ERIC Educational Resources Information Center
Hay, James G.; Wilson, Barry D.
The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…
The effects of obesity on balance recovery using an ankle strategy.
Matrangola, Sara L; Madigan, Michael L
2011-06-01
Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7±0.6 kg/m(2)) and ten obese (BMI: 32.2±2.2 kg/m(2)) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity. Copyright © 2011 Elsevier B.V. All rights reserved.
Difference in perception of angular displacement according to applied waveforms.
Kushiro, Keisuke; Goto, Fumiyuki
2013-05-01
This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.
Representational momentum, centripetal force, and curvilinear impetus.
Hubbard, T L
1996-07-01
In 3 experiments, observers witnessed a target moving along a circular orbit and indicated the location at which the target vanished. The judged vanishing point was displaced forward in the direction of implied momentum and inward in the direction of implied centripetal force. In general, increases in either the angular velocity of the target or the radius length of the orbit increased the magnitude of forward displacement. If both angular velocity and radius length were varied, then increases in either angular velocity or radius length also increased the magnitude of inward displacement. The displacement patterns were consistent with hypotheses that analogues of momentum and centripetal force were incorporated into the representational system. A framework is proposed that accounts for (a) the forward and inward displacements and (b) naive-physics data on the spiral tube problem previously interpreted as suggesting a belief in a naive curvilinear-impetus principle.
Raj, Retheep; Sivanandan, K S
2017-01-01
Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.
Head Movement Dynamics During Play and Perturbed Mother-Infant Interaction
Hammal, Zakia; Cohn, Jeffrey F; Messinger, Daniel S
2015-01-01
We investigated the dynamics of head movement in mothers and infants during an age-appropriate, well-validated emotion induction, the Still Face paradigm. In this paradigm, mothers and infants play normally for 2 minutes (Play) followed by 2 minutes in which the mothers remain unresponsive (Still Face), and then two minutes in which they resume normal behavior (Reunion). Participants were 42 ethnically diverse 4-month-old infants and their mothers. Mother and infant angular displacement and angular velocity were measured using the CSIRO head tracker. In male but not female infants, angular displacement increased from Play to Still-Face and decreased from Still Face to Reunion. Infant angular velocity was higher during Still-Face than Reunion with no differences between male and female infants. Windowed cross-correlation suggested changes in how infant and mother head movements are associated, revealing dramatic changes in direction of association. Coordination between mother and infant head movement velocity was greater during Play compared with Reunion. Together, these findings suggest that angular displacement, angular velocity and their coordination between mothers and infants are strongly related to age-appropriate emotion challenge. Attention to head movement can deepen our understanding of emotion communication. PMID:26640622
Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran
2015-04-23
In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.
Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran
2015-01-01
In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590
Optical vibration measurement of mechatronics devices
NASA Astrophysics Data System (ADS)
Yanabe, Shigeo
1993-09-01
An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.
Interpersonal Coordination of Head Motion in Distressed Couples
Hammal, Zakia; Cohn, Jeffrey F.; George, David T.
2015-01-01
In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
Brownian self-propelled particles on a sphere
NASA Astrophysics Data System (ADS)
Apaza-Pilco, Leonardo Felix; Sandoval, Mario
We present the dynamics of a Brownian self-propelled particle at low Reynolds number moving on the surface of a sphere. The effects of curvature and self-propulsion on the diffusion of the particle are elucidated by determining (numerically) the mean-square displacement of the particle's angular (azimuthal and polar) coordinates. The results show that the long time behavior of its angular mean-square displacement is linear in time. We also see that the slope of the angular MSD is proportional to the propulsion velocity and inverse to the curvature of the sphere. The angular probability distribution function (PDF) of the particle is also obtained by numerically solving its respective Smoluchowski equation.
Yang, Ya-Ting; Yoshida, Yasuyuki; Hortobágyi, Tibor; Suzuki, Shuji
2013-06-01
We determined the angular range of motion and the relative timing of displacement in the thorax, lumbar spine, and pelvis in the transverse plane during treadmill walking at three velocities. Nine healthy young females walked on a treadmill for three minutes at 0.40, 0.93, and 1.47 m/s. The position of seven reflective markers and three rigs placed on the thorax, lumbar spine, and pelvis were recorded at 200 Hz by an eight-camera motion capture system. As gait velocity increased, stride length increased, cycle time decreased, and angular displacement in the thorax and L1 decreased but increased at the pelvis and L5 (all P < .05). The time of maxi- mal angular rotation occurred in the following sequence: pelvis, L5, L3, L1, and thorax (P < .001). The thorax and L1 and L3 were in-phase for shorter duration as gait velocity increased, and this reduction was especially large, approx. 32% (P < .05), between thorax and pelvis. As gait velocity increased, the pelvis rotated earlier, causing the shortening of in-phase duration between thorax and pelvis. These data suggest that, as gait velocity increases, pelvis rotation dictates trunk rotation in the transverse plane during gait in healthy young females.
The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.
Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J
2016-05-01
Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.
Pitch-Plane Angular Displacement Perception During Helicopter Flight and Gondola Centrifugation.
Tribukait, Arne; Bergsten, Eddie; Eiken, Ola
During hovering with a helicopter, an involuntary change in attitude (during brownout) results in reduced lifting force and a horizontal acceleration component. This movement pattern is difficult to perceive via the otolith organs. If the angular displacement occurs rapidly, it will, however, activate the semicircular canals. The major aim of this study was to establish to what extent pitch-plane angular displacements can be perceived based on canal information when there is no tilt stimulus to the otoliths. In a helicopter, 9 nonpilots (N) and 8 helicopter pilots (P) underwent 5-6 pitch-forward displacements (magnitude 14-33°, angular velocity 2-7° · s -1 ). In a swing-out gondola centrifuge, 9 N and 3 P were exposed to a similar canal-otolith conflict (acceleration, seated centripetally) with four displacements of 25° and two of 60°. The visually perceived eye level (VPEL) was continuously recorded using an adjustable luminous dot in darkness. For each helicopter dive and centrifuge run the gain was calculated as the ratio (VPEL deflection)/(displacement of helicopter or gondola). In the helicopter there was no difference between N (0.28 ± 0.13) and P (0.36 ± 0.22). In the centrifuge the gains were 0.34 ± 0.18° (25° displacements) and 0.30 ± 0.16° (60° displacements). Values obtained in the helicopter did not differ significantly from those in the centrifuge. There was a correlation between data obtained during the 25° and 60° displacements in the centrifuge. There was a pronounced underestimation of pitch angular displacements in a helicopter. The interindividual variability was considerable. Gains for perceived displacement were similar in helicopter and centrifuge. Tribukait A, Bergsten E, Eiken O. Pitch-plane angular displacement perception during helicopter flight and gondola centrifugation. Aerosp Med Hum Perform. 2016; 87(10):852-861.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo
Preuschl, Emanuel; Hassmann, Michaela; Baca, Arnold
2016-01-01
The jumping front-leg axe-kick is a valid attacking and counterattacking technique in Taekwondo competition (Streif, 1993). Yet, the existing literature on this technique is sparse (Kloiber et al., 2009). Therefore, the goal of this study was to determine parameters contributing significantly to maximum linear speed of the foot at impact. Parameters are timing of segment and joint angular velocity characteristics and segment lengths of the kicking leg. Moreover, we were interested in the prevalence of proximal-to-distal-sequencing. Three-dimensional kinematics of the kicks of 22 male Taekwondo-athletes (age: 23.3 ± 5.3 years) were recorded via a motion capturing system (Vicon Motion Systems Limited, Oxford, UK). The participants performed maximum effort kicks onto a rack-held kicking pad. Only the kick with the highest impact velocity was analysed, as it was assumed to represent the individual’s best performance. Significant Pearson correlations to impact velocity were found for pelvis tilt angular displacement (r = 0.468, p < 0.05) and for hip extension angular velocity (r = -0.446, p < 0.05) and for the timing of the minima of pelvis tilt velocity (r = -0.426, p < 0.05) and knee flexion velocity (r = -0.480, p < 0.05). Backward step linear regression analysis suggests a model consisting of three predictor variables: pelvis tilt angular displacement, hip flexion velocity at target contact and timing of pelvic tilt angular velocity minimum (adjusted R2 = 0.524). Results of Chi-Squared tests show that neither for the leg-raising period (χ2 = 2.909) of the technique, nor for the leg-lowering period a pattern of proximal-to-distal sequencing is prevalent (χ2 = 0.727). From the results we conclude that the jumping front-leg axe-kick does not follow a proximal-to-distal pattern. Raising the leg early in the technique and apprehending the upper body to be leant back during the leg-lowering period seems to be beneficial for high impact velocity. Furthermore, striking by extending the hip rather than by flexing the knee could raise impact velocity. Key points Angular velocity characteristics of the pelvis segment and the kicking leg’s hip and knee joint show no proximal-to-distal sequencing, neither for the leg-raising or leg-lowering period in a jumping front-leg axe-kick. Anthropometric parameters of taekwondo athlete’s do not influence their impact velocities. In order to raise the impact velocity in the jumping front-leg axe-kick an athlete should avoid tilting back with the torso. Instead, an upright position should be maintained. In the leg-lowering period, we suggest hitting the target by using hip extension with a rather straight knee, instead of flexing the knee. PMID:26957931
Transducer applications, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods.
Dynamics of the G-excess illusion
NASA Technical Reports Server (NTRS)
Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.
1992-01-01
The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.
Kinematics of Visually-Guided Eye Movements
Hess, Bernhard J. M.; Thomassen, Jakob S.
2014-01-01
One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602
Determination Method of Bridge Rotation Angle Response Using MEMS IMU.
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-11-09
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
Kinematic analysis of crank -cam mechanism of process equipment
NASA Astrophysics Data System (ADS)
Podgornyj, Yu I.; Skeeba, V. Yu; Martynova, T. G.; Pechorkina, N. S.; Skeeba, P. Yu
2018-03-01
This article discusses how to define the kinematic parameters of a crank-cam mechanism. Using the mechanism design, the authors have developed a calculation model and a calculation algorithm that allowed the definition of kinematic parameters of the mechanism, including crank displacements, angular velocities and acceleration, as well as driven link (rocker arm) angular speeds and acceleration. All calculations were performed using the Mathcad mathematical package. The results of the calculations are reported as numerical values.
Postural responses to yaw rotation of support surface.
Chen, Chiung-Ling; Lou, Shu-Zon; Wu, Hong-Wen; Wu, Shyi-Kuen; Yeung, Kwok-Tak; Su, Fong-Chin
2013-02-01
The purposes of this study were to investigate EMG and kinematic responses to yaw rotation of a support surface. Twenty people participated in four conditions, i.e., two velocities (240°/s, 120°/s) and two amplitudes (30°, 15°). Longer latency and smaller muscle responses were induced for yaw rotation, and distal ankle and knee muscles were activated earlier than trunk and neck muscles. Joint kinematics demonstrated larger angular displacements in axial rotation. Velocity and amplitude did not affect onset latency or magnitude of muscle activation but had significant effects on joint movements and COM displacements. Preliminary information about normative data of healthy subjects was obtained, and questions were generated about optimal velocity and amplitude test protocols that require further investigation. Copyright © 2012 Elsevier B.V. All rights reserved.
Design and Implementation of a Quadruped Bionic Robot Based on Virtual Prototype Technology
NASA Astrophysics Data System (ADS)
Wang, Li
2017-10-01
Design out a quadruped bionic robot with nine degrees of freedom. Conduct virtual assembly and trotting gait simulation on the robot by using NX software. Present the angular velocity and angular displacement curves of the diagonal two legs’ hip joints and knee joints, thus to instruct the practical assemble and control of the robot. The fact that the movement effect of the physical model is consistent with the simulation verifies the validity and practicability of virtual assembly and motion simulation. both.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-01-01
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).
Król, P; Sobota, G; Polak, A; Bacik, B; Juras, G
2017-01-01
Whole-body vibration training has become a popular method used in sports and physiotherapy. The study aimed to evaluate the effect of different vibration frequency and peak-to-peak displacement combinations on men knee flexors and extensors strength in isokinetic conditions. The sample consisted of 49 male subjects randomly allocated to seven comparative groups, six of which exercised on a vibration platform with parameters set individually for the groups. The experimental groups were exposed to vibrations 3 times a week for 4 weeks. The pre- and post- isokinetic strength tests, with the angular velocities of 240°/s and 30°/s, were recorded prior to and 2 days after the training. After 4 weeks of whole-body vibration training, a significant increase was noted regarding the mean values of peak torque, average peak torque and total work for knee flexors at high angular velocity in Groups I (60 Hz/4 mm) and V (40 Hz/2 mm) (p<0.05). The mean percentage values of post-training changes to study parameters suggest that the training had the most beneficial effect in Groups I (60 Hz/4 mm) and IV (60 Hz/2 mm) (p<0.05). Whole-body vibrations during static exercise beneficially affected knee flexor strength profile in young men at high angular velocity. The combinations of 60 Hz/4 mm seem to have the most advantageous effects on muscle strength parameters. PMID:28566806
2014-01-01
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training. PMID:24942483
An Integrated, Optimization-Based Approach to the Design and Control of Large Space Structures.
1984-05-01
investigator.s shall use a nonlinear beam model for the large motions, and they shall use a linear beam model to describe the small displacements as a... use a nonlinear beam model for the large motions, and we shall use a linear beam model to describe the small displacements as a perturbation around the...of the angular velocity, wt as follows 0 = 0 - 0 (2. ) -01 G, - f- 0. The use of a quaternion avoids singularities which are often encountered in
De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G
2013-02-01
Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.
Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less
Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.
2015-02-05
Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less
NASA Astrophysics Data System (ADS)
Xia, Jigang; Niu, Cuijuan
2017-07-01
Perfluorooctane sulfonate (PFOS) has emerged as one of the most concerning contaminants in recent years. This study aimed to investigate the acute toxicity effect of PFOS on sperm viability, kinematics and fertilization success in zebrafish ( Danio rerio). Sperm were activated in aqueous media containing a range of PFOS concentrations (0, 0.09, 0.9 and 9 mg/L). Viabilities and kinematics of the sperm exposed to different PFOS treatments were assessed via computer-assisted sperm analysis (CASA) at 20, 40, 60, and 80 s after activation. PFOS exposure decreased the percentage of motile sperm, the curvilinear velocity (VCL), and the mean angular displacement (MAD) of spermatozoa, but showed no influence on the straight-line velocity (VSL) or the angular path velocity (VAP). Furthermore, a significant decrease in fertilization success was observed in spermatozoa that were exposed to 0.9 mg/L PFOS or more. These findings indicate that PFOS pollution in natural aquatic environment may be a potential threaten to successful reproduction of fish.
González-Sánchez, Manuel; Ruiz-Muñoz, Maria; Ávila-Bolívar, Ana Belén; Cuesta-Vargas, Antonio I
2016-10-06
To analyse the effect of real-time kinematic feedback (KRTF) when learning two ankle joint mobilisation techniques comparing the results with the traditional teaching method. Double-blind randomized trial. Faculty of Health Sciences. undergraduate students with no experience in manual therapy. Each student practised intensely for 90 min (45 min for each mobilisation) according to the random methodology assigned (G1: traditional method group and G2: KRTF group). G1: an expert professor supervising the student's practice, the professorstudent ratio was 1:8. G2: placed in front of a station where, while they performed the manoeuvre, they received a KRTF on a laptop. total time of mobilisation, time to reach maximum amplitude, maximum angular displacement in the three axes, maximum and average velocity to reach the maximum angular displacement, average velocity during the mobilisation. Among the pre-post intervention measurements, there were significant differences within the two groups for all outcome variables, however, G2 (KRTF) achieved significantly greater improvements in kinematic parameters for the two mobilisations (significant increase in displacement, velocity and significant reduction in the mobilisations runtime) than G1. Ankle plantar flexion: G1's measurement stability (post-intervention) ranged between 0.491 and 0.687, while G2's measurement stability ranged between 0.899 and 0.984. Ankle dorsal flexion mobilisation: G1 the measurement stability (post-intervention) ranged from 0.543 and 0.684 while G2 ranged between 0.899 and 0.974. KRTF was proven to be more effective tool than traditional teaching method in the teaching - learning process of two joint mobilisation techniques. NCT02504710.
Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W
2013-07-01
Research on the kinematics and inter-regional coordination of movements between the cervical and thoracic spines in motion adds to our understanding of the performance and interplay of these spinal regions. The purpose of this study was to examine the effects of chronic neck pain on the three-dimensional kinematics and coordination of the cervical and thoracic spines during active movements of the neck. Three-dimensional spinal kinematics and movement coordination between the cervical, upper thoracic, and lower thoracic spines were examined by electromagnetic motion sensors in thirty-four individuals with chronic neck pain and thirty-four age- and gender-matched asymptomatic subjects. All subjects performed a set of free active neck movements in three anatomical planes in sitting position and at their own pace. Spinal kinematic variables (angular displacement, velocity, and acceleration) of the three defined regions, and movement coordination between regions were determined and compared between the two groups. Subjects with chronic neck pain exhibited significantly decreased cervical angular velocity and acceleration of neck movement. Cross-correlation analysis revealed consistently lower degrees of coordination between the cervical and upper thoracic spines in the neck pain group. The loss of coordination was most apparent in angular velocity and acceleration of the spine. Assessment of the range of motion of the neck is not sufficient to reveal movement dysfunctions in chronic neck pain subjects. Evaluation of angular velocity and acceleration and movement coordination should be included to help develop clinical intervention strategies to promote restoration of differential kinematics and movement coordination. Copyright © 2013 Elsevier Ltd. All rights reserved.
A new approach to the human muscle model.
Baildon, R W; Chapman, A E
1983-01-01
Hill's (1938) two component muscle model is used as basis for digital computer simulation of human muscular contraction by means of an iterative process. The contractile (CC) and series elastic (SEC) components are lumped components of structures which produce and transmit torque to the external environment. The CC is described in angular terms along four dimensions as a series of non-planar torque-angle-angular velocity surfaces stacked on top of each other, each surface being appropriate to a given level of muscular activation. The SEC is described similarly along dimensions of torque, angular stretch, overall muscle angular displacement and activation. The iterative process introduces negligible error and allows the mechanical outcome of a variety of normal muscular contractions to be evaluated parsimoniously. The model allows analysis of many aspects of muscle behaviour as well as optimization studies. Definition of relevant relations should also allow reproduction and prediction of the outcome of contractions in individuals.
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-01-01
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%. PMID:28273845
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-03-04
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.
Automatic Classification of Tremor Severity in Parkinson's Disease Using a Wearable Device.
Jeon, Hyoseon; Lee, Woongwoo; Park, Hyeyoung; Lee, Hong Ji; Kim, Sang Kyong; Kim, Han Byul; Jeon, Beomseok; Park, Kwang Suk
2017-09-09
Although there is clinical demand for new technology that can accurately measure Parkinsonian tremors, automatic scoring of Parkinsonian tremors using machine-learning approaches has not yet been employed. This study aims to fill this gap by proposing machine-learning algorithms as a way to predict the Unified Parkinson's Disease Rating Scale (UPDRS), which are similar to how neurologists rate scores in actual clinical practice. In this study, the tremor signals of 85 patients with Parkinson's disease (PD) were measured using a wrist-watch-type wearable device consisting of an accelerometer and a gyroscope. The displacement and angle signals were calculated from the measured acceleration and angular velocity, and the acceleration, angular velocity, displacement, and angle signals were used for analysis. Nineteen features were extracted from each signal, and the pairwise correlation strategy was used to reduce the number of feature dimensions. With the selected features, a decision tree (DT), support vector machine (SVM), discriminant analysis (DA), random forest (RF), and k -nearest-neighbor ( k NN) algorithm were explored for automatic scoring of the Parkinsonian tremor severity. The performance of the employed classifiers was analyzed using accuracy, recall, and precision, and compared to other findings in similar studies. Finally, the limitations and plans for further study are discussed.
The effect of muscle fatigue and low back pain on lumbar movement variability and complexity.
Bauer, C M; Rast, F M; Ernst, M J; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M
2017-04-01
Changes in movement variability and complexity may reflect an adaptation strategy to fatigue. One unresolved question is whether this adaptation is hampered by the presence of low back pain (LBP). This study investigated if changes in movement variability and complexity after fatigue are influenced by the presence of LBP. It is hypothesised that pain free people and people suffering from LBP differ in their response to fatigue. The effect of an isometric endurance test on lumbar movement was tested in 27 pain free participants and 59 participants suffering from LBP. Movement variability and complexity were quantified with %determinism and sample entropy of lumbar angular displacement and velocity. Generalized linear models were fitted for each outcome. Bayesian estimation of the group-fatigue effect with 95% highest posterior density intervals (95%HPDI) was performed. After fatiguing %determinism decreased and sample entropy increased in the pain free group, compared to the LBP group. The corresponding group-fatigue effects were 3.7 (95%HPDI: 2.3-7.1) and -1.4 (95%HPDI: -2.7 to -0.1). These effects manifested in angular velocity, but not in angular displacement. The effects indicate that pain free participants showed more complex and less predictable lumbar movement with a lower degree of structure in its variability following fatigue while participants suffering from LBP did not. This may be physiological responses to avoid overload of fatigued tissue, increase endurance, or a consequence of reduced movement control caused by fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belleri, Basayya K.; Kerur, Shravankumar B.
2018-04-01
A computer-oriented procedure for solving the dynamic force analysis problem for general planar mechanisms is presented. This paper provides position analysis, velocity analysis, acceleration analysis and force analysis of six bar mechanism with variable topology approach. Six bar mechanism is constructed by joining two simple four bar mechanisms. Initially the position, velocity and acceleration analysis of first four bar mechanism are determined by using the input parameters. The outputs (angular displacement, velocity and acceleration of rocker)of first four bar mechanism are used as input parameter for the second four bar mechanism and the position, velocity, acceleration and forces are analyzed. With out-put parameters of second four-bar mechanism the force analysis of first four-bar mechanism is carried out.
Mao, Ningfang; Shi, Jian; He, Dawei; Xie, Yang; Bai, Yushu; Wei, Xianzhao; Shi, Zhicai; Li, Ming
2014-11-01
To assess and characterize the sacrum angular displacements in response to lumbar lordosis after lumbar/lumbosacral fusion. A finite element model of the lower lumbar spine-pelvis was established and used to simulate the posterior fusion at L3-L5 and L4-S1. The lordosis angle in the fusion segments was set to five different conditions with respect to the intact model: 10° less than intact, 5° less than intact, same as intact, 5° more than intact, and 10° more than intact. Variations of the sacrum angular displacements with lordosis changes were analyzed under loading setting of axial compression, flexion, extension, lateral bending, and axial rotation. Compared with the intact lordosis, both increased and decreased lumbar lordosis angles caused the sacrum angular displacements to be increased. The lordosis angle increased by 10° induced the most substantial increase in sacrum angular displacements. In addition, the sacrum angular displacements of the L4-S1 fusion model at different lordosis angles were higher than those of the L3-L5 fusion model. The sacrum angular displacements occur as a result of the fusion surgery (L4-S1) and the changes in lumbar lordosis.
