  15. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    NASA Astrophysics Data System (ADS)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  16. Shear bands and anisotropy of the mechanical properties of an MA2-1pch magnesium alloy after equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Khar'kova, M. A.; D'yakonov, G. S.; Kopylov, V. I.; Dobatkin, S. V.

    2017-10-01

    Effect of structure and texture on the anisotropy of the mechanical properties of the MA2-1pch magnesium alloy subjected to equal-channel angular pressing and subsequent annealing has been studied in two mutually perpendicular planes Y and X (along and across the pressing direction). The anisotropy of the mechanical properties is shown to be due to various orientations of shear bands and various types of texture inside the bands and outside them in planes X and Y.

  17. Angular power spectrum of the FASTICA cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data

    NASA Astrophysics Data System (ADS)

    Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.

    2006-06-01

    We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.

  18. Spin canting in a Dy-based single-chain magnet with dominant next-nearest-neighbor antiferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.

    2009-04-01

    We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.

  19. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  20. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean.

    PubMed

    Li, Ye; Yu, Lin; Zhang, Yixin

    2017-05-29

    Applying the angular spectrum theory, we derive the expression of a new Hermite-Gaussian (HG) vortex beam. Based on the new Hermite-Gaussian (HG) vortex beam, we establish the model of the received probability density of orbital angular momentum (OAM) modes of this beam propagating through a turbulent ocean of anisotropy. By numerical simulation, we investigate the influence of oceanic turbulence and beam parameters on the received probability density of signal OAM modes and crosstalk OAM modes of the HG vortex beam. The results show that the influence of oceanic turbulence of anisotropy on the received probability of signal OAM modes is smaller than isotropic oceanic turbulence under the same condition, and the effect of salinity fluctuation on the received probability of the signal OAM modes is larger than the effect of temperature fluctuation. In the strong dissipation of kinetic energy per unit mass of fluid and the weak dissipation rate of temperature variance, we can decrease the effects of turbulence on the received probability of signal OAM modes by selecting a long wavelength and a larger transverse size of the HG vortex beam in the source's plane. In long distance propagation, the HG vortex beam is superior to the Laguerre-Gaussian beam for resisting the destruction of oceanic turbulence.

  1. Simulation of angular-resolved RABBITT measurements in noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Bray, Alexander W.; Naseem, Faiza; Kheifets, Anatoli S.

    2018-06-01

    We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE), which includes intershell correlation. This comparison is used to test various effective potentials employed in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell restricts the validity of the single active electron approximation to several tens of eV above the valence-shell threshold.

  2. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE PAGES

    Kong, Tai; Meier, William R.; Lin, Qisheng; ...

    2016-10-24

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  3. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai; Meier, William R.; Lin, Qisheng

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  4. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    PubMed

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  5. Aether drift and the isotropy of the universe: a measurement of anisotropies in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1979-01-01

    This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights.

  6. Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2007-05-01

    Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).

  7. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  8. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    PubMed

    Hajiri, T; Yoshida, T; Filianina, M; Jaiswal, S; Borie, B; Asano, H; Zabel, H; Kläui, M

    2017-12-05

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co 3 FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  9. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.

    2018-01-01

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  10. Measurements and calculations of high-angular-momentum satellite transitions in Li 1s photoionization

    NASA Astrophysics Data System (ADS)

    Cheng, W. T.; Kukk, E.; Cubaynes, D.; Chang, J.-C.; Snell, G.; Bozek, J. D.; Wuilleumier, F. J.; Berrah, N.

    2000-12-01

    Lithium 1s photoelectron spectra are reported in high electron and photon energy resolution, with resolved LS term structure of the Li+ 1snl satellite transitions up to n=6. Branching ratios and anisotropy parameters of individual lines, determined over the 85-130 eV photon energy range, are compared with R-matrix calculations and with previous works. The high-angular-momentum satellite lines (L>=2) are found to contribute significantly to the 1snl satellite cross sections for n=3 and 4, and to become the dominant terms for n>=5. The high-angular-momentum lines exhibit the same photon-energy-dependence as the P-lines, providing experimental evidence that the continuum-continuum state coupling (equivalent to virtual electron collision processes) is responsible for the L>=1 terms in the satellite spectrum, in contrast to the electron relaxation (shake-up) mechanism responsible for the S-terms. The angular distribution of the lines in the Li+ 1snl, n=2-6 groups, determined at 110 eV photon energy, is in good agreement with calculations, showing more isotropic distributions for high-angular-momentum lines.

  11. A spin-modulated telescope for measurement of cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Staren, John William

    The measurement of anisotropy in the Cosmic Microwave Background (CMB) advances our knowledge of the early Universe from which the radiation originated. The angular power spectrum of CMB anisotropy at sub-degree scales depends heavily on comsological parameters such as Ob, O 0 and H0. In pursuit of critical power spectrum measurements over a range of angular scales, a spin-modulated telescope with a single cryogenic amplifier used in a total power radiometer is designed, built and tested. The new technique of spin-modulation with a spinning flat mirror canted 2.5° relative to its spin axis modulates the beam in a 10° oval pattern on the sky at 2.5 Hz. This rapid two-dimensional modulation of the beam is tested at balloon altitudes to minimize the atmospheric offset and determine the efficacy of the scan and telescope design. Maps of over 600 and 400 square degrees are made of regions observed using the spin-modulation and a 20° azimuth scan. These maps yield a 95% confidence level flat band power upper limit of DeltaTℓ = Tcmb(ℓ(ℓ + 1)Cℓ/2pi)0.5 < 77 muK at ℓ = 38 and are free of systematics effects and striping due to long-term drifts in our amplifier to the levels tested here. Planning for the next telescope, with multiple amplifiers, is performed to ensure its success.

  12. Aether drift and the isotropy of the universe

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1976-01-01

    An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.

  13. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2012-04-23

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less

  14. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  15. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS-MORVEL overlap substantially and that the two sets of angular velocities differ insignificantly. Thus we combine the two sets of angular velocities to estimate ABS-MORVEL, an optimal set of global angular velocities consistent with both hotspot tracks and seismic anisotropy. ABS-MORVEL has more compact confidence limits than either SKS-MORVEL or HS4-MORVEL.

  16. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    NASA Astrophysics Data System (ADS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  17. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  18. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  19. COSMIC-RAY SMALL-SCALE ANISOTROPIES AND LOCAL TURBULENT MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Farber, R.; Xu, S.

    2016-10-10

    Cosmic-ray anisotropy has been observed in a wide energy range and at different angular scales by a variety of experiments over the past decade. However, no comprehensive or satisfactory explanation has been put forth to date. The arrival distribution of cosmic rays at Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium- and small-scalemore » angular structure could be an effect of nondiffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation for the observed small-scale anisotropy observed at the TeV energy scale may be the effect of particle propagation in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low- β compressible magnetohydrodynamic turbulence to study how the cosmic rays’ arrival direction distribution is perturbed when they stream along the local turbulent magnetic field. We utilize Liouville’s theorem for obtaining the anisotropy at Earth and provide the theoretical framework for the application of the theorem in the specific case of cosmic-ray arrival distribution. In this work, we discuss the effects on the anisotropy arising from propagation in this inhomogeneous and turbulent interstellar magnetic field.« less

  20. Antiferromagnetic layer thickness dependence of noncollinear uniaxial and unidirectional anisotropies in NiFe/FeMn/CoFe trilayers

    NASA Astrophysics Data System (ADS)

    Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun

    2010-06-01

    We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.

  1. 45 sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    PubMed

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  2. The effect of vibrational autoionization on the H2+ X 2Σg+ state rotationally resolved photoionization dynamics

    NASA Astrophysics Data System (ADS)

    Holland, D. M. P.; Shaw, D. A.

    2014-01-01

    The effect of vibrational autoionization on the H2+ X 2Σg+ v+ = 3, N+ state rotationally resolved photoelectron angular distributions and branching ratios has been investigated with a velocity map imaging spectrometer and synchrotron radiation. In photon excitation regions free from the influence of autoionizing Rydberg states, where direct ionization dominates, the photoelectron anisotropy parameter associated with the X 1Σg+ v″ = 0, N″ = 1 → X 2Σg+ v+ = 3, N+ = 1 transition has a value close to the theoretical maximum. However, in the vicinity of a Rydberg state, vibrational autoionization leads to a substantial reduction in anisotropy. The value of the anisotropy parameter associated with the S-branch of the photoelectron spectrum is found to be considerably higher than that predicted under the assumption that the outgoing electron can be represented solely as a p-wave. This suggests that the f-wave contribution must be taken into account to obtain a proper description of the photoionization dynamics. The observed variations in the rotationally resolved branching ratios, in the vicinity of an autoionizing resonance, depend upon the rotational level of the Rydberg state. The rotationally averaged photoelectron anisotropy parameters have been compared with the corresponding, previously calculated, theoretical results and reasonable agreement has been found. The influence of vibrational autoionization on the H2+ X 2Σg+ v+ = 0, 1, 2, 3 vibrational branching ratios has also been investigated, and the experimental results show that, in energy regions encompassing Rydberg states, these ratios deviate strongly from the Franck-Condon factors for direct ionization.

  3. Substrate strain induced interaction of adatoms on W (110)

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1980-09-01

    The interaction of adatoms due to elastic strains created in an elastically isotropic substrate is investigated. For cases where the adatoms occupy sites with low symmetry, an angular dependent interaction results which falls off as s-3 at large distances. An exact expression is given for the long range interaction in terms of an anisotropy parameter of the force dipole tensor. The short range interaction is calculated by introducing a smooth cutoff. Interactions of adatoms on near neighbour sites on W (110) are given.

  4. A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes

    NASA Astrophysics Data System (ADS)

    Torbet, E.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L.; Puchalla, J.; Tran, H. T.

    1999-08-01

    We report on a measurement of the angular spectrum of the anisotropy of the microwave sky at 30 and 40 GHz between l=50 and l=200. The data, covering roughly 600 deg2, support a rise in the angular spectrum to a maximum with δTl~85 μK at l=200. We also give a 2 σ upper limit of δTl<122 μK at l=432 at 144 GHz. These results come from the first campaign of the Mobile Anisotropy Telescope on Cerro Toco, Chile. To assist in assessing the site, we present plots of the fluctuations in atmospheric emission at 30 and 144 GHz.

  5. Aether Drift and the isotropy of the universe: A measurement of anisotropes in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1981-01-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  6. Modeling and experimental validation of angular radiance and distance-dependent radiance in a turbid medium

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Li, Chenxi; Zhao, Huijuan; Yi, Xi; Gao, Feng; Meng, Wei; Lu, Yiming

    2014-03-01

    Radiance is sensitive to the variations of tissue optical parameters, such as absorption coefficient μa, scattering coefficient μs, and anisotropy factor g. Therefore, similar to fluence, radiance can be used for tissue characterization. Compared with fluence, radiance has the advantage of offering the direction information of light intensity. Taking such advantage, the optical parameters can be determined by rotating the detector through 360 deg with only a single optode pair. Instead of the translation mode used in the fluence-based technologies, the Rotation mode has less invasiveness in the clinical diagnosis. This paper explores a new method to obtain the optical properties by measuring the distribution of light intensity in liquid phantom with only a single optode pair and the detector rotation through 360 deg. The angular radiance and distance-dependent radiance are verified by comparing experimental measurement data with Monte Carlo (MC) simulation for the short source-detector separations and diffusion approximation for the large source-detector separations. Detecting angular radiance with only a single optode pair under a certain source-detection separation will present a way for prostate diagnose and light dose calculation during the photon dynamic therapy (PDT).

  7. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation

    DOE PAGES

    Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; ...

    2016-12-09

    The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Here, we analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 monthsmore » of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. The derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Furthermore, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ~ 2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.« less

  8. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    NASA Astrophysics Data System (ADS)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  9. Constraints on the Sunyaev-Zel'dovich signal from the warm-hot intergalactic medium from WMAP and SPT data

    NASA Astrophysics Data System (ADS)

    Génova-Santos, Ricardo; Suárez-Velásquez, I.; Atrio-Barandela, F.; Mücket, J. P.

    2013-07-01

    The fraction of ionized gas in the warm-hot intergalactic medium induces temperature anisotropies on the cosmic microwave background similar to those of clusters of galaxies. The Sunyaev-Zel'dovich (SZ) anisotropies due to these low-density, weakly non-linear, baryon filaments cannot be distinguished from that of clusters using frequency information, but they can be separated since their angular scales are very different. To determine the relative contribution of the WHIM SZ signal to the radiation power spectrum of temperature anisotropies, we explore the parameter space of the concordance Λ cold dark matter model using Monte Carlo Markov chains and the Wilkinson Microwave Anisotropy Probe 7 yr and South Pole Telescope data. We find marginal evidence of a contribution by diffuse gas, with amplitudes of AWHIM = 10-20 μK2, but the results are also compatible with a null contribution from the WHIM, allowing us to set an upper limit of AWHIM < 43 μK2 (95.4 per cent CL). The signal produced by galaxy clusters remains at ACL = 4.5 μK2, a value similar to what is obtained when no WHIM is included. From the measured WHIM amplitude, we constrain the temperature-density phase diagram of the diffuse gas, and find it to be compatible with numerical simulations. The corresponding baryon fraction in the WHIM varies from 0.43 to 0.47, depending on model parameters. The forthcoming Planck data could set tighter constraints on the temperature-density relation.

  10. ANISOTROPY IN COSMIC-RAY ARRIVAL DIRECTIONS IN THE SOUTHERN HEMISPHERE BASED ON SIX YEARS OF DATA FROM THE ICECUBE DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10{sup 3} up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ( ℓ ≤ 4) moments. However, highermore » multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.« less

  11. Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.

  12. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.

  13. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Campbell, Andrew I.; Wittkowski, Raphael; ten Hagen, Borge; Löwen, Hartmut; Ebbens, Stephen J.

    2017-08-01

    The self-propulsion mechanism of active colloidal particles often generates not only translational but also rotational motion. For particles with an anisotropic mass density under gravity, the motion is usually influenced by a downwards oriented force and an aligning torque. Here we study the trajectories of self-propelled bottom-heavy Janus particles in three spatial dimensions both in experiments and by theory. For a sufficiently large mass anisotropy, the particles typically move along helical trajectories whose axis is oriented either parallel or antiparallel to the direction of gravity (i.e., they show gravitaxis). In contrast, if the mass anisotropy is small and rotational diffusion is dominant, gravitational alignment of the trajectories is not possible. Furthermore, the trajectories depend on the angular self-propulsion velocity of the particles. If this component of the active motion is strong and rotates the direction of translational self-propulsion of the particles, their trajectories have many loops, whereas elongated swimming paths occur if the angular self-propulsion is weak. We show that the observed gravitational alignment mechanism and the dependence of the trajectory shape on the angular self-propulsion can be used to separate active colloidal particles with respect to their mass anisotropy and angular self-propulsion, respectively.

  14. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Improved Hybrid Modeling of Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibber, Karl van

    This work developed a new computational method for improving the ability to calculate the neutron flux in deep-penetration radiation shielding problems that contain areas with strong streaming. The “gold standard” method for radiation transport is Monte Carlo (MC) as it samples the physics exactly and requires few approximations. Historically, however, MC was not useful for shielding problems because of the computational challenge of following particles through dense shields. Instead, deterministic methods, which are superior in term of computational effort for these problems types but are not as accurate, were used. Hybrid methods, which use deterministic solutions to improve MC calculationsmore » through a process called variance reduction, can make it tractable from a computational time and resource use perspective to use MC for deep-penetration shielding. Perhaps the most widespread and accessible of these methods are the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) methods. For problems containing strong anisotropies, such as power plants with pipes through walls, spent fuel cask arrays, active interrogation, and locations with small air gaps or plates embedded in water or concrete, hybrid methods are still insufficiently accurate. In this work, a new method for generating variance reduction parameters for strongly anisotropic, deep penetration radiation shielding studies was developed. This method generates an alternate form of the adjoint scalar flux quantity, Φ Ω, which is used by both CADIS and FW-CADIS to generate variance reduction parameters for local and global response functions, respectively. The new method, called CADIS-Ω, was implemented in the Denovo/ADVANTG software. Results indicate that the flux generated by CADIS-Ω incorporates localized angular anisotropies in the flux more effectively than standard methods. CADIS-Ω outperformed CADIS in several test problems. This initial work indicates that CADIS- may be highly useful for shielding problems with strong angular anisotropies. This is a benefit to the public by increasing accuracy for lower computational effort for many problems that have energy, security, and economic importance.« less

  16. Photofragment image analysis using the Onion-Peeling Algorithm

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Loock, Hans-Peter

    2003-07-01

    With the growing popularity of the velocity map imaging technique, a need for the analysis of photoion and photoelectron images arose. Here, a computer program is presented that allows for the analysis of cylindrically symmetric images. It permits the inversion of the projection of the 3D charged particle distribution using the Onion Peeling Algorithm. Further analysis includes the determination of radial and angular distributions, from which velocity distributions and spatial anisotropy parameters are obtained. Identification and quantification of the different photolysis channels is therefore straightforward. In addition, the program features geometry correction, centering, and multi-Gaussian fitting routines, as well as a user-friendly graphical interface and the possibility of generating synthetic images using either the fitted or user-defined parameters. Program summaryTitle of program: Glass Onion Catalogue identifier: ADRY Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer: IBM PC Operating system under which the program has been tested: Windows 98, Windows 2000, Windows NT Programming language used: Delphi 4.0 Memory required to execute with typical data: 18 Mwords No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 9 911 434 Distribution format: zip file Keywords: Photofragment image, onion peeling, anisotropy parameters Nature of physical problem: Information about velocity and angular distributions of photofragments is the basis on which the analysis of the photolysis process resides. Reconstructing the three-dimensional distribution from the photofragment image is the first step, further processing involving angular and radial integration of the inverted image to obtain velocity and angular distributions. Provisions have to be made to correct for slight distortions of the image, and to verify the accuracy of the analysis process. Method of solution: The "Onion Peeling" algorithm described by Helm [Rev. Sci. Instrum. 67 (6) (1996)] is used to perform the image reconstruction. Angular integration with a subsequent multi-Gaussian fit supplies information about the velocity distribution of the photofragments, whereas radial integration with subsequent expansion of the angular distributions over Legendre Polynomials gives the spatial anisotropy parameters. Fitting algorithms have been developed to centre the image and to correct for image distortion. Restrictions on the complexity of the problem: The maximum image size (1280×1280) and resolution (16 bit) are restricted by available memory and can be changed in the source code. Initial centre coordinates within 5 pixels may be required for the correction and the centering algorithm to converge. Peaks on the velocity profile separated by less then the peak width may not be deconvolved. In the charged particle image reconstruction, it is assumed that the kinetic energy released in the dissociation process is small compared to the energy acquired in the electric field. For the fitting parameters to be physically meaningful, cylindrical symmetry of the image has to be assumed but the actual inversion algorithm is stable to distortions of such symmetry in experimental images. Typical running time: The analysis procedure can be divided into three parts: inversion, fitting, and geometry correction. The inversion time grows approx. as R3, where R is the radius of the region of interest: for R=200 pixels it is less than a minute, for R=400 pixels less then 6 min on a 400 MHz IBM personal computer. The time for the velocity fitting procedure to converge depends strongly on the number of peaks in the velocity profile and the convergence criterion. It ranges between less then a second for simple curves and a few minutes for profiles with up to twenty peaks. The time taken for the image correction scales as R2 and depends on the curve profile. It is on the order of a few minutes for images with R=500 pixels. Unusual features of the program: Our centering and image correction algorithm is based on Fourier analysis of the radial distribution to insure the sharpest velocity profile and is insensitive to an uneven intensity distribution. There exists an angular averaging option to stabilize the inversion algorithm and not to loose the resolution at the same time.

  17. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  18. FW/CADIS-O: An Angle-Informed Hybrid Method for Neutron Transport

    NASA Astrophysics Data System (ADS)

    Munk, Madicken

    The development of methods for deep-penetration radiation transport is of continued importance for radiation shielding, nonproliferation, nuclear threat reduction, and medical applications. As these applications become more ubiquitous, the need for transport methods that can accurately and reliably model the systems' behavior will persist. For these types of systems, hybrid methods are often the best choice to obtain a reliable answer in a short amount of time. Hybrid methods leverage the speed and uniform uncertainty distribution of a deterministic solution to bias Monte Carlo transport to reduce the variance in the solution. At present, the Consistent Adjoint-Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) hybrid methods are the gold standard by which to model systems that have deeply-penetrating radiation. They use an adjoint scalar flux to generate variance reduction parameters for Monte Carlo. However, in problems where there exists strong anisotropy in the flux, CADIS and FW-CADIS are not as effective at reducing the problem variance as isotropic problems. This dissertation covers the theoretical background, implementation of, and characteri- zation of a set of angle-informed hybrid methods that can be applied to strongly anisotropic deep-penetration radiation transport problems. These methods use a forward-weighted adjoint angular flux to generate variance reduction parameters for Monte Carlo. As a result, they leverage both adjoint and contributon theory for variance reduction. They have been named CADIS-O and FW-CADIS-O. To characterize CADIS-O, several characterization problems with flux anisotropies were devised. These problems contain different physical mechanisms by which flux anisotropy is induced. Additionally, a series of novel anisotropy metrics by which to quantify flux anisotropy are used to characterize the methods beyond standard Figure of Merit (FOM) and relative error metrics. As a result, a more thorough investigation into the effects of anisotropy and the degree of anisotropy on Monte Carlo convergence is possible. The results from the characterization of CADIS-O show that it performs best in strongly anisotropic problems that have preferential particle flowpaths, but only if the flowpaths are not comprised of air. Further, the characterization of the method's sensitivity to deterministic angular discretization showed that CADIS-O has less sensitivity to discretization than CADIS for both quadrature order and PN order. However, more variation in the results were observed in response to changing quadrature order than PN order. Further, as a result of the forward-normalization in the O-methods, ray effect mitigation was observed in many of the characterization problems. The characterization of the CADIS-O-method in this dissertation serves to outline a path forward for further hybrid methods development. In particular, the response that the O-method has with changes in quadrature order, PN order, and on ray effect mitigation are strong indicators that the method is more resilient than its predecessors to strong anisotropies in the flux. With further method characterization, the full potential of the O-methods can be realized. The method can then be applied to geometrically complex, materially diverse problems and help to advance system modelling in deep-penetration radiation transport problems with strong anisotropies in the flux.

  19. Correlations Between Structural and Magnetic Properties of Co2 FeSi Heusler-Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Weihua; Wu, Di; Zhao, Bingcheng; Zhu, Zhendong; Yang, Xiaodi; Zhang, Zongzhi; Jin, Q. Y.

    2017-09-01

    The structural and magnetic properties are the most important parameters for practical applications of Co-based Heusler alloys. The correlations between the crystallization degree, chemical order, magnetic coercivity, saturation magnetization (MS ), and in-plane magnetic anisotropies are systematically investigated for Co2FeSi (CFS) films fabricated at different temperatures (TS ). XRD shows that the CFS layer changes progressively from a disordered crystal structure into a chemically disordered A 2 structure and further into a chemically ordered B 2 and even L 21 structures when increasing TS up to 480 °C . Meanwhile, the static angular remanence magnetization curves show a clear transition of magnetic anisotropy from twofold to fourfold symmetry, due to the competition effect between the uniaxial anisotropy field HU and biaxial anisotropy field HB . The HU value is found to be weakly dependent on TS , while HB shows a continuous enhancement at TS>300 °C , implying that the enhancement of the L 21 ordering degree would not weaken the biaxial anisotropy. The varying trend of HB is similar to MS , which can be respectively attributed to the improved crystal structure and chemical order. The anisotropic fields and their variation behaviors determined by a vibrating sample magnetometer are highly consistent with the results by a time-resolved magneto-optical Kerr effect study. Our findings provide a better understanding of the structural ordering and magnetic anisotropy, which will be helpful for designing advanced spintronic devices.

  20. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrancemore » as reported in the pre-actinide region based on the measurement of evaporation residue cross section.« less

  1. Research on the optical and EPR spectral data and the local structure for the trigonal Mn4+ centers in MgTiO3 crystal

    NASA Astrophysics Data System (ADS)

    Liao, Bi-Tao; Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen

    2017-07-01

    The optical bands and EPR (or spin-Hamiltonian) parameters (g factors g//, g⊥ and zero-field splitting D) for Mn4+ ions at the trigonal octahedral Ti4+ site of MgTiO3 crystal are uniformly computed by virtue of the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model, where besides the effects of spin-orbit parameter of central dn ion on the spectral data (in the classical crystal field theory), those of ligands are also contained. The computed eight optical and EPR spectral data with four suitable adjustable parameters (note: differing from those in the previous work within cubic symmetry approximation where the used Racah parameters violate the nephelauxetic effect, the present Racah parameters obey the effect and hence are suitable) are rationally coincident with the experimental values. In particular, the calculated ground state splitting 2D, the first excited splitting ΔE(2E) and g-anisotropy Δg (=g//-g⊥) (they depend strongly on the angular distortion of d3 centers) are in excellent agreement with the observed values, suggesting that the angular distortions caused by the impurity-induced local lattice relaxation obtained from the above calculation for the trigonal Mn4+ impurity center in MgTiO3: Mn4+ crystal seem to be acceptable.