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
Slobounov, S; Tutwiler, R; Rearick, M; Challis, J H
1999-10-01
The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.
An examination of slo-pitch pitching trajectories.
Wu, Tom; Gervais, Pierre
2008-01-01
Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg
2016-04-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.
2016-01-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.
Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San
2010-01-01
This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.
Newman, Mark A; Hirsch, Mark A; Peindl, Richard D; Habet, Nahir A; Tsai, Tobias J; Runyon, Michael S; Huynh, Toan; Zheng, Nigel
2018-06-01
Studies have evaluated the test-re-test reliability of subcomponents of the timed up and-go test in adults by using body-worn inertial sensors. However, studies in children have not been reported in the literature. To evaluate the within-session reliability of subcomponents of a newly developed electronically augmented timed 'upand-go' test (EATUG) in ambulatory children with traumatic brain injury (TBI) and children with typical development (TD). The timed up and go test was administered to twelve consecutive ambulatory children with moderate to severe TBI (6 males and 6 females, age 10.5 ± 1.5 years, range 8-13 years, during inpatient rehabilitation at 27.0 ± 11.8 days following injury) and 10 TD age and sex-matched children (5 males and 5 females, 10.4 ± 1.3 years, range 8-11 years). Participants wore a single chest-mounted inertial measurement sensor package with custom software that measured angular and acceleration velocity and torso flexion and extension angles, while they performed 6 trials of the EATUG test. Measures were derived from the overall time to complete the TUG test, angular velocity and angular displacement data for torso flexion and extension during sit-to-stand and stand-to-sit segments and both mean and peak angular velocities for two turning segments (i.e. turning around a cone and turning-before-sitting). Within-session reliability of the subcomponents of the TUG test for children with TBI assessed by the intra-class correlation coefficient was ICC (1,1) = 0.84, (range 0.82-0.96), and for TD children ICC (1,1) = 0.73, (range 0.53-0.89). Scores on Total Time, maximum torso flexion/extension angle and peak flexion angular velocity during sit-tostand, and peak turn angular velocity for both turns around the cone and turns before sitting were lower for children with TBI than for TD children (p ≤ 0.05). The EATUG test is a reliable measure of physical function in children with TBI who are being discharged from inpatient rehabilitation. Copyright © 2018 Elsevier B.V. All rights reserved.
The horizontal and vertical cervico-ocular reflexes of the rabbit.
Barmack, N H; Nastos, M A; Pettorossi, V E
1981-11-16
Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.
Dunbar, Donald C; Badam, Gyani L; Hallgrímsson, Benedikt; Vieilledent, Stéphane
2004-02-01
This study investigated the patterns of rotational mobility (> or =20 degrees ) and stability (< or =20 degrees ) of the head and trunk in wild Indian monkeys during natural locomotion on the ground and on the flat-topped surfaces of walls. Adult hanuman langurs (Semnopithecus entellus) and bonnet macaques (Macaca radiata) of either gender were cine filmed in lateral view. Whole-body horizontal linear displacement, head and trunk pitch displacement relative to space (earth horizontal), and vertical head displacement were measured from the cine films. Head-to-trunk pitch angle was calculated from the head-to-space and trunk-to-space measurements. Locomotor velocities, cycle durations, angular segmental velocities, mean segmental positions and mean peak frequencies of vertical and angular head displacements were then calculated from the displacement data. Yaw rotations were observed qualitatively. During quadrupedal walks by both species, the head was free to rotate in the pitch and yaw planes on a stabilized trunk. By contrast, during quadrupedal gallops by both species, the trunk pitched on a stabilized head. During both gaits in both species, head and trunk pitch rotations were symmetrical about comparable mean positions in both gaits, with mean head position aligning the horizontal semicircular canals near earth horizontal. Head pitch direction countered head vertical displacement direction to varying degrees during walks and only intermittently during gallops, providing evidence that correctional head pitch rotations are not essential for gaze stabilization. Head-to-space pitch velocities were below 350 deg. s(-1), the threshold above which, at least among humans, the vestibulo-ocular reflex (VOR) becomes saturated. Mean peak frequencies of vertical translations and pitch rotations of the head ranged from 1 Hz to 2 Hz, a lower frequency range than that in which inertia is predicted to be the major stabilizer of the head in these species. Some variables, which were common to both walks and gallops in both species, are likely to reflect constraints in sensorimotor control. Other variables, which differed between the two gaits in both species, are likely to reflect kinematic differences, whereas variables that differed between the two species are attributed primarily to morphological and behavioural differences. It is concluded that either the head or the trunk can provide the nervous system with a reference frame for spatial orientation and that the segment providing that reference can change, depending upon the kinematic characteristics of the chosen gait.
Analysis of angular momentum effect on swimming kick-start performance.
Taladriz, Sonia; de la Fuente-Caynzos, Blanca; Arellano, Raúl
2016-06-14
The aim of this study was to analyse the mechanics of rotation and the temporal, angular and kinematics variables during the aerial phase for the kick-start with respect to the grab start. Nine elite swimmers (70.0 ± 7.7 kg; 178 ± 9.4 cm; 24.5 ± 5.3 years; 824 ± 119 FINA points scoring) performed the starts on the OMEGA OSB11 starting block followed by 5 m gliding at maximum velocity. Nineteen comparisons of kinematics variables across start technique were performed with critical alpha adjusted using a Holm's correction to maintain an experiment-wise type I error rate of p <0.05. The differences were statistically evaluated by T-test and Wilcoxon test. Significant advantages for the kick-start were observed in all temporal variables (except in the flight time) and in the vertical take-off velocity. Similarities in the centre of mass angular momentum at take-off (120.89 ± 17.66, 126.61 ± 13.51 s(-1).10(-3), p-value <0.294; kick-start and grab start) caused that KS did not increase the temporal advantages obtained on the block at 5 m distance. Two different rotational movements were found for both techniques. A displacement of the rear leg and front leg on the block and during the flight respectively permits a higher lower limbs position relative to the trunk at hands entry for kick-start. However, larger rotational movement of the trunk characterized grab start. It was concluded that shorter block times and rotational displacements of the lower limbs on the block and flight phase are the key of the best performance for kick-start at 5 m distance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2017-09-01
Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.
Deployment of a multi-link flexible structure
NASA Astrophysics Data System (ADS)
Na, Kyung-Su; Kim, Ji-Hwan
2006-06-01
Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each joint. Hamilton's principle is used to determine the equations of motion and the finite element method is adopted to analyze the system. Newmark time integration and Newton-Raphson iteration methods are used to solve for the non-linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip displacements of a Timoshenko beam are compared with those of an Euler-Bernoulli beam.
Munro, B J; Steele, J R; Bashford, G M; Ryan, M; Britten, N
1998-03-01
Twelve elderly female rheumatoid arthritis patients (mean age = 65.5 +/- 8.6 yr) were assessed rising from an instrumented Eser Ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without the ejector mechanism operating. Sagittal plane motion, ground reaction forces, and vertical chair arm rest forces were recorded during each trial with the signals synchronised at initial subject head movement. When rising from a high seat, subjects displayed significantly (p < 0.05) greater time to seat off; greater trunk, knee and ankle angles at seat off; increased ankle angular displacement; decreased knee angular displacement; and decreased total net and normalised arm rest forces compared to rising from a low seat. When rising using the ejector mechanism, time to seat off and trunk and knee angle at seat off significantly increased, whereas trunk and knee angular displacement, and total net and normalised arm rest forces significantly decreased compared to rising unassisted. Regardless of seat height or ejector mechanism use, there were no significant differences in the peak, or time to peak horizontal velocity of the subjects' total body centre of mass, or net knee and ankle moments. It was concluded that increased seat height and use of the ejector mechanism facilitated sit-to-stand transfers performed by elderly female rheumatoid arthritic patients. However, using the ejector chair may be preferred by these patients compared to merely raising seat height because it does not necessitate the use of a footstool, a possible obstacle contributing to falls.
An independent Cepheid distance scale: Current status
NASA Technical Reports Server (NTRS)
Barnes, T. G., III
1980-01-01
An independent distance scale for Cepheid variables is discussed. The apparent magnitude and the visual surface brightness, inferred from an appropriate color index, are used to determine the angular diameter variation of the Cepheid. When combined with the linear displacement curve obtained from the integrated radial velocity curve, the distance and linear radius are determined. The attractiveness of the method is its complete independence of all other stellar distance scales, even though a number of practical difficulties currently exist in implementing the technique.
Break-technique handheld dynamometry: relation between angular velocity and strength measurements.
Burns, Stephen P; Spanier, David E
2005-07-01
To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.
Dunbar, Donald C.; Macpherson, Jane M.; Simmons, Roger W.; Zarcades, Athina
2009-01-01
SUMMARY Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (>20deg.) and stability (≤20deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head–neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame. PMID:19043061
Dunbar, Donald C; Macpherson, Jane M; Simmons, Roger W; Zarcades, Athina
2008-12-01
Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.
Muscle activation history at different vertical jumps and its influence on vertical velocity.
Kopper, Bence; Csende, Zsolt; Sáfár, Sándor; Hortobágyi, Tibor; Tihanyi, József
2013-02-01
In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (DJs) performed with small (40°) and large (80°) range of joint motion (SROM and LROM). The maximum vertical velocity (v4) was 23.4% (CMJ) and 7.8% (DJ) greater when the jumps were performed with LROM compared with SROM (p < 0.05). These differences are considerably less than it could be expected from the greater COM and knee angular displacement and duration of active state. This small difference can be attributed to the greater deceleration during eccentric phase (CMJ:32.1%, DJ:91.5%) in SROM than that in LROM. v4 was greater for SJ in LROM than for SJ in SROM indicating the significance of the longer active state and greater activation level (p < 0.001). The difference in v4 was greater between SJ and CMJ in SROM (38.6%) than in LROM (9.0%), suggesting that elastic energy storage and re-use can be a dominant factor in the enhancement of vertical velocity of CMJ and DJ compared with SJ performed with SROM. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parametric excitation of tire-wheel assemblies by a stiffness non-uniformity
NASA Astrophysics Data System (ADS)
Stutts, D. S.; Krousgrill, C. M.; Soedel, W.
1995-01-01
A simple model of the effect of a concentrated radial stiffness non-uniformity in a passenger car tire is presented. The model treats the tread band of the tire as a rigid ring supported on a viscoelastic foundation. The distributed radial stiffness is lumped into equivalent horizontal (fore-and-aft) and vertical stiffnesses. The concentrated radial stiffness non-uniformity is modeled by treating the tread band as fixed, and the stiffness non-uniformity as rotating around it at the nominal angular velocity of the wheel. Due to loading, the center of mass of the tread band ring model is displaced upward with respect to the wheel spindle and, therefore, the rotating stiffness non-uniformity is alternately compressed and stretched through one complete rotation. This stretching and compressing of the stiffness non-uniformity results in force transmission to the wheel spindle at twice the nominal angular velocity in frequency, and therefore, would excite a given resonance at one-half the nominal angular wheel velocity that a mass unbalance would. The forcing produced by the stiffness non-uniformity is parametric in nature, thus creating the possibility of parametric resonance. The basic theory of the parametric resonance is explained, and a parameter study using derived lumped parameters based on a typical passenger car tire is performed. This study revealed that parametric resonance in passenger car tires, although possible, is unlikely at normal highway speeds as predicted by this model unless the tire is partially deflated.
Grating angle magnification enhanced angular sensor and scanner
NASA Technical Reports Server (NTRS)
Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)
2009-01-01
An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.
Sensing power transfer between the human body and the environment.
Veltink, Peter H; Kortier, Henk; Schepers, H Martin
2009-06-01
The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the objective of the current paper to present a concept for estimating power transfer between the human body and the environment during free motions and using sensors at the interface, not requiring measurement systems in the environment, and to experimentally demonstrate this principle. Mass and spring loads were moved by hand over a fixed height difference via varying free movement trajectories. Kinematic and kinetic quantities were measured in the handle between the hand and the load. 3-D force and moments were measured using a 6 DOF force/moment sensor module, 3-D movement was measured using 3-D accelerometers and angular velocity sensors. The orientation was estimated from the angular velocity, using the initial orientation as a begin condition. The accelerometer signals were expressed in global coordinates using this orientation information. Velocity was estimated by integrating acceleration in global coordinates, obtained by adding gravitational acceleration to the accelerometer signals. Zero start and end velocities were used as begin and end conditions. Power was calculated as the sum of the inner products of velocity and force and of angular velocity and moment, and work was estimated by integrating power over time. The estimated performed work was compared to the potential energy difference corresponding to the change in height of the loads and appeared to be accurate within 4% for varying movements with net displacements and varying loads (mass and spring). The principle of estimating power transfer demonstrated in this paper can be used in future interfaces between the human body and the environment instrumented with body-mounted miniature 3-D force and acceleration sensors.
Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki
2013-01-01
This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128
Code of Federal Regulations, 2012 CFR
2012-01-01
... modulation depth of the smaller signal, divided by 100. Angular displacement sensitivity means the ratio of measured DDM to the corresponding angular displacement from the appropriate reference line. Back course... nearest to the course line at which the DDM is 0.155. Displacement sensitivity means the ratio of measured...
Code of Federal Regulations, 2011 CFR
2011-01-01
... modulation depth of the smaller signal, divided by 100. Angular displacement sensitivity means the ratio of measured DDM to the corresponding angular displacement from the appropriate reference line. Back course... nearest to the course line at which the DDM is 0.155. Displacement sensitivity means the ratio of measured...
Code of Federal Regulations, 2013 CFR
2013-01-01
... modulation depth of the smaller signal, divided by 100. Angular displacement sensitivity means the ratio of measured DDM to the corresponding angular displacement from the appropriate reference line. Back course... nearest to the course line at which the DDM is 0.155. Displacement sensitivity means the ratio of measured...
Code of Federal Regulations, 2010 CFR
2010-01-01
... modulation depth of the smaller signal, divided by 100. Angular displacement sensitivity means the ratio of measured DDM to the corresponding angular displacement from the appropriate reference line. Back course... nearest to the course line at which the DDM is 0.155. Displacement sensitivity means the ratio of measured...
Code of Federal Regulations, 2014 CFR
2014-01-01
... modulation depth of the smaller signal, divided by 100. Angular displacement sensitivity means the ratio of measured DDM to the corresponding angular displacement from the appropriate reference line. Back course... nearest to the course line at which the DDM is 0.155. Displacement sensitivity means the ratio of measured...
Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.
2017-01-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250
Factors influencing perceived angular velocity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Motion fading is driven by perceived, not actual angular velocity.
Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U
2010-06-01
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Influence of moving visual environment on sit-to-stand kinematics in children and adults.
Slaboda, Jill C; Barton, Joseph E; Keshner, Emily A
2009-08-01
The effect of visual field motion on the sit-to-stand kinematics of adults and children was investigated. Children (8 to12 years of age) and adults (21 to 49 years of age) were seated in a virtual environment that rotated in the pitch and roll directions. Participants stood up either (1) concurrent with onset of visual motion or (2) after an immersion period in the moving visual environment, and (3) without visual input. Angular velocities of the head with respect to the trunk, and trunk with respect to the environment, w ere calculated as was head andtrunk center of mass. Both adults and children reduced head and trunk angular velocity after immersion in the moving visual environment. Unlike adults, children demonstrated significant differences in displacement of the head center of mass during the immersion and concurrent trials when compared to trials without visual input. Results suggest a time-dependent effect of vision on sit-to-stand kinematics in adults, whereas children are influenced by the immediate presence or absence of vision.
Martin, Katherine B; Hammal, Zakia; Ren, Gang; Cohn, Jeffrey F; Cassell, Justine; Ogihara, Mitsunori; Britton, Jennifer C; Gutierrez, Anibal; Messinger, Daniel S
2018-01-01
Deficits in motor movement in children with autism spectrum disorder (ASD) have typically been characterized qualitatively by human observers. Although clinicians have noted the importance of atypical head positioning (e.g. social peering and repetitive head banging) when diagnosing children with ASD, a quantitative understanding of head movement in ASD is lacking. Here, we conduct a quantitative comparison of head movement dynamics in children with and without ASD using automated, person-independent computer-vision based head tracking (Zface). Because children with ASD often exhibit preferential attention to nonsocial versus social stimuli, we investigated whether children with and without ASD differed in their head movement dynamics depending on stimulus sociality. The current study examined differences in head movement dynamics in children with ( n = 21) and without ASD ( n = 21). Children were video-recorded while watching a 16-min video of social and nonsocial stimuli. Three dimensions of rigid head movement-pitch (head nods), yaw (head turns), and roll (lateral head inclinations)-were tracked using Zface. The root mean square of pitch, yaw, and roll was calculated to index the magnitude of head angular displacement (quantity of head movement) and angular velocity (speed). Compared with children without ASD, children with ASD exhibited greater yaw displacement, indicating greater head turning, and greater velocity of yaw and roll, indicating faster head turning and inclination. Follow-up analyses indicated that differences in head movement dynamics were specific to the social rather than the nonsocial stimulus condition. Head movement dynamics (displacement and velocity) were greater in children with ASD than in children without ASD, providing a quantitative foundation for previous clinical reports. Head movement differences were evident in lateral (yaw and roll) but not vertical (pitch) movement and were specific to a social rather than nonsocial condition. When presented with social stimuli, children with ASD had higher levels of head movement and moved their heads more quickly than children without ASD. Children with ASD may use head movement to modulate their perception of social scenes.
Demonstrating the Direction of Angular Velocity in Circular Motion
NASA Astrophysics Data System (ADS)
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-09-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.
Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine
NASA Astrophysics Data System (ADS)
Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun
CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.
Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P
2012-09-01
The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.
Modeling and experiment of three-degree-of-freedom actuators using piezoelectric buzzers
NASA Astrophysics Data System (ADS)
Chen, W. M.; Liu, T. S.
2013-10-01
This study presents innovative three-degree-of-freedom piezoelectric actuators. Under the piezoelectric force and dry friction, the piezoelectric actuators not only can move in the Z-axis direction, but also rotate around the Y-axis and Z-axis. The Z-axis displacement can reach 62 mm and the rotation angle around the Y-axis and Z-axis can reach 270° and 360°, respectively. Compared with the literature, this innovative actuator design achieves one-degree-of-freedom translation and two-degree-of-freedom rotation. Equations of motion are derived based on the piezoelectric properties and Newton’s law. Two types of actuators are created in this study. In the first type, the centers of four piezoelectric buzzers are attached to an arm while in the other type each rim of the four piezoelectric buzzers is attached to the arm. Experimental results are compared with theoretical results. According to the experimental results, the present actuator can accomplish a translational velocity of 11 mm s-1, a Y-axis angular velocity of 8.96 rad s-1, a Z-axis angular velocity of 2.63 rad s-1, and a force of 2.49 mN. By using four piezoelectric buzzers, this study creates piezoelectric actuators capable of both translational and rotational motions.
Angular velocity affects trunk muscle strength and EMG activation during isokinetic axial rotation.
Fan, Jian-Zhong; Liu, Xia; Ni, Guo-Xin
2014-01-01
To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO), internal oblique (IO), and latissimus dorsi (LD) bilaterally. In each direction, with the increase of angular velocity, peak torque decreased, whereas peak power increased. During isokinetic axial rotation, contralateral EO as well as ipsilateral IO and LD acted as primary agonists, whereas, ipsilateral EO as well as contralateral IO and LD acted as primary antagonistic muscles. For each primary agonist, the root mean square values decreased with the increase of angular velocity. Antagonist coactiviation was observed at each velocity; however, it appears to be higher with the increase of angular velocity. Our results suggest that velocity of rotation has great impact on the axial rotation torque and EMG activity. An inverse relationship of angular velocity was suggested with the axial rotation torque as well as root mean square value of individual trunk muscle. In addition, higher velocity is associated with higher coactivation of antagonist, leading to a decrease in torque with the increase of velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Bernstein, E. L.; Nunes, A. C., Jr.
2000-01-01
The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.
Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori
2016-11-01
To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-02-27
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.
A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-01-01
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labuda, Aleksander; Proksch, Roger
An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement.more » The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.« less
47 CFR 73.128 - AM stereophonic broadcasting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... magnitude of the nth term of the difference signal ωsn=the nth order angular velocity of the sum signal ωdn=the nth order angular velocity of the difference signal ωc=the angular velocity of the carrier... presence of envelope modulation. (5) Maximum angular modulation, which occurs on negative peaks of the left...
Esteves, Pedro T; Araújo, Duarte; Vilar, Luís; Travassos, Bruno; Davids, Keith; Esteves, Carlos
2015-04-01
This study examined the continuous interpersonal interactions of performers in dyadic systems in team sports, as a function of changing information constraints. As a task vehicle, we investigated how attackers attained success in 1v1 sub-phases of basketball by exploring angular relations with immediate opponents and the basket. We hypothesized that angular relations would convey information for the attackers to dribble past defenders. Four basketball players performed as an attacker and defender in 1v1 sub-phases of basketball, in which the co-positioning and orientation of participants relative to the basket was manipulated. After video recording performance behaviors, we digitized participant movement displacement trajectories and categorized trials as successful or unsuccessful (from the attackers' viewpoint). Results revealed that, to successfully dribble past a defender, attackers tended to explore the left hand side of the space by defenders by increasing their angular velocity and decreasing their angular variability, especially in the center of the court. Interpersonal interactions and goal-achievement in attacker-defender dyads appear to have been constrained by the angular relations sustained between participants relative to the scoring target. Results revealed the functionality of exploratory behaviors of participants attempting re-align spatial relations with an opponent in 1v1 sub-phases of team games. Copyright © 2015 Elsevier B.V. All rights reserved.
Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin
2006-12-01
We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.
ERIC Educational Resources Information Center
Unsal, Yasin
2011-01-01
One of the subjects that is confusing and difficult for students to fully comprehend is the concept of angular velocity and linear velocity. It is the relationship between linear and angular velocity that students find difficult; most students understand linear motion in isolation. In this article, we detail the design, construction and…
Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields
Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel
2016-01-01
Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399
Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.
Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel
2016-06-28
Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.
Blending Velocities In Task Space In Computing Robot Motions
NASA Technical Reports Server (NTRS)
Volpe, Richard A.
1995-01-01
Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.
Brownian self-driven particles on the surface of a sphere
NASA Astrophysics Data System (ADS)
Apaza, Leonardo; Sandoval, Mario
2017-08-01
We present the dynamics of overdamped Brownian self-propelled particles moving on the surface of a sphere. The effect of self-propulsion on the diffusion of these particles is elucidated by determining their angular (azimuthal and polar) mean-square displacement. Short- and long-times analytical expressions for their angular mean-square displacement are offered. Finally, the particles' steady marginal angular probability density functions are also elucidated.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
Measurement of angular velocity in the perception of rotation.
Barraza, José F; Grzywacz, Norberto M
2002-09-01
Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.
An investigation into the kinematics of 2 cervical manipulation techniques.