  2. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  3. Magnetic small-angle neutron scattering of bulk ferromagnets.

    PubMed

    Michels, Andreas

    2014-09-24

    We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.

  4. A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength

    NASA Technical Reports Server (NTRS)

    Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A.

    1991-01-01

    This measurement of the large-scale cosmic microwave background radiation (CMBR) anisotropy places the most stringent constraints to date on fluctuations in the CMBR on angular scales greater than about 4 deg. Using a four-channel bolometric radiometer operating at 1.8, 1.1, 0.63, and 0.44 mm, the diffuse sky brightness over half of the northern hemisphere has been mapped with an angular resolution of 3.8 deg. Analysis of the sky map at the longest wavelength for Galactic latitudes of 15 deg or more yields a 95-percent confidence level upper limit on fluctuations of the CMBR at Delta T/T of 1.6 x 10 to the -5th with a statistical power of 92 percent for Gaussian fluctuations at a correlation angle of 13 deg. Between 3 deg and 22 deg, the upper limit of fluctuations is 4.0 x 10 to the -5th . An anisotropy is detected in the map, but it cannot yet be attributed to primordial sources. The ultimate sensitivity for this experiment is 7 x 10 to the -6th over this angular range for Gaussian fluctuations.

  5. Scientific results from COBE

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H., Jr.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.

    1993-01-01

    NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.

  6. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  7. Angular dependent torque measurements on CaFe0.88Co0.12AsF

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-08-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF (Ca1 1 1 1) single crystals. In the normal state, the torque data shows \\sin 2θ angular dependence and H 2 magnetic field dependence, as a result of paramagnetism. In the mixed state, the torque signal is a combination of the vortex torque and paramagnetic torque, and the former allows the determination of the anisotropy parameter γ. At T   =  11.5 K, γ (11.5 K ≃ 0.5 T c)  =  19.1, which is similar to the result of SmFeAsO0.8F0.2, γ ≃ 23 at T≃ 0.4{{T}\\text{c}} . So the 11 1 1 is more anisotropic compared to 11 and 122 families of iron-based superconductors. This may suggest that the electronic coupling between layers in 1 1 1 1 is less effective than in 11 and 122 families.

  8. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  9. X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus

    2016-10-01

    Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.

  10. Spin-torque driven magnetization switching in ferromagnetic nanopillar with pinned layer biasing configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhoomeeswaran, H.; Sabareesan, P., E-mail: sendtosabari@gmail.com; Bharathi, B. Divya

    2016-05-06

    Magnetization switching driven by spin transfer torque in a ferromagnetic nanopillar by biasing the angular polarizer with different orientation has been studied. The free layer dynamics includes the spin torque from the oscillating free layer with magneto crystalline anisotropy and shape anisotropy, which is governed by the Landau-Lifshitsz-Gilbert-Slonczweski (LLGS) equation and solving it numerically by using embedded Runge Kutta fourth order method. Results of numerical simulation shows that there is a drastic reduction of switching time in the free layer by the orientation of angular polarizer of the nano pillar device. We fixed the angular polarizer as 0°, 30°, 60°,more » 90° and the corresponding switching time is 6.53 ns, 4.36 ns, 2.25 ns and 1.21 ns respectively for an applied current density of 5 × 10{sup 11} Am{sup −2}.« less

  11. Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.

    2018-05-01

    We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.

  12. Quantum fluctuations and CMB anisotropies in one-bubble open inflation models

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Sasaki, Misao; Tanaka, Takahiro

    1996-10-01

    We first develop a method to calculate a complete set of mode functions that describe the quantum fluctuations generated in one-bubble open inflation models. We consider two classes of models. One is a single scalar field model proposed by Bucher, Goldhaber, and Turok and by us as an example of the open inflation scenario, and the other is a two-field model such as the ``supernatural'' inflation proposed by Linde and Mezhlumian. In both cases we assume the difference in the vacuum energy density between inside and outside the bubble is negligible. There are two kinds of mode functions. One kind has the usual continuous spectrum and the other has a discrete spectrum with characteristic wavelengths exceeding the spatial curvature scale. The latter can be further divided into two classes in terms of its origin. One is called the de Sitter supercurvature mode, which arises due to the global spacetime structure of de Sitter space, and the other is due to fluctuations of the bubble wall. We calculate the spectrum of quantum fluctuations in these models and evaluate the resulting large angular scale CMB anisotropies. We find there are ranges of model parameters that are consistent with observed CMB anisotropies.

  13. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental lithosphere (σ=14.7° ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29° ) and Eurasia (vRMS=3 mm a-1, σ=33° ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ˜5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.

  14. Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto De Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Buren, G Van; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2003-01-24

    Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at sqrt[s(NN)]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T)<2 GeV/c is consistent with collective hydrodynamical flow calculations. At p(T)>3 GeV/c, a saturation of v(2) is observed which persists up to p(T)=6 GeV/c.

  15. Measurements of Hk and Ms in thin magnetic films by the angular dependence of the planar Hall effect

    NASA Astrophysics Data System (ADS)

    Vatskicheva, M.; Vatskichev, L.

    1987-11-01

    It is shown that the angular dependences of the planar Hall effect measured with infinite magnetic field and with magnetic field H⩾ Hk have an intersection point and this fact is enough for measuring the anisotropy field Hk applying the method presented by Pastor, Ferreiro and Torres in J. Magn. Magn. Mat. 53 (1986) 349, 62 (1986) 101. The scaling of the Hall tension U proportional to M2s in mV/Am -1 gives a possibility for calculating the Ms-values of the films. These assumptions are verified for NiFe- and NiFeGe films with a uniaxial magnetic anisotropy.

  16. Anisotropies of the cosmic microwave background in nonstandard cold dark matter models

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Silk, Joseph

    1992-01-01

    Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.

  17. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration

    2018-02-01

    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 {EeV} with zenith angles up to 80° recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39 {EeV}. The three alternative models are favored against isotropy with 2.7σ–3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed. Any correspondence should be addressed to .

  18. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2018-02-02

    A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less

  19. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include allmore » types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.« less

  20. Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.; hide

    2001-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

  1. Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.

  2. Modification of the anisotropy and strength differential effect of extruded AZ31 by extrusion-shear

    NASA Astrophysics Data System (ADS)

    Jaehnke, M.; Gensch, F.; Mueller, S.

    2018-05-01

    The extrusion of magnesium alloys results in a pronounced fiber texture in which the basal planes are mostly oriented parallel and the c-axes are oriented perpendicular to the extrusion direction. Due to this texture the Strength Differential Effect (SDE), which describes the strength difference between tensile and compression yield strength, and the elastic anisotropy in the sheet plane are obtained during extrusion. The objective of the investigation was to decrease the SDE and anisotropy through specifically influencing the microstructure and texture. To accomplish this objective, the forming processes extrusion (EX) and equal channel angular pressing (ECAP) were combined and integrated into one extrusion die. This combination is called extrusion-shear (ES). With an ES-die, billets of the magnesium alloy AZ31B were formed into a sheet with the thickness of 4 mm and the width of 70 mm. The angles of the used ECAP-applications in the ES-dies were set to 90° and 135°. The results show that the extrusion-shear process is able to decrease the anisotropy and SDE through transformation of the texture compared to conventional extrusion process. Also grain refinement could be observed. However, the outcomes seem to be very sensitive to the process parameters. Only by using the ES-die with an angle of 135° the desired effect could be accomplished.

  3. Brillouin Light Scattering study of the rotatable magnetic anisotropy in exchange biased bilayers of Ni81 Fe19 Ir20 Mn80

    NASA Astrophysics Data System (ADS)

    Rodríguez, Roberto; Oliveira, Alexandre; Estrada, Francisco; Santos, Obed; Azevedo, Antonio; Rezende, Sergio

    It is known that when a ferromagnet (FM) is in atomic contact with an antiferromagnet (AF) the exchange coupling between the FM and AF spins at the interface induces a unidirectional anisotropy in the ferromagnetic film. This effect is known as exchange bias (EB). Despite the large amount of research on this topic there are still several aspects of the EB mechanism that are not well understood. One of this aspects is the origin of the rotatable anisotropy in polycrystalline AFs. By means of Brillouin Light Scattering (BLS) measurements, we investigated the dependence of the rotatable anisotropy field HRA and exchange field HE with the magnitude of the external magnetic field (Ho) in FM/AM bilayers of Ni81Fe19(10nm)/Ir20Mn80(tAF) . We developed an algorithm to numerically fit the in-plane angular dependence of the magnon frequency, at a fixed value of Ho measured by BLS. From the fit parameters we were able to investigate HRA and HE dependency on Ho. The results reveal that HRA value depends on Ho, so we argue that AF grain distribution at the interface is partially modified by the applied field strength. Contrary to this, the relation between HE and Ho is not straightforward, remaining constant at high values of Ho.

  4. Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Bai, Y. H.; George, Thomas F.

    2017-10-01

    All-optical spin reversal presents a new opportunity for spin manipulations, free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are found to have a perpendicular magnetic anisotropy (PMA), but it has been unknown whether PMA is necessary for spin reversal. Here we theoretically investigate magnetic thin films with either PMA or in-plane magnetic anisotropy (IMA). Our results show that spin reversal in IMA systems is possible, but only with a longer laser pulse and within a narrow laser parameter region. Spin reversal does not show a strong helicity dependence where the left- and right-circularly polarized light lead to the identical results. By contrast, the spin reversal in PMA systems is robust, provided both the spin angular momentum and laser field are strong enough while the magnetic anisotropy itself is not too strong. This explains why experimentally the majority of all-optical spin-reversal samples are found to have strong PMA and why spins in Fe nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque that plays a key role in the spin reversal. Surprisingly, the same spin-orbit torque results in laser-induced spin rectification in spin-mixed configuration, a prediction that can be tested experimentally. Our results clearly point out that PMA is essential to spin reversal, though there is an opportunity for in-plane spin reversal.

  5. Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16].

    PubMed

    van Slageren, Joris; Sessoli, Roberta; Gatteschi, Dante; Smith, Andrew A; Helliwell, Madeleine; Winpenny, Richard E P; Cornia, Andrea; Barra, Anne-Laure; Jansen, Aloysius G M; Rentschler, Eva; Timco, Grigore A

    2002-01-04

    A new tetragonal (P42(1)2) crystalline form of [Cr8F8Piv16] (HPiv = pivalic acid, trimethyl acetic acid) is reported. The ring-shaped molecules, which are aligned in a parallel fashion in the unit cell, form almost perfectly planar, regular octagons. The interaction between the CrIII ions is antiferromagnetic (J = 12 cm(-1)) which results in a S = 0 spin ground state. The low-lying spin excited states were investigated by cantilever torque magnetometry (CTM) and high-frequency EPR (HFEPR). The compound shows hard-axis anisotropy. The axial zero-field splitting (ZFS) parameters of the first two spin excited states (S = 1 and S = 2, respectively) are D1 = 1.59(3) cm(-1) or 1.63 cm(-1) (from CTM and HFEPR, respectively) and D2 = 0.37 cm(-1) (from HFEPR). The dipolar contributions to the ZFS of the S = 1 and S = 2 spin states were calculated with the point dipolar approximation. These contributions proved to be less than the combined single-ion contributions. Angular overlap model calculations that used parameters obtained from the electronic absorption spectrum, showed that the unique axis of the single-ion ZFS is at an angle of 19.3(1) degrees with respect to the ring axis. The excellent agreement between the experimental and the theoretical results show the validity of the used methods for the analysis of the magnetic anisotropy in antiferromagnetic CrIII rings.

  6. Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Zheng, L.; Kreemer, C.

    2014-12-01

    The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.

  7. Large-scale microwave anisotropy from gravitating seeds

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1992-01-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.

  8. Precision cosmology from X-ray AGN clustering

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Plionis, Manolis

    2009-11-01

    We place tight constraints on the main cosmological parameters of spatially flat cosmological models by using the recent angular clustering results of XMM-Newton soft (0.5-2keV) X-ray sources, which have a redshift distribution with a median of z ~ 1. Performing a standard likelihood procedure, assuming a constant in comoving coordinates active galactic nuclei (AGN) clustering evolution, the AGN bias evolution model of Basilakos, Plionis & Ragone-Figueroa and the Wilkinson Microwave Anisotropy Probe5 value of σ8, we find stringent simultaneous constraints in the (Ωm, w) plane, with Ωm = 0.26 +/- 0.05, w = -0.93+0.11-0.19.

  9. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1992-01-01

    A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.

  10. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  11. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness, and radiation effect (silicon rad and rem dose).

  12. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    PubMed

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  13. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2010-11-01

    The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 × 10 6 cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ~ 10 ° up to 90°, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy’s angularmore » scale. The upper limits for a dipole anisotropy ranged from ~ 0.5 % to ~ 10 % .« less

  14. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that canmore » account for the effect.« less

  15. Manipulation of resonant Auger processes with strong optical fields

    NASA Astrophysics Data System (ADS)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  16. Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madajczyk, B.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2011-10-01

    Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15° and 30°. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension α = 122fdg4 and declination δ = -47fdg4), extends over at least 20° in right ascension and has a post-trials significance of 5.3σ. The origin of this anisotropy is still unknown.

  17. Through-process characterization of local anisotropy of Non-oriented electrical steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    He, Youliang; Mehdi, Mehdi; Hilinski, Erik J.; Edrisy, Afsaneh

    2018-05-01

    Magnetic Barkhausen noise (MBN) signals were measured on a non-oriented electrical steel through all the thermomechanical processing stages, i.e. hot rolling, hot band annealing, cold rolling and final annealing. The temperature of the final annealing was varied from 600 °C to 750 °C so that the steel consisted of partially or completely recrystallized microstructures and different levels of residual stresses. The angular MBNrms (root mean square) values were compared to the texture factors in the same directions, the latter being calculated from the crystallographic texture measured by electron backscatter diffraction (EBSD). It was found that, in the cold-rolled, hot-rolled and completely recrystallized steels, the angular MBNrms followed a cosine function with respect to the angle of magnetization, while in partially recrystallized state such a relation does not exist. After cold rolling, the maximum MBNrms was observed in the rolling direction (RD) and the minimum MBNrms was in the transverse direction (TD), which was inconsistent with the magnetocrystalline anisotropy as indicated by the texture factor. After hot rolling, the maximum and minimum MBNrms values were observed in the TD and RD, respectively, exactly opposite to the cold-rolled state. If the steel was completely recrystallized, the maximum MBNrms was normally observed at a direction that was 15-30° from the minimum texture factor. If the steel was partially recrystallized, both the magnetocrystalline anisotropy of the material and the residual stress contributed to the angular MBNrms, which resulted in the deviation of the relationship from a cosine function. The relative strength of the two factors determined which factor would dominate the overall magnetic anisotropy.

  18. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  19. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  20. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  1. Probing pre-inflationary anisotropy with directional variations in the gravitational wave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp

    We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.

  2. A Degree-Scale Measurement of the Anisotropy in the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Wollack, Ed; Jarosik, Norm; Netterfield, Barth; Page, Lyman; Wilkinson, David

    1995-01-01

    We report the detection of anisotropy in the microwave sky at 3O GHz and at l deg angular scales. The most economical interpretation of the data is that the fluctuations are intrinsic to the cosmic microwave background. However, galactic free-free emission is ruled out with only 90% confidence. The most likely root-mean-squared amplitude of the fluctuations, assuming they are described by a Gaussian auto-correlation function with a coherence angle of 1.2 deg, is 41(+16/-13) (mu)K. We also present limits on the anisotropy of the polarization of the cosmic microwave background.

  3. Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data.

    PubMed

    Abdollahi, S; Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bruel, P; Buson, S; Caragiulo, M; Cavazzuti, E; Chekhtman, A; Ciprini, S; Costanza, F; Cuoco, A; Cutini, S; D'Ammando, F; de Palma, F; Desiante, R; Digel, S W; Di Lalla, N; Di Mauro, M; Di Venere, L; Donaggio, B; Drell, P S; Favuzzi, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Green, D; Guiriec, S; Harding, A K; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Longo, F; Loparco, F; Lubrano, P; Magill, J D; Malyshev, D; Manfreda, A; Mazziotta, M N; Meehan, M; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Negro, M; Nuss, E; Ohsugi, T; Omodei, N; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Principe, G; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Tajima, H; Thayer, J B; Torres, D F; Troja, E; Vandenbroucke, J; Zaharijas, G; Zimmer, S

    2017-03-03

    The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

  4. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  5. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  6. The effect of crustal anisotropy on SKS splitting analysis—synthetic models and real-data observations

    NASA Astrophysics Data System (ADS)

    Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad

    2018-05-01

    The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models, we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions (RF) can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.

  7. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  8. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less

  9. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  10. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  11. The signal of mantle anisotropy in the coupling of normal modes

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  12. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  13. Astronomy in the region between 1 mm and 0.1 mm wavelength

    NASA Technical Reports Server (NTRS)

    Weiss, Rainer; Meyer, Stephan S.

    1994-01-01

    The research under this grant resulted in the measurement of anisotropy of the Cosmic Microwave Background Radiation (CMBR) on angular scales from 90 degrees to 0.3 degrees. A bolometric radiometer was built with a sensitivity of better than 500 micro K divided by the square root of (Hz). The measurements complement the COBE anisotropy measurement in two ways. The large scale measurements were shown to cross-correlate with the COBE DMR anisotropy detection, confirming the results. The small scale measurements further the understanding of the structure in the CMBR on scales where we can begin to model the early stages in galaxy and galaxy cluster formation.

  14. A search for anisotrophy in the cosmic microwave background on intermediate angular scales

    NASA Technical Reports Server (NTRS)

    Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Fischer, M. L.; Gundersen, J. O.; Kreysa, E.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.

    1992-01-01

    The results of a search for anisotropy in the cosmic microwave background on angular scales near 1 deg are presented. Observations were simultaneously performed in bands centered at frequencies of 6, 9, and 12 per cm with a multifrequency bolometric receiver mounted on a balloon-borne telescope. The statistical sensitivity of the data is the highest reported to date at this angular scale, which is of critical importance for understanding the formation of structure in the universe. Signals in excess of random were observed in the data. The experiment, data analysis, and interpretation are described.

  15. Genuine binding energy of the hydrated electron

    PubMed Central

    Luckhaus, David; Yamamoto, Yo-ichi; Suzuki, Toshinori; Signorell, Ruth

    2017-01-01

    The unknown influence of inelastic and elastic scattering of slow electrons in water has made it difficult to clarify the role of the solvated electron in radiation chemistry and biology. We combine accurate scattering simulations with experimental photoemission spectroscopy of the hydrated electron in a liquid water microjet, with the aim of resolving ambiguities regarding the influence of electron scattering on binding energy spectra, photoelectron angular distributions, and probing depths. The scattering parameters used in the simulations are retrieved from independent photoemission experiments of water droplets. For the ground-state hydrated electron, we report genuine values devoid of scattering contributions for the vertical binding energy and the anisotropy parameter of 3.7 ± 0.1 eV and 0.6 ± 0.2, respectively. Our probing depths suggest that even vacuum ultraviolet probing is not particularly surface-selective. Our work demonstrates the importance of quantitative scattering simulations for a detailed analysis of key properties of the hydrated electron. PMID:28508051

  16. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiogai, J.; Institute of Materials Research, Tohoku University, Sendai 980-8577, Miyagi; Ciorga, M., E-mail: mariusz.ciorga@ur.de

    We investigate the angular dependence of the tunneling anisotropic magnetoresistance in (Ga,Mn)As/n-GaAs spin Esaki diodes in the regime where the tunneling process is dominated by the excess current through midgap states in (Ga,Mn)As. We compare it to similar measurements performed in the regime of band-to-band tunneling. Whereas the latter show biaxial symmetry typical for magnetic anisotropy observed in (Ga,Mn)As samples, the former is dominated by uniaxial anisotropy along the 〈110〉 axes.

  18. Correlated isocurvature fluctuation in quintessence and suppressed cosmic microwave background anisotropies at low multipoles.

    PubMed

    Moroi, Takeo; Takahashi, Tomo

    2004-03-05

    We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.

  19. Overcoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR.

    PubMed

    Shemesh, Noam; Cohen, Yoram

    2011-10-01

    Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  1. High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow

    NASA Astrophysics Data System (ADS)

    Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.

    2018-01-01

    We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.

  2. Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data

    DOE PAGES

    Abdollahi, S.; Ackermann, M.; Ajello, M.; ...

    2017-03-01

    We present the Large Area Telescope on board the Fermi Gamma-ray Space Telescope that has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10 -3. We take into account systematic effects that could mimic true anisotropies at thismore » level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. Lastly, the present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.« less

  3. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchinitser, Natalia; Feng, Liang

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less

  4. In-plane anisotropy of the electric field gradient in Ba(Fe 1 -xCox)2As2 observed by 75As NMR

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Ichikawa, Akihiro; Kobayashi, Yoshiaki; Sato, Masatoshi; Itoh, Masayuki

    2018-05-01

    We have performed 75As NMR measurements on single crystals to investigate the nematic behavior via the in-plane anisotropy of the electronic state at the As site far from Co impurities in the representative iron arsenides Ba (Fe1-xCox) 2As2 . From the analysis of the angular dependence of the NMR satellites in the c plane using the binominal distribution, we find that there is the in-plane fourfold symmetry breaking, namely, the orthorhombic-type anisotropy in the electric field gradient (EFG) at the As site with no Co atom at the nearest neighboring Fe sites even in the tetragonal phase of both BaFe2As2 and Ba (Fe1-xCox) 2As2(x ≠0 ) . The NMR spectrum in the antiferromagnetically ordered state of BaFe2As2 is shown not to support a nanotwin model on the basis of the nematic order proposed from the pair-distribution analysis of neutron scattering data. Based on results of the x and temperature T dependences of the in-plane anisotropy in the wide x and T ranges, the symmetry breaking is concluded to come from the local orthorhombic domains induced by disorder such as Co impurities or lattice imperfections. Furthermore, we find that the asymmetry parameter of EFG η obeys the Curie-Weiss law which may be governed by nematic susceptibility, and the Weiss temperature becomes zero at xc˜0.05 in Ba (Fe1-xCox) 2As2 .

  5. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    PubMed Central

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  6. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    NASA Astrophysics Data System (ADS)

    Hergt, Lukas; Amara, Adam; Brandenberger, Robert; Kacprzak, Tomasz; Réfrégier, Alexandre

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10-7.

  7. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  8. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  9. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  10. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    NASA Astrophysics Data System (ADS)

    Devlin, M. J.; Caldwell, R.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, R. T.

    1999-12-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB.

  11. Cosmic-ray anisotropy studies with IceCube

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  12. Quantum angular momentum diffusion of rigid bodies

    NASA Astrophysics Data System (ADS)

    Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus

    2017-12-01

    We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Gareth C.; Pessah, Martin E., E-mail: gmurphy@nbi.dk, E-mail: mpessah@nbi.dk

    The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth ofmore » the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a fundamental level.« less

  14. A Study of Primary Collision Dynamics in Inverse-Kinematics Reaction of 78Kr on 40Ca at a Bombarding Energy of 10 MeV per Nucleon

    NASA Astrophysics Data System (ADS)

    Henry, Eric M.

    The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to dynamic and statistical reaction model predictions are inconsistent with known phenomena, but suggest a peculiar dynamics-driven scenario. A plausible explanation of the experimental results is the existence of a phenomenon similar to a "fusion window", or a range of impact parameters in which complete fusion cannot be achieved. In this scenario, the system must absorb all the relative motion and convert it to vibrational energy or heat. As the energy increases the system may not be able to accommodate this conversion of energy without breaking apart.