Williams, Jonathan M; Cuesta-Vargas, Antonio I
2013-01-01
The purpose of this study was to quantify the kinematics of the premanipulative position, the angular displacement, and velocity of thrust of 2 commonly used cervical spine manipulative procedures using inertial sensor technology. Thirteen asymptomatic subjects (7 females; mean age, 25.3 years; mean height, 170.9 cm; mean weight, 65.3 kg) received a right-handed and left-handed downslope and upslope manipulation, aimed at C4/5 while cervical kinematics were measured using an inertial sensor mounted on the forehead of the subject. One therapist used the upslope, and another therapist, the downslope, as was their preferred method. t tests were used to compare techniques and handiness. The results demonstrated differences in the kinematics between the 2 techniques. The downslope manipulation was associated with a mean premanipulative position of 24.8° side bending and 2.7° rotation, thrust displacement magnitude comprising of 4.5° side bending and 5.4° rotation with thrust velocity comprising, on average, of 57.5°/s side bending and 74.8°/s rotation. Upslope premanipulation was on average comprised of 30.1° side bending and 8.4° rotation, thrust displacement comprised of 4.5° side bending and 12.7° rotation with thrust velocity comprising of 75.9°/s side bending and 194.7°/s rotation. The results of this study demonstrate that there are different kinematic patterns for these 2 manipulative techniques. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-01-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket velocity and the angular velocities of playing- and non-playing-side hip extension and ankle flexion were found in topspin forehands. In topspin backhands abduction of the arm had the greatest impact on the racket speed. The results can be used directly to improve training of table tennis techniques, especially topspin strokes. PMID:29769835
Angular-velocity control approach for stance-control orthoses.
Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan
2009-10-01
Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.
On the study of angular velocity in mass asymmetry nuclei
NASA Astrophysics Data System (ADS)
Kaur, Kamaldeep; Kumar, Suneel
2018-05-01
Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25
Bańkosz, Ziemowit; Winiarski, Sławomir
2018-06-01
The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.
A systems concept of the vestibular organs
NASA Technical Reports Server (NTRS)
Mayne, R.
1974-01-01
A comprehensive model of vestibular organ function is presented. The model is based on an analogy with the inertial guidance systems used in navigation. Three distinct operations are investigated: angular motion sensing, linear motion sensing, and computation. These operations correspond to the semicircular canals, the otoliths, and central processing respectively. It is especially important for both an inertial guidance system and the vestibular organs to distinguish between attitude with respect to the vertical on the one hand, and linear velocity and displacement on the other. The model is applied to various experimental situations and found to be corroborated by them.
Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao
2017-07-01
A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of radiographic features of consecutive lumbar spondylolisthesis.
Sun, Yapeng; Wang, Hui; Yang, Dalong; Zhang, Nan; Yang, Sidong; Zhang, Wei; Ding, Wenyuan
2016-11-01
Radiographic features of consecutive lumbar spondylolisthesis were retrospectively analyzed in a total of 17 patients treated for this condition at the Third Hospital of Hebei Medical University from June 2005 to March 2012.To investigate the radiographic features, pelvic compensatory mechanisms, and possible underlying etiologies of consecutive lumbar spondylolisthesis.To the best of our knowledge, there is no previous report concerning the characteristics of consecutive lumbar spondylolisthesis.The Taillard index and the lumbar lordosis (LL), pelvic incidence (PI), sacrum slope (SS), and pelvic tilt (PT) were determined on lateral X-ray images, and the angular displacement was analyzed on flexion-extension X-ray images. Correlation between LL and various pelvic parameters and correlation between Taillard index and angular displacement were assessed by Pearson correlation analysis.A total of 20 cases of isthmic spondylolisthesis and 14 of degenerative spondylolisthesis were retrospectively studied in 17 patients. The Taillard index and the angular displacement in the lower vertebrae were both larger than those in the upper vertebrae. Statistical analysis revealed that LL was correlated with PI and PT, whereas PI was correlated with PT and SS. However, no correlation was identified between Taillard index and angular displacement.In consecutive lumbar spondylolisthesis, the degree of vertebral slip and the angular displacement of the lower vertebrae were both greater than those of the upper vertebrae, indicating that the compensatory mechanism of the pelvis plays an important role in maintaining sagittal balance.
Characterization of radiographic features of consecutive lumbar spondylolisthesis
Sun, Yapeng; Wang, Hui; Yang, Dalong; Zhang, Nan; Yang, Sidong; Zhang, Wei; Ding, Wenyuan
2016-01-01
Abstract Radiographic features of consecutive lumbar spondylolisthesis were retrospectively analyzed in a total of 17 patients treated for this condition at the Third Hospital of Hebei Medical University from June 2005 to March 2012. To investigate the radiographic features, pelvic compensatory mechanisms, and possible underlying etiologies of consecutive lumbar spondylolisthesis. To the best of our knowledge, there is no previous report concerning the characteristics of consecutive lumbar spondylolisthesis. The Taillard index and the lumbar lordosis (LL), pelvic incidence (PI), sacrum slope (SS), and pelvic tilt (PT) were determined on lateral X-ray images, and the angular displacement was analyzed on flexion–extension X-ray images. Correlation between LL and various pelvic parameters and correlation between Taillard index and angular displacement were assessed by Pearson correlation analysis. A total of 20 cases of isthmic spondylolisthesis and 14 of degenerative spondylolisthesis were retrospectively studied in 17 patients. The Taillard index and the angular displacement in the lower vertebrae were both larger than those in the upper vertebrae. Statistical analysis revealed that LL was correlated with PI and PT, whereas PI was correlated with PT and SS. However, no correlation was identified between Taillard index and angular displacement. In consecutive lumbar spondylolisthesis, the degree of vertebral slip and the angular displacement of the lower vertebrae were both greater than those of the upper vertebrae, indicating that the compensatory mechanism of the pelvis plays an important role in maintaining sagittal balance. PMID:27861359
Task Space Angular Velocity Blending for Real-Time Trajectory Generation
NASA Technical Reports Server (NTRS)
Volpe, Richard A. (Inventor)
1997-01-01
The invention is embodied in a method of controlling a robot manipulator moving toward a target frame F(sub 0) with a target velocity v(sub 0) including a linear target velocity v and an angular target velocity omega(sub 0) to smoothly and continuously divert the robot manipulator to a subsequent frame F(sub 1) by determining a global transition velocity v(sub 1), the global transition velocity including a linear transition velocity v(sub 1) and an angular transition velocity omega(sub 1), defining a blend time interval 2(tau)(sub 0) within which the global velocity of the robot manipulator is to be changed from a global target velocity v(sub 0) to the global transition velocity v(sub 1) and dividing the blend time interval 2(tau)(sub 0) into discrete time segments (delta)t. During each one of the discrete time segments delta t of the blend interval 2(tau)(sub 0), a blended global velocity v of the manipulator is computed as a blend of the global target velocity v(sub 0) and the global transition velocity v(sub 1), the blended global velocity v including a blended angular velocity omega and a blended linear velocity v, and then, the manipulator is rotated by an incremental rotation corresponding to an integration of the blended angular velocity omega over one discrete time segment (delta)t.
Angular velocity discrimination
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar
2014-08-01
Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.
Study of the mode of angular velocity damping for a spacecraft at non-standard situation
NASA Astrophysics Data System (ADS)
Davydov, A. A.; Sazonov, V. V.
2012-07-01
Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.
Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K
2017-12-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.
Controller arm for a remotely related slave arm
NASA Technical Reports Server (NTRS)
Salisbury, J. K., Jr. (Inventor)
1979-01-01
A segmented controller arm configured and dimensioned to form a miniature kinematic replica of a remotely related slave arm is disclosed. The arm includes: (1) a plurality of joints for affording segments of the arm simultaneous angular displacement about a plurality of pairs of intersecting axes, (2) a plurality of position sensing devices for providing electrical signals indicative of angular displacement imparted to corresponding segments of the controller shaft about the axes, and (3) a control signal circuit for generating control signals to be transmitted to the slave arm. The arm is characterized by a plurality of yokes, each being supported for angular displacement about a pair of orthogonally related axes and counterbalanced against gravitation by a cantilevered mass.
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.
NASA Technical Reports Server (NTRS)
Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.
2002-01-01
The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.
Attitude output feedback control for rigid spacecraft with finite-time convergence.
Hu, Qinglei; Niu, Guanglin
2017-09-01
The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Mechanisms underlying the perceived angular velocity of a rigidly rotating object.
Caplovitz, G P; Hsieh, P-J; Tse, P U
2006-09-01
The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.
Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit
2013-03-01
The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.
Linear and angular retroreflecting interferometric alignment target
Maxey, L. Curtis
2001-01-01
The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
In vivo maximal fascicle-shortening velocity during plantar flexion in humans.
Hauraix, Hugo; Nordez, Antoine; Guilhem, Gaël; Rabita, Giuseppe; Dorel, Sylvain
2015-12-01
Interindividual variability in performance of fast movements is commonly explained by a difference in maximal muscle-shortening velocity due to differences in the proportion of fast-twitch fibers. To provide a better understanding of the capacity to generate fast motion, this study aimed to 1) measure for the first time in vivo the maximal fascicle-shortening velocity of human muscle; 2) evaluate the relationship between angular velocity and fascicle-shortening velocity from low to maximal angular velocities; and 3) investigate the influence of musculo-articular features (moment arm, tendinous tissues stiffness, and muscle architecture) on maximal angular velocity. Ultrafast ultrasound images of the gastrocnemius medialis were obtained from 31 participants during maximal isokinetic and light-loaded plantar flexions. A strong linear relationship between fascicle-shortening velocity and angular velocity was reported for all subjects (mean R(2) = 0.97). The maximal shortening velocity (V(Fmax)) obtained during the no-load condition (NLc) ranged between 18.8 and 43.3 cm/s. V(Fmax) values were very close to those of the maximal shortening velocity (V(max)), which was extrapolated from the F-V curve (the Hill model). Angular velocity reached during the NLc was significantly correlated with this V(Fmax) (r = 0.57; P < 0.001). This finding was in agreement with assumptions about the role of muscle fiber type, whereas interindividual comparisons clearly support the fact that other parameters may also contribute to performance during fast movements. Nevertheless, none of the biomechanical features considered in the present study were found to be directly related to the highest angular velocity, highlighting the complexity of the upstream mechanics that lead to maximal-velocity muscle contraction. Copyright © 2015 the American Physiological Society.
Form features provide a cue to the angular velocity of rotating objects
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2013-01-01
As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970
Form features provide a cue to the angular velocity of rotating objects.
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2014-02-01
As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Seo, Han Gil; Oh, Byung-Mo; Han, Tai Ryoon
2016-04-01
The purpose of this study was to investigate swallowing kinematics and explore kinematic factors related with penetration-aspiration in patients with post-stroke dysphagia. Videofluoroscopic images of 68 patients with post-stroke dysphagia and 34 sex- and age-matched healthy controls swallowing a thin liquid were quantitatively analyzed using two-dimensional motion digitization. The measurements included the movement distances and velocities of the hyoid and larynx, and the maximal tilt angles and angular velocities of the epiglottis. All velocity variables were significantly decreased in the stroke patients compared to the controls. There was a significant difference in the maximal horizontal displacement of the larynx, but there were no significant differences in other displacements of the larynx, the maximal displacements of the hyoid bone, and the maximum tilt angle of the epiglottis between the two groups. The maximal tilt angle of the epiglottis was lower in the aspiration subgroup than in the no penetration/aspiration and penetration subgroups as well as the controls. The maximal tilt angle from the y axis showed a dichotomous pattern at 90° of the angle, and all 11 patients with an angle <90° showed either penetration or aspiration. In the ROC curve of the angle for prediction of aspiration, the area under the curve was 0.725 (95 % CI 0.557-0.892, P = 0.008). This study suggested that sluggish rather than decreased hyolaryngeal movements during swallowing are a remarkable feature of post-stroke dysphagia. The association of reduced epiglottic movement with the risk of aspiration in patients with post-stroke dysphagia was supported by the quantitative analysis.
NASA Technical Reports Server (NTRS)
Bautista, Abigail B.
1994-01-01
Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2017-03-01
Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.
Centrifugal-reciprocating compressor
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1984-01-01
A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.
Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor
ERIC Educational Resources Information Center
Pili, Unofre; Violanda, Renante
2018-01-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…
NASA Technical Reports Server (NTRS)
Endal, A. S.; Sofia, S.
1979-01-01
Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276
Method for driving two-phase turbines with enhanced efficiency
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1985-01-01
A method for driving a two phase turbine characterized by an output shaft having at least one stage including a bladed rotor connected in driving relation with the shaft is described. A two phase fluid is introduced into one stage at a known flow velocity and caused to pass through the rotor for imparing angular velocity thereto. The angular velocity of the rotor is maintained at a value such that the angular velocity of the tips of the blades of the rotor is a velocity equal to at least 50% of the velocity of the flow of the two phase fluid.
ERIC Educational Resources Information Center
Gagnon, Micheline; And Others
1983-01-01
A method for determining the tridimensional angular displacement of skates during the two-legged stop in ice hockey was developed and validated. The angles were measured by geometry, using a cinecamera and specially equipped skates. The method provides a new tool for kinetic analyses of skating movements. (Authors/PP)
Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip
2005-06-01
A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.
Visual processing of rotary motion.
Werkhoven, P; Koenderink, J J
1991-01-01
Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.
Global Plate Velocities from the Global Positioning System
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven
1997-01-01
We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…
Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.
Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori
2017-03-01
[Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.
Zhao, Wei; Ji, Songbai
2017-04-01
Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.
Zhao, Wei; Ji, Songbai
2016-01-01
Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles, and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction, and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29–17.89% in the whole-brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9%) but not pattern (correlation coefficient of 0.94–0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91% on average, with a typical range of 0–6%). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future. PMID:27644441
Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*
GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.
2006-01-01
Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726
NASA Astrophysics Data System (ADS)
Ma, Hongliang; Xu, Shijie
2014-09-01
This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.
Evidence for the distribution of angular velocity inside the sun and stars
NASA Technical Reports Server (NTRS)
1972-01-01
A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.
Non-Colinearity of Angular Velocity and Angular Momentum
ERIC Educational Resources Information Center
Burr, A. F.
1974-01-01
Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)
NASA Technical Reports Server (NTRS)
Downer, Janice Diane
1990-01-01
The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.
Investigation of fluctuations in angular velocity in magnetic memory devices
NASA Technical Reports Server (NTRS)
Meshkis, Y. A.; Potsyus, Z. Y.
1973-01-01
The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.
The generalized formula for angular velocity vector of the moving coordinate system
NASA Astrophysics Data System (ADS)
Ermolin, Vladislav S.; Vlasova, Tatyana V.
2018-05-01
There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.
Modelling of rotation-induced frequency shifts in whispering gallery modes
NASA Astrophysics Data System (ADS)
Venediktov, V. Yu; Kukaev, A. S.; Filatov, Yu V.; Shalymov, E. V.
2018-02-01
We study the angular velocity sensors based on whispering gallery mode resonators. Rotation of such resonators gives rise to various effects that can cause a spectral shift of their modes. Optical methods allow this shift to be determined with high precision, which can be used practically to measure the angular velocity in inertial orientation and navigation systems. The basic principles of constructing the angular velocity sensors utilising these effects are considered, their advantages and drawbacks are indicated. We also study the interrelation between the effects and the possibility of their mutual influence on each other. Based on the analytical studies of the effects, we consider the possibility of their combined application for angular velocity measurements.
Demonstrating the Direction of Angular Velocity in Circular Motion
ERIC Educational Resources Information Center
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-01-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…
The validity of an assessment of maximum angular velocity of knee extension (KE) using a gyroscope.
Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Inaba, Yasuko; Kojima, Motonaga
2012-01-01
Although it is more important to assess the muscular power of the lower extremities than the strength, no simplified method for doing so has been found. The aim of this study was to assess the validity of the assessment of the angular velocity of KE using a gyroscope. Participants included 105 community-dwelling older people (55 women, 50 men, age ± standard deviation (SD) 75±5.3). Pearson correlation coefficients and Spearman rank-correlation coefficients were used to examine the relationships between the angular velocity of KE and functional performance measurements, a self-efficacy scale and health-related quality of life (HRQOL). The data from the gyroscope were significantly correlated with some physical functions such as muscle strength (r=0.304, p<0.01), and walking velocity (r=0.543, p<0.001). In addition, the joint angular velocity was significantly correlated with self-efficacy (r=0.219-0.329, p<0.01-0.05) and HRQOL (r=0.207-0.359, p<0.01-0.05). The absolute value of the correlation coefficient of angular velocity tended to be greater than that of the muscle strength for mobility functions such as walking velocity and the timed-up-and-go (TUG) test. In conclusion, it was found that the assessment of the angular velocity of the knee joint using a gyroscope could be a feasible and meaningful measurement in the geriatrics field. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R
2014-01-01
Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Davidson, A. C.; Grant, M. M. (Inventor)
1973-01-01
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.
Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh
2017-09-12
We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.
The feasibility of measuring joint angular velocity with a gyro-sensor.
Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Nakano, Chika; Higashi, Takuya
2008-01-01
To determine the reliability of an assessment of joint angular velocity using a gyro-sensor and to examine the relationship between ankle angular velocity and physical functions. Cross-sectional. Kinesiology laboratory. Twenty healthy young adults (mean age, 22.5 y) and 113 community-dwelling older adults (mean age, 75.1 y). Not applicable. Maximal ankle joint velocity was measured using a gyro-sensor during heel-rising and jumping with knee extended. The intraclass correlation coefficient (ICC) was used to determine the intertester and intratester reliability. The Pearson correlation coefficient was used to examine the relationships between maximal ankle joint velocity and isometric muscle strength and isokinetic muscle power in young adults and also to examine the relationships between maximal ankle joint velocity and functional performance measurements such as walking time in older adults. High reliability was found for intertester (ICC=.96) and intratester reliability (ICC=.96). The data from the gyro-sensor highly correlated with muscle strength (r range, .62-.68; P<.01) and muscle power (r range, .45-.79; P range, .01-.05). In older subjects, mobility functions significantly correlated with the angular velocity of ankle plantarflexion. Measurement of ankle angular velocity using a gyro-sensor is both reliable and feasible, with the results representing a significant correlation to muscle power and performance measurements.
Satellite angular velocity estimation based on star images and optical flow techniques.
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-09-25
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.
Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-01-01
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023
An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)
NASA Technical Reports Server (NTRS)
Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.
1990-01-01
Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.
Frictional behavior of large displacement experimental faults
Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.
1996-01-01
The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.
Brushless Low-Speed dc Tachometer
NASA Technical Reports Server (NTRS)
Handlykken, M. B.
1984-01-01
Proposed tachometer produces voltages proportional to shaft angular velocity and (by differentiation) acceleration. Coil moving in homopolar field generates emf proportional to shaft angular velocity.
Li, Long; Zhang, Runzhou; Xie, Guodong; Ren, Yongxiong; Zhao, Zhe; Wang, Zhe; Liu, Cong; Song, Haoqian; Pang, Kai; Bock, Robert; Tur, Moshe; Willner, Alan E
2018-05-15
In this Letter, we experimentally demonstrate beaconless beam displacement tracking for free-space optical communication link multiplexing multiple orbital angular momentum (OAM) beams, where the data-carrying OAM beams are used for position detection. 400 Gbit/s data transmission is demonstrated under emulated lateral displacement of up to ±10 mm with power penalties of less than 3 dB for all channels. Channel crosstalk is reduced by the beam tracking system to below -18 dB. Moreover, we investigate using a Gaussian beacon for beam displacement tracking, and achieve similar channel crosstalk and power penalties, compared with using the beaconless beam tracking.
Liu, Hui; Leigh, Steve; Yu, Bing
2014-03-01
The purpose of this study was to determine the effects of sequences of the trunk and arm angular motions on the performance of javelin throwing. In this study, 32 male and 30 female elite javelin throwers participated and were separated into a short official distance group or a long official distance group in each gender. Three-dimensional coordinates of 21 body landmarks and 3 marks on the javelin in the best trial were collected for each subject. Joint center linear velocities and selected trunk and arm segment and joint angles and angular velocities were calculated. The times of the initiations of the selected segment and joint angular motions and maximum angular velocities were determined. The sequences of the initiations of the selected segment and joint angular motions and maximum angular velocities were compared between short and long official distance groups and between genders. The results demonstrated that short and long official distance groups employed similar sequences of the trunk and arm motions. Male and female javelin throwers employed different sequences of the trunk and arm motions. The sequences of the trunk and arm motions were different from those of the maximal joint center linear velocities.
NASA Technical Reports Server (NTRS)
Liebe, Wolfgang
1944-01-01
In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
NASA Technical Reports Server (NTRS)
Domini, F.; Caudek, C.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1997-01-01
Accuracy in discriminating rigid from nonrigid motion was investigated for orthographic projections of three-dimension rotating objects. In 3 experiments the hypothesis that magnitudes of angular velocity are misperceived in the kinetic depth effect was tested, and in 4 other experiments the hypothesis that misperceiving angular velocities leads to misperceiving rigidity was tested. The principal findings were (a) the magnitude of perceived angular velocity is derived heuristically as a function of a property of the first-order optic flow called deformation and (b) perceptual performance in discriminating rigid from nonrigid motion is accurate in cases when the variability of the deformations of the individual triplets of points of the stimulus displays favors this interpretation and not accurate in other cases.
Domini, F; Caudek, C; Proffitt, D R
1997-08-01
Accuracy in discriminating rigid from nonrigid motion was investigated for orthographic projections of three-dimension rotating objects. In 3 experiments the hypothesis that magnitudes of angular velocity are misperceived in the kinetic depth effect was tested, and in 4 other experiments the hypothesis that misperceiving angular velocities leads to misperceiving rigidity was tested. The principal findings were (a) the magnitude of perceived angular velocity is derived heuristically as a function of a property of the first-order optic flow called deformation and (b) perceptual performance in discriminating rigid from nonrigid motion is accurate in cases when the variability of the deformations of the individual triplets of points of the stimulus displays favors this interpretation and not accurate in other cases.
Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi
2015-12-01
Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.
Evidence for changes in the angular velocity of the surface regions of the sun and stars
NASA Technical Reports Server (NTRS)
1972-01-01
A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing changes in the angular velocity of the surface regions of the sun and stars.