  15. A measurement of the cosmic microwave background from the high Chilean Andes

    NASA Astrophysics Data System (ADS)

    Miller, Amber Dawn

    A measurement of the angular spectrum of the Cosmic Microwave Background (CMB) between l = 50 and l = 400 is described. Data were obtained using HEMT radiometers at 30 and 40 GHz with angular resolutions of ≈1 deg and ≈0.7 deg respectively and with SIS based receivers at 144 GHz with angular resolution of ≈0.2 deg. Observations were made from Cerro Toco in the Chilean altiplano at an altitude of 17,000 feet in the Northern Chilean Andes. We find that the angular spectrum rises from l = 50 to a peak at l ≈ 200 and falls off at higher angular scales. A peak in the angular spectrum with amplitude, deltaTl ≈ 85muK is thus located for the first time with a single instrument at l ≈ 200. In addition, we find that the detected anisotropy has the spectrum of the CMB. Cosmological implications of this result are discussed.

  16. Magnetic anisotropies in ultrathin fcc Fe(001) films grown on Cu(001) substrates

    NASA Astrophysics Data System (ADS)

    Cochran, J. F.; Rudd, J. M.; From, M.; Heinrich, B.; Bennett, W.; Schwarzacher, W.; Egelhoff, W. F., Jr.

    1992-03-01

    Ferromagnetic resonance absorption measurements at 36.3 GHz and at room temperature have been used to determine the g factor and anisotropy parameters for a series of bilayers composed of two 3-ML-thick fcc Fe (001) films separated by a variable thickness of fcc Cu(001). The resonance field and linewidth were measured versus the out-of-plane magnetic-field angle, θH. The magnetic properties of these ten coupled bilayer films were found to be remarkably similar from specimen to specimen, despite the fact that each member of the bilayer was only 3 ML thick. The average g factor was found to be =2.08+/-0.02, and the average effective magnetization was found to be -5.5+/-0.5 kOe; i.e., the specimens were magnetized normal to the specimen plane in zero applied magnetic field. If the effective field along the specimen normal can be attributed to a second-order surface anisotropy energy of the form Fs=-KU1 sin2θM, then =1.25+/-0.06 ergs/cm2, assuming a value 4πMs=21.6 kOe for the saturation magnetization and using d=5.4 Å for each film thickness. (This energy includes both sides of the film; the energy corresponding to a single Fe-Cu interface is 0.63 erg/cm2.) These specimens exhibited no measurable in-plane anisotropy. The linewidth was found to exhibit a sharp decrease for θH near 20°. This decrease could be explained in terms of the angular dependence of inhomogeneous line broadening due to a 1% variation in the perpendicular effective field from place to place in the sample plane.

  17. Implications inferred from anisotropy parameter of proton distributions related to EMIC waves in the inner magnetosphere.

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Lee, D. Y.

    2017-12-01

    In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.

  18. Nonthermal plasmas around black holes, relevant collective modes, new configurations, and magnetic field amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppi, B., E-mail: coppi@mit.edu

    The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scalemore » distances, and (d) the transport of angular momentum.« less

  19. Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal

    NASA Astrophysics Data System (ADS)

    Chhaganlal Gandhi, Ashish; Das, Rajasree; Chou, Fang-Cheng; Lin, Jauyn Grace

    2017-05-01

    Understanding of magnetocrystalline anisotropy in CaFe2O4 is a matter of importance for its future applications. A high quality single crystal CaFe2O4 sample is studied by using synchrotron x-ray diffraction, a magnetometer and the electron spin resonance (ESR) technique. A broad feature of the susceptibility curve around room temperature is observed, indicating the development of 1D spin interactions above the on-set of antiferromagnetic transition. The angular dependency of ESR reveals an in-plane two-fold symmetry, suggesting a strong correlation between the room temperature spin structure and magnetocrystalline anisotropy. This finding opens an opportunity for the device utilizing the anisotropy field of CaFe2O4.

  20. Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Speranza, Enrico; Jaiswal, Amaresh; Friman, Bengt

    2018-07-01

    The polarization of virtual photons produced in relativistic nucleus-nucleus collisions provides information on the conditions in the emitting medium. In a hydrodynamic framework, the resulting angular anisotropy of the dilepton final state depends on the flow as well as on the transverse momentum and invariant mass of the photon. We illustrate these effects in dilepton production from quark-antiquark annihilation in the QGP phase and π+π- annihilation in the hadronic phase for a static medium in global equilibrium and for a longitudinally expanding system.

  1. A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from L = 100 to 400

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    1999-10-01

    We report on a measurement of the angular spectrum of the cosmic microwave background (CMB) between l~100 and l~400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz taken with the same instrument observing the same section of sky, we find (1) a rise in the angular spectrum to a maximum with δTl~85 μK at l~200 and a fall at l>300, thereby localizing the peak near l~200, and (2) that the anisotropy at l~200 has the spectrum of the CMB.

  2. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2000-05-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.

  3. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy due to the applied stress anisotropy.

  4. Scaling Estimates of Vegetation Structure in Amazonian Tropical Forests Using Multi-Angle MODIS Observations

    NASA Technical Reports Server (NTRS)

    Mendes De Moura, Yhasmin; Hilker, Thomas; Goncalves, Fabio Guimaraes; Galvao, Lenio Soares; Roberto dos Santos, Joao; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valeria

    2016-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.

  5. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Aleksandr V.; Melenev, Petr V.; Balasoiu, Maria; Raikher, Yuriy L.

    2016-08-01

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters.

  6. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Akrami, Y.; Aluri, P. K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Liu, H.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold Spot" is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.

  7. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Akrami, Y.; ...

    2016-09-20

    In this paper, we test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect ourmore » studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Finally, where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Akrami, Y.

    In this paper, we test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect ourmore » studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Finally, where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.« less

  9. HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca

    2017-01-20

    In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less

  10. Constrained Analysis of Fluorescence Anisotropy Decay:Application to Experimental Protein Dynamics

    PubMed Central

    Feinstein, Efraim; Deikus, Gintaras; Rusinova, Elena; Rachofsky, Edward L.; Ross, J. B. Alexander; Laws, William R.

    2003-01-01

    Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay. PMID:12524313

  11. Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central d+Au Collisions at sqrt[s_{NN}]=200 GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2015-05-15

    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.7<η<-3.1, Au-going direction). An enhanced near-side angular correlation across |Δη|>2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at sqrt[s_{NN}]=5.02 TeV. The magnitude of the mass ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.

  12. Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Central d +Au Collisions at √{sN N }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-05-01

    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d +Au and minimum bias p +p collisions at √{sN N }=200 GeV . The charged hadron is measured at midrapidity |η |<0.35 , and the energy is measured at large rapidity (-3.7 <η <-3.1 , Au-going direction). An enhanced near-side angular correlation across |Δ η |>2.75 is observed in d +Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v2 for inclusive charged hadrons at midrapidity up to pT=4.5 GeV /c . We also present the measurement of v2 for identified π± and (anti)protons in central d +Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p +Pb at √{sN N }=5.02 TeV . The magnitude of the mass ordering in d +Au is found to be smaller than that in p +Pb collisions, which may indicate smaller radial flow in lower energy d +Au collisions.

  13. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p + Au collisions at s NN = 200 GeV

    DOE PAGES

    Aidala, C.; Akiba, Y.; Alfred, M.; ...

    2017-03-24

    Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less

  14. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p + Au collisions at s NN = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.; Akiba, Y.; Alfred, M.

    Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less

  15. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p +Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M. H.; Kim, M.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2017-03-01

    We present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v2 in high-multiplicity p +Au collisions at √{s NN}=200 GeV. A comparison of these results to previous measurements in high-multiplicity d +Au and 3He+Au collisions demonstrates a relation between v2 and the initial collision eccentricity ɛ2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured v2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.

  16. The amplitude and spectral index of the large angular scale anisotropy in the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan

    1994-01-01

    In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.

  17. Investigations of the optical and EPR data and local structure for the trigonal tetrahedral Co2+ centers in LiGa5O8: Co2+ crystal

    NASA Astrophysics Data System (ADS)

    He, Jian; Liao, Bi-Tao; Mei, Yang; Liu, Hong-Gang; Zheng, Wen-Chen

    2018-01-01

    In this paper, we calculate uniformly the optical and EPR data for Co2+ ion at the trigonal tetrahedral Ga3+ site in LiGa5O8 crystal from the complete diagonalization (of energy matrix) method founded on the two-spin-orbit-parameter model, where the contributions to the spectroscopic data from both the spin-orbit parameter of dn ion (in the classical crystal field theory) and that of ligand ions are contained. The calculated ten spectroscopic data (seven optical bands and three spin-Hamiltonian parameters g//, g⊥ and D) with only four adjustable parameters are in good agreement with the available observed values. Compared with the host (GaO4)5- cluster, the great angular distortion and hence the great trigonal distortion of (CoO4)6- impurity center obtained from the calculations are referred to the large charge and size mismatch substitution. This explains reasonably the observed great g-anisotropy Δg (= g// - g⊥) and zero-field splitting D for the (CoO4)6- cluster in LiGa5O8: Co2+ crystal.

  18. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  19. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  20. cos ( 4 φ ) azimuthal anisotropy in small- x DIS dijet production beyond the leading power TMD limit

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2016-07-25

    Here we determine the first correction to the quadrupole operator in high-energy QCD beyond the transverse momentum dependent (TMD) limit of Weizsäcker-Williams and linearly polarized gluon distributions. These functions give rise to isotropic, respectively, ~cos2more » $$\\phi$$ angular distributions in deep inelastic scattering (DIS) dijet production. On the other hand, the correction produces a ~cos4$$\\phi$$ angular dependence which is suppressed by one additional power of the dijet transverse momentum scale (squared) P 2.« less

  1. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  2. Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser

    NASA Astrophysics Data System (ADS)

    Wang, Heilong; Yu, Yong; Chang, Yao; Su, Shu; Yu, Shengrui; Li, Qinming; Tao, Kai; Ding, Hongli; Yang, Jaiyue; Wang, Guanglei; Che, Li; He, Zhigang; Chen, Zhichao; Wang, Xingan; Zhang, Weiqing; Dai, Dongxu; Wu, Guorong; Yuan, Kaijun; Yang, Xueming

    2018-03-01

    Photodissociation dynamics of H2O via the F ˜ state at 111.5 nm were investigated using the high resolution H-atom Rydberg "tagging" time-of-flight (TOF) technique, in combination with the tunable vacuum ultraviolet free electron laser at the Dalian Coherent Light Source. The product translational energy distributions and angular distributions in both parallel and perpendicular directions were derived from the recorded TOF spectra. Based on these distributions, the quantum state distributions and angular anisotropy parameters of OH (X) and OH (A) products have been determined. For the OH (A) + H channel, highly rotationally excited OH (A) products have been observed. These products are ascribed to a fast direct dissociation on the B ˜ 1A1 state surface after multi-step internal conversions from the initial excited F ˜ state to the B ˜ state. While for the OH (X) + H channel, very highly rotationally excited OH (X) products with moderate vibrational excitation are revealed and attributed to the dissociation via a nonadiabatic pathway through the well-known two conical intersections between the B ˜ -state and the X ˜ -state surfaces.

  3. Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-02-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 × 109 muon events with a median angular resolution of ~3°. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3σ. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  4. Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  5. Observation of an Anisotropy in the Galactic Cosmic Ray Arrival Direction at 400 TeV with IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2012-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33 x 10(exp 9) muon events with a median angular resolution of approx. 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  6. Measurement of the degree of anisotropy of the cosmic radiation using the IMP space vehicle

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1972-01-01

    The detector and data reduction techniques used in connection with the cosmic ray experiments designed for and flown on Explorer 34 and 41 satellites are described. A history of the program development and the present status of data processing are briefly summarized. The instrument to measure the anisotropy and energy spectra of cosmic ray electrons and protons, and X-rays of solar and galactic origin is discussed. The main characteristics of the detectors and the stability during 23 months of operation are described. The method of analysis of the angular distribution of solar cosmic ray particles in the ecliptic plane is given. It is shown that the anisotropy of low energy particles of solar origin decreases sharply to a very small value when the satellite penetrates the magnetosphere.

  7. Measuring the anisotropy in the CMB

    NASA Astrophysics Data System (ADS)

    Page, L. A.

    The CMB is perhaps the cleanest cosmological observable. Its angular spectrum may be both computed and measured to percent accuracy. The current data clearly show a rise in the angular spectrum to a peak of roughly Tl = (l(l + 1)Cl/2)1/2 80 K at l 200, and a fall at higher l. In particular, δTl at l = 400 is significantly less than at l = 200. This is shown through a combined analysis of data sets and by the TOCO data alone. For spatially flat models, a peak in the angular spectrum near l = 200 is indicated, whereas for Ω0 = 0.35 models one expects a peak near l = 400. The data clearly prefer the spatially flat models.

  8. The degree of mutual anisotropy of biological liquids polycrystalline nets as a parameter in diagnostics and differentiations of hominal inflammatory processes

    NASA Astrophysics Data System (ADS)

    Angelsky, O. V.; Ushenko, Yu. A.; Balanetska, V. O.

    2011-09-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of the complex degree of mutual anisotropy distributions of blood plasma is effective during the diagnostics and differentiation of an acute inflammatory processes as well as acute and gangrenous appendicitis.

  9. COBE limits on explosive structure formation scenarios

    NASA Technical Reports Server (NTRS)

    Levin, Janna J.; Freese, Katherine; Spergle, David N.

    1992-01-01

    The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.

  10. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    NASA Astrophysics Data System (ADS)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  11. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  12. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  13. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  14. Measuring X-ray anisotropy in solar flares. Prospective stereoscopic capabilities of STIX and MiSolFA

    NASA Astrophysics Data System (ADS)

    Casadei, Diego; Jeffrey, Natasha L. S.; Kontar, Eduard P.

    2017-09-01

    Context. During a solar flare, a large percentage of the magnetic energy released goes into the kinetic energy of non-thermal particles, with X-ray observations providing a direct connection to keV flare-accelerated electrons. However, the electron angular distribution, a prime diagnostic tool of the acceleration mechanism and transport, is poorly known. Aims: During the next solar maximum, two upcoming space-borne X-ray missions, STIX on board Solar Orbiter and MiSolFA, will perform stereoscopic X-ray observations of solar flares at two different locations: STIX at 0.28 AU (at perihelion) and up to inclinations of 25°, and MiSolFA in a low-Earth orbit. The combined observations from these cross-calibrated detectors will allow us to infer the electron anisotropy of individual flares confidently for the first time. Methods: We simulated both instrumental and physical effects for STIX and MiSolFA including thermal shielding, background and X-ray Compton backscattering (albedo effect) in the solar photosphere. We predict the expected number of observable flares available for stereoscopic measurements during the next solar maximum. We also discuss the range of useful spacecraft observation angles for the challenging case of close-to-isotropic flare anisotropy. Results: The simulated results show that STIX and MiSolFA will be capable of detecting low levels of flare anisotropy, for M1-class or stronger flares, even with a relatively small spacecraft angular separation of 20-30°. Both instruments will directly measure the flare X-ray anisotropy of about 40 M- and X-class solar flares during the next solar maximum. Conclusions: Near-future stereoscopic observations with Solar Orbiter/STIX and MiSolFA will help distinguishing between competing flare-acceleration mechanisms, and provide essential constraints regarding collisional and non-collisional transport processes occurring in the flaring atmosphere for individual solar flares.

  15. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ?Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

  16. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  17. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases. The CIB bispectrum is steeper than that expected from the power spectrum, although well fitted by a power law; this gives some information about the contribution of massive haloes to the CIB bispectrum. Finally, we show that the same halo occupation distribution can fit all power spectra simultaneously. The precise measurements enabled by Planck pose new challenges for the modelling of CIB anisotropies, indicating the power of using CIB anisotropies to understand the process of galaxy formation.

  18. Multiangular Contributions for Discriminate Seasonal Structural Changes in the Amazon Rainforest Using MODIS MAIAC Data

    NASA Astrophysics Data System (ADS)

    Moura, Y. M.; Hilker, T.; Galvão, L. S.; Santos, J. R.; Lyapustin, A.; Sousa, C. H. R. D.; McAdam, E.

    2014-12-01

    The sensitivity of the Amazon rainforests to climate change has received great attention by the scientific community due to the important role that this vegetation plays in the global carbon, water and energy cycle. The spatial and temporal variability of tropical forests across Amazonia, and their phenological, ecological and edaphic cycles are still poorly understood. The objective of this work was to infer seasonal and spatial variability of forest structure in the Brazilian Amazon based on anisotropy of multi-angle satellite observations. We used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS/Terra and Aqua) processed by a new Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC) to investigate how multi-angular spectral response from satellite imagery can be used to analyze structural variability of Amazon rainforests. We calculated differences acquired from forward and backscatter reflectance by modeling the bi-directional reflectance distribution function to infer seasonal and spatial changes in vegetation structure. Changes in anisotropy were larger during the dry season than during the wet season, suggesting intra-annual changes in vegetation structure and density. However, there were marked differences in timing and amplitude depending on forest type. For instance differences between reflectance hotspot and darkspot showed more anisotropy in the open Ombrophilous forest than in the dense Ombrophilous forest. Our results show that multi-angle data can be useful for analyzing structural differences in various forest types and for discriminating different seasonal effects within the Amazon basin. Also, multi-angle data could help solve uncertainties about sensitivity of different tropical forest types to light versus rainfall. In conclusion, multi-angular information, as expressed by the anisotropy of spectral reflectance, may complement conventional studies and provide significant improvements over approaches that are based on vegetation indices alone.

  19. A hybrid HDRF model of GOMS and SAIL: GOSAIL

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wu, S.; Wen, J.

    2016-12-01

    Understanding the surface reflectance anisotropy is the key facet in interpreting the features of land surface from remotely sensed information, which describes the property of land surface to reflect the solar radiation directionally. Most reflectance anisotropy models assumed the nature surface was illuminated only by the direct solar radiation, while the diffuse skylight becomes dominant especially for the over cast sky conditions and high rugged terrain. Correcting the effect of diffuse skylight on the reflectance anisotropy to obtain the intrinsic directional reflectance of land surface is highly desirable for remote sensing applications. This paper developed a hybrid HDRF model of GOMS and SAIL called GOSAIL model for discrete canopies. The accurate area proportions of four scene components are calculated by the GOMS model and the spectral signatures of scene components are provided by the SAIL model. Both the single scattering contribution and the multiple scattering contributions within and between the canopy and background under the clear and diffuse illumination conditions are considered in the GOSAIL model. The HDRF simulated by the 3-D Discrete Anisotropic Radiative Transfer (DART) model and the HDRF measurements over the 100m×100m mature pine stand at the Järvselja, Estonia are used for validating and evaluating the performance of proposed GOSAIL model. The comparison results indicate the GOSAIL model can accurately reproducing the angular feature of discrete canopy for both the clear and overcast atmospheric conditions. The GOSAIL model is promising for the land surface biophysical parameters retrieval (e.g. albedo, leaf area index) over the heterogeneous terrain.

  20. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  1. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef

    2017-09-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  2. Cosmic microwave background probes models of inflation

    NASA Technical Reports Server (NTRS)

    Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.

    1992-01-01

    Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.

  3. Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d + Au collisions at s N N = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-05-12

    In this study, we present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and aluminum bias p+p collisions at √s NN = 200 GeV. The charged hadron is measured at midrapidity lηl < 0.35, and the energy us measured at large rapidity (–3.7 < η < –3.1, Au-going direction). An enhanced near-side angular correlation across lΔηl > 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v₂ for inclusive charged hadrons at midrapidity up to p T = 4.5 GeV/c.more » We also present the measurement of v₂ for identified π ± and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from p+Pb at √s NN = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au collisions.« less

  4. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    PubMed Central

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  5. Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.

    2011-05-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.

  6. Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.

    2011-09-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.

  7. Minimal microwave anisotrophy from perturbations induced at late times

    NASA Technical Reports Server (NTRS)

    Jaffe, Andrew H.; Stebbins, Albert; Frieman, Joshua A.

    1994-01-01

    Aside from primordial gravitational instability of the cosmological fluid, various mechanisms have been proposed to generate large-scale structure at relatively late times, including, e.g., 'late-time' cosmological phase transitions. In these scenarios, it is envisioned that the universe is nearly homogeneous at the times of last scattering and that perturbations grow rapidly sometimes after the primordial plasma recombines. On this basis, it was suggested that large inhomogeneities could be generated while leaving relatively little imprint on the cosmic microwave background (MBR) anisotropy. In this paper, we calculate the minimal anisotropies possible in any 'late-time' scenario for structure formation, given the level of inhomogeneity observed at present. Since the growth of the inhomogeneity involves time-varying gravitational fields, these scenarios inevitably generate significant MBR anisotropy via the Sachs-Wolfe effect. Moreover, we show that the large-angle MBR anisotropy produced by the rapid post-recombination growth of inhomogeneity is generally greater than that produced by the same inhomogeneity growth via gravitational instability. In 'realistic' scenarios one can decrease the anisotropy compared to models with primordial adiabatic fluctuations, but only on very small angular scales. The value of any particular measure of the anisotropy can be made small in late-time models, but only by making the time-dependence of the gravitational field sufficiently 'pathological'.

  8. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  9. TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad

    2017-09-01

    For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.

  10. van der Waals torque and force between anisotropic topological insulator slabs

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui

    2018-01-01

    We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the nonretardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anisotropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of π . Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides an instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is nonretarded or static.

  11. Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.

  12. Influence of thermal anisotropy on best-fit estimates of shock normals

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.

    1971-01-01

    The influence of thermal anisotropy on the estimates of interplanetary shock parameters and the associated normals is discussed. A practical theorem is presented for quantitatively correcting for anisotropic effects by weighting the before and after magnetic fields by the same anisotropy parameter h. The quantity h depends only on the thermal anisotropies before and after the shock and on the angles between the magnetic fields and the shock normal. The theorem can be applied to most slow shocks, but in those cases h usually should be lower, and sometimes markedly lower, than unity. For the extreme values of h, little change results in the shock parameters or in the shock normal.

  13. Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys

    NASA Astrophysics Data System (ADS)

    Ivanova, A. I.; Gasanov, O. V.; Kaplunova, E. I.; Kalimullina, E. T.; Zalyotov, A. B.; Grechishkin, R. M.

    2015-03-01

    A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials.

  14. Spins of primordial black holes formed in the matter-dominated phase of the Universe

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Yoo, Chul-Moon; Kohri, Kazunori; Nakao, Ken-Ichi

    2017-10-01

    Angular momentum plays very important roles in the formation of primordial black holes in the matter-dominated phase of the Universe if it lasts sufficiently long. In fact, most collapsing masses are bounced back due to centrifugal force, since angular momentum significantly grows before collapse. For masses with q ≤qc≃2.4 I1 /3σH1 /3 , where q is a nondimensional initial quadrupole moment parameter, σH is the density fluctuation at horizon entry t =tH, and I is a parameter of the order of unity, angular momentum gives a suppression factor ˜exp (-0.15 I4 /3σH-2 /3) to the production rate. As for masses with q >qc, the suppression factor is even stronger as ˜exp (-0.0046 q4/σH2) . We derive the spin distribution of primordial black holes and find that most of the primordial black holes are rapidly rotating near the extreme value a*=1 , where a* is the nondimensional Kerr parameter at their formation. The smaller σH is, the stronger the tendency towards the extreme rotation. Combining this result with the effect of anisotropy, we numerically and semianalytically estimate the production rate β0 of primordial black holes. Then we find that β0≃1.9 ×10-6fq(qc)I6σH2exp (-0.15 I4 /3σH-2 /3) for σH≲0.005 , while β0≃0.05556 σH5 for 0.005 ≲σH≲0.2 , where fq(qc) is the fraction of masses whose q is smaller than qc and we assume fq(qc) is not too small. We argue that matter domination significantly enhances the production of primordial black holes despite the suppression factor. If the end time tend of the matter-dominated phase satisfies tend≲(0.4 I σH)-1tH, the effect of the finite duration significantly suppresses primordial black hole formation and weakens the tendency towards large spins.

  15. Thermal Sunyaev-Zel'dovich effect in the intergalactic medium with primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2017-12-01

    The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zel'dovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as P (k )∝B1Mpc 2knB , we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton y -parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton y -parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch. These facts result in making the anisotropies of the CMB temperature on small scales, and we find that the signal goes up to 10 μ K2 around ℓ˜106 with B1 Mpc=0.1 nG and nB=0.0 . Therefore, CMB measurements on such small scales may provide a hint for the existence of the PMFs.

  16. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei

    2017-11-01

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.

  17. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE PAGES

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; ...

    2017-11-14

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  18. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  19. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  20. Study of Small-Scale Anisotropy of Ultra-High-Energy Cosmic Rays Observed in Stereo by the High Resolution Fly's Eye Detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2004-08-01

    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.

  1. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  2. Features in the primordial spectrum from WMAP: A wavelet analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Souradeep, Tarun; Manimaran, P.