Hatzitaki, Vassilia; Pavlou, Marousa; Bronstein, Adolfo M
2004-02-01
Previous studies have looked at co-processing of multiple proprioceptive inputs but few have investigated the effect of separate dynamic and tonic predominantly proprioceptive disruptions applied concurrently at the same segment. The purpose of the present study was to investigate how simultaneous ankle tendon vibration, a tonic stimulus, with a dynamic toes-up (TU) or toes-down (TD) platform perturbation (1) affects postural stability and (2) influences the adaptation process. Sixteen normal subjects (ten male, six female, mean age 26 +/- 4.8 years) stood blindfolded on a moving platform with vibrators attached bilaterally over the Achilles tendons. Participants were tested in quiet stance (QS), and with five successive TU and TD tilts. All tests were conducted both with (QS+V, TU+V, TD+V) and without vibration. Centre of pressure (CoP) displacements and pitch angular trunk velocity were recorded. Results for QS+V showed a significant 1.02-cm backward CoP displacement (P<0.01) and a significant increase in trunk velocity (peak-to-peak amplitude, P<0.05; SD of trunk velocity, P<0.05). TU+V resulted in a non-significant increase of maximum backwards CoP displacement when compared to TU alone. In addition, no notable effect of vibration on other measures of CoP (pre-tilt position, SD and area of sway) and trunk velocity (peak-to-peak, SD and area of sway) indicates that TU+V does not introduce significantly greater instability compared to tilt alone. In the TD condition, vibration was found to be a stabilising influence, causing a significant shift of the mean pre-tilt position 0.85 cm backwards (P<0.01) and a substantial decrease in the area of forward CoP displacement (P<0.01). However, maximum forwards CoP displacement and trunk velocity measures were not significantly altered during TD+V. Furthermore, in neither TU nor TD was the time-course or pattern of adaptation disrupted by the additional application of vibration. In conclusion, although vibration significantly affects postural measures when applied in isolation, this finding does not hold when it is applied in combination with a more dynamic stimulus. Instead it seems that once postural stability has been disrupted the central nervous system can rapidly assess information from a weaker tonic input and utilise or suppress it appropriately, depending on its effect towards overall postural control. It can be concluded that postural responses to the concurrent application of different predominantly proprioceptive stimuli are dependent upon the type of stimulus and the ability of the central nervous system to rapidly assess and re-weigh available sensory inputs.
Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio Ignacio
2014-01-01
Postural instability is one of the major complications found in stroke survivors. Parameterising the functional reach test (FRT) could be useful in clinical practice and basic research. To analyse the reliability, sensitivity, and specificity in the FRT parameterisation using inertial sensors for recording kinematic variables in patients who have suffered a stroke. Cross-sectional study. While performing FRT, two inertial sensors were placed on the patient's back (lumbar and trunk). Five subjects over 65 who suffer from a stroke. FRT measures, lumbosacral/thoracic maximum angular displacement, maximum time of lumbosacral/thoracic angular displacement, time return initial position, and total time. Speed and acceleration of the movements were calculated indirectly. FRT measure is 12.75±2.06 cm. Intrasubject reliability values range from 0.829 (time to return initial position (lumbar sensor)) to 0.891 (lumbosacral maximum angular displacement). Intersubject reliability values range from 0.821 (time to return initial position (lumbar sensor)) to 0.883 (lumbosacral maximum angular displacement). FRT's reliability was 0.987 (0.983-0.992) and 0.983 (0.979-0.989) intersubject and intrasubject, respectively. The main conclusion could be that the inertial sensors are a tool with excellent reliability and validity in the parameterization of the FRT in people who have had a stroke.
The influence of flywheel micro vibration on space camera and vibration suppression
NASA Astrophysics Data System (ADS)
Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo
2018-02-01
Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.
Kim, Jong Moon; Je, Hyun Dong; Kim, Hyeong-Dong
2017-01-01
[Purpose] To investigate the effects of a pelvic compression belt (PCB) and chair height on the kinematics and kinetics of the lower extremity during sit-to-stand (STS) maneuvers in healthy people. [Subjects and Methods] Twenty-two people participated in this study. They were required to perform STS maneuvers under four conditions. Hip joint moment and angular displacement of the hip, knee, and ankle were measured. A PCB was also applied below the anterior superior iliac spine. [Results] The angular displacement of the ankle joint increased while performing STS maneuvers from a normal chair with a PCB in phase 1, and decreased during phase 2 when performing STS maneuvers from a high chair. The overall angular displacement in phase 3 was decreased while rising from a chair with a PCB and rising from a high chair. When performed STS maneuvers from a high chair, the angular displacement of the hip, knee, and ankle joint decreased considerably in phase 3. This decreased lower extremity motion in phase 3 indicated that participants required less momentum to complete the maneuver. [Conclusion] The results of this study suggest that a PCB might be appropriate for patients with pelvic girdle pain and lower back pain related to pregnancy. PMID:28878454
Kim, Jong Moon; Je, Hyun Dong; Kim, Hyeong-Dong
2017-08-01
[Purpose] To investigate the effects of a pelvic compression belt (PCB) and chair height on the kinematics and kinetics of the lower extremity during sit-to-stand (STS) maneuvers in healthy people. [Subjects and Methods] Twenty-two people participated in this study. They were required to perform STS maneuvers under four conditions. Hip joint moment and angular displacement of the hip, knee, and ankle were measured. A PCB was also applied below the anterior superior iliac spine. [Results] The angular displacement of the ankle joint increased while performing STS maneuvers from a normal chair with a PCB in phase 1, and decreased during phase 2 when performing STS maneuvers from a high chair. The overall angular displacement in phase 3 was decreased while rising from a chair with a PCB and rising from a high chair. When performed STS maneuvers from a high chair, the angular displacement of the hip, knee, and ankle joint decreased considerably in phase 3. This decreased lower extremity motion in phase 3 indicated that participants required less momentum to complete the maneuver. [Conclusion] The results of this study suggest that a PCB might be appropriate for patients with pelvic girdle pain and lower back pain related to pregnancy.
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain
2009-10-01
At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Linder, A
2000-03-01
A mathematical model of a new rear-end impact dummy neck was implemented using MADYMO. The main goal was to design a model with a human-like response of the first extension motion in the crash event. The new dummy neck was modelled as a series of rigid bodies (representing the seven cervical vertebrae and the uppermost thoracic element, T1) connected by pin joints, and supplemented by two muscle substitutes. The joints had non-linear stiffness characteristics and the muscle elements possessed both elastic stiffness and damping properties. The new model was compared with two neck models with the same number of vertebrae, but without muscle substitutes. The properties of the muscle substitutes and the need of these were evaluated by using three different modified neck models. The motion of T1 in the simulations was prescribed using displacement data obtained from volunteer tests. In a sensitivity analysis of the mathematical model the influence of different factors on the head-neck kinematics was evaluated. The neck model was validated against kinematics data from volunteer tests: linear displacement, angular displacement, and acceleration of the head relative to the upper torso at 7 km/h velocity change. The response of the new model was within the corridor of the volunteer tests for the main part of the time history plot. This study showed that a combination of elastic stiffness and damping in the muscle substitutes, together with a non-linear joint stiffness, resulted in a head-neck response similar to human volunteers, and superior to that of other tested neck models.
Angular width of the Cherenkov radiation with inclusion of multiple scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.
Lateral displacement and rotational displacement sensor
Duden, Thomas
2014-04-22
A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.
NASA Astrophysics Data System (ADS)
Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
[Sensitivity of four representative angular cephalometric measures].
Xü, T; Ahn, J; Baumrind, S
2000-05-01
Examined the sensitivity of four representative cephalometric angles to the detection of different vectors of craniofacial growth. Landmark coordinate data from a stratified random sample of 48 adolescent subjects were used to calculate conventional values for changes between the pretreatment and end-of-treatment lateral cephalograms. By modifying the end-of-treatment coordinate values appropriately, the angular changes could be recalculated reflecting three hypothetical situations: Case 1. What if there were no downward landmark displacement between timepoints? Case 2. What if there were no forward landmark displacement between timepoints? Case 3. What if there were no Nasion change? These questions were asked for four representative cephalometric angles: SNA, ANB, NAPg and UI-SN. For Case 1, the associations (r) between the baseline and the modified measure for the three angles were very highly significant (P < 0.001) with r2 values no lower than 0.94! For Case 2, however, the associations were much weaker and no r value reached significance. These angular measurements are less sensitive for measuring downward landmark displacement than they are for measuring forward landmark displacement.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
A Study of Airplane Maneuvers with Special Reference to Angular Velocities
NASA Technical Reports Server (NTRS)
Reid, J E
1923-01-01
This investigation was undertaken by the National Advisory Committee for Aeronautics for the purpose of increasing our knowledge on the behavior of the airplane during various maneuvers and to obtain values of the maximum angular velocities and accelerations in flight. The method consisted in flying a JN4H airplane through various maneuvers while records were being taken of the control position, the air speed, the angular velocity and the acceleration along the Z axis. The results showed that the maximum angular velocity about the X axis of radians per second in a barrel roll. The maximum angular acceleration about the X axis of -2.10 radians per (second) to the 2nd power occurred in a spin, while the maximum about the Y axis was 1.40 radians per (second) to the 2nd power when pulling suddenly out of a dive. These results have direct application to the design of airplane parts, such as propeller shaft and instruments.
Pasquesi, Stephanie A; Margulies, Susan S
2018-01-01
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.
Pasquesi, Stephanie A.; Margulies, Susan S.
2018-01-01
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995
Effect of postural changes on 3D joint angular velocity during starting block phase.
Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice
2013-01-01
Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.
NASA Astrophysics Data System (ADS)
Horner-Johnson, Benjamin C.; Gordon, Richard G.; Cowles, Sara M.; Argus, Donald F.
2005-07-01
A new analysis of geologically current plate motion across the Southwest Indian ridge (SWIR) and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. Spreading rates averaged over the past 3.2 Myr are estimated from 103 well-distributed, nearly ridge-perpendicular profiles that cross the SWIR. All available bathymetric data are evaluated to estimate the azimuths and uncertainties of transform faults; six are estimated from multibeam data and 12 from precision depth recorder (PDR) data. If both the Nubian and Somalian component plates are internally rigid near the SWIR and if the Nubia-Somalia boundary is narrow where it intersects the SWIR, that intersection lies between ~26°E and ~32°E. Thus, the boundary is either along the spreading ridge segment just west of the Andrew Bain transform fault complex (ABTFC) or along some of the transform fault complex itself. These limits are narrower than and contained within limits of ~24°E to ~33°E previously found by Lemaux et al. from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as ~700 km. The new Nubia-Somalia pole of rotation lies ~10° north of the Bouvet triple junction, which places it far to the southwest of southern Africa. The new angular velocity determined only from data along the SWIR indicates displacement rates of Somalia relative to Nubia of 3.6 +/- 0.5 mm yr-1 (95 per cent confidence limits) towards 176° (S04° E) between Somalia and Nubia near the SWIR, and of 8.3 +/- 1.9 mm yr-1 (95 per cent confidence limits) towards 121° (S59° E) near Afar. The new Nubia-Somalia angular velocity differs significantly from the Nubia-Somalia angular velocity estimated from Gulf of Aden and Red sea data. This significant difference has three main alternative explanations: (i) that the plate motion data have substantial unmodelled systematic errors, (ii) that the Nubian component plate is not a single rigid plate, or (iii) that the Somalian component plate is not a single rigid plate. We tentatively prefer the third explanation given the geographical distribution of earthquakes within the African composite plate relative to the inferred location of the Nubia-Somalia boundary along the SWIR.
Geodesics In A Spinning String Spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culetu, Hristu
2006-11-28
The geodesics equations for a rotating observer in a spinning string geometry are investigated using the Euler - Lagrange equations. For test particles with vanishing angular momentum, the radial equation of motion does not depend on the angular velocity {omega} but on the angular momentum of the string. A massless particle moves tachyonic but iteed tends asymptotically to unit velocity after a time of the order of few Planck time b. The spacetime has a horizon at r = 0, irrespective of the value of {omega} but its angular velocity is given by {omega} - 1/b. The Sagnac time delaymore » is computed proving to depend both on {omega} and the radius of the circular orbit. The velocity of an ingoing massive test particle approaches zero very close to the spinning string, as if it were rejected by it.« less
Habituation of self-motion perception following unidirectional angular velocity steps.
Clément, Gilles; Terlevic, Robert
2016-09-07
We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.
Role of Cerebellum in Motion Perception and Vestibulo-ocular Reflex—Similarities and Disparities
Shaikh, Aasef G.; Palla, Antonella; Marti, Sarah; Olasagasti, Itsaso; Optican, Lance M.; Zee, David S.; Straumann, Dominik
2012-01-01
Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP. PMID:22777507
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J
2006-02-01
We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.
2014-01-01
Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143
1943-06-01
derivative Cnr, the rate of change of yawing-momer.t coefficient with yawing angular velocity, contributed ’by the wing, the fuselage, and the...derivative Cn , the rate of change of yawing--moraent coefficient with yawing angular velocity. Al- though theoretical methods for obtaining the...yaw. T CD -3 SYMBOLS ’n rate of change of yawing-moment coefficient with yawing angular velocity per unit of rh/2V ÖCn/d (^-’ \\ 27 J P
Nakagawa, Hideki; Nishida, Yuuya
2012-01-01
Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389
Single-axis gyroscopic motion with uncertain angular velocity about spin axis
NASA Technical Reports Server (NTRS)
Singh, S. N.
1977-01-01
A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.
Relationship between the size of a camphor-driven rotor and its angular velocity.
Koyano, Yuki; Gryciuk, Marian; Skrobanska, Paulina; Malecki, Maciej; Sumino, Yutaka; Kitahata, Hiroyuki; Gorecki, Jerzy
2017-07-01
We consider a rotor made of two camphor disks glued below the ends of a plastic stripe. The disks are floating on a water surface and the plastic stripe does not touch the surface. The system can rotate around a vertical axis located at the center of the stripe. The disks dissipate camphor molecules. The driving momentum comes from the nonuniformity of surface tension resulting from inhomogeneous surface concentration of camphor molecules around the disks. We investigate the stationary angular velocity as a function of rotor radius ℓ. For large ℓ the angular velocity decreases for increasing ℓ. At a specific value of ℓ the angular velocity reaches its maximum and, for short ℓ it rapidly decreases. Such behavior is confirmed by a simple numerical model. The model also predicts that there is a critical rotor size below which it does not rotate. Within the introduced model we analyze the type of this bifurcation.
Fluidic angular velocity sensor
NASA Technical Reports Server (NTRS)
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Systems and Methods for Determining Inertial Navigation System Faults
NASA Technical Reports Server (NTRS)
Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)
2017-01-01
An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
Measuring average angular velocity with a smartphone magnetic field sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante
2018-02-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.
Rotating Hele-Shaw cell with a time-dependent angular velocity
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.
2017-12-01
Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.
The use of the articulated total body model as a robot dynamics simulation tool
NASA Technical Reports Server (NTRS)
Obergfell, Louise A.; Avula, Xavier J. R.; Kalegs, Ints
1988-01-01
The Articulated Total Body (ATB) model is a computer sumulation program which was originally developed for the study of aircrew member dynamics during ejection from high-speed aircraft. This model is totally three-dimensional and is based on the rigid body dynamics of coupled systems which use Euler's equations of motion with constraint relations of the type employed in the Lagrange method. In this paper the use of the ATB model as a robot dynamics simulation tool is discussed and various simulations are demonstrated. For this purpose the ATB model has been modified to allow for the application of torques at the joints as functions of state variables of the system. Specifically, the motion of a robotic arm with six revolute articulations with joint torques prescribed as functions of angular displacement and angular velocity are demonstrated. The simulation procedures developed in this work may serve as valuable tools for analyzing robotic mechanisms, dynamic effects, joint load transmissions, feed-back control algorithms employed in the actuator control and end-effector trajectories.
Percolation Thresholds in Angular Grain media: Drude Directed Infiltration
NASA Astrophysics Data System (ADS)
Priour, Donald
Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.
A novel approach to piecewise analytic agricultural machinery path reconstruction
NASA Astrophysics Data System (ADS)
Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz
2017-12-01
Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.
Angular displacement measuring device
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1992-01-01
A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.
Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona
2015-01-01
Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05); LLR was scaled to increased displacement (P<0.05). Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05) and proximal muscles to stabilise in LLR (P<0.05). Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05), whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05) and hip joint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061
Carlsson, Anna; Chang, Fred; Lemmen, Paul; Kullgren, Anders; Schmitt, Kai-Uwe; Linder, Astrid; Svensson, Mats Y
2014-01-01
Whiplash-associated disorders (WADs), or whiplash injuries, due to low-severity vehicle crashes are of great concern in motorized countries and it is well established that the risk of such injuries is higher for females than for males, even in similar crash conditions. Recent protective systems have been shown to be more beneficial for males than for females. Hence, there is a need for improved tools to address female WAD prevention when developing and evaluating the performance of whiplash protection systems. The objective of this study is to develop and evaluate a finite element model of a 50th percentile female rear impact crash test dummy. The anthropometry of the 50th percentile female was specified based on literature data. The model, called EvaRID (female rear impact dummy), was based on the same design concept as the existing 50th percentile male rear impact dummy, the BioRID II. A scaling approach was developed and the first version, EvaRID V1.0, was implemented. Its dynamic response was compared to female volunteer data from rear impact sled tests. The EvaRID V1.0 model and the volunteer tests compared well until ∼250 ms of the head and T1 forward accelerations and rearward linear displacements and of the head rearward angular displacement. Markedly less T1 rearward angular displacement was found for the EvaRID model compared to the female volunteers. Similar results were received for the BioRID II model when comparing simulated responses with experimental data under volunteer loading conditions. The results indicate that the biofidelity of the EvaRID V1.0 and BioRID II FE models have limitations, predominantly in the T1 rearward angular displacement, at low velocity changes (7 km/h). The BioRID II model was validated against dummy test results in a loading range close to consumer test conditions (EuroNCAP) and lower severity levels of volunteer testing were not considered. The EvaRID dummy model demonstrated the potential of becoming a valuable tool when evaluating and developing seats and whiplash protection systems. However, updates of the joint stiffness will be required to provide better correlation at lower load levels. Moreover, the seated posture, curvature of the spine, and head position of 50th percentile female occupants needs to be established and implemented in future models.
Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A
2007-01-01
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.
NASA Technical Reports Server (NTRS)
Herbert, F.; Davis, D. R.
1984-01-01
Preliminary experiments show that heliocentric planetesimals passing through the Earth environment possess significant angular momentum. However it also appears that these same planetesimals impacting a circularized circumterrestrial planetesimal swarm would likely remove angular momentum (though possibly increasing mean kinetic energy), presumably promoting both swarm infall upon the Earth and escape to heliocentric space. Only a distribution of highly eccentric satellite orbits with mean tangential velocities of a few tens of percent of local circular velocity would be immune against angular momentum loss to passing heliocentric planetesimals.
Research on the water-entry attitude of a submersible aircraft.
Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian
2016-01-01
The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-09-18
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-01-01
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606
NASA Astrophysics Data System (ADS)
Wang, C.; Gordon, R. G.; Zheng, L.
2016-12-01
Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS-MORVEL overlap substantially and that the two sets of angular velocities differ insignificantly. Thus we combine the two sets of angular velocities to estimate ABS-MORVEL, an optimal set of global angular velocities consistent with both hotspot tracks and seismic anisotropy. ABS-MORVEL has more compact confidence limits than either SKS-MORVEL or HS4-MORVEL.
Normal and tumoral melanocytes exhibit q-Gaussian random search patterns.
da Silva, Priscila C A; Rosembach, Tiago V; Santos, Anésia A; Rocha, Márcio S; Martins, Marcelo L
2014-01-01
In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, failures in its regulation potentiates numerous diseases. Here, cell migration assays on plastic 2D surfaces were performed using normal (Melan A) and tumoral (B16F10) murine melanocytes in random motility conditions. The trajectories of the centroids of the cell perimeters were tracked through time-lapse microscopy. The statistics of these trajectories was analyzed by building velocity and turn angle distributions, as well as velocity autocorrelations and the scaling of mean-squared displacements. We find that these cells exhibit a crossover from a normal to a super-diffusive motion without angular persistence at long time scales. Moreover, these melanocytes move with non-Gaussian velocity distributions. This major finding indicates that amongst those animal cells supposedly migrating through Lévy walks, some of them can instead perform q-Gaussian walks. Furthermore, our results reveal that B16F10 cells infected by mycoplasmas exhibit essentially the same diffusivity than their healthy counterparts. Finally, a q-Gaussian random walk model was proposed to account for these melanocytic migratory traits. Simulations based on this model correctly describe the crossover to super-diffusivity in the cell migration tracks.
Effect of implant angulation and impression technique on impressions of NobelActive implants.
Alexander Hazboun, Gillian Brewer; Masri, Radi; Romberg, Elaine; Kempler, Joanna; Driscoll, Carl F
2015-05-01
How the configuration of the NobelActive internal conical connection affects implant impressions is uncertain. The purpose of this study was to measure the effect in vitro of closed and open tray impression techniques for NobelActive implants placed at various angulations. Six NobelActive implants were placed in a master maxillary cast as follows: 0 degrees of angulation to a line drawn perpendicular to the occlusal plane in the first molar area, 15 degrees of angulation to a line drawn perpendicular to the occlusal plane in the first premolar area, and 30 degrees of angulation to a line drawn perpendicular to the occlusal plane in the lateral incisor area. Twelve open tray and 12 closed tray impressions were made. Occlusal, lateral, and frontal view photographs of the resulting casts were used to measure the linear and angular displacement of implant analogs. Statistical analysis was performed with a factorial analysis of variance (ANOVA), followed by the Tukey HSD test (α=.05). No significant difference was found in the impressions made of NobelActive implants with the open or closed tray technique (linear displacement: F=0.93, P=.34; angular displacement: F=2.09, P=.15). In addition, implant angulation (0, 15, or 30 degrees) had no effect on the linear or angular displacement of impressions (linear displacement: F=2.72, P=.07; angular displacement: F=0.86, P=.43). Finally, no significant interaction was found between impression technique and implant angulation on NobelActive implants (F=0.25, P=.77; F=1.60, P=.20). Within the limitations of this study, impression technique (open vs closed tray) and implant angulation (0, 15, and 30 degrees) had no significant effect on in vitro impressions of NobelActive implants. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
A study of emergency American football helmet removal techniques.
Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E
2012-09-01
The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.
Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew
2017-10-15
There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.
Implementing a Low-Cost Long-Range Unmanned Underwater Vehicle: The SeaDiver Glider
2007-01-09
25 2. Position estimation.............................................................................26 3. Angular ...calculation velocity..............................................................27 4. Angular calculation position...25 Figure 14. Angular Positions.............................................................................................27
NASA Astrophysics Data System (ADS)
de Vita, Ruggero; Trenti, Michele; MacLeod, Morgan
2018-04-01
Despite recent observational efforts, unequivocal signs for the presence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) have not been found yet. Especially when the presence of IMBHs is constrained through dynamical modelling of stellar kinematics, it is fundamental to account for the displacement that the IMBH might have with respect to the GC centre. In this paper, we analyse the IMBH wandering around the stellar density centre using a set of realistic direct N-body simulations of star cluster evolution. Guided by the simulation results, we develop a basic yet accurate model that can be used to estimate the average IMBH radial displacement (〈rbh〉) in terms of structural quantities as the core radius (rc), mass (Mc), and velocity dispersion (σc), in addition to the average stellar mass (mc) and the IMBH mass (Mbh). The model can be expressed by the equation < r_bh > /r_c=A(m_c/M_bh)^α [σ _c^2r_c/(GM_c)]^β, in which the free parameters A, α, and β are calculated through comparison with the numerical results on the IMBH displacement. The model is then applied to Galactic GCs, finding that for an IMBH mass equal to 0.1 per cent of the GC mass, the typical expected displacement of a putative IMBH is around 1 arcsec for most Galactic GCs, but IMBHs can wander to larger angular distances in some objects, including a prediction of a 2.5 arcsec displacement for NGC 5139 (ω Cen), and >10 arcsec for NGC5053, NGC6366, and ARP2.