    2007-06-15

    Precise measurements of the anisotropies in the cosmic microwave background enable us to do an accurate study on the form of the primordial power spectrum for a given set of cosmological parameters. In a previous paper [A. Shafieloo and T. Souradeep, Phys. Rev. D 70, 043523 (2004).], we implemented an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the first year of WMAP data to determine the primordial power spectrum assuming a concordance cosmological model. This recovered spectrum has a likelihood far better than a scale invariant, or, 'best fit' scale free spectra ({delta}lnL{approx_equal}25 withmore » respect to the Harrison-Zeldovich spectrum, and, {delta}lnL{approx_equal}11 with respect to the power law spectrum with n{sub s}=0.95). In this paper we use the discrete wavelet transform (DWT) to decompose the local features of the recovered spectrum individually to study their effect and significance on the recovered angular power spectrum and hence the likelihood. We show that besides the infrared cutoff at the horizon scale, the associated features of the primordial power spectrum around the horizon have a significant effect on improving the likelihood. The strong features are localized at the horizon scale.« less

  3. Strong Inter-channel Effects in Dipole Photoionization of d-subshells of Xe, Cs, and Ba Atoms

    NASA Astrophysics Data System (ADS)

    Manson, S.; Amusia, M.; Baltenkov, A.; Chernysheva, L.; Felfli, Z.; Msezane, A.

    2003-05-01

    In the framework of a specially modified Random Phase Approximation with Exchange approach (SPRPAE) developed for half-filled atomic subshells the dipole angular anisotropy parameters β(ω) for the 3d-photoionization of Xe, Cs and Ba atoms have been calculated. The main point of this approach is that we consider the 3d electrons of these atoms as belonging to two semi-filled atomic levels that contain two different sorts of electrons, namely that six electrons form the 3d_5/2 subshell (called "up"), while the other four electrons form the 3d_3/2 subshell (called "down"). This permits to apply straightforwardly the RPAE for these semi-filled subshells. We show that the interaction between "up" and "down" electrons results in a qualitative alteration of the frequency (ω) dependence of β_5/2(ω) and β_3/2(ω) that define the photoelectron angular distribution from the 3d_5/2 and 3d_3/2 levels. In all these atoms the effect of 3d_3/2 upon 3d_5/2 leads to the creation of an additional maximum near the photoionization thresholds, while the effect for 3d_3/2 is rather weak. Work supported by CRDF (No ZP1- 2449-TA-02), ISTC grant 1358 and NSF

  4. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  5. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027

    2007-11-15

    It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separationmore » of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys.« less

  6. Generation of vertical angular momentum in single, double, and triple-turn pirouette en dehors in ballet.

    PubMed

    Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo

    2014-09-01

    The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p <  0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.

  7. Pulsed recording of anisotropy and holographic polarization gratings in azo-polymethacrylates with different molecular architectures

    NASA Astrophysics Data System (ADS)

    Forcén, Patricia; Oriol, Luis; Sánchez, Carlos; Alcalá, Rafael; Jankova, Katja; Hvilsted, Søren

    2008-06-01

    Recording of anisotropy and holographic polarization gratings using 532nm, 4ns light pulses has been carried out in thin films of polymers with the same azobenzene content (20wt%) and different molecular architectures. Random and block copolymers comprising azobenzene and methylmethacrylate (MMA) moieties as well as statistical terpolymers with azobenzene, biphenyl, and MMA units have been compared in terms of recording sensitivity and stability upon pulsed excitation. Photoinduced anisotropy just after the pulse was significantly higher in the case of the block copolymers than in the two statistical copolymers. The stability of the recorded anisotropy has also been studied. While a stationary value of the photoinduced anisotropy (approximately 50% of the initial photoinduced value) is reached for the block copolymer, photoinduced anisotropy almost vanished after a few hours in the statistical copolymers. Polarization holographic gratings have been registered using two orthogonally circularly polarized light beams. The results are qualitatively similar to those of photoinduced anisotropy, that is, stability of the registered grating and larger values of diffraction efficiency for the block copolymer as compared with the random copolymers. The recording of holographic gratings with submicron period in films several microns thick, showing both polarization and angular selectivity, has also been demonstrated. Block copolymers showed a lamellar block nanosegregated morphology. The interaction among azo chromophores within the nanosegregated azo blocks seems to be the reason for the stability and the photoresponse enhancement in the block copolymer as compared with the statistical ones.

  8. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.

  9. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  10. High field superconducting properties of Ba(Fe1-xCox)2As2 thin films

    NASA Astrophysics Data System (ADS)

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-11-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample.

  11. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.

    PubMed

    Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W

    2015-07-24

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

  12. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Mingarelli, C. M. F.; Gair, J. R.; Sesana, A.; Theureau, G.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Lentati, L.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S. A.; Smits, R.; Stappers, B.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.; EPTA Collaboration

    2015-07-01

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ˜2 - 90 nHz band shows consistency with isotropy, with the strain amplitude in l >0 spherical harmonic multipoles ≲40 % of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.

  13. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MK T ), and DIVIDE was used to decompose MK T into components caused by microscopic anisotropy (MK A ) and isotropic heterogeneity (MK I ). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MK A correlated with cell eccentricity (r=0.95, p<10 -7 ) and MK I with the cell density variance (r=0.83, p<10 -3 ). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10 -3 ) and microscopic scale (μFA, r=0.93, p<10 -6 ). A multiple regression analysis showed that the conventional MK T parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MK A was associated only to cell eccentricity, and MK I only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MK A =1.11±0.33 vs MK I =0.44±0.20 (p<10 -3 ), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MK I =0.57±0.30 vs MK A =0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. On the estimation and detection of the Rees-Sciama effect

    NASA Astrophysics Data System (ADS)

    Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Sáez, D.

    2017-02-01

    Maps of the Rees-Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic microwave background (CMB) maps is applied to our RS maps. Each of these techniques has been tested and successfully applied in previous papers. Within a range of angular scales, our estimate of the RS angular power spectrum due to variations in the peculiar gravitational potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study of the redshifts and spatial scales relevant for the production of RS anisotropy is developed for the first time. Results from this study demonstrate that (I) to estimate the full integrated RS effect, the initial redshift for the calculations (integration) must be greater than 25, (II) the effect produced by strongly non-linear structures is very small and peaks at angular scales close to 4.3 arcmin, and (III) the RS anisotropy cannot be detected either directly-in temperature CMB maps-or by looking for cross-correlations between these maps and tracers of the dark matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs, where the density contrast is not strongly non-linear, high accuracy N-body simulations appear unnecessary. Simulations based on approximations such as the Zel'dovich approximation and adhesion prescriptions, for example, may be adequate. These results can be used to guide the design of future RS simulations.

  15. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  16. Anisotropic Light Diffraction by Ultrasound in Crystals with Strong Acoustic Anisotropy

    NASA Astrophysics Data System (ADS)

    Voloshin, Andrey S.; Balakshy, Vladimir I.

    In modern acousto-optics, crystalline materials are used predominantly for manufacturing acousto-optic instruments. Among these materials, such crystals as paratellurite, tellurium, calomel, TAS and some others occupy a prominent place, which are distinguished by exceptionally large anisotropy of acoustic properties. In this work, the influence of acoustic beam energy walk-off on characteristics of Bragg diffraction of light is studied by the example of tellurium crystal. It is shown that the walk-off can substantially change angular and frequency ranges, resulting in their narrowing or broadening subject to position of the operating point in the Bragg angle frequency characteristic. Coefficients of broadening are introduced for characterization of this effect.

  17. Does the thermal evolution of molecular structures critically affect the magnetic anisotropy?† †Electronic supplementary information (ESI) available. CCDC 1045631–1045633. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01245g

    PubMed Central

    Qian, Kang; Baldoví, José J.; Zhang, Yi-Quan; Overgaard, Jacob; Wang, Bing-Wu

    2015-01-01

    A dysprosium based single-ion magnet is synthesized and characterized by the angular dependence of the single-crystal magnetic susceptibility. Ab initio and effective electrostatic analyses are performed using the molecular structures determined from single crystal X-ray diffraction at 20 K, 100 K and 300 K. Contrary to the common assumption, the results reveal that the structural thermal effects that may affect the energy level scheme and magnetic anisotropy below 100 K are negligible. PMID:29568416

  18. Has Nemesis' orbit been detected?

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1986-01-01

    The orbital angular momenta of 126 very young comets are calculated from the orbital data of Marsden and Roemer (1982) and analyzed statistically. A large anisotropy is detected in a plane almost perpendicular to the ecliptic and shown to have a characteristic dissipation lifetime of 10-30 Myr. Dynamic evolution computations indicate that the impulse which produced the anisotropy is that of a very slow massive (10-90 Jupiter mass) body, which is bound to the solar system, passed its 15,000-35,000-AU perihelion about 2-15 Myr ago, and has period 5-50 Myr. It is suggested that this body could well be identical to Nemesis, the object proposed to explain mass faunal extinctions.

  19. The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR

    USGS Publications Warehouse

    Meyer, David; Verstraete, M.; Pinty, B.

    1995-01-01

    Since terrestrial surfaces are anisotropic, all spectral reflectance measurements obtained with a small instantaneous field of view instrument are specific to these angular conditions, and the value of the corresponding NDVI, computed from these bidirectional reflectances, is relative to the particular geometry of illumination and viewing at the time of the measurement. This paper documents the importance of these geometric effects through simulations of the AVHRR data acquisition process, and investigates the systematic biases that result from the combination of ecosystem-specific anisotropies with instrument-specific sampling capabilities. Typical errors in the value of NDVI are estimated, and strategies to reduce these effects are explored. -from Authors

  20. Observations of the anisotropy in the cosmic microwave background by the FIRS, SK93, and MSAM-I experiments

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey; hide

    1994-01-01

    The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.

  1. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  2. Will COBE challenge the inflationary paradigm - Cosmic microwave background anisotropies versus large-scale streaming motions revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, K.M.

    1991-03-01

    The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 tomore » the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.« less

  3. Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field.

    PubMed

    Jurcisinová, E; Jurcisin, M; Remecký, R

    2009-10-01

    The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical expressions for coordinates of the corresponding fixed point of the renormalization-group equations as functions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling regime is demonstrated, and the dependence of the borderline dimension d(c) is an element of (2,3] between stable and unstable scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous dimensions of the structure functions, which are the same (universal) for the Kraichnan model, for the model with finite time correlations of the velocity field, and for the model with the advection by the velocity field driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corresponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within the Kraichnan rapid-change model is done.

  4. Determination of rock-sample anisotropy from P- and S-wave traveltime inversion

    NASA Astrophysics Data System (ADS)

    Pšenčík, Ivan; Růžek, Bohuslav; Lokajíček, Tomáš; Svitek, Tomáš

    2018-04-01

    We determine anisotropy of a rock sample from laboratory measurements of P- and S-wave traveltimes using weak-anisotropy approximation and parametri-zation of the medium by a special set of anisotropy parameters. For the traveltime inversion we use first-order velocity expressions in the weak-anisotropy approximation, which allow to deal with P and S waves separately. Each wave is described by 15 anisotropy parameters, 9 of which are common for both waves. The parameters allow an approximate construction of separate P- or common S-wave phase-velocity surfaces. Common S wave concept is used to simplify the treatment of S waves. In order to obtain all 21 anisotropy parameters, P- and S-wave traveltimes must be inverted jointly. The proposed inversion scheme has several advantages. As a consequence of the use of weak-anisotropy approximation and assumed homogeneity of the rock sample, equations used for the inversion are linear. Thus the inversion procedure is non-iterative. In the approximation used, phase and ray velocities are equal in their magnitude and direction. Thus analysis whether the measured velocity is the ray or phase velocity is unnecessary. Another advantage of the proposed inversion scheme is that, thanks to the use of the common S-wave concept, it does not require identification of S-wave modes. It is sufficient to know the two S-wave traveltimes without specification, to which S-wave mode they belong. The inversion procedure is tested first on synthetic traveltimes and then used for the inversion of traveltimes measured in laboratory. In both cases, we perform first the inversion of P-wave traveltimes alone and then joint inversion of P- and S-wave traveltimes, and compare the results.

  5. Constraints on Average Radial Anisotropy in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Trampert, J.; De Wit, R. W. L.; Kaeufl, P.; Valentine, A. P.

    2014-12-01

    Quantifying uncertainties in seismological models is challenging, yet ideally quality assessment is an integral part of the inverse method. We invert centre frequencies for spheroidal and toroidal modes for three parameters of average radial anisotropy, density and P- and S-wave velocities in the lower mantle. We adopt a Bayesian machine learning approach to extract the information on the earth model that is available in the normal mode data. The method is flexible and allows us to infer probability density functions (pdfs), which provide a quantitative description of our knowledge of the individual earth model parameters. The parameters describing shear- and P-wave anisotropy show little deviations from isotropy, but the intermediate parameter η carries robust information on negative anisotropy of ~1% below 1900 km depth. The mass density in the deep mantle (below 1900 km) shows clear positive deviations from existing models. Other parameters (P- and shear-wave velocities) are close to PREM. Our results require that the average mantle is about 150K colder than commonly assumed adiabats and consist of a mixture of about 60% perovskite and 40% ferropericlase containing 10-15% iron. The anisotropy favours a specific orientation of the two minerals. This observation has important consequences for the nature of mantle flow.

  6. Light propagation in Swiss-cheese models of random close-packed Szekeres structures: Effects of anisotropy and comparisons with perturbative results

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.

    2017-03-01

    Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hergt, Lukas; Amara, Adam; Kacprzak, Tomasz

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise ofmore » the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10{sup −7}.« less

  8. Shapes of rotating superfluid helium nanodroplets

    DOE PAGES

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis; ...

    2017-02-16

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  9. Shapes of rotating superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  10. Investigation of the ion beam emission from a pulsed power plasma device

    NASA Astrophysics Data System (ADS)

    Henríquez, A.; Bhuyan, H.; Favre, M.; Retamal, M. J.; Volkmann, U.; Wyndham, E.; Chuaqui, H.

    2014-05-01

    Plasma Focus (PF) devices are well known as ion beam sources with characteristic energy among the hundreds of keV to tens of MeV. The information on ion beam energy, ion distribution and composition is essential from the viewpoint of understanding fundamental physics behind their production and acceleration and also their applications in various fields, such as surface properties modification, ion implantation, thin film deposition, semiconductor doping and ion assisted coating. An investigation from a low energy, 1.8 kJ 160 kA, Mather type plasma focus device operating with nitrogen using CR-39 detectors was conducted to study the emission of ions at different angular positions. Tracks on CR-39 detectors at different angular positions reveal the existence of angular ion anisotropy. The results obtained are comparable with the time integrated measurements using FC. Preliminary results of this work are presented.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu

    Small-scale features observed by Wilkinson Microwave Anisotropy Probe  ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-Hmore » isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.« less

  12. Ferromagnetic resonance in non-stoichiometric Ni 1- x- yMn xGa y

    NASA Astrophysics Data System (ADS)

    Shanina, B. D.; Konchits, A. A.; Kolesnik, S. P.; Gavriljuk, V. G.; Glavatskij, I. N.; Glavatska, N. I.; Söderberg, O.; Lindroos, V. K.; Foct, J.

    2001-12-01

    Non-stoichiometric alloys Ni 1- x- yMn xGa y characterised by different values of MSME (from 0.2% to 7.3%) were studied using ferromagnetic resonance (FMR). The angular dependence of the FMR signals was measured in the martensitic and austenitic states of the samples just before and after martensite-austenite transition. Experimental data were used for the determination of the magnetisation 4 πMs and anisotropy parameters K1, K2 for the martensitic state and K1c for the austenitic state. All studied alloys were characterised by large values of the anisotropy parameters of the first and second orders. A special feature of the alloys possessing high MSME is a larger value of the coefficient K2. The temperature dependence of the FMR signals was investigated in the temperature range from below Ms to above TC, where FMR was replaced by conduction electron spin resonance (CESR). Magnetically induced strain in the martensitic phase was measured as a function of the applied magnetic field. The main difference between the alloys in the martensitic state revealing the large or small MSM strain is the behaviour of the electronic structure. In the alloys with the small MSM strain, all the electrons are involved in the ferromagnetic system. On the contrary, in the alloy with the large MSM strain, the narrow resonance line of one electron subsystem is present separately in the FMR spectra. An intensive signal of CESR is observed in the alloys with the large MSME, which is an evidence for a high concentration of free electrons. The suggestion made is that the high concentration of free electrons, i.e. enhanced metallic character of interatomic bonds, assists MSME.

  13. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results

    NASA Astrophysics Data System (ADS)

    Lagouarde, J.-P.; Irvine, M.

    2008-12-01

    The measurements of surface temperature are prone to important directional anisotropy related to the structure of the canopy and the radiative and energy exchanges inside of it. Directional effects must be taken into account for a number of practical applications such as the correction of large swath satellite data, the assimilation of thermal infrared (TIR) measurements in surface models, the design of future spatial missions… For urban canopies, experimental measurements of TIR directional anisotropy previously performed during summer days over Marseille in the framework of the ESCOMPTE campaign (2001) revealed significant angular surface temperature variations with noticeable hot spot effects whose intensity was related to the canopy structure. The CAPITOUL project ( http://medias.cnrs.fr/capitoul/ ) provided the opportunity to extend these results to other seasons and to nighttime conditions. The experimental setup is based on the use of 2 airborne TIR cameras with different lenses, inclination and resolution, and installed aboard a small aircraft. The flight protocol allowed the retrieval of directional anisotropy in all azimutal directions and in a range of zenith viewing angles between nadir and 62°. Measurements were performed during several intensive operation periods (IOP) in summer (2004 july), autumn (2004 September and October) and winter (2005 February). Only the first results of the 2004 autumn and 2005 winter IOPs are presented in this paper. The results obtained in daytime conditions confirm the systematic hot spot effects observed in previous experiments over cities. The variations found seem to be particularly important in winter when sun elevation is low: for instance they range between -4 and 10 K between oblique and nadir viewing in February. During nighttime conditions, angular variations are much lower (always less than 2 K between nadir and 60° zenithal viewing angle), whichever the azimutal viewing direction.

  14. On the angular variation of thermal infrared emissivity of inorganic soils

    NASA Astrophysics Data System (ADS)

    GarcíA-Santos, Vicente; Valor, Enric; Caselles, Vicente; ÁNgeles Burgos, M.; Coll, CéSar

    2012-10-01

    Land surface temperature (LST), a key parameter for many environmental studies, can be most readily estimated by using thermal infrared (TIR) sensors onboard satellites. Accurate LST are contingent upon simultaneously accurate estimates of land surface emissivity (ɛ), which depend on sensor viewing angle and the anisotropy of optical and structural properties of surfaces. In the case of inorganic bare soils (IBS), there are still few data that quantify emissivity angular effects. The present work deals with the angular variation of TIR emissivity for twelve IBS types, representative of nine of the twelve soil textures found on Earth according to United States Department of Agriculture classification. Emissivity was measured with a maximum error of ±0.01, in several spectral ranges within the atmospheric window 7.7-14.3 μm, at different zenithal (θ) and azimuthal (φ) angles. Results showed that ɛ of all IBS studied is almost azimuthally isotropic, and also zenithally up to θ = 40°, from which ɛ values decrease with the increase of θ. This decrease is most pronounced in sandy IBS which is rich in quartz reaching a maximum difference from nadir of +0.101 at θ = 70°. On the other hand, clayey IBS did not show a significant decrease of ɛ up to θ= 60°. A parameterization of the relative-to-nadir emissivity in terms ofθ and sand and clay percentage was established. Finally, the impact of ignoring ɛangular effects on the retrievals of LST, using split-window-type algorithms, and of outgoing longwave radiation, was analyzed. Results showed systematic errors ranging between ±0.4 K to ±1.3 K for atmospheres with water vapor values lower than 4 cm in the case of LST, and errors between 2%-8%, in the estimation of different terms of the surface energy balance.

  15. Angle-resolved studies of inner shell excitations for argon, krypton and xenon using third-generation synchrotron sources

    NASA Astrophysics Data System (ADS)

    Farhat, Ahmad H.

    This dissertation, which is in the area of atomic physics, concentrates on the study of the interaction between VUV-soft X-ray radiation and atoms in the gas phase. The main area of interest is the study of Auger decay in atoms utilizing the process known as the resonance Auger effect, where an inner shell electron is excited to an unfilled orbital followed by the ejection of an Auger electron. The measurements in this thesis were performed by using the high resolution Atomic, Molecular and Optical Physics undulator beam line, which utilizes a spherical grating monochromator at the Advanced Light Source at Lawrence Berkeley National Laboratory. The research focused on three rare gases, argon, krypton and xenon. For argon, high resolution angular-resolved measurements of the 2p → 4s, 3d, 4d resonant Auger lines have been achieved. By measuring photoelectron spectra simultaneously at two different angles using efficient time of flight spectrometers, the angular distributions anisotropy parameters β have been measured, and relative intensities have been evaluated for each of the resolved final ionic states. For krypton, the resonant Auger decay of all the photoexcited Kr 3d3/2,5/2-1 nl (n = 5-9) states have been studied using an angle resolved two dimensional photoelectron spectroscopic technique, in which the electron yield was measured as a function of both photon energy and electron kinetic energy. Angular distributions, spectator and shake probabilities have been derived for the Kr 3d-1np/to4s- 14p-1mp + e/sp- (n = 5-9, m = 5-11) resonance Auger decay. The results show that the spectator-core coupling is strong at lower n (n = 5,6) but it lessens for higher n, with a shake up of m = n + 1 preferred. Finally for xenon, the autoionization resonances and angular distribution of the 4d → 6p decay spectrum were studied utilizing the Auger resonant Raman effect. Using this technique, β parameters of almost all 5p4/ (3P,/ 1D,/ 1S) 6p final ionic states were determined. These results contribute to our understanding of atomic structure and dynamics of inner shell processes and hopefully will stimulate further experimental and theoretical work.

  16. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    NASA Astrophysics Data System (ADS)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  17. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    PubMed

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  18. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    PubMed Central

    Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657

  19. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.

    PubMed

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  20. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  1. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    NASA Astrophysics Data System (ADS)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  2. Spherical Harmonic Analysis of Particle Velocity Distribution Function: Comparison of Moments and Anisotropies using Cluster Data

    NASA Technical Reports Server (NTRS)

    Gurgiolo, Chris; Vinas, Adolfo F.

    2009-01-01

    This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.

  3. A Multiscale pipeline for the search of string-induced CMB anisotropies

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.

    2018-03-01

    We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.

  4. High field superconducting properties of Ba(Fe1−xCox)2As2 thin films

    PubMed Central

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-01-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample. PMID:26612567

  5. Anisotropic surface-state-mediated RKKY interaction between adatoms on a hexagonal lattice

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Einstein, T. L.

    2012-01-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive an expression for the RKKY interaction mediated by surface states, considering the effect of anisotropy in the Fermi edge. Our analysis is based on a stationary phase approximation. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that, in general, the corresponding Fermi wave vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface-state band structure. The wavelength, in particular, is determined by the projection of this kF (corresponding to vF) onto the direction of R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work. However, for metals with surface-state dispersions similar to Be(101¯0), we show that the RKKY interaction should have considerable anisotropy.

  6. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  7. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  8. SIGNIFICANT FOREGROUND UNRELATED NON-ACOUSTIC ANISOTROPY ON THE 1 DEGREE SCALE IN WILKINSON MICROWAVE ANISOTROPY PROBE 5-YEAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Bizhu; Zhang Shuangnan; Lieu, Richard

    2010-01-01

    The spectral variation of the cosmic microwave background (CMB) as observed by WMAP was tested using foreground reduced WMAP5 data, by producing subtraction maps at the 1 deg. angular resolution between the two cosmological bands of V and W, for masked sky areas that avoid the Galactic disk. The resulting V - W map revealed a non-acoustic signal over and above the WMAP5 pixel noise, with two main properties. First, it possesses quadrupole power at the approx1 muK level which may be attributed to foreground residuals. Second, it fluctuates also at all values of l> 2, especially on the 1more » deg. scale (200 approx< l approx< 300). The behavior is random and symmetrical about zero temperature with an rms approx7 muK, or 10% of the maximum CMB anisotropy, which would require a 'cosmic conspiracy' among the foreground components if it is a consequence of their existence. Both anomalies must be properly diagnosed and corrected if 'precision' cosmology is the claim. The second anomaly is, however, more interesting because it opens the question on whether the CMB anisotropy genuinely represents primordial density seeds.« less

  9. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  10. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE PAGES

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.; ...