Full-field drift Hamiltonian particle orbits in 3D geometry
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu
2011-02-01
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
Fukutani, Atsuki; Kurihara, Toshiyuki; Isaka, Tadao
2015-01-01
During a stretch- shortening cycle (SSC), muscle force attained during concentric contractions (shortening phase) is potentiated by the preceding eccentric contractions (lengthening phase). The purpose of this study was to examine the influence of joint angular velocity on force potentiation induced by SSC (SSC effect). Twelve healthy men (age, 24.2 ± 3.2 years; height, 1.73 ± 0.05 m; body mass, 68.1 ± 11.0 kg) participated in this study. Ankle joint angle was passively moved by a dynamometer, with range of motion from dorsiflexion (DF) 15° to plantarflexion (PF) 15°. Muscle contractions were evoked by tetanic electrical stimulation. Joint angular velocity of concentric contraction was set at 30°/s and 150°/s. Magnitude of SSC effect was calculated as the ratio of joint torque obtained by concentric contraction with preliminary eccentric contraction trial relative to that obtained by concentric contraction without preliminary eccentric contraction trial. As a result, magnitude of SSC effect calculated at three joint angles was significantly larger in the 150°/s condition than in the 30°/s condition (p < 0.05). These results indicate that the magnitude of SSC effect is affected by joint angular velocity, which is larger when joint angular velocity is larger. This phenomenon would be caused by insufficient duration to increase activation level in the large joint angular velocity condition. When the duration to increase activation level is insufficient due to short contraction duration, preactivation (one of the factors of SSC effect) leads to a significant increase in joint torque.
Fabrication and analysis of a micro-machined tri-axis gyroscope
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Sue, Chung-Yang
2008-11-01
This paper presents an innovative micro-gyroscope design. Solely by SOI (silicon on insulator) fabrication technology and wet etching, the proposed micro-gyroscope can be produced in batch and is capable of detecting three-axis angular rates. The induced motions of all individual seismic mass modules are designed to respond in the directions orthogonal to each other in order to decouple the obtained measurements. In our work, three pairs of high-resolution differential capacitors with signal processing circuits are employed to measure the angular velocity components in three axes. On the other hand, the drive electrode comb is used to constantly vibrate the outer-ring in the tangential direction by a sinusoidal voltage. The signal bandwidth is increased by distributed translational proof masses (DTPM), placed 90° apart orderly. Each individual proof mass of DTPM is designed with natural frequency discrepancy and constrained to move in the radial direction so that the superior mode matching can be easily, to some extent, achieved. The suspension flexures are particularly designed to resist planar displacements in the drive mode but increase the stroke of tilting angular displacement in the sense mode. By considering the complicated geometry of the suspension flexures, FEM (finite element method) is employed to examine the potential maximum induced mechanical stress. The dynamic equations of the proposed gyroscope are established so that the embedded gyroscopic effects are explicitly unveiled. More importantly, the efficacy of the drive and sense circuit modules are verified by commercial softwares Hspice and Multisim. By intensive computer simulations and preliminary experimental studies, the resolution, bandwidth and decoupling capability of the tri-axis gyroscope are expected to be fairly enhanced if a certain degree of trade-off is preset.Corrections were made to figure 5 in this article on 3 October 2008. The corrected electronic version is identical to the print version.
Repeated Kicking Actions in Karate: Effect on Technical Execution in Elite Practitioners.
Quinzi, Federico; Camomilla, Valentina; Di Mario, Alberto; Felici, Francesco; Sbriccoli, Paola
2016-04-01
Training in martial arts is commonly performed by repeating a technical action continuously for a given number of times. This study aimed to investigate if the repetition of the task alters the proper technical execution, limiting the training efficacy for the technical evaluation during competition. This aim was pursued analyzing lower-limb kinematics and muscle activation during repeated roundhouse kicks. Six junior karate practitioners performed continuously 20 repetitions of the kick. Hip and knee kinematics and sEMG of vastus lateralis, biceps (BF), and rectus femoris were recorded. For each repetition, hip abduction-adduction and flexion-extension and knee flexion-extension peak angular displacements and velocities, agonist and antagonist muscle activation were computed. Moreover, to monitor for the presence of myoelectric fatigue, if any, the median frequency of the sEMG was computed. All variables were normalized with respect to their individual maximum observed during the sequence of kicks. Linear regressions were fitted to each normalized parameter to test its relationship with the repetition number. Linear-regression analysis showed that, during the sequence, the athletes modified their technique: Knee flexion, BF median frequency, hip abduction, knee-extension angular velocity, and BF antagonist activation significantly decreased. Conversely, hip flexion increased significantly. Since karate combat competitions require proper technical execution, training protocols combining severe fatigue and technical actions should be carefully proposed because of technique adaptations. Moreover, trainers and karate masters should consider including specific strength exercises for the BF and more generally for knee flexors.
Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.
Damiano, Diane L; Laws, Edward; Carmines, Dave V; Abel, Mark F
2006-01-01
This study investigated the effects of spasticity in the hamstrings and quadriceps muscles on gait parameters including temporal spatial measures, knee position, excursion and angular velocity in 25 children with spastic diplegic cerebral palsy (CP) as compared to 17 age-matched peers. While subjects were instructed to relax, an isokinetic device alternately flexed and extended the left knee at one of the three constant velocities 30 degrees/s, 60 degrees/s and 120 degrees/s, while surface electromyography (EMG) electrodes over the biceps femoris and the rectus femoris recorded muscle activity. Patients then participated in 3D gait analysis at a self-selected speed. Results showed that, those with CP who exhibited heightened stretch responses (spasticity) in both muscles, had significantly slower knee angular velocities during the swing phase of gait as compared to those with and without CP who did not exhibit stretch responses at the joint and the tested speeds. The measured amount (torque) of the resistance to passive flexion or extension was not related to gait parameters in subjects with CP; however, the rate of change in resistance torque per unit angle change (stiffness) at the fastest test speed of 120 degrees/s showed weak to moderate relationships with knee angular velocity and motion during gait. For the subset of seven patients with CP who subsequently underwent a selective dorsal rhizotomy, knee angular extension and flexion velocity increased post-operatively, suggesting some degree of causality between spasticity and movement speed.
Nordez, A; McNair, P J; Casari, P; Cornu, C
2009-01-01
The mechanisms behind changes in mechanical parameters following stretching are not understood clearly. This study assessed the effects of joint angular velocity on the immediate changes in passive musculo-articular properties induced by cyclic stretching allowing an appreciation of viscosity and friction, and their contribution to changes in torque that occur. Ten healthy subjects performed five passive knee extension/flexion cycles on a Biodex dynamometer at five preset angular velocities (5-120 deg/s). The passive torque and knee angle were measured, and the potential elastic energy stored during the loading and the dissipation coefficient were calculated. As the stretching velocity increased, so did stored elastic energy and the dissipation coefficient. The slope of the linear relationship between the dissipation coefficient and the angular velocity was unchanged across repetitions indicating that viscosity was unlikely to be affected. A difference in the y-intercept across repetitions 1 and 5 was indicative of a change in processes associated with solid friction. Electromyographical responses to stretching were low across all joint angular velocities. Torque changes during cyclic motion may primarily involve solid friction which is more indicative of rearrangement/slipping of collagen fibers rather than the redistribution of fluid and its constituents within the muscle. The findings also suggest that it is better to stretch slowly initially to reduce the amount of energy absorption required by tissues, but thereafter higher stretching speeds can be undertaken.
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.
Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets withmore » various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage.« less
Laser Pulse Shaping for Low Emittance Photo-Injector
2012-06-01
It depends on the product of the beam’s transverse size and angular divergence, , (I.2) where is the standard deviation of the electron...shows the pendulum’s phase velocity as a function of the position θp. As the pendulum oscillates back and forth, its phase, or angular , velocity and...the angular divergence and size of the optical beam. The radius of the optical beam follows the equation 24 To guarantee proper transfer
1984-12-14
VIj/D. tv, Response parameter, (I + 2 /D) ( VSt )-i; see Eq. (10). Z Cross flow displacement (m or ft). Y Cross flow displacement amplitude (mor ft). Y...pressure fluctuation spectra were increased for all values of a. The angular variation of the power spectral density (PSD) for case 12 (see Table 2) is...shedding was found. Spectral and statistical analysis indicated that different physical mecha- nisms take place at various angular positions on the
On the shelf resonances of the Gulf of Carpentaria and the Arafura Sea
NASA Astrophysics Data System (ADS)
Webb, D. J.
2012-09-01
A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea, and the additional insights that come from extending the analysis into the complex angular velocity plane. When the model is forced at the shelf edge with physically realistic real values of the angular velocity, the response functions at points within the region show maxima and other behaviour which imply that resonances are involved but provide little additional information. The study is then extended to complex angular velocities, and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the response at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.
Radial and latitudinal gradients in the solar internal angular velocity
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.
1988-01-01
The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.
Conical refraction of elastic waves in absorbing crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Lyubimov, V. N.
2011-10-15
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after 'switching on' absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincare index n = {+-}1/2, transforms to a planar distribution of ellipses with two singularities n = {+-}1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied.more » The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by {pi}/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.« less
Double pendulum model for a tennis stroke including a collision process
NASA Astrophysics Data System (ADS)
Youn, Sun-Hyun
2015-10-01
By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.
Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko
2017-09-01
The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Sigward, Susan M.; Chan, Ming-Sheng M.; Lin, Paige E.
2016-01-01
Limitations in the ability to identify knee extensor loading deficits during gait in individuals following anterior cruciate ligament reconstruction (ACLr) may underlie their persistence. A recent study suggested that shank angular velocity, directly output from inertial sensors, differed during gait between individuals post-ACLr and controls. However, it is not clear if this kinematic variable relates to knee moments calculated using joint kinematics and ground reaction forces. Heel rocker mechanics during loading response of gait, characterized by rapid shank rotation, require knee extensor control. Measures of shank angular velocity may be reflective of knee moments. This study investigated the relationship between shank angular velocity and knee extensor moment during gait in individuals (n=19) 96.7±16.8 days post-ACLr. Gait was assessed concurrently using inertial sensors and a marker-based motion system with force platforms. Peak angular velocity and knee extensor moment were strongly correlated (r=0.75, p<0.001) and between limb ratios of angular velocity predicted between limb ratios of extensor moment (r2=0.57 ,p<0.001) in the absence of between limb differences in spatiotemporal gait parameters. The strength of these relationships indicate that shank kinematic data offer meaningful information regarding knee loading and provide a potential alternative to full motion analysis systems for identification of altered knee loading following ACLr PMID:27395452
NASA Astrophysics Data System (ADS)
Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung
2011-04-01
A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.
Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.
Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2016-09-01
To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.
ERIC Educational Resources Information Center
Engelhorn, Richard
1983-01-01
Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)
[Inferring landmark displacements from changes in cephalometric angles].
Xu, T; Baumrind, S
2001-07-01
To investigate the appropriateness of using changes in angular measurements to reflect the actually profile changes. The sample consists of 48 growing malocclusion patients, contained 24 Class I and 24 Class II subjects, treated by an experienced orthodontist using Edgewise technique. Landmark and superimpositional data were extracted from the previously prepared numerical database. Three pairs of angular and linear measures were computed by the Craniofacial Software Package. Although the associations between all three angular measures and their corresponding linear measures are statistically significant at the 0.001 level, the disagreement between these three pairs of measures are 10.4%, 22.9% and 37.5% respectively in this sample. The direction of displacement of anterior facial landmarks during growth and treatment cannot reliably be inferred merely from changes in cephalometric Angles.
Alignment of angular velocity sensors for a vestibular prosthesis.
Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M
2012-02-13
Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.
State Derivation of a 12-Axis Gyroscope-Free Inertial Measurement Unit
Lu, Jau-Ching; Lin, Pei-Chun
2011-01-01
The derivation of linear acceleration, angular acceleration, and angular velocity states from a 12-axis gyroscope-free inertial measurement unit that utilizes four 3-axis accelerometer measurements at four distinct locations is reported. Particularly, a new algorithm which derives the angular velocity from its quadratic form and derivative form based on the context-based interacting multiple model is demonstrated. The performance of the system was evaluated under arbitrary 3-dimensional motion. PMID:22163791
Vikne, Harald; Bakke, Eva Sigrid; Liestøl, Knut; Engen, Stian R; Vøllestad, Nina
2013-11-04
Chronic neck pain after whiplash associated disorders (WAD) may lead to reduced displacement and peak velocity of neck movements. Dynamic neck movements in people with chronic WAD are also reported to display altered movement patterns such as increased irregularity, which is suggested to signify impaired motor control. As movement irregularity is strongly related to the velocity and displacement of movement, we wanted to examine whether the increased irregularity in chronic WAD could be accounted for by these factors. Head movements were completed in four directions in the sagittal plane at three speeds; slow (S), preferred (P) and maximum (M) in 15 men and women with chronic WAD and 15 healthy, sex and age-matched control participants. Head kinematics and measures of movement smoothness and symmetry were calculated from position data. Surface electromyography (EMG) was recorded bilaterally from the sternocleidomastoid and splenius muscles and the root mean square (rms) EMG amplitude for the accelerative and decelerative phases of movement were analyzed. The groups differed significantly with regard to movement velocity, acceleration, displacement, smoothness and rmsEMG amplitude in agonist and antagonist muscles for a series of comparisons across the test conditions (range 17-121%, all p-values < 0.05). The group differences in peak movement velocity and acceleration persisted after controlling for movement displacement. Controlling for differences between the groups in displacement and velocity abolished the difference in measures of movement smoothness and rmsEMG amplitude. Simple, unconstrained head movements in participants with chronic WAD are accomplished with reduced velocity and displacement, but with normal muscle activation levels and movement patterns for a given velocity and displacement. We suggest that while reductions in movement velocity and displacement are robust changes and may be of clinical importance in chronic WAD, movement smoothness of unconstrained head movements is not.
Rotations of large inertial cubes, cuboids, cones, and cylinders in turbulence
NASA Astrophysics Data System (ADS)
Pujara, Nimish; Oehmke, Theresa B.; Bordoloi, Ankur D.; Variano, Evan A.
2018-05-01
We conduct experiments to investigate the rotations of freely moving particles in a homogeneous isotropic turbulent flow. The particles are nearly neutrally buoyant and the particle size exceeds the Kolmogorov scale so that they are too large to be considered passive tracers. Particles of several different shapes are considered including those that break axisymmetry and fore-aft symmetry. We find that regardless of shape the mean-square particle angular velocity scales as deq -4 /3, where de q is the equivalent diameter of a volume-matched sphere. This scaling behavior is consistent with the notion that velocity differences across a length de q in the flow are responsible for particle rotation. We also find that the probability density functions (PDFs) of particle angular velocity collapse for particles of different shapes and similar de q. The significance of these results is that the rotations of an inertial, nonspherical particle are only functions of its volume and not its shape. The magnitude of particle angular velocity appears log-normally distributed and individual Cartesian components show long tails. With increasing de q, the tails of the PDF become less pronounced, meaning that extreme events of angular velocity become less common for larger particles.
Catching a Rolling Stone: Dynamics and Control of a Spacecraft and an Asteroid
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Shen, Haijun; Jesick, Mark C; Cornelius, David M
2013-01-01
In a recent report, a robotic spacecraft mission is proposed for the purpose of collecting a small asteroid, or a small part of a large one, and transporting it to an orbit in the Earth-Moon system. Such an undertaking will require solutions to many of the engineering problems associated with deflection of an asteroid that poses a danger to Earth. In both cases, it may be necessary for a spacecraft to approach an asteroid from a nearby position, hover for some amount of time, move with the same angular velocity as the asteroid, descend, perhaps ascend, and finally arrest the angular velocity of the asteroid. Dynamics and control in each of these activities is analyzed in order to determine the velocity increments and control torque that must be provided by a reaction control system, and the mass of the propellant that will be consumed. Two attitude control algorithms are developed, one to deal with synchronizing the spacecraft s angular velocity with that of the asteroid, and the other to arrest the asteroid s angular velocity. A novel approach is proposed for saving fuel in the latter case.
Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission
NASA Astrophysics Data System (ADS)
Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui
2018-01-01
Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.
NASA Astrophysics Data System (ADS)
Ciofu, C.; Stan, G.
2016-08-01
The paper emphasise positioning precision of an elephant's trunk robotic arm which has joints driven by wires with variable length while operating The considered 5 degrees of freedom robotic arm has a particular structure of joint that makes possible inner actuation with wire-driven mechanism. We analyse solely the length change of wires as a consequence due inner winding and unwinding on joints for certain values of rotational angles. Variations in wires length entail joint angular displacements. We analyse positioning precision by taking into consideration equations from inverse kinematics of the elephant's trunk robotic arm. The angular displacements of joints are considered into computational method after partial derivation of positioning equations. We obtain variations of wires length at about tenths of micrometers. These variations employ angular displacements which are about minutes of sexagesimal degree and, thus, define positioning precision of elephant's trunk robotic arms. The analytical method is used for determining aftermath design structure of an elephant's trunk robotic arm with inner actuation through wires on positioning precision. Thus, designers could take suitable decisions on accuracy specifications limits of the robotic arm.
Nikodelis, Thomas; Moscha, Dimitra; Metaxiotis, Dimitris; Kollias, Iraklis
2011-08-01
To investigate what sampling frequency is adequate for gait, the correlation of spatiotemporal parameters and the kinematic differences, between normal and CP spastic gait, for three sampling frequencies (100 Hz, 50 Hz, 25 Hz) were assessed. Spatiotemporal, angular, and linear displacement variables in the sagittal plane along with their 1st and 2nd derivatives were analyzed. Spatiotemporal stride parameters were highly correlated among the three sampling frequencies. The statistical model (2 × 3 ANOVA) gave no interactions between the factors group and frequency, indicating that group differences were invariant of sampling frequency. Lower frequencies led to smoother curves for all the variables, with a loss of information though, especially for the 2nd derivatives, having a homologous effect as the one of oversmoothing. It is proposed that in the circumstance that only spatiotemporal stride parameters, as well as angular and linear displacements are to be used, in gait reports, then commercial video camera speeds (25/30 Hz, 50/60 Hz when deinterlaced) can be considered as a low-cost solution to produce acceptable results.
Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion
Stein, R B; Weber, D J; Aoyagi, Y; Prochazka, A; Wagenaar, J B M; Shoham, S; Normann, R A
2004-01-01
Muscle, cutaneous and joint afferents continuously signal information about the position and movement of individual joints. How does the nervous system extract more global information, for example about the position of the foot in space? To study this question we used microelectrode arrays to record impulses simultaneously from up to 100 discriminable nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the hindlimb was displaced passively with a random trajectory, the firing rate of the neurones could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or joint angular coordinates. The process could also be reversed to predict the kinematics of the limb from the firing rates of the neurones with an accuracy of 1–2 cm. Predictions of position and velocity could be combined to give an improved fit to limb position. Decoders trained using random movements successfully predicted cyclic movements and movements in which the limb was displaced from a central point to various positions in the periphery. A small number of highly informative neurones (6–8) could account for over 80% of the variance in position and a similar result was obtained in a realistic limb model. In conclusion, this work illustrates how populations of sensory receptors may encode a sense of limb position and how the firing of even a small number of neurones can be used to decode the position of the limb in space. PMID:15331686
Angular momentum transfer in low velocity oblique impacts - Implications for asteroids
NASA Technical Reports Server (NTRS)
Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.
1991-01-01
An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D.
2016-01-01
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. PMID:27729450
A low-cost contact system to assess load displacement velocity in a resistance training machine.
Buscà, Bernat; Font, Anna
2011-01-01
This study sought to determine the validity of a new system for assessing the displacement and average velocity within machine-based resistance training exercise using the Chronojump System. The new design is based on a contact bar and a simple, low-cost mechanism that detects the conductivity of electrical potentials with a precision chronograph. This system allows coaches to assess velocity to control the strength training process. A validation study was performed by assessing the concentric phase parameters of a leg press exercise. Output time data from the Chronojump System in combination with the pre-established range of movement was compared with data from a position sensor connected to a Biopac System. A subset of 87 actions from 11 professional tennis players was recorded and, using the two methods, average velocity and displacement variables in the same action were compared. A t-test for dependent samples and a correlation analysis were undertaken. The r value derived from the correlation between the Biopac System and the contact Chronojump System was >0.94 for all measures of displacement and velocity on all loads (p < 0.01). The Effect Size (ES) was 0.18 in displacement and 0.14 in velocity and ranged from 0.09 to 0.31 and from 0.07 to 0.34, respectively. The magnitude of the difference between the two methods in all parameters and the correlation values provided certain evidence of validity of the Chronojump System to assess the average displacement velocity of loads in a resistance training machine. Key pointsThe assessment of speed in resistance machines is a valuable source of information for strength training.Many commercial systems used to assess velocity, power and force are expensive thereby preventing widespread use by coaches and athletes.The system is intended to be a low-cost device for assessing and controlling the velocity exerted on each repetition in any resistance training machine.The system could be easily adapted in any vertical displacement barbell exercise.
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean (Inventor); Howard, David (Inventor)
1994-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)
1995-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling
Toosizadeh, Nima; Mohler, Jane
2018-01-01
In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098
GMTIFS: cryogenic rotary mechanisms for the GMT Integral-Field Spectrograph
NASA Astrophysics Data System (ADS)
Hart, John; Espeland, Brady; Bloxham, Gabe; Boz, Robert; Bundy, Dave; Davies, John; Fordham, Bart; Herald, Nick; Sharp, Rob; Vaccarella, Annino; Vest, Colin
2016-07-01
A representative range of the rotary mechanisms proposed for use in GMTIFS is described. All are driven by cryogenically rated stepper motors. For each mechanism, angular position is measured by means of eddy current sensors arranged to function as a resolver. These measure the linear displacement of a decentered aluminum alloy target in two orthogonal directions, from which angular position is determined as a function of the displacement ratio. Resolver function and performance is described. For each mechanism, the mechanical design is described and the adequacy of positioning repeatability assessed. Options for improvement are discussed.
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
A Homing Missile Control System to Reduce the Effects of Radome Diffraction
NASA Technical Reports Server (NTRS)
Smith, Gerald L.
1960-01-01
The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.
NASA Astrophysics Data System (ADS)
Miroshnichenko, I. P.; Parinov, I. A.
2017-06-01
It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.
Flight experience and the perception of pitch angular displacements in a gondola centrifuge.