    2016-10-24

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  11. Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.

    Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less

  12. Angular dose anisotropy around gold nanoparticles exposed to X-rays.

    PubMed

    Gadoue, Sherif M; Toomeh, Dolla; Zygmanski, Piotr; Sajo, Erno

    2017-07-01

    Gold nanoparticle (GNP) radiotherapy has recently emerged as a promising modality in cancer treatment. The use of high atomic number nanoparticles can lead to enhanced radiation dose in tumors due to low-energy leakage electrons depositing in the vicinity of the GNP. A single metric, the dose enhancement ratio has been used in the literature, often in substantial disagreement, to quantify the GNP's capacity to increase local energy deposition. This 1D approach neglects known sources of dose anisotropy and assumes that one average value is representative of the dose enhancement. Whether this assumption is correct and within what accuracy limits it could be trusted, have not been studied due to computational difficulties at the nanoscale. Using a next-generation deterministic computational method, we show that significant dose anisotropy exists which may have radiobiological consequences, and can impact the treatment outcome as well as the development of treatment planning computational methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anisotropic Surface State Mediated RKKY Interaction Between Adatoms on a Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore; Patrone, Paul

    2012-02-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive a far-field expression for the RKKY interaction mediated by surface states on a (111) FCC surface, considering the effect of anisotropy in the Fermi edge. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that in general, the corresponding Fermi wave-vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface state band structure. The wavelength, in particular, is determined by the component of the aforementioned kF that is parallel to R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work.

  14. Influence of Two-Photon Absorption Anisotropy on Terahertz Emission Through Optical Rectification in Zinc-Blende Crystals

    NASA Astrophysics Data System (ADS)

    Sanjuan, Federico; Gaborit, Gwenaël; Coutaz, Jean-Louis

    2018-04-01

    We report for the first time on the observation of an angular anisotropy of the THz signal generated by optical rectification in a < 111 > ZnTe crystal. This cubic (zinc-blende) crystal in the < 111 > orientation exhibits both transverse isotropy for optical effects involving the linear χ (1) and nonlinear χ (2) susceptibilities. Thus, the observed anisotropy can only be related to χ (3) effect, namely two-photon absorption, which leads to the photo-generation of free carriers that absorb the generated THz signal. Two-photon absorption in zinc-blende crystals is known to be due to a spin-orbit interaction between the valence and higher-conduction bands. We perform a couple of measurements that confirm our hypothesis, as well as we fit the recorded data with a simple model. This two-photon absorption effect makes difficult an efficient generation, through optical rectification in < 111 > zinc-blende crystals, of THz beams of any given polarization state by only monitoring the laser pump polarization.

  15. Electronic interaction anisotropy between open-shell lanthanide atoms and helium from cold collision experiment

    NASA Astrophysics Data System (ADS)

    Krems, R. V.; Buchachenko, A. A.

    2005-09-01

    Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.

  16. CMB temperature trispectrum of cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-01

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.

  17. Comparison of field swept ferromagnetic resonance methods - A case study using Ni-Mn-Sn films

    NASA Astrophysics Data System (ADS)

    Modak, R.; Samantaray, B.; Mandal, P.; Srinivasu, V. V.; Srinivasan, A.

    2018-05-01

    Ferromagnetic resonance spectroscopy is used to understand the magnetic behavior of Ni-Mn-Sn Heusler alloy film. Two popular experimental methods available for recording FMR spectra are presented here. In plane angular (φH) variation of magnetic relaxation is used to evaluate the in plane anisotropy (Ku) of the film. The out of plane (θH) variation of FMR spectra has been numerically analyzed to extract the Gilbert damping coefficient, effective magnetization and perpendicular magnetic anisotropy (K1). Magnetic homogeneity of the film had also been evaluated in terms of 2-magnon contribution from FMR linewidth. The advantage and limitations of these two popular FMR techniques are discussed on the basis of the results obtained in this comparative study.

  18. New PHOBOS results on event-by-event fluctuations

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.

    2006-04-01

    We present new results from the PHOBOS experiment at RHIC on event-by-event fluctuations of particle multiplicities and angular distributions in nucleus-nucleus collisions at RHIC. Our data for Au+Au collisions at √sNN = 200 GeV show that at a level of 10-4 or less, no rare, large-amplitude fluctuations in the total multiplicity distributions or the shape of the pseudorapidity distributions are observed. We however find significant short-range multiplicity correlations in these data, that can be described as particle production in clusters. In Cu+Cu collisions, we observe large final-state azimuthal anisotropies ν2. A common scaling behavior for Cu+Cu and Au+Au for these anisotropies emerges when fluctuations in the initial state geometry are taken into account.

  19. Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured Co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.

    2012-08-01

    Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.

  20. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP Data

    NASA Technical Reports Server (NTRS)

    Dunkey, J.; Komatsu, E.; Nolta, M.R.; Spergel, D.N.; Larson, D.; Hinshaw, G.; Page, L.; Bennett, C.L.; Gold, B.; Jarosik, N.; hide

    2008-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP), launched in 2001, has mapped out the Cosmic Microwave Background with unprecedented accuracy over the whole sky. Its observations have led to the establishment of a simple concordance cosmological model for the contents and evolution of the universe, consistent with virtually all other astronomical measurements. The WMAP first-year and three-year data have allowed us to place strong constraints on the parameters describing the ACDM model. a flat universe filled with baryons, cold dark matter, neutrinos. and a cosmological constant. with initial fluctuations described by nearly scale-invariant power law fluctuations, as well as placing limits on extensions to this simple model (Spergel et al. 2003. 2007). With all-sky measurements of the polarization anisotropy (Kogut et al. 2003; Page et al. 2007), two orders of magnitude smaller than the intensity fluctuations. WMAP has not only given us an additional picture of the universe as it transitioned from ionized to neutral at redshift z approx.1100. but also an observation of the later reionization of the universe by the first stars. In this paper we present cosmological constraints from WMAP alone. for both the ACDM model and a set of possible extensions. We also consider tlle consistency of WMAP constraints with other recent astronomical observations. This is one of seven five-year WMAP papers. Hinshaw et al. (2008) describe the data processing and basic results. Hill et al. (2008) present new beam models arid window functions, Gold et al. (2008) describe the emission from Galactic foregrounds, and Wright et al. (2008) the emission from extra-Galactic point sources. The angular power spectra are described in Nolta et al. (2008), and Komatsu et al. (2008) present and interpret cosmological constraints based on combining WMAP with other data. WMAP observations are used to produce full-sky maps of the CMB in five frequency bands centered at 23, 33, 41, 61, and 94 GHz (Hinshaw et al. 2008). With five years of data, we are now able to place better limits on the ACDM model. as well as to move beyond it to test the composition of the universe. details of reionization. sub-dominant components, characteristics of inflation, and primordial fluctuations. We have more than doubled the amount of polarized data used for cosmological analysis. allowing a better measure of the large-scale E-mode signal (Nolta et al. 2008). To this end we describe an alternative way to remove Galactic foregrounds from low resolution polarization maps in which Galactic emission is marginalized over, providing a cross-check of our results. With longer integration we also better probe the second and third acoustic peaks in the temperature angular power spectrum, and have many more year-to-year difference maps available for cross-checking systematic effects (Hinshaw et al. 2008).

  1. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  2. Definition of parameters of daily anisotropy of cosmic rays according to the world network of neutron monitors

    NASA Astrophysics Data System (ADS)

    Grigoryev, V. G.; Starodubtsev, S. A.; Potapova, V. D.

    2013-02-01

    In our previous works we have created the method of determination of parameters of cosmic ray daily anisotropy in the interplanetary environment based on the data provided by only single station - cosmic ray spectrograph named after A.I.Kuzmin. This method allows to predict the ingress of the Earth into large-scale solar wind disturbances with a probability of more than 70% and in advance time of about from several hours up to 2 days. Now it became possible to use the data of the neutron monitor networks, which can be seen in the neutron monitor database (NMDB) in real time. In this case the well-known method of global survey is applied for determination of cosmic ray anisotropy. Usage of the data of the cosmic ray station network allows to determine parameters of daily cosmic ray anisotropy with a greater accuracy.

  3. Methods and means of Fourier-Stokes polarimetry and the spatial frequency filtering of phase anisotropy manifestations

    NASA Astrophysics Data System (ADS)

    Novakovskaya, O. Yu.; Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Soltys, I. V.; Zhytaryuk, V. H.; Olar, O. V.; Sidor, M.; Gorsky, M. P.

    2016-12-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  4. DRoplet and hAdron generator for nuclear collisions: An update

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris

    2016-10-01

    The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.

  5. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  6. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; Reichardt, C. L.; Aird, K. A.

    2015-01-28

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg(2) SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg(2) of the SPT-SZ survey. We measure the tSZ power at 143  GHz to bemore » $$D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$$ and the kSZ power to be $$D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $$\\xi = 0.113^{+0.057}_{-0.054}$$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.« less

  7. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, E. M.; Reichardt, C. L.; Harrington, N. L.

    2015-02-01

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg{sup 2} SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' ≳ θ ≳ 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the powermore » spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg{sup 2} of the SPT-SZ survey. We measure the tSZ power at 143  GHz to be D{sub 3000}{sup tSZ}=4.08{sub −0.67}{sup +0.58} μK{sup 2} and the kSZ power to be D{sub 3000}{sup kSZ}=2.9±1.3 μK{sup 2}. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of ξ=0.113{sub −0.054}{sup +0.057} between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.« less

  8. A measurement of secondary cosmic microwave background anisotropies from the 2500 square-degree SPT-SZ survey

    DOE PAGES

    George, E. M.; Reichardt, C. L.; Aird, K. A.; ...

    2015-01-28

    Here, we present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg2 SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg2 of the SPT-SZ survey. We measure the tSZ power at 143 GHz to bemore » $$D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$$ and the kSZ power to be $$D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $$\\xi = 0.113^{+0.057}_{-0.054}$$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4 at 95% CL.« less

  9. Effect of equal-channel angular pressing and annealing conditions on the texture, microstructure, and deformability of an MA2-1 alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Ivanova, T. M.; Kopylov, V. I.; Dobatkin, S. V.; Pozdnyakova, N. N.; Pimenov, V. A.; Savelova, T. I.

    2010-07-01

    Equal-channel angular pressing (ECAP) of am MA2-1 alloy according to routes A and Bc is used to study the possibility of increasing the low-temperature deformability of the alloy due to grain refinement and a change in its texture. To separate the grain refinement effect from the effect of texture on the deformability of the alloy, samples after ECAP are subjected to recrystallization annealing that provides grain growth to the grain size characteristic of the initial state (IS) of the alloy. Upon ECAP, the average grain size is found to decrease to 2-2.4 μm and the initial sharp axial texture changes substantially (it decomposes into several scattered orientations). The type of orientations and the degree of their scattering depend on the type of ECAP routes. The detected change in the texture is accompanied by an increase in the deformability parameters (normal plastic anisotropy coefficient R, strain-hardening exponent n, relative uniform elongation δu) determined upon tensile tests at 20°C for the states of the alloy formed in the IS-4A-4Bc and IS-4Ao-4BcO sequences. The experimental values of R agree with the values calculated in terms of the Taylor model of plastic deformation in the Bishop-Hill approximation using quantitative texture data in the form of orientation distribution function coefficients with allowance for the activation of prismatic slip, especially for ECAP routes 4Bc and 4BcO. When the simulation results, the Hall-Petch relation, and the generalized Schmid factors are taken into account, a correlation is detected between the deformability parameter, the Hall-Petch coefficient, and the ratio of the critical shear stresses on prismatic and basal planes.

  10. Isotropy of the early universe from CMB anisotropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donoghue, Evan P.; University of Notre Dame, Notre Dame, Indiana 46556; Donoghue, John F.

    The acoustic peak in the cosmic microwave background power spectrum is sensitive to causal processes and cosmological parameters in the early universe up to the time of last scattering. We provide limits on correlated spatial variations of the peak height and peak position and interpret these as constraints on the spatial variation of the cosmological parameters (baryon density, cold dark matter density, and cosmological constant as well as the amplitude and tilt of the original fluctuations). We utilize recent work of Hansen, Banday, and Gorski who have studied the spatial isotropy of the power spectrum as measured by WMAP bymore » performing the power spectrum analysis on smaller patches of the sky. We find that there is no statistically significant correlated asymmetry of the peak. Hansen, Banday, and Gorski have also provided preliminary indications of a preferred direction in the lower angular momentum range (l{approx}2-40) and we show how possible explanations of this asymmetry are severely constrained by the data on the acoustic peak. Finally we show a possible non-Gaussian feature in the data, associated with a difference in the northern and southern galactic hemispheres.« less

  11. NMR properties of 3He-A in biaxially anisotropic aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Krasnikhin, D. A.; Senin, A. A.; Yudin, A. N.

    2012-12-01

    Theoretical model of G.E. Volovik for A-like phase of 3He in aerogel suggests formation of Larkin-Imry-Ma state of Anderson-Brinkmann-Morel order parameter. Most of results of NMR studies of A-like phase are in a good agreement with this model in assumption of uniaxial anisotropy, except for some of experiments in weakly anisotropic aerogel samples. We demonstrate that these results can be described in frames of the same model in assumption of biaxial anisotropy. Parameters of anisotropy in these experiments can be determined from the NMR data.

  12. Jones matrix polarization-correlation mapping of biological crystals networks

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.; Marchuk, Yu. F.

    2017-08-01

    It has been proposed the optical model of Jones-matrix description of mechanisms of optical anisotropy of polycrystalline films of human bile, namely optical activity and birefringence. The algorithm of reconstruction of distributions of parameters - optical rotation angles and phase shifts of the indicated anisotropy types has been elaborated. The objective criteria of differentiation of bile films taken from healthy donors and patients with cholelithiasis by means of statistic analysis of such distributions have been determined. The operational characteristics (sensitivity, specificity and accuracy) of Jones-matrix reconstruction method of optical anisotropy parameters were defined.

  13. Precision ESR measurements of transverse anisotropy in the single-molecule magnet Ni4

    NASA Astrophysics Data System (ADS)

    Collett, Charles A.; Allão Cassaro, Rafael A.; Friedman, Jonathan R.

    2016-12-01

    We present a method for precisely measuring the tunnel splitting in single-molecule magnets (SMMs) using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting samples of the SMM Ni4 via cocrystallization in a diamagnetic isostructural analog we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.

  14. Correction of the angular dependence of satellite retrieved LST at global scale using parametric models

    NASA Astrophysics Data System (ADS)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.; Ghent, D.

    2017-12-01

    Land surface temperature (LST) values retrieved from satellite measurements in the thermal infrared (TIR) may be strongly affected by spatial anisotropy. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a parametric model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. Two models are consistently analyzed to evaluate their performance of and to assess their respective potential to correct directional effects on LST for a wide range of surface conditions, in terms of tree coverage, vegetation density, surface emissivity. We also propose an optimization of the correction of directional effects through a synergistic use of both models. The models are calibrated using LST data as provided by two sensors: MODIS on-board NASA's TERRA and AQUA; and SEVIRI on-board EUMETSAT's MSG. As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The models are then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based models is very close to the pixel based ones. Furthermore, the reduced number of parameters allows improving the model trough the incorporation of a seasonal component. The application of the procedure discussed here towards the harmonization of LST products from multi-sensors has been tested within the framework of the ESA DUE GlobTemperature project. It is also expected to help the characterization of directional effects of LST products generated within the EUMETSAT LSA SAF.

  15. The angular power spectrum of dust-obscured galaxies and its impact on Sunyaev Zel'dovich studies

    NASA Astrophysics Data System (ADS)

    Montaña, A. A.; Sanchez-Argüelles, D. O.; Hughes, D. H.; Wilson, G. W.; Gaztañaga, E.

    2011-10-01

    In this work we measure the angular power spectrum (APS) of the population of (sub-)millimetric galaxies (SMGs) using 1.1 mm wavelength observations obtained with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE) and the James Clerk Maxwell Telescope (JCMT). The sample of survey fields allows us to compare the properties of the APS of the (sub-)mm galaxy population towards unbiased and potentially overdense regions of the Universe. Furthermore, our measurements provide a strong constraint to the impact that the SMGs have on the APS of the primary and secondary CMB anisotropies, which are being measured by the new generation of arcminute resolution SZE experiments at millimeter wavelengths.

  16. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution

    NASA Astrophysics Data System (ADS)

    Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang

    2013-10-01

    We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.

  17. Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.

    PubMed

    Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D

    2001-12-17

    Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.

  18. Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    PubMed Central

    Garcia, Gustavo A.; Nahon, Laurent; Daly, Steven; Powis, Ivan

    2013-01-01

    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed. PMID:23828557

  19. Heavy-ion anisotropy measured by ALTEA in the International Space Station.

    PubMed

    Di Fino, L; Casolino, M; De Santis, C; Larosa, M; La Tessa, C; Narici, L; Picozza, P; Zaconte, V

    2011-09-01

    The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.

  20. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimizationmore » of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.« less

  1. Measurements of the gamma-quanta angular distributions emitted from neutron inelastic scattering on 28Si

    NASA Astrophysics Data System (ADS)

    Fedorov, N. A.; Grozdanov, D. N.; Bystritskiy, V. M.; Kopach, Yu. N.; Ruskov, I. N.; Skoy, V. R.; Tretyakova, T. Yu.; Zamyatin, N. I.; Wang, D.; Aliev, F. A.; Hramco, C.; Gandhi, A.; Kumar, A.; Dabylova, S.; Bogolubov, E. P.; Barmakov, Yu. N.

    2018-04-01

    The characteristic gamma radiation from the interaction of 14.1 MeV neutrons with a natural silicon sample is investigated with Tagged Neutron Method (TNM). The anisotropy of gamma-ray emission of 1.779 MeV was measured at 11 azimuth angles with a step of ∠15°. The present results are in good agreement with some recent experimental data.

  2. Particle dark matter searches in the anisotropic sky

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Regis, Marco

    2014-02-01

    Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  3. The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Miller, A.; Beach, J.; Bradley, S.; Caldwell, R.; Chapman, H.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Jones, D.; Monnelly, G.; Netterfield, C. B.; Nolta, M.; Page, L. A.; Puchalla, J.; Robertson, T.; Torbet, E.; Tran, H. T.; Vinje, W. E.

    2002-06-01

    We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP used an interlocking scan strategy to directly produce high signal-to-noise ratio CMB maps over a limited region of sky. The QMAP gondola was then refitted for ground-based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time domain beam synthesis. MAT/TOCO measured the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to lpeak=216+/-14. In addition to describing the instruments, we discuss the data selection methods, check for systematic errors, and compare the MAT/TOCO results to those from recent experiments. The previously reported data are updated to account for a small calibration shift and corrected to account for a small contribution from known sources of foreground emission. The resulting amplitude of the first peak for 160

  4. Cosmic infrared background measurements and star formation history from Planck

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Serra

    2014-05-01

    We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.

  5. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    NASA Astrophysics Data System (ADS)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical output can be exported into several vector or raster graphical formats or, via clipboard, pasted directly into a presentation or publication manuscript. Calculated principal directions or anisotropy parameters can be exported into various types of text files ready to be visualized or processed by any software of user's choice.

  6. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  7. Ultraviolet laser-induced voltage in anisotropic shale

    NASA Astrophysics Data System (ADS)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  8. CMB temperature trispectrum of cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-15

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less

  9. Grain refinement and Lattice Imperfections in Commercial Aluminum Alloy Processed by Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Charfeddine, Saifeddine; Zehani, Karim; Besais, Lotfi; Korchef, Atef

    2014-08-01

    In the present work, investigations on the microstructure of an aluminum alloy that had been subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP), filing and ball milling, were carried out using X-ray diffraction and scanning electron microscopy. SPD leads to lattice distortions, increased dislocation density and an intensive refinement of the microstructure. The refinement and lattice imperfections of the material are greatly affected by the deformation modes and loading performance occurring during SPD. During the milling, the dislocation annihilation increases at higher strains thereby resulting in a smaller crystallite size. After ECAP, the material manifests a strong shear texture and anisotropy of the deformation behavior. Strain anisotropy is less pronounced in filed and ball milled powder particles.

  10. Research of Surface Roughness Anisotropy

    NASA Astrophysics Data System (ADS)

    Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.

    2017-04-01

    The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.

  11. Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.

    2018-05-01

    We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).

  12. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    PubMed Central

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  13. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    NASA Technical Reports Server (NTRS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  14. The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument

    NASA Astrophysics Data System (ADS)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.

    2016-12-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  15. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  16. Polarization-correlation optical microscopy of anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  17. Morphology of sustentaculum tali: Biomechanical importance and correlation with angular dimensions of the talus.

    PubMed

    Mahato, Niladri Kumar

    2011-12-01

    The talus and the calcaneus share the bulk of load transmitted from the leg to the skeleton of the foot. The present study analyses the inter-relationship between the superior articular surface and the angular dimensions of the talus with the morphology of the sustentaculum tali. Identification of possible relationships between different angular parameters of the talus morphology and the sustentaculum tali in context of load transmission through the foot. One articular surface and three angular parameters at the junction of the head and the body were measured from dried human talar bones. Corresponding calcaneal samples were measured for four dimensions at the sustentaculum tali. Correlation and regression statistical values between parameters were worked out and analysed. Several parameters within the talus demonstrated significant correlations amongst themselves. The neck vertical angle showed a strong correlation with the articulating surface area below the head of the talus. The inter-relationship between articular and angular parameters within the talus demonstrates strong correlation for certain parameters. Data presented in the study may be helpful to adjust calcaneal and talar screw placement techniques, prosthesis designing and bio-mechanical studies at this important region. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.

    2016-11-01

    The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small or zero magnetic field.

  19. Elastic Anisotropy of Basalt

    NASA Astrophysics Data System (ADS)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are linear functions of the stress exponents. In order to verify the linear dependence of ɛ and γ from the stress exponents, these exponents and the anisotropy parameters based on the measured velocities have been computed. Parameter D was found from fitting equation 1 to the experimental data. Our experimental results are in an excellent agreement with a linear relation between the exponential terms and the seismic anisotropy parameters as theoretically predicted by equation 2.

  20. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers

    PubMed Central

    Cheary, R. W.; Coelho, A. A.; Cline, J. P.

    2004-01-01

    The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594

  1. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  2. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  3. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Liu, Yike; Alkhalifah, Tariq; Wu, Zedong

    2018-04-01

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.

  4. Limits on Arcminute-Scale Cosmic Microwave Background Anisotropy at 28.5 GHz

    NASA Technical Reports Server (NTRS)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G.; Joy, M.; Reese, E. D.

    2000-01-01

    We have used the Berkeley-Illinois-Maryland Association (BIMA) millimeter array outfitted with sensitive centimeter-wave receivers to search for cosmic microwave background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration that produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is approximately 6'.6. We have made sensitive images of seven fields, four of which where chosen specifically to have low infrared dust contrast and to be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power of Q(sub flat) = 5.6(sub -5.6)(exp 3.0) microK and Q(sub flat) < 14.1 microK at 68% and 95% confidence, respectively. The sensitivity of this experiment to flat-band power peaks at a multipole of I = 5470, which corresponds to an angular scale of approximately 2'. The most likely value of Q(sub flat) is similar to the level of the expected secondary anisotropies.

  5. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    NASA Astrophysics Data System (ADS)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  6. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.

  7. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  8. The local structure and EPR parameter of compressed tetrahedral CuIIX4 components in proteins, liquid precursors and nanomaterials

    NASA Astrophysics Data System (ADS)

    Kuang, Min-Quan; Yuan, Hong-Kuan; Chen, Hong; Wang, Li-Dan; Duan, Shu-Kai

    2017-11-01

    The local structures and EPR parameters of flatten CuIIX4 (X = N, O, S, Se, Cl and Br) compositions in proteins, liquid precursors and nanocrystals are analyzed and computed based on the cluster approach and perturbation method. The g and A components of copper(II) under D2d symmetry are well explained in terms of a global parameter β characterizing the local angular distortion away from the ideal Td tetrahedron where β0 ≈ 109.4712°. The calculated isotropy and anisotropy of g factors (gav and Δg) are found suffering an increase with the enlargement of the obtained βcal, which is consistent with the increasing trends of both experimental Δg and gav. The variation trend of gav can also be interpreted by the decreasing covalence of the studied system (or the increasing covalency factor ρ). On the other hand, the hyperfine structure constant A‖ decreases with increasing βcal. The obtained cubic crystal field parameter Dq and the core polarization constant κ experience the dropping and growing tendencies, respectively, with the enlarging copper-ligand bond length R. The above correlations are appropriate for all the studied CuIIX4 complexes and thus this work would be helpful to establish the complete physical scheme for uniform analysis on spectroscopic and magnetic behaviours of MX4 (M = transition metal and X = halides and pseudohalides) compounds.

  9. Cosmological gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.

  10. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  11. On the anisotropy of perceived ground extents and the interpretation of walked distance as a measure of perception

    PubMed Central

    Li, Zhi; Sun, Emily; Strawser, Cassandra J.; Spiegel, Ariana; Klein, Brennan; Durgin, Frank H.

    2012-01-01

    Two experiments are reported concerning the perception of ground extent in order to discover whether prior reports of anisotropy between frontal extents and extents in depth were consistent across different measures (visual matching and pantomime walking) and test environments (outdoor environments and virtual environments). In Experiment 1 it was found that depth extents of up to 7 m are indeed perceptually compressed relative to frontal extents in an outdoor environment, and that perceptual matching provided more precise estimates than did pantomime walking. In Experiment 2, similar anisotropies were found using similar tasks in a similar (but virtual) environment. In both experiments pantomime walking measures seemed to additionally compress the range of responses. Experiment 3 supported the hypothesis that range compression in walking measures of perceived distance might be due to proactive interference (memory contamination). It is concluded that walking measures are calibrated for perceived egocentric distance, but that pantomime walking measures may suffer range compression. Depth extents along the ground are perceptually compressed relative to frontal ground extents in a manner consistent with the angular scale expansion hypothesis. PMID:22889186

  12. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Claus, H.; ...

    2018-05-16

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  13. Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-08-01

    We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.

  14. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Willa, K.; Claus, H.

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  15. Large Proton Anisotropies in the 18 August 2010 Solar Particle Event

    NASA Technical Reports Server (NTRS)

    Leske, R. A.; Cohen, C. M. S.; Mewaldt, R. A.; Christian, Eric R.; Cummings, A. C.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, Mark E.; Rosenvinge, Tycho T Von

    2012-01-01

    The solar particle event observed at STEREO Ahead on 18 August 2010 displayeda rich variety of behavior in the particle anisotropies. Sectored rates measured by theLow Energy Telescope (LET) on STEREO showed very large bidirectional anisotropies in4 6 MeV protons for the first 17 hours of the event while inside a magnetic cloud, withintensities along the field direction several hundred to nearly 1000 times greater than thoseperpendicular to the field. At the trailing end of the cloud, the protons became isotropic andtheir spectrum hardened slightly, while the HeH abundance ratio plunged by a factor of approximatelyfour for about four hours. Associated with the arrival of a shock on 20 Augustwas a series of brief (10 minute duration) intensity increases (commonly called shockspikes) with relatively narrow angular distributions (45 FWHM), followed by an abruptdecrease in particle intensities at the shock itself and a reversal of the proton flow to a directiontoward the Sun and away from the receding shock. We discuss the STEREOLETobservations of this interesting event in the context of other observations reported in theliterature

  16. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    PubMed Central

    Roosjen, Peter P. J.; Clevers, Jan G. P. W.; Bartholomeus, Harm M.; Schaepman, Michael E.; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  17. A laboratory goniometer system for measuring reflectance and emittance anisotropy.

    PubMed

    Roosjen, Peter P J; Clevers, Jan G P W; Bartholomeus, Harm M; Schaepman, Michael E; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-12-13

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  18. Searches for Large-scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Telescope Array Collaboration

    2014-10-01

    Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

  19. Superconducting and normal-state anisotropy of the doped topological insulator Sr0.1Bi2Se3.

    PubMed

    Smylie, M P; Willa, K; Claus, H; Koshelev, A E; Song, K W; Kwok, W-K; Islam, Z; Gu, G D; Schneeloch, J A; Zhong, R D; Welp, U

    2018-05-16

    Sr x Bi 2 Se 3 and the related compounds Cu x Bi 2 Se 3 and Nb x Bi 2 Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c  ~3 K in Sr x Bi 2 Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2 Se 3 . Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1 Bi 2 Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr 0.1 Bi 2 Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr x Bi 2 Se 3 .

  20. Anisotropy and applied-field effects on the spiral magnetic coexistence state of ferromagnetic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, G.H.

    1988-01-01

    The effect of three types of quartic anisotropy energy on the polarization of the spiral-magnetic state of Blount and Varma is studied near the onset temperature. A quartic anisotropy with uniaxial symmetry and a quartic anisotropy with cubic symmetry are studied, and the anisotropy in primitive tetragonal ErRh{sub 4}B{sub 4} is modeled with a quadratic anisotropy giving a hard c-axis, plus a quartic anisotropy in the basal plane with a square symmetry. Details of the magnetizations, wave vectors, and polarizations are presented. Further, using a variational approach, the author investigates the effects, in a slab geometry, of an infinitesimal andmore » finite magnetic field applied parallel to the slab on the spiral magnetic state. By additionally calculating the effects on the normal ferroparamagnetic state and the uniform superconducting state, he studies applied field vs. temperature phase diagrams. Due to the large experimental uncertainty in the material parameters, an extended range of values is studied, producing a number of interesting and physically unique phase diagrams. A categorization of the types of phase diagrams over the selected range of the material parameters is presented. Finally, the effective superconducting penetration depth in the presence of the spiral magnetic state is calculated.« less

  1. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s{sup 1}4p{sup 6}np{sup 1}(n=7,8) and doubly excited 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} resonances in atomic krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-15

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less

  2. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg-Klemm p-wave pair state

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Zhang, Jingchuan; Lorscher, Christopher; Gu, Qiang

    2014-03-01

    We calculate the temperature T and angular (θ , ϕ) dependence of the upper critical induction Bc 2(θ , ϕ , T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). When both parallel-spin states are allowed, the chiral Scharnberg-Klemm state Bc 2(θ , ϕ , T) exceeds that of the chiral Anderson-Brinkman-Morel state for all FS anisotropies, and exhibits a kink at θ =θ*(T , ϕ) , indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Potential applicability to Sr2RuO4, UCoGe, and topological superconductors is discussed.

  3. Magnetoresistance effect in (La, Sr)MnO3 bicrystalline films.

    PubMed

    Alejandro, G; Steren, L B; Pastoriza, H; Vega, D; Granada, M; Sánchez, J C Rojas; Sirena, M; Alascio, B

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La(0.75)Sr(0.25)MnO(3) films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  4. Development of a linear-type double reflectron for focused imaging of photofragment ions from mass-selected complex ions

    NASA Astrophysics Data System (ADS)

    Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-05-01

    An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.

  5. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  6. Fluid identification based on P-wave anisotropy dispersion gradient inversion for fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Huang, H. D.; Zhu, B. H.; Liao, W.

    2017-10-01

    Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner-Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.

  7. Cosmological constraints from galaxy clustering in the presence of massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.

    2018-06-01

    The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

  8. Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment.

    PubMed

    Kulesh, Aleksey; Drobakha, Viktor; Kuklina, Elena; Nekrasova, Irina; Shestakov, Vladimir

    2018-07-01

    Post-stroke cognitive impairment is a clinically heterogeneous condition and its types have a different course and prognosis. The aim of the present study is to address the roles of inflammation, white matter pathology, and brain atrophy in different neuropsychological types of cognitive impairment in the acute period of ischemic stroke. In 92 patients, we performed an assessment of the cognitive status and measured concentrations of cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-alpha, IL-10) in liquor and serum, as well as a number of magnetic resonance imaging (MRI) morphometric parameters and fractional anisotropy. The control group consisted of 14 individuals without cerebrovascular disease. All patients had a higher level of IL-10 in serum than the control group. Patients with dysexecutive cognitive impairment had a higher concentration of IL-1β and IL-10 in liquor, IL-6 level in serum, and a lower fractional anisotropy of the ipsilateral thalamus than patients with normal cognition. Patients with mixed cognitive impairment were characterized by a lower fractional anisotropy of contralateral fronto-occipital fasciculus, compared with patients with dysexecutive cognitive impairment. Patients with both dysexecutive and mixed cognitive deficit had a wide area of leukoaraiosis and a reduced fractional anisotropy of the contralateral cingulum, compared with patients without cognitive impairment. Also, we found numerous correlations between cognitive status and levels of cytokines, MRI morphometric parameters, and fractional anisotropy of certain regions of the brain. The concentrations of cytokines in serum and cerebrospinal fluid studied in combination with MRI morphometric parameters and fractional anisotropy appear to be informative biomarkers of clinical types of post-stroke cognitive impairment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Anisotropy of anomalous diffusion improves the accuracy of differentiating low- and high-grade cerebral gliomas.

    PubMed

    Xu, Boyan; Su, Lu; Wang, Zhenxiong; Fan, Yang; Gong, Gaolang; Zhu, Wenzhen; Gao, Peiyi; Gao, Jia-Hong

    2018-04-17

    Anomalous diffusion model has been introduced and shown to be beneficial in clinical applications. However, only the directionally averaged values of anomalous diffusion parameters were investigated, and the anisotropy of anomalous diffusion remains unexplored. The aim of this study was to demonstrate the feasibility of using anisotropy of anomalous diffusion for differentiating low- and high-grade cerebral gliomas. Diffusion MRI images were acquired from brain tumor patients and analyzed using the fractional motion (FM) model. Twenty-two patients with histopathologically confirmed gliomas were selected. An anisotropy metric for the FM-related parameters, including the Noah exponent (α) and the Hurst exponent (H), was introduced and their values were statistically compared between the low- and high-grade gliomas. Additionally, multivariate logistic regression analysis was performed to assess the combination of the anisotropy metric and the directionally averaged value for each parameter. The diagnostic performances for grading gliomas were evaluated using a receiver operating characteristic (ROC) analysis. The Hurst exponent H was more anisotropic in high-grade than in low-grade gliomas (P = 0.015), while no significant difference was observed for the anisotropy of α. The ROC analysis revealed that larger areas under the ROC curves were produced for the combination of α (1) and the combination of H (0.813) compared with the directionally averaged α (0.979) and H (0.594), indicating an improved performance for tumor differentiation. The anisotropy of anomalous diffusion can provide distinctive information and benefit the differentiation of low- and high-grade gliomas. The utility of anisotropic anomalous diffusion may have an improved effect for investigating pathological changes in tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, P., E-mail: paolo.perna@imdea.org; Guerrero, R.; Niño, M. A.

    2016-05-15

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetrymore » of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.« less

  11. The Explorer of Diffuse Galactic Emission (EDGE): Determining the Large-Scale Structure Evolution in the Universe

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.

    2003-01-01

    Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.

  12. Nonlinear electrodynamics of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Zutic, Igor

    We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal and angular dependences. In contrast, with gap functions which only have quasinodes, these quantities do not display power laws in the applied field, and their temporal and angular dependences are not separable. We discuss how to perform measurements so as to maximize the nonlinear signal, and how to determine the gap function symmetry.

  13. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  14. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  15. Melting of the Abrikosov flux lattice in anisotropic superconductors

    NASA Technical Reports Server (NTRS)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  16. Thermal emitter comprising near-zero permittivity materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.

    A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  17. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  18. DD3MAT - a code for yield criteria anisotropy parameters identification.

    NASA Astrophysics Data System (ADS)

    Barros, P. D.; Carvalho, P. D.; Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2016-08-01

    This work presents the main strategies and algorithms adopted in the DD3MAT inhouse code, specifically developed for identifying the anisotropy parameters. The algorithm adopted is based on the minimization of an error function, using a downhill simplex method. The set of experimental values can consider yield stresses and r -values obtained from in-plane tension, for different angles with the rolling direction (RD), yield stress and r -value obtained for biaxial stress state, and yield stresses from shear tests performed also for different angles to RD. All these values can be defined for a specific value of plastic work. Moreover, it can also include the yield stresses obtained from in-plane compression tests. The anisotropy parameters are identified for an AA2090-T3 aluminium alloy, highlighting the importance of the user intervention to improve the numerical fit.

  19. A new exact anisotropic solution of embedding class one

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook

    2016-07-01

    We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).

  20. Phenomenological crystal-field model of the magnetic and thermal properties of the Kondo-like system UCu2Si2

    NASA Astrophysics Data System (ADS)

    Troć, R.; Gajek, Z.; Pikul, A.; Misiorek, H.; Colineau, E.; Wastin, F.

    2013-07-01

    The transport properties described previously [Troć , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.224434 85, 224434 (2012)] as well as the magnetic and thermal properties presented in this paper, observed for single-crystalline UCu2Si2, are discussed by assuming a dual (localized-itinerant) scenario. The electronic states of the localized 5f electrons in UCu2Si2 are constructed using the effective Hamiltonian known for ionic systems, allowing us to treat the Coulomb, spin-orbital, and crystal-field interactions on equal footing. The space of parameters has been restricted in the initial steps with the aid of the angular overlap model approximation. The final crystal-field parameters, obtained from the refined steps of calculations, are relatively large (in absolute values), which we attribute to the hybridization characteristic of the metallic systems on the verge of localization. The proposed crystal-field model reproduces correctly with satisfactory accuracy the magnetic and thermal properties of UCu2Si2 in agreement also with the transport properties reported previously. Considerable crystal-field splitting of the ground multiplet of 2760 K is responsible for a large anisotropy in the magnetic behavior, observed in the whole temperature range explored.

  1. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina; Hühne, Ruben; Schultz, Ludwig; Shi, Zhixiang

    2015-06-01

    FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe0.5Te0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density Jc(θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no Jc(θ) peaks for H||c were observed in films on CaF2 and LaAlO3. Jc(θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg-Landau approach with appropriate anisotropy ratio γJ. The scaling parameter γJ is decreasing with decreasing temperature, which is different from what we observed in FeSe0.5Te0.5 films on Fe-buffered MgO substrates.

  2. Transmission characteristics of Bessel-Gaussian vortex beams propagating along both longitudinal and transverse directions in a subway tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Song, Yingxiong

    2018-02-01

    By exploiting the non-Kolmogorov model and Rytov approximation theory, a propagation model of Bessel-Gaussian vortex beams (BGVB) propagating in a subway tunnel is derived. Based on the propagation model, a model of orbital angular momentum (OAM) mode probability distribution is established to evaluate the propagation performance when the beam propagates along both longitudinal and transverse directions in the subway tunnel. By numerical simulations and experimental verifications, the influences of the various parameters of BGVB and turbulence on the OAM mode probability distribution are evaluated, and the results of simulations are consistent with the experimental statistics. The results verify that the middle area of turbulence is more beneficial for the vortex beam propagation than the edge; when the BGVB propagates along the longitudinal direction in the subway tunnel, the effects of turbulence on the OAM mode probability distribution can be decreased by selecting a larger anisotropy parameter, smaller coherence length, larger non-Kolmogorov power spectrum coefficient, smaller topological charge number, deeper subway tunnel, lower train speed, and longer wavelength. When the BGVB propagates along the transverse direction, the influences can be also mitigated by adopting a larger topological charge number, less non-Kolmogorov power spectrum coefficient, smaller refractive structure index, shorter wavelength, and shorter propagation distance.

  3. BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Germaine, T. St.; Ghosh, T.; Grayson, J.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Larson, N.; Leitch, E. M.; Megerian, K. G.; Moncelsi, L.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W.; Pryke, C.; Richter, S.; Schillaci, A.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2017-11-01

    We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed T B and E B power spectra. After this procedure, the Q U maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation, which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps (˜3 μ K -arc min ) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term ga γ≤7.2 ×10-2/HI (95% confidence) than the constraint derived from the B -mode spectrum, where HI is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10-6≲fa/Mpl at mass range of 10-33≤ma≤10-28 eV for r =0.01 , assuming ga γ˜α /(2 π fa) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.

  4. Anisotropic analysis of trabecular architecture in human femur bone radiographs using quaternion wavelet transforms.

    PubMed

    Sangeetha, S; Sujatha, C M; Manamalli, D

    2014-01-01

    In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples.

  5. Superposition model analysis of the magnetocrystalline anisotropy of Ba-ferrite

    NASA Astrophysics Data System (ADS)

    Novák, Pavel

    1994-06-01

    Theoretical analysis of the first magnetocrystalline anisotropy constantK 1 of BaFe12O19 is performed. Two contributions toK 1 are considered — single ion anisotropy and dipolar anisotropy. ParameterD which determines the magnitude of the single ion contribution is calculated on the basis of the superposition model. It is argued that the disagreement between calculated and observed values ofK 1 is most likely connected with the contribution of Fe3+ ions on bipyramidal sites, for which the value ofD is uncertain.

  6. Site-specific magnetic anisotropies in R2Fe14B systems

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Tsuchiura, H.

    2018-04-01

    The local magnetic anisotropy of R ions in R2Fe14B (R = Dy, Ho) systems is studied based on a microscopic effective spin model constructed from the information obtained by using first-principles calculations. By taking into account up to 6-th order crystal electric field parameters, the model satisfactory describes the observed magnetization curves and the temperature dependence of anisotropy constants. We found that at low temperatures, the noncollinear structure appears in the Ho2Fe14B system reflecting the local magnetic anisotropy.

  7. A phenomenological approach to study the effect of uniaxial anisotropy on the magnetization of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sánchez-Marín, N.; Cuchillo, A.; Knobel, M.; Vargas, P.

    2018-04-01

    We study the effect of the uniaxial anisotropy in a system of ideal, noninteracting ferromagnetic nanoparticles by means of a thermodynamical model. We show that the effect of the anisotropy can be easily assimilated in a temperature shift Ta∗, in analogy to what was proposed by Allia et al. (2001) in the case of interacting nanomagnets. The phenomenological anisotropic Ta∗ parameter can be negative, indicating an antiferromagnetic-like behavior, or positive, indicating a ferromagnetic-like character as seen in the inverse susceptibility behavior as a function of temperature. The study is done considering an easy axis distribution to take into account the anisotropy axis dispersion in real samples (texture). In the case of a volumetric uniform distribution of anisotropy axes, the net effect makes Ta∗ to vanish, and the magnetic susceptibility behaves like a conventional superparamagnetic system, whereas in the others a finite value is obtained for Ta∗ . When magnetic moment distribution is considered, the effect is to enhance the Ta∗ parameter, when the dispersion of the magnetic moments becomes wider.

  8. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  9. Mixed configuration ground state in iron(II) phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Rodríguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-01

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spinmore » moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.« less

  10. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  11. An experimental MOSFET approach to characterize (192)Ir HDR source anisotropy.

    PubMed

    Toye, W C; Das, K R; Todd, S P; Kenny, M B; Franich, R D; Johnston, P N

    2007-09-07

    The dose anisotropy around a (192)Ir HDR source in a water phantom has been measured using MOSFETs as relative dosimeters. In addition, modeling using the EGSnrc code has been performed to provide a complete dose distribution consistent with the MOSFET measurements. Doses around the Nucletron 'classic' (192)Ir HDR source were measured for a range of radial distances from 5 to 30 mm within a 40 x 30 x 30 cm(3) water phantom, using a TN-RD-50 MOSFET dosimetry system with an active area of 0.2 mm by 0.2 mm. For each successive measurement a linear stepper capable of movement in intervals of 0.0125 mm re-positioned the MOSFET at the required radial distance, while a rotational stepper enabled angular displacement of the source at intervals of 0.9 degrees . The source-dosimeter arrangement within the water phantom was modeled using the standardized cylindrical geometry of the DOSRZnrc user code. In general, the measured relative anisotropy at each radial distance from 5 mm to 30 mm is in good agreement with the EGSnrc simulations, benchmark Monte Carlo simulation and TLD measurements where they exist. The experimental approach employing a MOSFET detection system of small size, high spatial resolution and fast read out capability allowed a practical approach to the determination of dose anisotropy around a HDR source.

  12. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  13. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  14. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  15. Cosmic Microwave Background: cosmology from the Planck perspective

    NASA Astrophysics Data System (ADS)

    De Zotti, Gianfranco

    2016-07-01

    The Planck mission has measured the angular anisotropies in the temperature of the Cosmic Microwave Background (CMB) with an accuracy set by fundamental limits. These data have allowed the determination of the cosmological parameters with extraordinary precision. These lecture notes present an overview of the mission and of its cosmological results. After a short history of the project, the Planck instruments and their performances are introduced and compared with those of the WMAP satellite. Next the approach to data analysis adopted by the Planck collaboration is described. This includes the techniques for dealing with the contamination of the CMB signal by astrophysical foreground emissions and for determining cosmological parameters from the analysis of the CMB power spectrum. The power spectra measured by Planck were found to be very well described by the standard spatially flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. This is a remarkable result, considering that the six parameters account for the about 2500 independent power spectrum values measured by Planck (the power was measured for about 2500 multipoles), not to mention the about one trillion science samples produced. A large grid of cosmological models was also explored, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data from ground-based experiments. On the whole, the Planck analysis of the CMB power spectrum allowed to vary and determined 16 parameters. Many other interesting parameters were derived from them. Although Planck was not initially designed to carry out high accuracy measurements of the CMB polarization anisotropies, its capabilities in this respect were significantly enhanced during its development. The quality of its polarization measurements have exceeded all original expectations. Planck's polarisation data confirmed and improved the understanding of the details of the cosmological picture determined from its temperature data. Moreover, they have provided an accurate determination of the optical depth for Thomson scattering, τ, due to the cosmic reionization. The result for τ has provided key information on the end of ``dark ages'' and largely removed the tension with the constraints on the reionization history provided by optical/UV data, indicated by earlier estimates. This has dispensed from the need of exotic energy sources in addition to the ionizing power provided by massive stars during the early galaxy evolution. A joint analysis of BICEP2, Keck Array, and Planck data has shown that the B-mode polarization detected by the BICEP2 team can be accounted for by polarized Galactic dust and has tightened the constraint on the B-mode amplitude due to primordial tensor perturbations.

  16. Cosmic Microwave Background: cosmology from the Planck perspective

    NASA Astrophysics Data System (ADS)

    De Zotti, Gianfranco

    2017-08-01

    The Planck mission has measured the angular anisotropies in the temperature of the Cosmic Microwave Background (CMB) with an accuracy set by fundamental limits. These data have allowed the determination of the cosmological parameters with extraordinary precision. These lecture notes present an overview of the mission and of its cosmological results. After a short history of the project, the Planck instruments and their performances are introduced and compared with those of the WMAP satellite. Next the approach to data analysis adopted by the Planck collaboration is described. This includes the techniques for dealing with the contamination of the CMB signal by astrophysical foreground emissions and for determining cosmological parameters from the analysis of the CMB power spectrum. The power spectra measured by Planck were found to be very well described by the standard spatially flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. This is a remarkable result, considering that the six parameters account for the about 2500 independent power spectrum values measured by Planck (the power was measured for about 2500 multipoles), not to mention the about one trillion science samples produced. A large grid of cosmological models was also explored, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data from ground-based experiments. On the whole, the Planck analysis of the CMB power spectrum allowed to vary and determined 16 parameters. Many other interesting parameters were derived from them. Although Planck was not initially designed to carry out high accuracy measurements of the CMB polarization anisotropies, its capabilities in this respect were significantly enhanced during its development. The quality of its polarization measurements have exceeded all original expectations. Planck's polarisation data confirmed and improved the understanding of the details of the cosmological picture determined from its temperature data. Moreover, they have provided an accurate determination of the optical depth for Thomson scattering, τ, due to the cosmic reionization. The result for τ has provided key information on the end of ``dark ages'' and largely removed the tension with the constraints on the reionization history provided by optical/UV data, indicated by earlier estimates. This has dispensed from the need of exotic energy sources in addition to the ionizing power provided by massive stars during the early galaxy evolution. A joint analysis of BICEP2, Keck Array, and Planck data has shown that the B-mode polarization detected by the BICEP2 team can be accounted for by polarized Galactic dust and has tightened the constraint on the B-mode amplitude due to primordial tensor perturbations.

  17. A method of evaluating quantitative magnetospheric field models by an angular parameter alpha

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1979-01-01

    The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.

  18. On cracking of charged anisotropic polytropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.; Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide rangemore » of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.« less

  19. Seismic anisotropy of the crust and upper mantle in central Tibetan Plateau revealed by shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Wu, C.; Tian, X.; Xu, T.; Liang, X.; Chen, Y.; Teng, J.