Tribukait, Arne; Eiken, Ola
2012-05-01
It has been shown that flight experience may induce an adaptation of the vestibular system. The aim of the present work was to elucidate whether pilots, in comparison with non-pilots, have an increased responsiveness to angular displacement canal stimuli in the pitch plane during a conflict between the otolith organs and the semicircular canals. In a large swing-out gondola centrifuge, eight non-pilots, eight fighter pilots, and eight helicopter pilots underwent three runs (2 G, 5 min) heading forward, centripetally, and centrifugally. The direction of the gravitoinertial force was constant with respect to the subject. The visually perceived eye level (VPEL) was measured in darkness by means of an adjustable luminous dot. In the forward position the three groups produced similar results. After acceleration there was a sensation of backward tilt and an increasing depression of VPEL. This effect was smaller in the centripetal position and larger in the centrifugal position. The difference in VPEL between the opposite positions constitutes a measure of the ability to sense the pitch angular displacement canal stimulus related to the swing out of the gondola (60 degrees). This difference was most pronounced initially at the 2-G plateau (mean +/- SD): 13.5 +/- 12.9 degrees (non-pilots), 41.6 +/- 21.1 degrees (fighter pilots), and 19.5 +/- 14.0 degrees (helicopter pilots). There was no significant difference between non-pilots and helicopter pilots. Fighter pilots differed significantly from both non-pilots and helicopter pilots. Vestibular learning effects of flying may be revealed in a centrifuge. Fighter pilots had an increased ability, as compared to non-pilots and helicopter pilots, to perceive pitch angular displacements.
Yapici, Aysegul; Findikoglu, Gulin; Dundar, Ugur
2016-04-01
The purpose of this study was to investigate the most important predictor isokinetic muscle strength determined by different angular velocities and contraction types (i.e. concentric and eccentric) for selected anaerobic power tests in volleyball players. Twenty male and ten female amateur volleyball players participated in this study. Selected anaerobic power tests included Wingate Anaerobic Test (WAnT), squat jump (SJ) and countermovement jump (CMJ). Peak torque values were obtained at 60, 120, 240˚/s for concentric contraction of quadriceps (Qconc) and Hamstring (Hconc) and at 60˚/s for eccentric contraction of quadriceps (Qecc) and Hconc. Moderate to good correlations (r:0.409 to r:0.887) were found between anaerobic tests and isokinetic data including peak torque and total work of both Hconc and Qconc at 60, 120, 240°/s and Qecc at 60°/s (P<0.05). Qconc measured at each of 60, 120, 240°/s was found to be the only significant predictor for anaerobic tests in linear regression models (P<0.05). Correlation coefficient s for Qconc increased with increasing velocity for each of the anaerobic tests. Correlation coefficient of Qconc was highest for CMJ followed by SJ and WAnT at the same angular velocity. As a distinctive feature, both Qecc and Hconc at 60˚/s were significantly predictors for CMJ and SJ. Qconc peak torque was the single significant predictor for WAnT, SJ and CMJ and strength of the relation increases with increasing angular velocity. However, both Qecc and Hconc were significant indicators for CMJ and SJ. Training with higher isokinetic angular velocities and with eccentric contraction is desirable in a training program that has a goal of improving anaerobic performance in volleyball players.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D
2016-12-02
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A 3 B 3 DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α 3 β 3 γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A 3 B 3 DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A 3 B 3 DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dopaminergic modulation of arm swing during gait among Parkinson’s disease patients
Sterling, Nicholas W.; Cusumano, Joseph P.; Shaham, Noam; Piazza, Stephen J.; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M.; Huang, Xuemei
2015-01-01
Background Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson’s disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. This study investigated the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Methods Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Results Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p=0.0018), but not faster- (p=0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p=0.0046) and lower maximum cross-correlation (p=0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p=0.0182), but not faster- (p=0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p=0.0386), whereas maximum cross-correlation showed no change (p=0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R=−0.73824, p=0.0011). Conclusions This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression. PMID:25502948
Dopaminergic modulation of arm swing during gait among Parkinson's disease patients.
Sterling, Nicholas W; Cusumano, Joseph P; Shaham, Noam; Piazza, Stephen J; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M; Huang, Xuemei
2015-01-01
Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.
Kinematics of preferred and non-preferred handballing in Australian football.
Parrington, Lucy; Ball, Kevin; MacMahon, Clare
2015-01-01
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.
Rotation of the asymptotic giant branch star R Doradus
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.
2018-05-01
High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.
Absolute Plate Velocities from Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Kreemer, Corné; Zheng, Lin; Gordon, Richard
2015-04-01
The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental lithosphere (σ=14.7° ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29° ) and Eurasia (vRMS=3 mm a-1, σ=33° ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ˜5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.
Nickalls, R W
1996-09-01
Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi
2015-04-01
We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.
Optimum instantaneous impulsive orbital injection to attain a specified asymptotic velocity vector.
NASA Technical Reports Server (NTRS)
Bean, W. C.
1971-01-01
A nalysis of the necessary conditions of Battin for instantaneous orbital injection, with consideration of the uniqueness of his solution, and of the further problem which arises in the degenerate case when radius vector and asymptotic vector are separated by 180 deg. It is shown that when the angular separation between radius vector and asymptotic velocity vector satisfies theta not equal to 180 deg, there are precisely two insertion-velocity vectors which permit attainment of the target asymptotic velocity vector, one yielding posigrade, the other retrograde motion. When theta equals to 180 deg, there is a family of insertion-velocity vectors which permit attainment of a specified asymptotic velocity vector with a unique insertion-velocity vector for every arbitrary orientation of a target unit angular momentum vector.
Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad
2015-01-01
Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761
Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T
2008-09-01
Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.
Some biomechanical aspects of the foot and ankle in athletes with and without shin splints.
Viitasalo, J T; Kvist, M
1983-01-01
Thirteen adult male athletes (long-distance runners and orienteerers without foot problems) and 35 male athletes with shin splints were compared with respect to: 1) the position of the lower leg and the heel while standing, 2) the passive range of mobility in the subtalar joint, and 3) the angular displacement between the calcaneus and the midline of the lower leg (Achilles tendon angle) while running with bare feet on a treadmill. In standing, the two groups differed statistically significantly in the Achilles tendon angle, which values were greater in the shin splint group. With respect to passive mobility, the athletes with shin splints had significantly greater (P less than 0.05-0.01) angular displacement values in inversion, eversion, and in their sum than the control group. While running, the Achilles tendon angle of the shin splint group was significantly greater (P less than 0.01) at the heel strike. Further, the shin splints group had a significantly greater (P less than 0.01) angular displacement between the heel strike and the maximal everted position. The results suggest structural and functional differences in the feet and ankles between healthy athletes and those with shin splints.
Anatomy of F1-ATPase powered rotation.
Martin, James L; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D
2014-03-11
F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank).
Anatomy of F1-ATPase powered rotation
Martin, James L.; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D.
2014-01-01
F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank). PMID:24567403
A Low-Cost Contact System to Assess Load Displacement Velocity in a Resistance Training Machine
Buscà, Bernat; Font, Anna
2011-01-01
This study sought to determine the validity of a new system for assessing the displacement and average velocity within machine-based resistance training exercise using the Chronojump System. The new design is based on a contact bar and a simple, low-cost mechanism that detects the conductivity of electrical potentials with a precision chronograph. This system allows coaches to assess velocity to control the strength training process. A validation study was performed by assessing the concentric phase parameters of a leg press exercise. Output time data from the Chronojump System in combination with the pre-established range of movement was compared with data from a position sensor connected to a Biopac System. A subset of 87 actions from 11 professional tennis players was recorded and, using the two methods, average velocity and displacement variables in the same action were compared. A t-test for dependent samples and a correlation analysis were undertaken. The r value derived from the correlation between the Biopac System and the contact Chronojump System was >0.94 for all measures of displacement and velocity on all loads (p < 0.01). The Effect Size (ES) was 0.18 in displacement and 0.14 in velocity and ranged from 0.09 to 0.31 and from 0.07 to 0.34, respectively. The magnitude of the difference between the two methods in all parameters and the correlation values provided certain evidence of validity of the Chronojump System to assess the average displacement velocity of loads in a resistance training machine. Key points The assessment of speed in resistance machines is a valuable source of information for strength training. Many commercial systems used to assess velocity, power and force are expensive thereby preventing widespread use by coaches and athletes. The system is intended to be a low-cost device for assessing and controlling the velocity exerted on each repetition in any resistance training machine. The system could be easily adapted in any vertical displacement barbell exercise. PMID:24150620
Theoretical issues on the spontaneous rotation of axisymmetric plasmas
NASA Astrophysics Data System (ADS)
Coppi, B.; Zhou, T.
2014-09-01
An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes besides the appropriate diffusive and the inward angular momentum transparent terms.
Carlisle, Keith [Discovery Bay, CA
2003-04-08
An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.
Surface control bent sub for directional drilling of petroleum wells
Russell, Larry R.
1986-01-01
Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.
Proximal metatarsal osteotomies: a comparative geometric analysis conducted on sawbone models.
Nyska, Meir; Trnka, Hans-Jörg; Parks, Brent G; Myerson, Mark S
2002-10-01
We evaluated the change in position of the first metatarsal head using a three-dimensional digitizer on sawbone models. Crescentic, closing wedge, oblique shaft (Ludloff 8 degrees and 16 degrees), reverse oblique shaft (Mau 8 degrees and 16 degrees), rotational "Z" (Scarf), and proximal chevron osteotomies were performed and secured using 3-mm screws. The 16 degrees Ludloff provided the most lateral shift (9.5 mm) and angular correction (14.5 degrees) but also produced the most elevation (1.4 mm) and shortening (2.9 mm). The 8 degrees Ludloff provided lateral and angular corrections similar to those of the crescentic and closing wedge osteotomies with less elevation and shortening. Because the displacement osteotomies (Scarf, proximal chevron) provided less angular correction, the same lateral displacement, and less shortening than the basilar angular osteotomies, based upon this model they can be more reliably used for a patient with a mild to moderate deformity, a short first metatarsal, or an intermediate deformity with a large distal metatarsal articular angle. These results can serve as recommendations for selecting the optimal osteotomy with which to correct a deformation.
Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis
2016-01-01
Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.
Vibration measurement by temporal Fourier analyses of a digital hologram sequence.
Fu, Yu; Pedrini, Giancarlo; Osten, Wolfgang
2007-08-10
A method for whole-field noncontact measurement of displacement, velocity, and acceleration of a vibrating object based on image-plane digital holography is presented. A series of digital holograms of a vibrating object are captured by use of a high-speed CCD camera. The result of the reconstruction is a three-dimensional complex-valued matrix with noise. We apply Fourier analysis and windowed Fourier analysis in both the spatial and the temporal domains to extract the displacement, the velocity, and the acceleration. The instantaneous displacement is obtained by temporal unwrapping of the filtered phase map, whereas the velocity and acceleration are evaluated by Fourier analysis and by windowed Fourier analysis along the time axis. The combination of digital holography and temporal Fourier analyses allows for evaluation of the vibration, without a phase ambiguity problem, and smooth spatial distribution of instantaneous displacement, velocity, and acceleration of each instant are obtained. The comparison of Fourier analysis and windowed Fourier analysis in velocity and acceleration measurements is also presented.
A Neural Circuit for Angular Velocity Computation
Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.
2010-01-01
In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902
A neural circuit for angular velocity computation.
Snider, Samuel B; Yuste, Rafael; Packer, Adam M
2010-01-01
In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka
2015-11-10
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less
Bounded extremum seeking for angular velocity actuated control of nonholonomic unicycle
Scheinker, Alexander
2016-08-17
Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less
A hybrid method for accurate star tracking using star sensor and gyros.
Lu, Jiazhen; Yang, Lie; Zhang, Hao
2017-10-01
Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.
Barbado, David; Moreside, Janice; Vera-Garcia, Francisco J
2017-03-01
Although unstable seat methodology has been used to assess trunk postural control, the reliability of the variables that characterize it remains unclear. To analyze reliability and learning effect of center of pressure (COP) and kinematic parameters that characterize trunk postural control performance in unstable seating. The relationships between kinematic and COP parameters also were explored. Test-retest reliability design. Biomechanics laboratory setting. Twenty-three healthy male subjects. Participants volunteered to perform 3 sessions at 1-week intervals, each consisting of five 70-second balancing trials. A force platform and a motion capture system were used to measure COP and pelvis, thorax, and spine displacements. Reliability was assessed through standard error of measurement (SEM) and intraclass correlation coefficients (ICC 2,1 ) using 3 methods: (1) comparing the last trial score of each day; (2) comparing the best trial score of each day; and (3) calculating the average of the three last trial scores of each day. Standard deviation and mean velocity were calculated to assess balance performance. Although analyses of variance showed some differences in balance performance between days, these differences were not significant between days 2 and 3. Best result and average methods showed the greatest reliability. Mean velocity of the COP showed high reliability (0.71 < ICC < 0.86; 10.3 < SEM < 13.0), whereas standard deviation only showed a low to moderate reliability (0.37 < ICC < 0.61; 14.5 < SEM < 23.0). Regarding the kinematic variables, only pelvis displacement mean velocity achieved a high reliability using the average method (0.62 < ICC < 0.83; 18.8 < SEM < 23.1). Correlations between COP and kinematics were high only for mean velocity (0.45
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand
2012-01-01
In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.
Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M
2004-11-02
The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.
Energy management and attitude control for spacecraft
NASA Astrophysics Data System (ADS)
Costic, Bret Thomas
2001-07-01
This PhD dissertation describes the design and implementation of various control strategies centered around spacecraft applications: (i) an attitude control system for spacecraft, (ii) flywheels used for combined attitude and energy tracking, and (iii) an adaptive autobalancing control algorithm. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these three primary chapters can be found in chapter one. The main problem addressed in the second chapter is the quaternion-based, attitude tracking control of rigid spacecraft without angular velocity measurements and in the presence of an unknown inertia matrix. As a stepping-stone, an adaptive, full-state feedback controller that compensates for parametric uncertainty while ensuring asymptotic attitude tracking errors is designed. The adaptive, full-state feedback controller is then redesigned such that the need for angular velocity measurements is eliminated. The proposed adaptive, output feedback controller ensures asymptotic attitude tracking. This work uses a four-parameter representation of the spacecraft attitude that does not exhibit singular orientations as in the case of the previous three-parameter representation-based results. To the best of my knowledge, this represents the first solution to the adaptive, output feedback, attitude tracking control problem for the quaternion representation. Simulation results are included to illustrate the performance of the proposed output feedback control strategy. The third chapter is devoted to the use of multiple flywheels that integrate the energy storage and attitude control functions in space vehicles. This concept, which is referred to as an Integrated Energy Management and Attitude Control (IEMAC) system, reduces the space vehicle bus mass, volume, cost, and maintenance requirements while maintaining or improving the space vehicle performance. To this end, two nonlinear IEMAC strategies (model-based and adaptive) that simultaneously track a desired attitude trajectory and desired energy/power profile are presented. Both strategies ensure asymptotic tracking while the adaptive controller compensates for uncertain spacecraft inertia. In the final chapter, a control strategy is designed for a rotating, unbalanced disk. The control strategy, which is composed of a control torque and two control forces, regulates the disk displacement and ensures angular velocity tracking. The controller uses a desired compensation adaptation law and a gain adjusted forgetting factor to achieve exponential stability despite the lack of knowledge of the imbalance-related parameters, provided a mild persistency of excitation condition is satisfied.
An Alternative Estimate of the Motion of the Capricorn Plate
NASA Astrophysics Data System (ADS)
Burris, S. G.; Gordon, R. G.
2013-12-01
Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2] Gordon, R. G., Royer, J.-Y., and D. F. Argus, 2008. Space geodetic test of kinematic models for the Indo-Australian composite plate, Geology, 36, 827-830, doi: 10.1130/G25089A.1. [3] DeMets, C., Gordon, R. G., & Argus, D. F., 2010. Geologically current plate motions, Geophys. J. Int., 181, 1-80, doi: 10.1111/j.1365-246X.2009.04491.x.
McGinnis, Ryan S.; Perkins, Noel C.
2012-01-01
Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.
NASA Astrophysics Data System (ADS)
Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao
2016-05-01
Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.
A new method for testing the scale-factor performance of fiber optical gyroscope
NASA Astrophysics Data System (ADS)
Zhao, Zhengxin; Yu, Haicheng; Li, Jing; Li, Chao; Shi, Haiyang; Zhang, Bingxin
2015-10-01
Fiber optical gyro (FOG) is a kind of solid-state optical gyroscope with good environmental adaptability, which has been widely used in national defense, aviation, aerospace and other civilian areas. In some applications, FOG will experience environmental conditions such as vacuum, radiation, vibration and so on, and the scale-factor performance is concerned as an important accuracy indicator. However, the scale-factor performance of FOG under these environmental conditions is difficult to test using conventional methods, as the turntable can't work under these environmental conditions. According to the phenomenon that the physical effects of FOG produced by the sawtooth voltage signal under static conditions is consistent with the physical effects of FOG produced by a turntable in uniform rotation, a new method for the scale-factor performance test of FOG without turntable is proposed in this paper. In this method, the test system of the scale-factor performance is constituted by an external operational amplifier circuit and a FOG which the modulation signal and Y waveguied are disconnected. The external operational amplifier circuit is used to superimpose the externally generated sawtooth voltage signal and the modulation signal of FOG, and to exert the superimposed signal on the Y waveguide of the FOG. The test system can produce different equivalent angular velocities by changing the cycle of the sawtooth signal in the scale-factor performance test. In this paper, the system model of FOG superimposed with an externally generated sawtooth is analyzed, and a conclusion that the effect of the equivalent input angular velocity produced by the sawtooth voltage signal is consistent with the effect of input angular velocity produced by the turntable is obtained. The relationship between the equivalent angular velocity and the parameters such as sawtooth cycle and so on is presented, and the correction method for the equivalent angular velocity is also presented by analyzing the influence of each parameter error on the equivalent angular velocity. A comparative experiment of the method proposed in this paper and the method of turntable calibration was conducted, and the scale-factor performance test results of the same FOG using the two methods were consistent. Using the method proposed in this paper to test the scale-factor performance of FOG, the input angular velocity is the equivalent effect produced by a sawtooth voltage signal, and there is no need to use a turntable to produce mechanical rotation, so this method can be used to test the performance of FOG at the ambient conditions which turntable can not work.
Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.
Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J
2013-08-15
Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.
Air To Air Helicopter Fire Control Equations and Software Generation.
1979-11-01
A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Reactive Collisions in Crossed Molecular Beams
DOE R&D Accomplishments Database
Herschbach, D. R.
1962-02-01
The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)
Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime
NASA Astrophysics Data System (ADS)
Frolov, Andrei V.; Frolov, Valeri P.
2014-12-01
A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.
Universal Plug-n-Play Sensor Integration for Advanced Navigation
2012-03-22
Orientation (top) and Angular Velocity (bottom) . . . . . . . . . 79 IV.6 Execution of AHRS script with roscore running on separate machine . . . . . . 80...single host case only with two hosts in this scenario. The script is running 78 Figure IV.5: Plot of AHRS Orientation (top) and Angular Velocity (bottom...Component-Based System using ROS . . . . . . . . . 59 3.6 Autonomous Behavior Using Scripting . . . . . . . . . . . . . . . . . . . . 60 3.6.1 udev
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
generate electromagnetic effects which can disrupt the electronic components contained inside the round. Finite element analyses were conducted to...which affect the magnetic field inside the cylinder were analyzed by varying the angular velocities and the electromagnetic properties (permeability and...the magnetic field distribution inside the cylinder was affected by angular velocity and the electromagnetic properties of the cylinder. 15
Chaotic gas turbine subject to augmented Lorenz equations.
Cho, Kenichiro; Miyano, Takaya; Toriyama, Toshiyuki
2012-09-01
Inspired by the chaotic waterwheel invented by Malkus and Howard about 40 years ago, we have developed a gas turbine that randomly switches the sense of rotation between clockwise and counterclockwise. The nondimensionalized expressions for the equations of motion of our turbine are represented as a starlike network of many Lorenz subsystems sharing the angular velocity of the turbine rotor as the central node, referred to as augmented Lorenz equations. We show qualitative similarities between the statistical properties of the angular velocity of the turbine rotor and the velocity field of large-scale wind in turbulent Rayleigh-Bénard convection reported by Sreenivasan et al. [Phys. Rev. E 65, 056306 (2002)]. Our equations of motion achieve the random reversal of the turbine rotor through the stochastic resonance of the angular velocity in a double-well potential and the force applied by rapidly oscillating fields. These results suggest that the augmented Lorenz model is applicable as a dynamical model for the random reversal of turbulent large-scale wind through cessation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Bob; Laughlin, Darren
Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' withinmore » drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence, thus removing some current blocks to feasibility and significantly increasing access to potential geothermal sites. During the Phase 1 effort summarized in this final report, the ATA Team modeled and built two TRL 3 proof-of-concept test units for two competing rotational sensor technologies. The two competing technologies were based on ATA's angular rate and angular displacement measurement technologies; Angular rate: ATA's Magnetohydrodynamic Angular Rate Sensor (Seismic MHD); and Angular displacement: ATA's Low Frequency Improved Torsional Seismometer (LFITS). In order to down-select between these two technologies and formulate a go / no go decision, the ATA Team analyzed and traded scientific performance requirements and market constraints against sensor characteristics and components, acquiring field data where possible to validate the approach and publishing results from these studies of rotational technology capability. Based on the results of Phase 1, the ATA Team finds that the Seismic MHD (SMHD) technology is the best choice for enabling rotational seismometry and significant technical potential exists for micro-seismic monitoring using a downhole 7-DOF device based on the SMHD. Recent technical papers and field data confirm the potential of rotational sensing for seismic mapping, increasing confidence that cost-reduction benefits are achievable for EGS. However, the market for geothermal rotational sensing is small and undeveloped. As a result, this report recommends modifying the Phase 2 plan to focus on prototype development aimed at partnering with early adopters within the geothermal industry and the scientific research community. The highest public benefit will come from development and deployment of a science-grade SMHD rotational seismometer engineered for geothermal downhole conditions and an integrated test tool for downhole measurements at active geothermal test sites.« less
Almosnino, S; Brandon, S C E; Sled, E A
2012-12-01
Thigh musculature strength assessment in individuals with knee osteoarthritis is routinely performed in rehabilitative settings. A factor that may influence results is pain experienced during testing. To assess whether pain experienced during isokinetic testing in individuals with knee osteoarthritis is dependent on the angular velocity prescribed. Experimental, repeated measures. University laboratory. Thirty-five individuals (19 women, 16 men) with tibiofemoral osteoarthritis. Participants performed three randomized sets of five maximal concentric extension-flexion repetitions at 60°/s, 90°/s and 120°/s. Pain intensity was measured immediately after the completion of each set. Strength outcomes for each set were the average peak moment. Across gender, pain level was not significantly affected by testing velocity (P=0.18, η(p)(2) =0.05). There was a trend of women reporting more pain than men across all testing velocities, however this comparison did not reach statistical significance (P=0.18, η(p)(2)=0.05). There was a significant main effect of testing velocity on strength, with the highest level attained at 60°/s. However, no difference in strength was noted when testing was performed at 90°/s or 120°/s. A large variation in pain scores within and across conditions and gender was noted, suggesting that at the current stage: 1) isokinetic angular velocity prescription be performed on an individual patient basis; and 2) improvements in the manner pain is recorded are needed in order to reduce the variations in pain scores. Individual prescription of angular velocity may be necessary for optimal strength output and reduction of pain during effort exertion in this patient population.