    2017-12-01

    Seismic anisotropy that results from deformation of the materials in the Earth is essentially important for understanding the deformation styles at different depths. In the central Tibetan Plateau the shear wave splitting measurements of local S-wave, Pms and SKS phases were calculated applying the broadband seismic data of SANDWICH array, and the anisotropy features of the crust and upper mantle were displayed. SKS splitting results show that the study area is strongly anisotropic as a whole. The average splitting parameters are 65.2°/1.28 s, and there are 17 stations existing individual splitting results larger than 2.0 s. The southeastern part is weakly anisotropic with average splitting parameters 61.0°/0.64 s. Applying spatial coherence technique the optimal depth of the source of anisotropy is 130 160 km, located in the asthenosphere. The subducting Indian plate advancing in NE direction and rigid blocks such as Qaidam basin obstructing in the north cause NEE direction asthenospheric flow which produces the anisotropy. The weak anisotropy of southeastern part is corresponding to the low velocity anomalies in the upper mantle, which may be attributed to local upwelling of asthenosphere from the slab tearing region. The crust media also make contribution to the strong anisotropy. S-wave splitting results which reflect upper crust anisotropy show that the average parameters of three stations in western part are 60.4°/1.53 ms/km, and those of two stations in eastern part are 10.9°/4.64 ms/km. The principle compressive stress controlled by structures varies from NE in the west to nearly NS in the east. Under the assumption that the thickness of upper crust is 20 km, the delay time of upper crust is smaller than 0.1 s. Whole crust anisotropy is obtained by calculating receiver functions and fitting the variation of arrival times of Pms phases with the backazimuths. The fast directions are NE-EW direction with average value 76.4°, nearly consistent with SKS fast directions, and the average delay time is about 0.5 s. The source of crust anisotropy mainly comes from middle-lower crust, which is possibly related to middle-lower crust flow.

  20. Three-component ambient noise beamforming in the Parkfield area

    NASA Astrophysics Data System (ADS)

    Löer, Katrin; Riahi, Nima; Saenger, Erik H.

    2018-06-01

    We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time-dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 and 0.52 Hz recorded at a three-component array in the Parkfield area, California (US), between 2001 November and 2002 April. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 and 0.4 Hz. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 Hz and above 0.4 Hz correlate with changes in the source distribution. Frequencies between 0.2 and 0.4 Hz, however, are less affected by these variations and provide relatively stable results over the period of study.

  1. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE PAGES

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...

    2016-12-09

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  2. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  3. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less

  4. The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.

    2016-03-01

    We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.

  5. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less

  6. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  7. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    NASA Astrophysics Data System (ADS)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  8. Balloon-Borne Observations of the Anisotropy of the Cosmic Microwave'Background on Angular Scales of 0.2 to 40 Degrees'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During this final period, BOOMERANG was deployed to McMurdo Mtn., Antarctica in late 1998 and successfully flew a 10.5 day long duration flight. The experiment returned excellent data, and produced the first resolved images of the early universe. These results, as well as those produced during a test flight over North America in August, 1997, are given in the references below. Analysis of the data from the 1998 flight is continuing. In parallel, we have begun to prepare the payload for a long-duration flight from McMurdo in December 2001. For this flight, the focal plane is being outfitted with polarization sensitive detectors, with the goal of detecting the polarization of the CMB that is predicted to exist at degree angular scales.

  9. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and <1 percent, respectively. These discrepancies are well within acceptable ranges of uncertainty for aquifer parameters estimation, when compared with other pumping test interpretation methods, which typically estimate uncertainty for the estimated parameters of 20 or 30 percent. Finally, the stream depletion rate was calculated as a function of stream-bank pumping. Unique to horizontally anisotropic aquifer, the stream depletion rate at any given pumping rate depends on the horizontal anisotropy ratio and the direction of the principle transmissivity. For example, when horizontal anisotropy ratios are 5 and 50 respectively, the corresponding depletion rate under pseudo steady-state condition are 86 m3/day and 91 m3/day. The results of this research fill a knowledge gap on predicting the response of horizontally anisotropic aquifers connected to streams. We further provide a method to estimate aquifer properties and predict stream depletion rates from observed drawdown. This new model can be used by water resources managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  10. Electronic structure and magnetic anisotropies of antiferromagnetic transition-metal difluorides

    NASA Astrophysics Data System (ADS)

    Corrêa, Cinthia Antunes; Výborný, Karel

    2018-06-01

    We compare calculations based on density functional theory (DFT) with available experimental data and analyze the origin of magnetic anisotropies in MnF2, FeF2, CoF2, and NiF2. We confirm that the magnetic anisotropy of MnF2 stems almost completely from the dipolar interaction, while magnetocrystalline anisotropy energy (originating in spin-orbit interaction) plays a dominant role in the other three compounds, and discuss how it depends on the details of band structure. The latter is critically compared to available optical measurements. The case of CoF2, where magnetocrystalline anisotropy energy strongly depends on U (the Hubbard parameter in DFT +U ), is put into contrast with FeF2 where theoretical predictions of magnetic anisotropies are nearly quantitative.

  11. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  12. Two-Player 2 × 2 Quantum Game in Spin System

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Situ, Haozhen

    2017-05-01

    In this work, we study the payoffs of quantum Samaritan's dilemma played with the thermal entangled state of XXZ spin model in the presence of Dzyaloshinskii-Moriya (DM) interaction. We discuss the effect of anisotropy parameter, strength of DM interaction and temperature on quantum Samaritan's dilemma. It is shown that although increasing DM interaction and anisotropy parameter generate entanglement, players payoffs are not simply decided by entanglement and depend on other game components such as strategy and payoff measurement. In general, Entanglement and Alice's payoff evolve to a relatively stable value with anisotropy parameter, and develop to a fixed value with DM interaction strength, while Bob's payoff changes in the reverse direction. It is noted that the augment of Alice's payoff compensates for the loss of Bob's payoff. For different strategies, payoffs have different changes with temperature. Our results and discussions can be analogously generalized to other 2 × 2 quantum static games in various spin models.

  13. Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Shaaban, S. M.; Fichtner, H.; Poedts, S.

    2018-02-01

    Two central components are revealed by electron velocity distributions measured in space plasmas, a thermal bi-Maxwellian core and a bi-Kappa suprathermal halo. A new kinetic approach is proposed to characterize the temperature anisotropy instabilities driven by the interplay of core and halo electrons. Suggested by the observations in the solar wind, direct correlations of these two populations are introduced as co-variations of the key parameters, e.g., densities, temperature anisotropies, and (parallel) plasma betas. The approach involving correlations enables the instability characterization in terms of either the core or halo parameters and a comparative analysis to depict mutual effects. In the present paper, the instability conditions are described for an extended range of plasma beta parameters, making the new dual approach relevant for a wide variety of space plasmas, including the solar wind and planetary magnetospheres.

  14. Small-scale anisotropic intermittency in magnetohydrodynamic turbulence at low magnetic Reynolds numbers.

    PubMed

    Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie

    2014-03-01

    Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.

  15. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  16. Hot spots in the microwave sky

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Juszkiewicz, Roman

    1987-01-01

    Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.

  17. A new family of distribution functions for spherical galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin E.

    1991-06-01

    The present study describes a new family of anisotropic distribution functions for stellar systems designed to keep control of the orbit distribution at fixed energy. These are quasi-separable functions of energy and angular momentum, and they are specified in terms of a circularity function h(x) which fixes the distribution of orbits on the potential's energy surfaces outside some anisotropy radius. Detailed results are presented for a particular set of radially anisotropic circularity functions h-alpha(x). In the scale-free logarithmic potential, exact analytic solutions are shown to exist for all scale-free circularity functions. Intrinsic and projected velocity dispersions are calculated and the expected properties are presented in extensive tables and graphs. Several applications of the quasi-separable distribution functions are discussed. They include the effects of anisotropy or a dark halo on line-broadening functions, the radial orbit instability in anisotropic spherical systems, and violent relaxation in spherical collapse.

  18. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  19. A map of the cosmic background radiation at 3 millimeters

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.; Epstein, G.; Smoot, G.

    1985-01-01

    Data from a series of balloon flights covering both the Northern and Southern Hemispheres, measuring the large angular scale anisotropy in the cosmic background radiation at 3.3 mm wavelength are presented. The data cover 85 percent of the sky to a limiting sensitivity of 0.7 mK per 7 deg field of view. The data show a 50-sigma (statistical error only) dipole anisotropy with an amplitude of 3.44 + or - 0.17 mK and a direction of alpha = 11.2 h + or - 0.1 h, and delta = -6.0 deg + or - 1.5 deg. A 90 percent confidence level upper limit of 0.00007 is obtained for the rms quadrupole amplitude. Flights separated by 6 months show the motion of earth around the sun. Galactic contamination is very small, with less than 0.1 mK contribution to the dipole quadrupole terms. A map of the sky has been generated from the data.

  20. Substantial enhancement in intrinsic coercivity on M-type strontium hexaferrite through the increase in magneto-crystalline anisotropy by co-doping of group-V and alkali elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyunghan, E-mail: kyunghan.ahn@samsung.com; Ryu, Byungki; Korolev, Dmitry

    2013-12-09

    The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantialmore » improvement of intrinsic coercivity.« less

  1. Giant exchange interaction in mixed lanthanides

    PubMed Central

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  2. Magnetic droplet soliton nucleation in oblique fields

    NASA Astrophysics Data System (ADS)

    Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid

    2018-05-01

    We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.

  3. Giant magnetoelastic spin-flop with magnetocrystalline instability in La1.4Sr1.6Mn2O7

    NASA Astrophysics Data System (ADS)

    Ko, K.-T.; Jang, H.; Kim, D.-H.; Park, B.-G.; Kim, J.-Y.; Kim, S. B.; Oh, Y.-S.; Cheong, S.-W.; Park, J.-H.

    2018-01-01

    We studied a low-field giant magnetostrictive spin-flop transition in a colossal magnetoresistance manganite La1.4Sr1.6Mn2O7 using resonant soft x-ray diffraction and soft x-ray absorption spectroscopy at the Mn L2 ,3 edge. The spin-flop transition is induced by an instability of magnetocrystalline anisotropy near a critical eg orbital configuration with a balanced occupation in dx2-y2 and d3 z2-r2 states, which contribute in-plane and out-of-plane orbital angular momenta, respectively. The magnetic field drives a certain change in the orbital occupation with lattice distortion to switch the magnetic anisotropy, resulting in the spin-flop transition. These results provide a comprehensive mechanism of interplay between spin, orbital, and lattice degrees of freedom to realize a low-field giant magnetoelasticity.

  4. Electron-positron momentum density in Tl 2Ba 2CuO 6

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.

    1994-08-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.

  5. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  6. Towards a physical classification of early-type galaxies. Profile of a key programme.

    NASA Astrophysics Data System (ADS)

    Bender, R.; Capaccioli, M.; Macchetto, F.; Nieto, J.-L.

    1989-03-01

    Hubble was the first who succeeded in classifying galaxies within a scheme of some physical meaning. Although it soon became clear that Hubble's tuning fork does not represent an evolutionary sequence, this essential diagram has proven to be a powerful tool especially for the understanding of late-type galaxies. On the other hand, the "early-type" sequence of elliptical (E) and SO galaxies is less satisfying, because it does not seem to reflect a unique sequence of physical properties. The SO class, although conceived to bridge the gap between disk- and disk-Iess galaxies, has often been abused to host ellipticals exhibiting peculiarities incompatible with their definition as structureless objects. For the elliptical galaxies themselves, "ellipticity" has been found to be essentially meaningless with regard to their angular momentum properties, and shows Iittle, if any, correlation with other global parameters. This fact became apparent after the first stellar kinematical measurements of luminous ellipticals (Bertola and Capaccioli 1975, IIlingworth 1977); E galaxies are not necessarily f1attened by rotation and may have anisotropie velocity dispersions (Binney 1978).

  7. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  8. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  9. Effect of strain-path change on the anisotropic mechanical properties of a commercially pure aluminum

    NASA Astrophysics Data System (ADS)

    Sun, P. L.; Huang, S. J.

    2017-07-01

    Samples of commercially pure aluminum were subjected to equal channel angular extrusion (ECAE) using a 90° square die by routes A and C, where the specimens are not rotated and are rotated 180° between extrusion passes, respectively. Qualitatively similar anisotropic responses under compressive loading along the three orthogonal directions of the ECAE billet are seen in both cases. The plastic anisotropy is related to the effect of strain-path change, namely that different slip activities are induced for specimens loaded along different directions with respect to the last ECAE pass. The anisotropic mechanical behavior is more evident in the sample deformed by route C. Considering the shear patterns imposed in each ECAE route, the characteristics of dislocations introduced in ECAE should affect the mechanical response in post-ECAE loading. It is suggested that during the ECAE process, dislocations on fewer slip systems are activated in route C than in route A, and therefore, a stronger plastic anisotropy results in this sample. The as-ECAE specimens were also heat treated to achieve a recovery-annealed state. The plastic anisotropy persists in the annealed specimens to slightly reduced extent, which can be ascribed to partial annihilation of preexisting dislocations.

  10. Science support for the Earth radiation budget experiment

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    1994-01-01

    The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.

  11. Annealing and thickness effects on magnetic properties of Co2FeAl alloy films

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Xu, Zhan; Ling, Fujin; Wang, Yahong; Dong, Shuo

    2018-03-01

    Co2FeAl (CFA) films in a wide thickness range between 2 and 100 nm are sputtered at room temperature. Perpendicular magnetic anisotropy (PMA) is achieved in the annealed structure of Pd/CFA/MgO with CFA thickness ranging between 2.3 and 4.9 nm. PMA as high as 2 × 106 erg/cm3 is demonstrated in the structures annealed in the temperature range between 300 and 350 °C. Positive contributions to the PMA made by the interfaces of Pd/CFA and CFA/MgO are identified. For the as-deposited structure of MgO/CFA/Ta with thick CFA alloy up to 5 nm or above a high effective saturation magnetization of 983.9 ± 30.1 emu/cc is derived from the fitting and an in-plane uniaxial magnetic anisotropy of 104 erg/cm3 in magnitude is revealed by angular dependent magnetic measurements. In addition to the increase in saturation magnetization, a fourfold cubic magnetic anisotropy is found to develop with annealing, in line with the improvement of the crystalline structure confirmed by X-ray diffraction measurements. Out results provide some useful information for the design of the CFA-based magnetoelectronic devices.

  12. Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations

    NASA Astrophysics Data System (ADS)

    Wenk, H.-R.; Vasin, R. N.; Kern, H.; Matthies, S.; Vogel, S. C.; Ivankina, T. I.

    2012-10-01

    A sample of biotite gneiss from the Outokumpu deep drilling project in Finland was investigated by Kern et al. (2008) for crystal preferred orientation and elastic anisotropy. Considerable differences between measured acoustic velocities and velocities calculated on the basis of texture patterns were observed. Measured P-wave anisotropy was 15.1% versus a Voigt average yielding 7.9%. Here we investigate the same sample with different methods and using different averaging techniques. Analyzing time-of-flight neutron diffraction data from Dubna-SKAT and LANSCE-HIPPO diffractometers with the Rietveld technique, much stronger preferred orientation for biotite is determined, compared to conventional pole-figure analysis reported previously. The comparison reveals important differences: HIPPO has much better counting statistics but pole figure coverage is poor. SKAT has better angular resolution. Using the new preferred orientation data and applying a self-consistent averaging method that takes grain shapes into account, close agreement of calculated and measured P-wave velocities is observed (12.6%). This is further improved by adding 0.1 vol.% flat micropores parallel to the biotite platelets in the simulation (14.9%).

  13. A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations

    NASA Astrophysics Data System (ADS)

    Reichardt, C. L.; Shaw, L.; Zahn, O.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J.; George, E. M.; Halverson, N. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Millea, M.; Mohr, J. J.; Montroy, T. E.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Ruhl, J. E.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2012-08-01

    We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 ± 0.69 μK2, and set an upper limit on the kinetic SZ power to be less than 2.8 μK2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D tSZ 3000 + 0.5D 3000 kSZ = 4.60 ± 0.63 μK2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine σ8 = 0.807 ± 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on σ8. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.

  14. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichardt, C. L.; George, E. M.; Holzapfel, W. L.

    2012-08-10

    We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ resultsmore » using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 {+-} 0.69 {mu}K{sup 2}, and set an upper limit on the kinetic SZ power to be less than 2.8 {mu}K{sup 2} at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D{sup tSZ}{sub 3000} + 0.5D{sub 3000}{sup kSZ} = 4.60 {+-} 0.63 {mu}K{sup 2}, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine {sigma}{sub 8} = 0.807 {+-} 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on {sigma}{sub 8}. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.« less

  15. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2015-06-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately depends on the currently unknown amount of anisotropy inside stars, but within the range studied in this paper, anisotropy does not prevent the use of universal relations in gravitational wave astrophysics or in experimental relativity. We provide an explicit example of the latter by simulating a binary pulsar/gravitational wave test of dynamical Chern-Simons gravity with anisotropic neutron stars. The increase in variability of the universal relations due to pressure anisotropy could affect their use in future x-ray observations of hot spots on rotating compact stars. Given expected observational uncertainties, however, the relations remain sufficiently universal for use in such observations if the anisotropic modifications to the moment of inertia and the quadrupole moment are less than 10% of their isotropic values.

  16. Primordial power spectrum from Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters andmore » the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.« less

  17. Two-dimensional models of fast rotating early-type stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2015-08-01

    Rotation has now become an unavoidable parameter of stellar models, but for most massive or intermediate-mass stars rotation is fast, at least of a significant fraction of the critical angular velocity. Current spherically symmetric models try to cope with this feature of the stars using various approximations, like for instance the so-called shellular rotation usually accompanied with a diffusion that is meant to represent the mixing induced by rotationally generated flows. Such approximations may be justified in the limit of slow rotation where anisotropies and associated flows are weak. However, when rotation is fast, say larger than 50% of the critical velocities the use of a spherically symmetric 1D-model is doubtful. This is not only because of the centrifugal flattening of the star, but also because of the flows that are induced by the baroclinic torque that naturally appears in the radiative envelope of an early-type (rotating) star. These flows face the cylindrical symmetry of the Coriolis force and the spheroidal symmetry of the effective gravity.In this talk I shall present the latest results of the ESTER project that has taken up the challenge of making two-dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I will focus on main sequence massive and intermediate-mass stars. I'll show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangential cylinder of the core. I'll also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I shall finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I'll also discuss how 2D models can help to recover the fundamental parameters of a star.

  18. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate the mechanism of the complete fusion and fission time scale.

  19. Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Vanchuliak, O.; Sakhnovskiy, M. Y.; Dubolazov, O. V.; Grygoryshyn, P.; Soltys, I. V.; Olar, O. V.; Antoniv, A.

    2017-09-01

    The theoretical background of the azimuthally stable method of polarization-interference mapping of the histological sections of the biopsy of the prostate tissue on the basis of the spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of prostate tissue histological sections are found. The objective criteria of differentiation of benign and malignant conditions of prostate tissue are determined.

  20. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  1. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  2. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults.

    PubMed

    Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko

    2017-09-01

    The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda

    2014-08-01

    The Cyprean arc is considered to be a convergent boundary in the Eastern Mediterranean where the African plate is being subducted beneath the Anatolian plate. Mapping the lateral variations of seismic anisotropy parameters can provide essential hints to mantle dynamics and flow patterns in relation to the geometry and style of deformation developed under different pressure, temperature conditions around the subducting African lithosphere. In this study, seismic anisotropy parameters, fast polarization directions (ϕ) and delay times (δt) beneath the Cyprean arc and NE Mediterranean Sea are inferred from the shear wave splitting analysis performed on core-mantle refracted teleseismic shear waves (SKS phases). Earthquake data used in the present work are extracted from the continuous recordings of 8 broad-band seismic stations located in the study region for a time period during 1999 and 2012. The overall results exhibits clear evidences of mantle anisotropy with relatively uniform NE-SW aligned fast polarization directions. No abrupt changes in fast polarization directions (ϕ) are observed. However, near the Dead Sea Transform Fault, ϕ values tend to rotate from NE-SW to N-S and NW-SE in accordance with Pn anisotropy observations. Delay times (δt) vary between 0.61 s ± 0.10 s and 1.90 s ± 0.13 s. The range of delay times are generally consistent with those observed in the mantle rather than implying a crustal anisotropy. A predominant pattern of NNE-SSW fast polarization directions that is coherent with earlier SKS splitting measurements observed beneath north, central and East Anatolia suggests a SW directed asthenospheric flow caused by slab rollback process along the Hellenic and Cyprean arcs. Furthermore, apparent splitting parameters did not exhibit any significant directional dependence which may imply possibility of the presence of anisotropic models with two-layer anisotropy or dipping axis of symmetry beneath the northeast Mediterranean Sea and Cyprean arc. Consequently, a simple, single-layered and sub-horizontal anisotropy model is tentatively suggested for the study region.

  4. Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael

    2016-12-01

    We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.

  5. Residual topography and gravity anomalies reveal structural controls on co-seismic slip in the 2011 Mw 9.0 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Sandwell, D. T.; Fialko, Y. A.

    2016-12-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  6. Upper-mantle deformation beneath the Pyrenean domain inferred from SKS splitting in northern Spain and southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickaël; Chevrot, Sébastien; Gaudot, Ianis; Haugmard, Méric

    2017-08-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PyrOPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters ϕ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  7. Upper-Mantle Deformation Beneath the Pyrenean Domain Inferred from SKS Splitting in Northern Spain and Southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, M. J. A.; Chevrot, S.; Gaudot, I.; Haugmard, M.

    2017-12-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  8. Spin-valley skyrmions in graphene at filling factor ν =-1

    NASA Astrophysics Data System (ADS)

    Lian, Yunlong; Goerbig, Mark O.

    2017-06-01

    We model quantum Hall skyrmions in graphene monolayer at quarter filling by a theory of CP3 fields and study the energy minimizing skyrmions in the presence of valley pseudospin anisotropy and Zeeman coupling. We present a diagram of all types of skyrmions in a wide range of the anisotropy parameters. For each type of skyrmion, we visualize it on three Bloch spheres, and present the profiles of its texture on the graphene honeycomb lattice, thus providing references for the scanning-tunneling microscopy and spectroscopy imaging of spin-pseudospin textures in graphene monolayer in the quantum Hall regime. Besides the spin and pseudospin skyrmions for the corresponding degrees of freedom of an electron in the N =0 Landau level, we discuss two unusual types—the "entanglement skyrmion", the texture of which lies in the space of the entanglement of spin and pseudospin, as well as the "deflated pseudospin skyrmion" with partial entanglement. For all skyrmion types, we study the dependence of the energy and the size of a skyrmion on the anisotropy parameters and perpendicular magnetic field. We also propose three ways to modify the anisotropy energy, namely, the sample tilting, the substrate anisotropy, and the valley pseudospin analog of Zeeman coupling.

  9. Effect of equatorial line nodes on the upper critical field and London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V G; Prozorov, R

    2014-09-01

    The upper critical field Hc2 and its anisotropy are calculated for order parameters with line nodes at the equators, kz=0, of the Fermi surface of uniaxial superconductors. It is shown that characteristic features found in Fe-based materials (a nearly linear Hc2(T) in a broad T domain, a low and increasing on warming anisotropy γH=Hc2,ab/Hc2,c) can be caused by competing effects of the equatorial nodes and of the Fermi surface anisotropy. For certain material parameters, γH(T)-1 may change sign upon warming, in agreement with the recorded behavior of FeTeS systems. It is also shown that the anisotropy of the penetration depthmore » γλ=λc/λab decreases upon warming to reach γH at Tc, in agreement with data available. For some materials γλ(T) may change upon warming, from γλ>1 at low Ts to γλ<1 at high Ts.« less

  10. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    NASA Astrophysics Data System (ADS)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.

  11. Compact stars

    NASA Astrophysics Data System (ADS)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  12. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  13. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Johnson, Matthew C.

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.

  14. Review of the role of dielectric anisotropy in Dyakonov surface-wave propagation

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R., II; Polo, John A., Jr.; Lakhtakia, Akhlesh

    2008-08-01

    Surface waves (SWs) are localized waves that travel along the planar interface between two different mediums when certain dispersion relations are satisfied. If both mediums have purely dielectric constitutive properties, the characteristics of SW propagation are determined by the anisotropy of both mediums. Surface waves are then called Dyakonov SWs (DSWs), after Dyakonov who theoretically established the possibility of SW propagation at the planar interface of an isotropic dielectric and a positive uniaxial dielectric. Since then, DSW propagation guided by interfaces between a variety of dielectrics has been studied. With an isotropic dielectric on one side, the dielectric on the other side of the interface can be not only positive uniaxial but also biaxial. DSW propagation can also occur along an interface between two uniaxial or biaxial dielectrics that are twisted about a common axis with respect to each other but are otherwise identical. Recently, DSW propagation has been studied taking (i) uniaxial dielectrics such as calomel and dioptase crystals; (ii) biaxial dielectrics such as hemimorphite, crocoite, tellurite, witherite, and cerussite; and (iii) electro-optic materials such as potassium niobate. With materials that are significantly anisotropic, the angular regime of directions for DSW propagation turns out to be narrow. In the case of naturally occurring crystals, one has to accept the narrow angular existence domain (AED). However, exploiting the Pockels effect not only facilitates dynamic electrical control of DSW propagation, but also widens the AED for DSW propagation.