NASA Technical Reports Server (NTRS)
Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.
1995-01-01
Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.
Fiber optic inclination detector system having a weighted sphere with reference points
Cwalinski, Jeffrey P.
1995-01-01
A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.
The key kinematic determinants of undulatory underwater swimming at maximal velocity.
Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross
2016-01-01
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.
Fundamentals of Physics, Part 1 (Chapters 1-11)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 1.Measurement. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2.Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. Review & Summary. Questions. Problems. Chapter 3.Vectors. How does an ant know the way home with no guiding clues on the deser t plains? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4.Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5.Force and Motion-I. When a pilot takes off from an aircraft carrier, what causes the compulsion to fly the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6.Force and Motion-II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7.Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8.Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9.Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10.Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11.Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Appendix A: The International System of Units (SI). Appendix B: Some Fundamental Constants of Physics. Appendix C: Some Astronomical Data. Appendix D: Conversion Factors. Appendix E: Mathematical Formulas. Appendix F: Properties of the Elements. Appendix G: Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Patel, Rita; Donohue, Kevin D; Unnikrishnan, Harikrishnan; Kryscio, Richard J
2015-04-01
This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys.
A Feasibility Study to Control Airfoil Shape Using THUNDER
NASA Technical Reports Server (NTRS)
Pinkerton, Jennifer L.; Moses, Robert W.
1997-01-01
The objective of this study was to assess the capabilities of a new out-of-plane displacement piezoelectric actuator called thin-layer composite-unimorph ferroelectric driver and sensor (THUNDER) to alter the upper surface geometry of a subscale airfoil to enhance performance under aerodynamic loading. Sixty test conditions, consisting of combinations of five angles of attack, four dc applied voltages, and three tunnel velocities, were studied in a tabletop wind tunnel. Results indicated that larger magnitudes of applied voltage produced larger wafer displacements. Wind-off displacements were also consistently larger than wind-on. Higher velocities produced larger displacements than lower velocities because of increased upper surface suction. Increased suction also resulted in larger displacements at higher angles of attack. Creep and hysteresis of the wafer, which were identified at each test condition, contributed to larger negative displacements for all negative applied voltages and larger positive displacements for the smaller positive applied voltage (+102 V). An elastic membrane used to hold the wafer to the upper surface hindered displacements at the larger positive applied voltage (+170 V). Both creep and hysteresis appeared bounded based on the analysis of several displacement cycles. These results show that THUNDER can be used to alter the camber of a small airfoil under aerodynamic loads.
Ribeiro, Fernanda; Lépine, Pierre-Alexis; Garceau-Bolduc, Corine; Coats, Valérie; Allard, Étienne; Maltais, François; Saey, Didier
2015-01-01
Background The purpose of this study was to determine and compare the test-retest reliability of quadriceps isokinetic endurance testing at two knee angular velocities in patients with chronic obstructive pulmonary disease (COPD). Methods After one familiarization session, 14 patients with moderate to severe COPD (mean age 65±4 years; forced expiratory volume in 1 second (FEV1) 55%±18% predicted) performed two quadriceps isokinetic endurance tests on two separate occasions within a 5–7-day interval. Quadriceps isokinetic endurance tests consisted of 30 maximal knee extensions at angular velocities of 90° and 180° per second, performed in random order. Test-retest reliability was assessed for peak torque, muscle endurance, work slope, work fatigue index, and changes in FEV1 for dyspnea and leg fatigue from rest to the end of the test. The intraclass correlation coefficient, minimal detectable change, and limits of agreement were calculated. Results High test-retest reliability was identified for peak torque and muscle total work at both velocities. Work fatigue index was considered reliable at 90° per second but not at 180° per second. A lower reliability was identified for dyspnea and leg fatigue scores at both angular velocities. Conclusion Despite a limited sample size, our findings support the use of a 30-maximal repetition isokinetic muscle testing procedure at angular velocities of 90° and 180° per second in patients with moderate to severe COPD. Endurance measurement (total isokinetic work) at 90° per second was highly reliable, with a minimal detectable change at the 95% confidence level of 10%. Peak torque and fatigue index could also be assessed reliably at 90° per second. Evaluation of dyspnea and leg fatigue using the modified Borg scale of perceived exertion was poorly reliable and its clinical usefulness is questionable. These results should be useful in the design and interpretation of future interventions aimed at improving muscle endurance in COPD. PMID:26124656
Modelling and validation of magnetorheological brake responses using parametric approach
NASA Astrophysics Data System (ADS)
Z, Zainordin A.; A, Abdullah M.; K, Hudha
2013-12-01
Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.
Feedbacks Between Surface Processes and Tectonics at Rifted Margins: a Numerical Approach
NASA Astrophysics Data System (ADS)
Andres-Martinez, M.; Perez-Gussinye, M.; Morgan, J. P.; Armitage, J. J.
2014-12-01
Mantle dynamics drives the rifting of the continents and consequent crustal processes shape the topography of the rifted margins. Surface processes modify the topography by eroding positive reliefs and sedimenting on the basins. This lateral displacement of masses implies a change in the loads during rifting, affecting the architecture of the resulting margins. Furthermore, thermal insulation due to sediments could potentially have an impact on the rheologies, which are proved to be one of the most influential parameters that control the deformation style at the continental margins. In order to understand the feedback between these processes we have developed a numerical geodynamic model based on MILAMIN. Our model consists of a 2D Lagrangian triangular mesh for which velocities, displacements, pressures and temperatures are calculated each time step. The model is visco-elastic and includes a free-surface stabilization algorithm, strain weakening and an erosion/sedimentation algorithm. Sediment loads and temperatures on the sediments are taken into account when solving velocities and temperatures for the whole model. Although surface processes are strongly three-dimensional, we have chosen to study a 2D section parallel to the extension as a first approach. Results show that where sedimentation occurs strain further localizes. This is due to the extra load of the sediments exerting a gravitational force over the topography. We also observed angular unconformities on the sediments due to the rotation of crustal blocks associated with normal faults. In order to illustrate the feedbacks between surface and inner processes we will show a series of models calculated with different rheologies and extension velocities, with and without erosion/sedimentation. We will then discuss to which extent thermal insulation due to sedimentation and increased stresses due to sediment loading affect the geometry and distribution of faulting, the rheology of the lower crust and consequently margin architecture.
2016-03-01
acceleration of the shifting masses experiences a Coriolis Effect due to the angular velocity of the spacecraft. However, the perpendicular component of...angular velocity. If we neglect the Coriolis Effect in absolute acceleration, both terms become zero. Then, Equation 4.22 becomes ( )0 0 0 0 0...METHOD ......................................................83 C. EXPLORATION OF THE ALTITUDE AND INCLINATION EFFECTS ON THE CONTROL
ERIC Educational Resources Information Center
Hong, Wei-Hsien; Chen, Hseih-Ching; Shen, I-Hsuan; Chen, Chung-Yao; Chen, Chia-Ling; Chung, Chia-Ying
2012-01-01
The aim of this study was to evaluate the relationships of muscle strength at different angular velocities and gross motor functions in ambulatory children with cerebral palsy (CP). This study included 33 ambulatory children with spastic CP aged 6-15 years and 15 children with normal development. Children with CP were categorized into level I (n =…
The cosmic web and the orientation of angular momenta
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Knebe, Alexander; Steinmetz, Matthias; Gottlöber, Stefan; Metuki, Ofer; Yepes, Gustavo
2012-03-01
We use a 64 h-1 Mpc dark-matter-only cosmological simulation to examine the large-scale orientation of haloes and substructures with respect to the cosmic web. A web classification scheme based on the velocity shear tensor is used to assign to each halo in the simulation a web type: knot, filament, sheet or void. Using ˜106 haloes that span ˜3 orders of magnitude in mass, the orientation of the halo's spin and the orbital angular momentum of subhaloes with respect to the eigenvectors of the shear tensor is examined. We find that the orbital angular momentum of subhaloes tends to align with the intermediate eigenvector of the velocity shear tensor for all haloes in knots, filaments and sheets. This result indicates that the kinematics of substructures located deep within the virialized regions of a halo is determined by its infall which in turn is determined by the large-scale velocity shear, a surprising result given the virialized nature of haloes. The non-random nature of subhalo accretion is thus imprinted on the angular momentum measured at z= 0. We also find that the haloes' spin axis is aligned with the third eigenvector of the velocity shear tensor in filaments and sheets: the halo spin axis points along filaments and lies in the plane of cosmic sheets.
Rotational velocities of A-type stars. IV. Evolution of rotational velocities
NASA Astrophysics Data System (ADS)
Zorec, J.; Royer, F.
2012-01-01
Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org
Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis.
Kamali, Koosha; Atarod, Mohammadmehdi; Sarhadi, Saeedeh; Nikbakht, Javad; Emami, Maryam; Maghsoudi, Robab; Salimi, Hormoz; Fallahpour, Bita; Kamali, Negar; Momtazan, Abdolreza; Ameli, Mojtaba
2017-10-25
The purpose of this study was to evaluate the effects of 3G+wifi modems on human sperm quality.A total of 40 semen specimens were gathered between March and September 2015, from healthy adult men. The sperm samples were divided into two groups - 3G+wi-fi exposed and unexposed groups. In the unexposed group, the specimens were shielded by aluminum foil in three layers and put into an incubator at a temperature of 37°C for 50 minutes. The exposed group was positioned in another room in an incubator at a temperature of 37°C for 50 minutes. A 3G+wi-fi modem was put into the same incubator and a laptop computer was connected to the modem and was downloading for the entire 50 minutes.Semen analysis was done for each specimen and comparisons between parameters of the two groups were done by using Kolmogorov-Smirnov study and a paired t-test. Mean percentage of sperm with class A and B motility were not significantly different in two groups (p = 0.22 and 0.54, respectively). In class C, it was significantly lower in the exposed group (p = 0.046), while in class D it was significantly higher (p = 0.022).Velocity curvilinear, velocity straight line, velocity average path, mean angular displacement, lateral displacement and beat cross frequency were significantly higher in the unexposed group. The limitation was the in vitro design. Electromagnetic waves (EMWs) emitted from 3G+wi-fi modems cause a significant decrease in sperm motility and velocity, especially in non-progressive motile sperms. Other parameters of semen analysis did not change significantly.EMWs, which are used in communications worldwide, are a suspected cause of male infertility. Many studies evaluated the effects of cell phones and wi-fi on fertility. To our knowledge, no study has yet been done to show the effects of EMWs emitted from 3G+wi-fi modems on fertility.Our study revealed a significant decrease in the quality of human semen after exposure to EMWs emitted from 3G+wi-fi modems.
Rolling rhythms in front crawl swimming with six-beat kick.
Sanders, Ross H; Psycharakis, Stelios G
2009-02-09
The purpose of this study was to establish the rhythm characteristics of skilled front crawl swimmers using a six-beat kick. These included the amplitudes of the first three Fourier harmonics (H1, H2, H3) and their percent contributions to power contained in the angular displacement signals of the shoulders, hips, knees, and ankles with respect to the longitudinal axis in line with the swimming direction. Three-dimensional video data of seven national/international level swimmers were collected during simulated 200m front crawl races in which swimmers maintained six-beat kicking patterns. Swimmers differed in all variables but had small variability across the four 50m laps. Modest changes occurred during the 200m, with the exception of shoulder roll, which remained constant and was represented almost entirely by a single sinusoid (H1). Changes across laps reached significance for swimming speed, stroke rate, hip roll, and H3 wave velocity between the knee and ankle. A H3 body wave of moderate and increasing velocity travelled caudally from hip to ankle. In the light of existing knowledge of aquatic locomotion this was compatible with the goal of generating propulsion in an efficient manner.
Róg, T; Murzyn, K; Hinsen, K; Kneller, G R
2003-04-15
We present a new implementation of the program nMoldyn, which has been developed for the computation and decomposition of neutron scattering intensities from Molecular Dynamics trajectories (Comp. Phys. Commun 1995, 91, 191-214). The new implementation extends the functionality of the original version, provides a much more convenient user interface (both graphical/interactive and batch), and can be used as a tool set for implementing new analysis modules. This was made possible by the use of a high-level language, Python, and of modern object-oriented programming techniques. The quantities that can be calculated by nMoldyn are the mean-square displacement, the velocity autocorrelation function as well as its Fourier transform (the density of states) and its memory function, the angular velocity autocorrelation function and its Fourier transform, the reorientational correlation function, and several functions specific to neutron scattering: the coherent and incoherent intermediate scattering functions with their Fourier transforms, the memory function of the coherent scattering function, and the elastic incoherent structure factor. The possibility to compute memory function is a new and powerful feature that allows to relate simulation results to theoretical studies. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 657-667, 2003
Inverse problems for torsional modes.
Willis, C.
1984-01-01
Considers a spherically symmetric, non-rotating Earth consisting of an isotropic, perfect elastic material where the density and the S-wave velocity may have one or two discontinuities in the upper mantle. Shows that given the velocity throughout the mantle and the crust and given the density in the lower mantle, then the freqencies of the torsional oscillations of one angular order (one torsional spectrum), determine the density in the upper mantle and in the crust uniquely. If the velocity is known only in the lower mantle, then the frequencies of the torsional oscillations of two angular orders uniquely determine both the density and the velocity in the upper mantle and in the crust. In particular, the position and size of the discontinuities in the density and velocity are uniquely determined by two torsional spectra.-Author
A New MEMS Gyroscope Used for Single-Channel Damping
Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao
2015-01-01
The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638
Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L
2009-02-01
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.
Quantification of toy sword kinematics with male pediatric volunteers.
Beeman, Stephanie M; Rowson, Steven; Duma, Stefan M
2014-01-01
While extensive research in toy safety has been performed, data is unavailable with regard to the kinematics of toy swords. To improve upon design criteria, knowledge of a childs physical capacity is essential. The purpose of this study was to quantify the linear and angular velocities generated by children swinging toy swords. A total of 36 male subjects, ages 4-14 years old, each participated in one trial. Subjects were instructed to swing a toy sword as fast and hard as possible for ~10 seconds. A Vicon motion analysis system was used to capture subject and sword kinematics. Peak linear and angular sword velocities were calculated. A strong correlation was identified between age and velocity. The 8-14 year old males were not significantly different. The 4 year old males generated significantly lower velocities than the 8-14 year old males. The 6 year old males produced significantly lower velocities than the 10- 14 year old males. It was concluded that age had a significant effect on the linear and angular velocities generated by children. The trends observed within this study likely result from typical pediatric and adolescent development. By accounting for the physical capabilities of a specific population, toys can be designed with decreased inherent risks of injury.
Modulation of head movement control in humans during treadmill walking
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.
2002-01-01
The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (P<0.01) between the high impact and low/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (P<0.01) during the high impact phase while that about the flexion-extension axis was significantly decreased (P<0.01) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.
Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon
2017-11-28
A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.
Brun, C; Metral, M; Chancel, M; Kavounoudias, A; Luyat, M; Guerraz, M
2015-01-29
Recent studies of both healthy and patient populations have cast doubt on the mirror paradigm's beneficial effect on motor behavior. Indeed, the voluntary arm displacement that accompanies reflection in the mirror may be the determining factor in terms of the motor behavior of the contralateral arm. The objective of the present study was to assess the respective effects of mirror reflection and arm displacement (whether real or simulated) on involuntary motor behavior of the contralateral arm following sustained, isometric contraction (Kohnstamm phenomenon). Our results revealed that (i) passive displacement of one arm (displacement of the left arm via a motorized manipulandum moving at 4°/s) influenced the velocity of the Kohnstamm phenomenon (forearm flexion occurring shortly after the cessation of muscle contraction) in the contralateral arm and (ii) mirror vision had no effect. Indeed, the velocity of the Kohnstamm phenomenon tended to be adjusted to match the velocity of the passive displacement of the other arm. In a second experiment, arm displacement was simulated by vibrating the triceps at 25, 50 or 75 Hz. Results showed that the velocity of the Kohnstamm phenomenon in one arm increased with the vibration frequency applied to the other arm. Our results revealed the occurrence of bimanual coupling because involuntary displacement of one arm was regulated by muscle-related information generated by the actual or simulated displacement of the other arm. In line with the literature data on voluntary motor behavior, our study failed to evidence an additional impact of mirror vision on involuntary motor behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Finley, Tom D.; Wong, Douglas T.; Tripp, John S.
1993-01-01
A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
On the Shelf Resonances of the Gulf of Carpentaria and the Arafura Sea
NASA Astrophysics Data System (ADS)
Webb, D. J.
2012-02-01
A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea. The model is forced at the shelf edge, first with physically realistic real values of angular velocity. The response functions at points within the region show maxima and other behaviour which imply that resonances are involved but it is difficult to be more specific. The study is then extended to complex angular velocities and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the responses at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.
Angular velocity of gravitational radiation from precessing binaries and the corotating frame
NASA Astrophysics Data System (ADS)
Boyle, Michael
2013-05-01
This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.
NASA Astrophysics Data System (ADS)
Lin, Jun; Pakhomov, Andrew V.
2005-04-01
This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.
A submicron device to rectify a square-wave angular velocity.
Moradian, A; Miri, M F
2011-02-01
We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.
2017-05-22
velocity impact of 2-D woven fabric panels displacement response with various interlaminar enhancements ............................... 7 Fig. 3 Low...various interlaminar enhancements ............. 9 Fig. 8 Low-velocity impact displacement response for 3-D TPU interlayer composites...The results for the impact testing of the panels with 2-D woven glass fabrics are provided in Figs. 2–6 for displacement versus time, energy versus
NASA Astrophysics Data System (ADS)
Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing
2018-03-01
An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.
NASA Astrophysics Data System (ADS)
Abbondanza, Claudio; Altamimi, Zuheir; Chin, Toshio; Collilieux, Xavier; Dach, Rolf; Gross, Richard; Heflin, Michael; König, Rolf; Lemoine, Frank; Macmillan, Dan; Parker, Jay; van Dam, Tonie; Wu, Xiaoping
2014-05-01
The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, we assess the impact of non-tidal atmospheric loading (NTAL) corrections on the TRF computation. Focusing on the a-posteriori approach, (i) the NTAL model derived from the National Centre for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations; (ii) adopting a Kalman-filter based approach, two distinct linear TRFs are estimated combining the 4 SG solutions with (corrected TRF solution) and without the NTAL displacements (standard TRF solution). Linear fits (offset and atmospheric velocity) of the NTAL displacements removed during step (i) are estimated accounting for the station position discontinuities introduced in the SG solutions and adopting different weighting strategies. The NTAL-derived (atmospheric) velocity fields are compared to those obtained from the TRF reductions during step (ii). The consistency between the atmospheric and the TRF-derived velocity fields is examined. We show how the presence of station position discontinuities in SG solutions degrades the agreement between the velocity fields and compare the effect of different weighting structure adopted while estimating the linear fits to the NTAL displacements. Finally, we evaluate the effect of restoring the atmospheric velocities determined through the linear fits of the NTAL displacements to the single-technique linear reference frames obtained by stacking the standard SG SINEX files. Differences between the velocity fields obtained restoring the NTAL displacements and the standard stacked linear reference frames are discussed.
Discrimination of sound source velocity in human listeners
NASA Astrophysics Data System (ADS)
Carlile, Simon; Best, Virginia
2002-02-01
The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.
Cosmic Vorticity and the Origin Halo Spins
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.
Uchiyama, Takanori; Tomoshige, Taiki
2017-04-01
A mechanomyogram (MMG) measured with a displacement sensor (displacement MMG) can provide a better estimation of longitudinal muscle stiffness than that measured with an acceleration sensor (acceleration MMG), but the displacement MMG cannot provide transverse muscle stiffness. We propose a method to estimate both longitudinal and transverse muscle stiffness from a velocity MMG using a system identification technique. The aims of this study are to show the advantages of the proposed method. The velocity MMG was measured using a capacitor microphone and a differential circuit, and the MMG, evoked by electrical stimulation, of the tibialis anterior muscle was measured five times in seven healthy young male volunteers. The evoked MMG system was identified using the singular value decomposition method and was approximated with a fourth-order model, which provides two undamped natural frequencies corresponding to the longitudinal and transverse muscle stiffness. The fluctuation of the undamped natural frequencies estimated from the velocity MMG was significantly smaller than that from the acceleration MMG. There was no significant difference between the fluctuations of the undamped natural frequencies estimated from the velocity MMG and that from the displacement MMG. The proposed method using the velocity MMG is thus more advantageous for muscle stiffness estimation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Absolute plate velocities from seismic anisotropy: Importance of correlated errors
NASA Astrophysics Data System (ADS)
Zheng, Lin; Gordon, Richard G.; Kreemer, Corné
2014-09-01
The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.
Donohue, Kevin D.; Unnikrishnan, Harikrishnan; Kryscio, Richard J.
2015-01-01
Purpose This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Method Vocal-fold vibrations were analyzed for 28 children (aged 5–11 years) and 28 adults (aged 21–45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Results Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. Conclusions When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys. PMID:25652615
Measuring the velocity field from type Ia supernovae in an LSST-like sky survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odderskov, Io; Hannestad, Steen, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk
2017-01-01
In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with nomore » information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ{sub 8}. This makes the peculiar velocity power spectrum from type Ia supernovae a promising new observable, which deserves further attention.« less
Inference of stress and texture from angular dependence of ultrasonic plate mode velocities
NASA Technical Reports Server (NTRS)
Thompson, R. B.; Smith, J. F.; Lee, S. S.
1986-01-01
The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.
Looking and homing: how displaced ants decide where to go.
Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang
2014-01-01
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s(-1) and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information.
Gaze and viewing angle influence visual stabilization of upright posture
Ustinova, KI; Perkins, J
2011-01-01
Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com
A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less
Zhuang, Guo-Yuan; Lee, Hau-Wei; Liu, Chien-Hung
2014-10-01
A moving optical axis measurement system with six degrees-of-freedom (DOF) is proposed in this study. The system is very simple and can be placed inside a flat piezoelectric micro-stage. The system comprises three two-DOF optical measurement modules, each having a quadrant photo diode (QPD), a lens, and a laser diode. These three modules and the geometric configuration of their installation allow displacement measurements with up to six-DOF to be made. A mathematical model of this system is also presented. By analyzing the sensitivity and relationship between the displacement of the stage and each of the QPD light spots, movement can be observed. Signal feedback enables multi-axis nano-scale positioning control. We also present a new six-DOF nano stage, which uses piezoelectric actuators for displacement. This stage was used to verify the proposed six-DOF measurement system. Linear and angular resolution of the system can be down to 10 nm and 0.1 arcsec. Linear and angular displacement measurement errors of this six-DOF measurement system are in the range of ±70 nm and ±0.65 arcsec.