  15. Ion irradiation induced effects and magnetization reversal mechanism in (Ni80Fe20)1-xCox nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Iqbal, Javed; Chen, J. Y.; Hussain, Asim; Shi, D. W.; Han, X. F.

    2015-03-01

    The effect of Co on the ferromagnetic characteristics of the Ni80Fe20 nanocylinders having zero magnetostriction and soft magnetic nature is an interesting field of research. The (Ni80Fe20)1-xCox nanocylinders have been prepared by electrodeposition into commercially available anodized aluminum oxide (AAO) nanoporous templates. The analysis of magnetization reversal from the angular dependence of coercivity has been studied in detail. This angular dependence of coercivity has shown a transition from curling to nucleation mode as a function of field angle for all (Ni80Fe20)1-xCox nanocylinders depending upon the critical angle. The shape anisotropy, dipole-dipole interactions, surface effects and magnetocrystalline anisotropy have been found to play an effective role for the spontaneous magnetization in nanowires and nanotubes. It has been interestingly observed that the magnetostatic interactions or dipole-dipole interactions are dominant in nanocylinders regardless of its geometry. Furthermore, the prepared samples have been irradiated with He2+ ions (energy E=2 MeV, fluence=1014 ions/cm2 and ion current=16 nA) at room temperature using a 5-UDH-2pelletron tandem accelerator. The irradiations have created defects and these defects have induced changes in magnetization as a result an increase in coercivity as function of the ion fluences is observed. Such kind of behavior in coercivity enhancement and magnetization reduction can also be attributed to the stress relaxation and percolation in nonuniform states of ferromagnetic alloys, respectively.

  16. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  17. Magnetic Barkhausen Noise Measurements Using Tetrapole Probe Designs

    NASA Astrophysics Data System (ADS)

    McNairnay, Paul

    A magnetic Barkhausen noise (MBN) testing system was developed for Defence Research and Development Canada (DRDC) to perform MBN measurements on the Royal Canadian Navy's Victoria class submarine hulls that can be correlated with material properties, including residual stress. The DRDC system was based on the design of a MBN system developed by Steven White at Queen's University, which was capable of performing rapid angular dependent measurements through the implementation of a flux controlled tetrapole probe. In tetrapole probe designs, the magnetic excitation field is rotated in the surface plane of the sample under the assumption of linear superposition of two orthogonal magnetic fields. During the course of this work, however, the validity of flux superposition in ferromagnetic materials, for the purpose of measuring MBN, was brought into question. Consequently, a study of MBN anisotropy using tetrapole probes was performed. Results indicate that MBN anisotropy measured under flux superposition does not simulate MBN anisotropy data obtained through manual rotation of a single dipole excitation field. It is inferred that MBN anisotropy data obtained with tetrapole probes is the result of the magnetic domain structure's response to an orthogonal magnetization condition and not necessarily to any bulk superposition magnetization in the sample. A qualitative model for the domain configuration under two orthogonal magnetic fields is proposed to describe the results. An empirically derived fitting equation, that describes tetrapole MBN anisotropy data, is presented. The equation describes results in terms of two largely independent orthogonal fields, and includes interaction terms arising due to competing orthogonally magnetized domain structures and interactions with the sample's magnetic easy axis. The equation is used to fit results obtained from a number of samples and tetrapole orientations and in each case correctly identifies the samples' magnetic easy axis.

  18. Large-angle cosmic microwave background anisotropies in an open universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  19. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energymore » resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.« less

  20. Gravitational Lensing Effect on the Two-Point Correlation of Hot Spots in the Cosmic Microwave Background.

    PubMed

    Takada; Komatsu; Futamase

    2000-04-20

    We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.

  1. A study of the solar wind angular momentum including proton thermal anisotropy. Ph.D. Thesis - Catholic Univ. of Am., 1973

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1974-01-01

    The solution to the steady state magnetohydrodynamic equations governing the supersonic expansion of the solar corona into interplanetary space is obtained for various assumptions regarding the form in which proton thermal energy is carried away from the sun. The one-fluid, inviscid, formulation of the MHD equations is considered assuming that thermal energy is carried away by conduction from a heat source located at the base of the corona. Angular motion of the solar wind led to the existence of three critical points through which the numerical solutions must pass to extend from the sun's surface to large heliocentric distances. The results show that the amount of magnetic field energy converted into kinetic energy in the solar wind is only a small fraction of the total expansion energy flux and has little effect upon the final radial expansion velocity.

  2. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  3. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    PubMed

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  4. Demonstrating the conservation of angular momentum using spherical magnets

    NASA Astrophysics Data System (ADS)

    Lindén, Johan; Slotte, Joakim; Källman, Kjell-Mikael

    2018-01-01

    An experimental setup for demonstrating the conservation of angular momentum of rotating spherical magnets is described. Two spherical Nd-Fe-B magnets are placed on a double inclined plane and projected towards each other with pre-selected impact parameters ranging from zero to a few tens of millimeters. After impact, the two magnets either revolve vigorously around the common center of mass or stop immediately, depending on the value of the impact parameter. Using a pick-up coil connected to an oscilloscope, the angular frequency for the rotating magnets was measured, and an estimate for the angular momentum was obtained. A high-speed video camera captured the impact and was used for measuring linear and angular velocities of the magnets. A very good agreement between the initial angular momentum before the impact and the final angular momentum of the revolving dumbbell is observed. The two rotating magnets, and the rotating electromagnetic field emanating from them, can also be viewed as a toy model for the newly discovered gravitational waves, where two black holes collide after revolving around each other. (Enhanced online)

  5. Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: A closer look

    DOE PAGES

    Cuoco, A.; Sellerholm, A.; Conrad, J.; ...

    2011-06-21

    We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope ( Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds and use a realistic representation of the Fermi LAT. We implement an analysis pipeline which simulates Fermi LAT data sets starting from model maps of the Galactic foregrounds, the Fermi-resolved point sources, the extragalactic diffuse emission and the signal from DM annihilation. The effects of the detector are taken into account bymore » convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin and of Galactic origin (which can be generated through annihilation in the Milky Way substructures) as opposed to a background of anisotropies generated by sources of astrophysical origin, blazars for example. We find that with statistics from 5 yr of observation, Fermi is sensitive to a DM contribution at the level of 1–10 per cent of the measured IGRB depending on the DM mass m χ and annihilation mode. In terms of the thermally averaged cross-section , this corresponds to ~10 –25 cm 3 s –1, i.e. slightly above the typical expectations for a thermal relic, for low values of the DM mass m χ≲ 100 GeV. As a result, the anisotropy method for DM searches has a sensitivity comparable to the usual methods based only on the energy spectrum and thus constitutes an independent and complementary piece of information in the DM puzzle.« less

  6. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  7. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2008-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.

  8. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  9. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  10. Gilbert damping of high anisotropy Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Couet, S.; Swerts, J.; Kar, G. S.

    2018-04-01

    Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 Å)/Pt(3 Å)] {× 6} multilayers, whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing, despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained, despite a magneto-crystalline anisotropy as large as 106 J m-3. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.

  11. Analysis of flow near a dug well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Sridharan, K.; Sathyanarayana, D.; Reddy, A. Siva

    1990-11-01

    A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.

  12. Computing elastic anisotropy to discover gum-metal-like structural alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  13. Angular dependence of primordial trispectra and CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele

    2016-10-01

    Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10-3.

  14. Top-down, decoupled control of constitutive parameters in electromagnetic metamaterials with dielectric resonators of internal anisotropy.

    PubMed

    Koo, Sukmo; Mason, Daniel R; Kim, Yunjung; Park, Namkyoo

    2017-02-10

    A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (ε r  ≠ ε θ ), as a pathway for decoupling of the effective- permittivity ε eff and permeability μ eff . Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of ε eff and μ eff , we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone.

  15. Magnetocrystalline anisotropy in cobalt based magnets: a choice of correlation parameters and the relativistic effects

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming; Antropov, Vladimir P.

    2018-05-01

    The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo5 (M  =  Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA  +  U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropy (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.

  16. Top-down, decoupled control of constitutive parameters in electromagnetic metamaterials with dielectric resonators of internal anisotropy

    NASA Astrophysics Data System (ADS)

    Koo, Sukmo; Mason, Daniel R.; Kim, Yunjung; Park, Namkyoo

    2017-02-01

    A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability μeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and μeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone.

  17. BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

    DOE PAGES

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; ...

    2017-11-09

    We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation,more » which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps ( ~3 μK - arc min ) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term g aγ ≤ 7.2 × 10 -2/H I (95% confidence) than the constraint derived from the B -mode spectrum, where H I is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10 -6 ≲ f a / M pl at mass range of 10 -33 ≤ m a ≤ 10 -28eV for r = 0.01 , assuming g aγ ~ α/( 2πf a) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.« less

  18. BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.

    We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation,more » which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps ( ~3 μK - arc min ) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term g aγ ≤ 7.2 × 10 -2/H I (95% confidence) than the constraint derived from the B -mode spectrum, where H I is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10 -6 ≲ f a / M pl at mass range of 10 -33 ≤ m a ≤ 10 -28eV for r = 0.01 , assuming g aγ ~ α/( 2πf a) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.« less

  19. Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Swanson, M.; Haraldsen, J. T.; Fishman, R. S.

    2009-05-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.

  20. Critical Anisotropies of a Geometrically-Frustrated Triangular-Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Mason R; Haraldsen, Jason T; Fishman, Randy Scott

    2009-01-01

    This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SLmore » and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.« less

  1. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  2. Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet

    2018-02-01

    Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.

  3. Measurement of angular parameters from the decay B0 → K*0μ+μ- in proton-proton collisions at √{ s } = 8TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Linwei, L.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Dini, P.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-06-01

    Angular distributions of the decay B0 →K*0μ+μ- are studied using a sample of proton-proton collisions at √{ s } = 8TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5fb-1. An angular analysis is performed to determine the P1 and P5‧ parameters, where the P5‧ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P1 and P5‧ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.

  4. An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age.

    PubMed

    Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia

    2016-10-01

    Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.

  5. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  6. Simulating the universe(s): from cosmic bubble collisions to cosmological observables with numerical relativity

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.; Johnson, Matthew C.; Peiris, Hiranya V.; Aguirre, Anthony; Lehner, Luis; Liebling, Steven L.

    2014-03-01

    The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. We develop and implement an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. We first simulate the collision spacetime by solving Einstein's equations, starting from nucleation and ending at reheating. Taking advantage of the collision's hyperbolic symmetry, the simulations are performed with a 1+1-dimensional fully relativistic code that uses adaptive mesh refinement. We then calculate the comoving curvature perturbation in an open Friedmann-Robertson-Walker universe, which is used to determine the temperature anisotropies of the cosmic microwave background radiation. For a fiducial Lagrangian, the anisotropies are well described by a power law in the cosine of the angular distance from the center of the collision signature. For a given form of the Lagrangian, the resulting observational predictions are inherently statistical due to stochastic elements of the bubble nucleation process. Further uncertainties arise due to our imperfect knowledge about inflationary and pre-recombination physics. We characterize observational predictions by computing the probability distributions over four phenomenological parameters which capture these intrinsic and model uncertainties. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, yielding significant differences from previous non-relativistic approximations. Thus, our results provide a basis for a rigorous confrontation of these theories with cosmological data.

  7. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE PAGES

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; ...

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  8. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  9. Updating constraints on inflationary features in the primordial power spectrum with the Planck data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol

    2013-10-01

    We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10<ℓ<60 and 150<ℓ<300, with a decrease in the best-fit χ2 value with respect to the featureless “vanilla” ΛCDM model of Δχ2≃9 in both cases.

  10. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.

  11. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  12. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach

    PubMed Central

    Zeng, Xiaozheng; McGough, Robert J.

    2009-01-01

    The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640

  13. Spin-1 Heisenberg ferromagnet using pair approximation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Murat; Mert, Gülistan; Kılıç, Ahmet

    2016-06-08

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  14. Effects of a wavy neutral sheet on cosmic ray anisotropies

    NASA Technical Reports Server (NTRS)

    Kota, J.; Jokipii, J. R.

    1985-01-01

    The first results of a three-dimensional numerical code calculating cosmic ray anisotropies is presented. The code includes diffusion, convection, adiabatic cooling, and drift in an interplanetary magnetic field model containing a wavy neutral sheet. The 3-D model can reproduce all the principal observations for a reasonable set of parameters.

  15. Comment on "Anisotropic s-wave superconductivity: Comparison with experiments on MgB2" by A. I. Posazhennikova et al.

    NASA Astrophysics Data System (ADS)

    Mishonov, T. M.; Penev, E. S.; Indekeu, J. O.

    2003-02-01

    An analytical result for the renormalization of the jump of the heat capacity ΔC/CN by the anisotropy of the order parameter is derived within the framework of the very recent model proposed by Posazhennikova, Dahm and Maki (Europhys. Lett., 60 (2002) 134), for both oblate and prolate anisotropy. The graph of ΔC/CN vs. the ratio of the gaps on the equator and the pole of the Fermi surface, Δe/Δp, allows a direct determination of the gap anisotropy parameter Δe/Δp by fitting data from specific-heat measurements ΔC/CN. Using the experimental value ΔC/CN = 0.82 ± 10% by Wang, Plackowski, and Junod (Physica C 355 (2001) 179) we find Δe/Δp approx 4.0.

  16. Quantitative methods for estimating the anisotropy of the strength properties and the phase composition of Mg-Al alloys

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Kolobov, Yu. R.; Volkova, E. F.; Bozhko, S. A.; Voskresenskaya, I. I.

    2015-04-01

    Quantitative methods have been developed to estimate the anisotropy of the strength properties and to determine the phase composition of Mg-Al alloys. The efficiency of the methods is confirmed for MA5 alloy subjected to severe plastic deformation. It is shown that the Taylor factors calculated for basal slip averaged over all orientations of a polycrystalline aggregate with allowance for texture can be used for a quantitative estimation of the contribution of the texture of semifinished magnesium alloy products to the anisotropy of their strength properties. A technique of determining the composition of a solid solution and the intermetallic phase Al12Mg17 content is developed using the measurement of the lattice parameters of the solid solution and the known dependence of these lattice parameters on the composition.

  17. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  18. Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time.

    PubMed

    Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S

    2008-07-01

    Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.

  19. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    PubMed

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], p<0.001, linear mixed-effects model [LMEM]) and the CA3bc (FA, D || , CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi

    2018-05-01

    Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.

  1. Diffusion weighted imaging for the differentiation of breast tumors: From apparent diffusion coefficient to high order diffusion tensor imaging.

    PubMed

    Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F

    2016-05-01

    To compare "standard" diffusion weighted imaging, and diffusion tensor imaging (DTI) of 2(nd) and 4(th) -order for the differentiation of malignant and benign breast lesions. Seventy-one patients were imaged at 3 Tesla with a 16-channel breast coil. A diffusion weighted MRI sequence including b = 0 and b = 700 in 30 directions was obtained for all patients. The image data were fitted to three different diffusion models: isotropic model - apparent diffusion coefficient (ADC), 2(nd) -order tensor model (the standard model used for DTI) and a 4(th) -order tensor model, with increased degrees of freedom to describe anisotropy. The ability of the fitted parameters in the different models to differentiate between malignant and benign tumors was analyzed. Seventy-two breast lesions were analyzed, out of which 38 corresponded to malignant and 34 to benign tumors. ADC (using any model) presented the highest discriminative ability of malignant from benign tumors with a receiver operating characteristic area under the curve (AUC) of 0.968, and sensitivity and specificity of 94.1% and 94.7% respectively for a 1.33 × 10(-3) mm(2) /s cutoff. Anisotropy measurements presented high statistical significance between malignant and benign tumors (P < 0.001), but with lower discriminative ability of malignant from benign tumors than ADC (AUC of 0.896 and 0.897 for fractional anisotropy and generalized anisotropy respectively). Statistical significant difference was found between generalized anisotropy and fractional anisotropy for cancers (P < 0.001) but not for benign lesions (P = 0.87). While anisotropy parameters have the potential to provide additional value for breast applications as demonstrated in this study, ADC exhibited the highest differentiation power between malignant and benign breast tumors. © 2015 Wiley Periodicals, Inc.

  2. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  3. Measurement of angular parameters from the decay $$\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^+ \\mu^-$$ in proton-proton collisions at $$\\sqrt{s} = $$ 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Angular distributions of the decaymore » $$\\mathrm{B}^0 \\to \\mathrm{K}^{*0} \\mu^ +\\mu^-$$ are studied using a sample of proton-proton collisions at $$\\sqrt{s} = $$ 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$$^{-1}$$. An angular analysis is performed to determine the $$P_1$$ and $$P_5'$$ parameters, where the $$P_5'$$ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the $$P_1$$ and $$P_5'$$ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.« less

  4. Triple coupling and parameter resonance in quantum optomechanics with a single atom

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Ian, H.; Sun, C. P.

    2009-11-01

    We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.

  5. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  6. Spin-orbit effects on reflectance anisotropy spectroscopy of aclean CdTe(001) surface

    NASA Astrophysics Data System (ADS)

    Vázquez-Nava, Raül A.

    2005-03-01

    The spectroscopical reflectance anisotropy (RA) response of a clean (001) surface of CdTe, which exhibits a c(2 x2) surface reconstruction, is studied using a microscopic formulation based on a semi-empirical tight binding approach (SETB) which includes the spin-orbit (SO) interaction. Following Ref. 1, we apply an unitary transformation to the usual SETB sp^3s^* basis to describe the electronic states in terms of a set of atomic states which are eigenstates of the total angular momentum (TAM). These states are better suited to treat the SO interaction in this model, and their use in the computation of the RA signal is straightforward [1]. We show how the RA changes when SO is taken into account and compare our theoretical results with experimental measurements of Ref. 2. [1] R.A. V'azquez-Nava, B.S. Mendoza and C. Castillo, Phys. Rev. B 70, 165306 (2004). [2] J. R. Molina and R. Espinosa-Luna, J. Phys. D: Appl. Phys. (2004), accepted.

  7. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in amore » broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.« less

  8. Critical thickness investigation of magnetic properties in exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela-Leão, L. H.; Bueno, T.; Oliveira, A. B.; de Almeida, J. R. L.; Landeros, P.; Rezende, S. M.; Azevedo, A.

    2011-06-01

    We present a systematic investigation of the magnetic properties of two series of polycrystalline ferromagnetic-antiferromagnetic bilayers (FM-AF) of Ni81Fe19(10nm)/Ir20Mn80(tAF) grown by dc magnetron sputtering. One series was grown at an oblique angle of 50° and the other one was grown at 0°. Ferromagnetic resonance (FMR) was used to measure the exchange bias field HE, the rotatable anisotropy field HRA, and the FMR linewidth ΔH as a function of the antiferromagnetic layer thickness tAF. Three relaxation channels due to isotropic Gilbert damping, anisotropic two-magnon scattering, and mosaicity effects are simultaneously distinguished through the angular dependence of the FMR linewidth. In the regime of small IrMn layer thicknesses, not enough to establish the exchange bias anisotropy, the FMR linewidth shows a sharp peak due to the contribution of the two-magnon scattering mechanism. The results presented here are of general importance for understanding the dynamics of magnetization in the FM-AF structures.

  9. Critical current density and microstructure of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick film sandwiched between Ag substrates

    NASA Astrophysics Data System (ADS)

    Oota, A.; Matsui, H.; Funakura, M.; Iwaya, J.; Maeda, J.

    1993-07-01

    A process of combined rolling and uniaxial pressing with intermediate sintering steps for fabrication of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick films sandwiched between Ag substrates yields c-axis-oriented microstructures with a high critical current density (Jc) of 1.5 x 10 exp 4 A/sq cm (77 K, 0 T) and 9.0 x 10 exp 4 A/sq cm (23 K, 0 T). The measured Jc anisotropy at 77 K, as a function of the angle Theta between B and c axis, is pronounced. An increase in B sharpens a peak at Theta = 90 deg in the Jc vs Theta curve, together with enhancement of the anisotropy ratio. In high fields above 0.5 T, the half-height angular width of the peak approaches an average misalignment angle between the grains with increasing B.

  10. Currentless reversal of Néel vector in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Li, Xilai; Kim, Ki Wook

    The bias driven perpendicular magnetic anisotropy is a magneto-electric effect that can realize 900 magnetization rotation and even 1800 flip along the easy axis in the ferromagnets with a minimal energy consumption. This study theoretically demonstrates a similar phenomenon of the Néel vector reversal via a short electrical pulse that can mediate perpendicular magnetic anisotropy in the antiferromagnets. The analysis based on the dynamical equations as well as the micromagnetic simulations reveals the important role of the inertial behavior in the antiferromagnets that facilitates the Néel vector to overcome the barrier between two free-energy minima of the bistable states along the easy axis. In contrast to the ferromagnets, this Néel vector reversal does not accompany angular moment transfer to the environment, leading to acceleration in the dynamical response by a few orders of magnitude. Further, a small switching energy requirement of a few attojoules illustrates an added advantage of the phenomenon in low-power spintronic applications.

  11. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  12. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  13. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for additional capabilities or for other applications.

  14. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  15. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  16. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengjie; Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in themore » diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.« less

  17. Fourier transform power spectrum is a potential measure of tissue alignment in standard MRI: A multiple sclerosis study.

    PubMed

    Sharma, Shrushrita; Zhang, Yunyan

    2017-01-01

    Loss of tissue coherency in brain white matter is found in many neurological diseases such as multiple sclerosis (MS). While several approaches have been proposed to evaluate white matter coherency including fractional anisotropy and fiber tracking in diffusion-weighted imaging, few are available for standard magnetic resonance imaging (MRI). Here we present an image post-processing method for this purpose based on Fourier transform (FT) power spectrum. T2-weighted images were collected from 19 patients (10 relapsing-remitting and 9 secondary progressive MS) and 19 age- and gender-matched controls. Image processing steps included: computation, normalization, and thresholding of FT power spectrum; determination of tissue alignment profile and dominant alignment direction; and calculation of alignment complexity using a new measure named angular entropy. To test the validity of this method, we used a highly organized brain white matter structure, corpus callosum. Six regions of interest were examined from the left, central and right aspects of both genu and splenium. We found that the dominant orientation of each ROI derived from our method was significantly correlated with the predicted directions based on anatomy. There was greater angular entropy in patients than controls, and a trend to be greater in secondary progressive MS patients. These findings suggest that it is possible to detect tissue alignment and anisotropy using traditional MRI, which are routinely acquired in clinical practice. Analysis of FT power spectrum may become a new approach for advancing the evaluation and management of patients with MS and similar disorders. Further confirmation is warranted.

  18. Observations of Solar Energetic Particle Anisotropies at MeV Energies from STEREO/LET

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; von Rosenvinge, T. T.

    2016-12-01

    During the transport of solar energetic particles (SEPs) through interplanetary space, their pitch-angle distributions are modified by the competing effects of scattering and magnetic focusing. Thus, measurements of SEP anisotropies can reveal conditions such as magnetic field strength, topology, and turbulence levels at heliospheric locations far removed from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures angular distributions in the ecliptic for SEP protons, helium, and heavier ions up to iron with energies of about 2-12 MeV/nucleon. Anisotropies observed with this instrument include unidirectional outward beams at the onset of magnetically well-connected SEP events when particles experienced little scattering, bidirectional flows within many interplanetary coronal mass ejections, sunward particle flows when the spacecraft was magnetically connected to the back side of a shock, and loss-cone distributions when particles with large pitch angles were magnetically mirrored at a remote field enhancement that was too weak to reflect particles with the smallest pitch angles. Observations at a 1-minute cadence also revealed peculiar oscillations in the width of a beamed distribution at the onset of the 23 July 2012 extreme SEP event. The shapes of the pitch angle distributions often vary with energy and differ for H, He, and heavier species, perhaps as a result of rigidity dependence of the pitch angle diffusion coefficient. We present a selection of the more interesting LET anisotropy observations made throughout solar cycle 24 and discuss the implications of these observations for SEP transport in the heliosphere.

  19. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    PubMed

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Magnetization reversal in epitaxial exchange-biased IrMn/FeGa bilayers with anisotropy geometries controlled by oblique deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei

    2015-05-01

    We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.

Top