NASA Astrophysics Data System (ADS)
Zhuang, Guo-Yuan; Lee, Hau-Wei; Liu, Chien-Hung
2014-10-01
A moving optical axis measurement system with six degrees-of-freedom (DOF) is proposed in this study. The system is very simple and can be placed inside a flat piezoelectric micro-stage. The system comprises three two-DOF optical measurement modules, each having a quadrant photo diode (QPD), a lens, and a laser diode. These three modules and the geometric configuration of their installation allow displacement measurements with up to six-DOF to be made. A mathematical model of this system is also presented. By analyzing the sensitivity and relationship between the displacement of the stage and each of the QPD light spots, movement can be observed. Signal feedback enables multi-axis nano-scale positioning control. We also present a new six-DOF nano stage, which uses piezoelectric actuators for displacement. This stage was used to verify the proposed six-DOF measurement system. Linear and angular resolution of the system can be down to 10 nm and 0.1 arcsec. Linear and angular displacement measurement errors of this six-DOF measurement system are in the range of ±70 nm and ±0.65 arcsec.
Pluchino, Alessandra; Lee, Sae Yong; Asfour, Shihab; Roos, Bernard A; Signorile, Joseph F
2012-07-01
To compare the impacts of Tai Chi, a standard balance exercise program, and a video game balance board program on postural control and perceived falls risk. Randomized controlled trial. Research laboratory. Independent seniors (N=40; 72.5±8.40) began the training, 27 completed. Tai Chi, a standard balance exercise program, and a video game balance board program. The following were used as measures: Timed Up & Go, One-Leg Stance, functional reach, Tinetti Performance Oriented Mobility Assessment, force plate center of pressure (COP) and time to boundary, dynamic posturography (DP), Falls Risk for Older People-Community Setting, and Falls Efficacy Scale. No significant differences were seen between groups for any outcome measures at baseline, nor were significant time or group × time differences for any field test or questionnaire. No group × time differences were seen for any COP measures; however, significant time differences were seen for total COP, 3 of 4 anterior/posterior displacement and both velocity, and 1 displacement and 1 velocity medial/lateral measure across time for the entire sample. For DP, significant improvements in the overall score (dynamic movement analysis score), and in 2 of the 3 linear and angular measures were seen for the sample. The video game balance board program, which can be performed at home, was as effective as Tai Chi and the standard balance exercise program in improving postural control and balance dictated by the force plate postural sway and DP measures. This finding may have implications for exercise adherence because the at-home nature of the intervention eliminates many obstacles to exercise training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2009-04-01
Modeling constructions have shown, that a variation of geopotential coefficients, since the second harmonic, are determined basically by redistributions of fluid masses in the top shells of the Earth [1]. Only on a variation of coefficients of the first harmonic essential influence renders displacement of the centre of mass in the basic mantle reference system. By the similar redistribution of masses it is obviously possible to estimate a variation of the axial moment of inertia of the full Earth, including an atmosphere and ocean, on a value of variation of coefficient of the second zonal harmonic of geopotential: Ä C = 2ËJ2(3I) (I = 0.3307is a dimensionless polar moment of inertia of the Earth, C is the polar moment of inertia of the Earth). According to satellite observations Ë J2 = (2.7 ± 0.4) × 10-11 1/yr[2] and, hence, we obtain an estimation ÄC = -(5.4 ± 0.8) × 10-11 1/yr. We use this value for an establishment of the new phenomenon - acceleration of return superrotation of fluids in western direction. For what we shall take advantage of known estimations of secular non-tidal acceleration of rotation of the rigid Earth: Ë?? = (6.9± 1.2) × 10-11 1/yr (corresponding variation LOD makes -0.6 ± 0.1 ms/cy) [3] and variations of angular velocity of axial rotation of the Earth because of secular increase of a polar atmosphere angular moment: -0.56 ms/cy[4]. On Salstein's data for 1970 - 2002 a positive trend of polar component of the angular momentum really exists. Corresponding reduction of duration of day is characterized by velocity-0.525 ms/cy. First of the given values has been obtained by results of observations of solar eclipses over last 2500. And the second value has been obtained on the data on variations of specified component of the angular momentum for last 60 years. Thus, in present epoch an acceleration of superrotation of an atmosphere is observed. Which results in delay of rotation of the Earth with relative acceleration Ë?? = (-6.5) × 10-11 1/yr. It means, that there is other mechanism which results in significant positive angular acceleration of rotation of the Earth ?Ë? = (13.4 ±1.2) × 10-11 (to this value there corresponds a negative variation LOD in-1.16 ± 0.10 ms/cy). The similar mechanism can be only a redistribution of oceanic masses (currents) and subsoil waters and fluids in aggregate. Thus, the data of astronomical and geophysical observations unequivocally specify that the phenomenon of strengthening of circulation of continental waters (in particular subsoil waters) in the western direction should be observed. Or negative trend in total value of the angular axial momentum of ocean and a hydrology of continents. Attributes of an intensification of the western drift of oceanic masses are seen in rather old data for 1981-1989 (Brosche et al., [5]). On these data secular changes in redistribution of oceanic masses cause reduction of LOD with velocity of ?-0.16 ms/cy. And both hemispheres northern and southern bring contributions comparable on value: ~-0.074 ms/cy (NH) and ~-0.089 ms/cy (SH). These values, certainly, are rather approached and have estimated character. In global currents at ocean the similar situation in strengthening of circulation in the western direction in present epoch should be observed. We shall emphasize, that the question is not existence of those or other planetary currents, but about their slow changes as it is described above. As the size of a variation of angular velocity because of redistribution of water masses is rather significant, it should be observed in the modern data on variations of the angular momentum of ocean and as a whole of fluid masses. Let á¹ ° is a secular variation of the angular momentum of fluid masses of the Earth in present epoch. G = C? is unperturbed value of the angular momentum of rotary motion of full system the Earth. According to the mentioned above works the following estimations of secular variations of the axial angular momentum of ocean and its northern and southern hemispheres [5] were obtained: ( ) ( ) ( ) ËRG = - 0.12 ms/cy, RËG = - 0.12 ms/cy, ËRG = - 0.24 ms/cy, ON OS O and according to work [6] for hydrological, oceanic and their total fluids making the axial angular momentum the following estimations have been obtained: ( ) ( ) ( ) ËRG = - 0.34 ms/cy, ËRG = - 0.22 ms/cy, RËG = - 0.55 ms/cy. H O H+O Results will be coordinated among themselves. For example, for the full axial momentum of all fluids (atmospheres, ocean, continental and ground) in the specified two models turn out small values:( ) ËRC0?A+H+O = -0.03 ms/cy, ( ) RËC0 ?A+H+O = -0.05 ms/cy, as it follows from dynamic conclusions about non-tidal acceleration of rotation of the Earth. Excluding from consideration a time interval 1997.0-1999.0, which corresponds to spasmodic changes of all natural processes of the Earth (Barkin, 2002), for velocity of decrease of the hydrological and oceanic angular momentums before and after the specified period we obtain rough estimates: - 0.7-0.9 ÷ ms/cy. These estimations at least do not contradict the basic conclusions to the given work about increase of the western displacement and currents of fluids of the Earth. More exact analysis will need the data of supervision for longer time intervals. The similar rough estimate on the data [5] turns out for oceanic making secular changes of the angular momentum. It gives negative change LOD with velocity -0.16 ms/cy. Thus, it is possible to assume, that there is an effective mechanism of secular increase of streams of water (fluid) masses on continents in the western direction. On the other hand according to work [5] roughly it is possible to estimate trend of the angular momentum of in common oceanic and hydrological fluids. It appears, that redistributions of these masses in present epoch results in acceleration of rotation of the Earth. The appropriate reduction of duration of day here makes approximately-0.52 ms/cy. Thus strengthening of redistribution of terrestrial waters and fluids in the western direction really proves to be true. These estimations are obtained at exception of the period 1997.0-1999.0 when there was rather fast spasmodic change (increase) of duration of day approximately on 0.038 ms. References [1] Barkin Yu.V. (2007) Celestial geodynamics and solution of the fundamental problems of geodesy, gravimetry and geophysics. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007), (S) - IASPEI, JSS011, p. 2149. www. iugg2007perugia.it. [2] Cheng M.R., Shum C.K. and Tapley B.D. (1997) Determination of long-periodic changes in the Earth's gravity field from satellite laser ranging observations. Journal of Geophysical research, V. 102, No. B10. pp. 22377-22390. [3] Stephenson F.R. and Morrison L.V. (1995) Long term fluctuations in the Earth's rotation:700 BC to AD 1990, Phil. Trans. R. Soc. Lond., A, 351, p. 165-202. [4] Abarca del Rio R. (1999) The influence of global warming in Earth rotation speed. Ann. Geophys., 17, 806-811. [5] Brosche P., Wunsch J., Maier-Reimer E., Segschneider J., Sundermann J. (1997) The axial angular momentum of the general circulation of the oceans. Astron. Nachr. 318, V.3, 193-199. [6] Chen J. (2005) Global mass balance an the length-of-day variation. Journal of Geophysical research, V. 110, B08404, doi: 10.1029/2004JB003474. [7] Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian.
Effects of Isometric Scaling on Vertical Jumping Performance
Bobbert, Maarten F.
2013-01-01
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494
Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.
1988-01-01
The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia.
Cruces, Pablo Daniel; Arini, Pedro David
2017-12-01
Early detection of acute ischaemia through non-invasive methods remains a challenge in health research. Ischaemic condition caused by a decrease in the blood supply in a cardiac region induces hypoxia and metabolic abnormalities that contribute to the electrical instability of the heart and to the development of slow conduction in damaged tissue. Herein, a percutaneous transluminal coronary angiography (PTCA) is considered as a model of supply ischaemia. We use the concept of quaternion to develop a robust method for assessing the angular velocity of cardiac vector in the orthogonal XYZ leads obtained from 92 patients undergoing the PTCA procedure. The maxima of angular velocity in both ventricular depolarization and repolarization are combined with traditional linear velocity indexes in order to obtain a detector of ischaemic episodes (Ischaemia Detector, ID). ID achieves 98%/100% of sensitivity/specificity when differentiating healthy subjects from patients with early ischaemia. Furthermore, it also shows high accuracy when the comparison is made between ischaemic subjects and patients with different non-ischaemic pathologic ST-deviations which are known to cause false positives, reaching 95%/98% of sensitivity/specificity. Moreover, the study of significant reductions (p<0.001) of angular velocity components allows extraction of distinct ischaemic common features which are useful for analyzing the dependence of vectorcardiogram signal on each site of occlusion. The sensitivity of injury location reaches values of 88% (RCA), 87% (LAD) and 80% (LCx). The high performance of the proposed method establishes a promising outcome for application in computerized assistance in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.
Harridge, S D; White, M J
1993-01-01
The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.
Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres
NASA Technical Reports Server (NTRS)
Allison, Michael; Del Genio, Anthony D.; Zhou, Wei
1994-01-01
The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.
NASA Technical Reports Server (NTRS)
McCrea, R. A.; Chen-Huang, C.; Peterson, B. W. (Principal Investigator)
1999-01-01
The contributions of vestibular nerve afferents and central vestibular pathways to the angular (AVOR) and linear (LVOR) vestibulo-ocular reflex were studied in squirrel monkeys during fixation of near and far targets. Irregular vestibular afferents did not appear to be necessary for the LVOR, since when they were selectively silenced with galvanic currents the LVOR was essentially unaffected during both far- and near-target viewing. The linear translation signals generated by secondary AVOR neurons in the vestibular nuclei were, on average, in phase with head velocity, inversely related to viewing distance, and were nearly as strong as AVOR-related signals. We suggest that spatial-temporal transformation of linear head translation signals to angular eye velocity commands is accomplished primarily by the addition of viewing distance multiplied, centrally integrated, otolith regular afferent signals to angular VOR pathways.
Large Angle Satellite Attitude Maneuvers
NASA Technical Reports Server (NTRS)
Cochran, J. E.; Junkins, J. L.
1975-01-01
Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.
NASA Astrophysics Data System (ADS)
Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo
2018-05-01
We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙} yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).
Response of cricket and spider motion-sensing hairs to airflow pulsations
Kant, R.; Humphrey, J. A. C.
2009-01-01
Closed-form analytical solutions are presented for the angular displacement, velocity and acceleration of motion-sensing filiform hairs exposed to airflow pulsations of short time duration. The specific situations of interest correspond to a spider intentionally moving towards a cricket, or an insect unintentionally moving towards or flying past a spider. The trichobothria of the spider Cupiennius salei and the cercal hairs of the cricket Gryllus bimaculatus are explored. Guided by earlier work, the spatial characteristics of the velocity field due to a flow pulsation are approximated by the local incompressible flow field due to a moving sphere. This spatial field is everywhere modulated in time by a Gaussian function represented by the summation of an infinite Fourier series, thus allowing an exploration of the spectral dependence of hair motion. Owing to their smaller total inertia, torsional restoring constant and total damping constant, short hairs are found to be significantly more responsive than long hairs to a flow pulsation. It is also found that the spider trichobothria are underdamped, while the cercal hairs of the cricket are overdamped. As a consequence, the spider hairs are more responsive to sudden air motions. Analysis shows that while two spiders of different characteristic sizes and lunge velocities can generate pulsations with comparable energy content, the associated velocity fields display different patterns of spatial decay with distance from the pulsation source. As a consequence, a small spider lunging at a high velocity generates a smaller telltale far-field velocity signal than a larger spider lunging at a lower velocity. The results obtained are in broad agreement with several of the observations and conclusions derived from combined flow and behavioural experiments performed by Casas et al. for running spiders, and by Dangles et al. for spiders and a physical model of spiders lunging at crickets. PMID:19324674
NASA Astrophysics Data System (ADS)
Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo
2018-05-01
We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).
Denis, Romain; Wilkinson, Jennifer; De Vito, Giuseppe
2011-09-01
The purpose of this study was to investigate whether changes in angular velocity would alter vastus lateralis (VL) and rectus femoris (RF) oxygenation status during maximal isokinetic knee extension exercises. Eleven recreationally active male participants randomly performed ten maximal knee extensions at 30, 60, 120 and 240° s(-1). Tissue oxygenation index (TOI) and total haemoglobin concentration ([tHb]) were acquired from the VL and RF muscles by means of near-infrared spectroscopy (NIRS). Breath-by-breath pulmonary oxygen consumption (VO(2p)) was recorded throughout the tests. Peak torque and VO(2p) significantly decreased as a function of velocity (P<0·05). Interestingly, RF and VL TOI significantly increased as a function of velocity (P<0·05), whereas [tHb] significantly decreased as a function of velocity (P<0·05). A greater number of muscle fibre recruited at slow velocity, where the torque and VO(2p) were the highest, might explain the lower VL and RF TOI observed herein. Furthermore, the increase in local blood flow (suggested by [tHb] changes) during isokinetic knee extension exercises performed at slow angular velocity might have been induced by a higher intramuscular pressure during the contraction phases as well as a greater microcirculatory vasodilatation during relaxation phases. Implementing slow-velocity isokinetic exercises in rehabilitation or other training programmes could delay the short-term anoxia generated by such exercises and result in muscle metabolism enhancement. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Comparison of trunk kinematics in trunk training exercises and throwing.
Stodden, David F; Campbell, Brian M; Moyer, Todd M
2008-01-01
Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.
Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics
NASA Technical Reports Server (NTRS)
Fleming, Kevin J.
1993-01-01
Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.
Vestibular response to pseudorandom angular velocity input: progress report.
Lessard, C S; Wong, W C
1987-09-01
Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. One of NASA's efforts to resolve the space adaptation syndrome is to model the vestibular response for both basic knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyze the vestibular system when subjected to a pseudorandom angular velocity input.
NASA Technical Reports Server (NTRS)
Kazlauskas, K. A.; Kurlavichus, A. I.
1973-01-01
The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.
COSMIC VORTICITY AND THE ORIGIN HALO SPINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less
Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R
1997-10-01
The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.
Stackman, R W; Taube, J S
1998-11-01
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.
Velocity-free attitude coordinated tracking control for spacecraft formation flying.
Hu, Qinglei; Zhang, Jian; Zhang, Youmin
2018-02-01
This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Influence of movement parameters on area 18 neurones in the cat.
Orban, G A; Callens, M
1977-10-24
In cats, 107 area 18 neurones with identified FR type, 10-50 degrees from the visual axis, were tested for the influence of direction, velocity and amplitude of movement. These three parameters are believed to be the primary parameters of a movement analysing system. 94% of the neurones were influenced by the direction of movement, all of them by the angular velocity and 16% by the amplitude of movement. For each of the primary parameters, tuning curves were established. Angular velocity influenced not only the response magnitude but also the response latency and the direction bias. By preparing response amplitude functions at different velocities the influence of movement duration was ruled out. The association of functional properties and RF organization suggests a model of information processing in area 18 of the cat.
Demonstrating the Conservation of Angular Momentum Using Model Cars Moving along a Rotating Rod
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq; Golubovic, Leonardo
2013-01-01
We have developed an exciting non-traditional experiment for our introductory physics laboratories to help students to understand the principle of conservation of angular momentum. We used electric toy cars moving along a long rotating rod. As the cars move towards the centre of the rod, the angular velocity of this system increases.…
14 CFR 25.349 - Rolling conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...
14 CFR 25.349 - Rolling conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...
14 CFR 25.349 - Rolling conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...
14 CFR 25.349 - Rolling conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...
Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses.
Li, Long; Xie, Guodong; Ren, Yongxiong; Ahmed, Nisar; Huang, Hao; Zhao, Zhe; Liao, Peicheng; Lavery, Martin P J; Yan, Yan; Bao, ChangJing; Wang, Zhe; Willner, Asher J; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Willner, Alan E
2016-03-10
In this paper, we explore the potential benefits and limitations of using transmitter lenses in an orbital-angular-momentum (OAM)-multiplexed free-space optical (FSO) communication link. Both simulation and experimental results indicate that within certain transmission distances, using lenses at the transmitter to focus OAM beams could reduce power loss in OAM-based FSO links and that this improvement might be more significant for higher-order OAM beams. Moreover, the use of transmitter lenses could enhance system tolerance to angular error between transmitter and receiver, but they might degrade tolerance to lateral displacement.
Manual actuator. [for spacecraft exercising machines
NASA Technical Reports Server (NTRS)
Gause, R. L.; Glenn, C. G. (Inventor)
1974-01-01
An actuator for an exercising machine employable by a crewman aboard a manned spacecraft is presented. The actuator is characterized by a force delivery arm projected from a rotary imput shaft of an exercising machine and having a force input handle extended orthogonally from its distal end. The handle includes a hand-grip configured to be received within the palm of the crewman's hand and a grid pivotally supported for angular displacement between a first position, wherein the grid is disposed in an overlying juxtaposition with the hand-grip, and a second position, angularly displaced from the first position, for affording access to the hand-grip, and a latching mechanism fixed to the sole of a shoe worn by the crewman for latching the shoe to the grid when the grid is in the first position.
NASA Astrophysics Data System (ADS)
Cultrera, L.; Lorusso, A.; Maiolo, B.; Cangueiro, L.; Vilar, R.; Perrone, A.
2014-03-01
Experimental observations of the angular distribution of droplets during laser ablation and deposition of Al thin films are presented and discussed. The experimental results, obtained by simply moving the laser spot position with respect to the rotation axis of the target, allow clarification of the unexpected symmetric double peaked angular droplet distribution on the films. These results provide direct evidence that a laser fluence threshold exists, beyond which droplets are generated from a melt displacement and ejection mechanism rather than from a phase explosion. The main directions of particulate ejection are related to the particular geometry of the laser generated tracks, whose profiles depend on the relative position of the incident beam with respect to the rotation axis of the target.
Fast two-position initial alignment for SINS using velocity plus angular rate measurements
NASA Astrophysics Data System (ADS)
Chang, Guobin
2015-10-01
An improved two-position initial alignment model for strapdown inertial navigation system is proposed. In addition to the velocity, angular rates are incorporated as measurements. The measurement equations in full three channels are derived in both navigation and body frames and the latter of which is found to be preferred. The cross-correlation between the process and the measurement noises is analyzed and addressed in the Kalman filter. The incorporation of the angular rates, without introducing additional device or external signal, speeds up the convergence of estimating the attitudes, especially the heading. In the simulation study, different algorithms are tested with different initial errors, and the advantages of the proposed method compared to the conventional one are validated by the simulation results.
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
NASA Technical Reports Server (NTRS)
Lourenco, L. M. M.; Krothapalli, A.
1987-01-01
One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.
Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator
NASA Astrophysics Data System (ADS)
Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui
2018-01-01
The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.
Phase Resolved Angular Velocity Control of Cross Flow Turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2015-11-01
Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.
NASA Technical Reports Server (NTRS)
Maxwell, B. R.
1975-01-01
A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.
Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor
NASA Astrophysics Data System (ADS)
Miklós, Á.; Szabó, Z.
2015-01-01
In this work, a novel design for small vibrotactors called the Dual Excenter is presented, which makes it possible to produce vibrations with independently adjustable frequency and amplitude. This feature has been realized using two coaxially aligned eccentric rotors, which are driven by DC motors independently. The prototype of the device has been built, where mechanical components are integrated on a frame with two optical sensors for the measurement of angular velocity and phase angle. The system is equipped with a digital controller. Simulations confirm the results of analytical investigations and they allow us to model the sampling method of the signals of the angular velocity and the phase angle between the rotors. Furthermore, we model the discrete behavior of the controller, which is a PI controller for the angular velocities and a PID controller for the phase angle. Finally, simulation results are compared to experimental ones, which show that the Dual Excenter concept is feasible.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
D = 5 Einstein-Maxwell-Chern-Simons black holes.
Kunz, Jutta; Navarro-Lérida, Francisco
2006-03-03
Five-dimensional Einstein-Maxwell-Chern-Simons theory with a Chern-Simons coefficient lambda = 1 has supersymmetric black holes with a vanishing horizon angular velocity but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for lambda > 1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. For lambda > 2 black holes are no longer uniquely characterized by their global charges, and rotating black holes with vanishing angular momentum appear.
Determination of Residual Stress in Composite Materials Using Ultrasonic Waves
NASA Technical Reports Server (NTRS)
Rokhlin, S. I.
1997-01-01
The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual stresses. It is based on the generalized self-consistent multiple scattering model. Calculation results for longitudinal and shear ultrasonic wave velocities propagating perpendicular to the fibers direction in SCS-6/Ti composite with and without residual stresses are presented. They show that velocity changes due to presence of stresses are of order 1%.
Desirable limits of accelerative forces in a space-based materials processing facility
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1990-01-01
There are three categories of accelerations to be encountered on orbiting spacecraft: (1) quasi-steady accelerations, caused by atmospheric drag or by gravity gradients, 10(exp -6) to 10(exp -7) g sub o; (2) transient accelerations, caused by movements of the astronauts, mass translocations, landing and departure of other spacecraft, etc.; and (3) oscillary accelerations, caused by running machinery (fans, pumps, generators). Steady accelerations cause continuing displacements; transients cause time-limited displacements. The important aspect is the area under the acceleration curve, measured over a certain time interval. Note that this quantity is not equivalent to a velocity because of friction effects. Transient motions are probably less important than steady accelerations because they only produce constant displacements. If the accelerative forces were not equal and opposite, the displacement would increase with time. A steady acceleration will produce an increasing velocity of a particle, but eventually an equilibrium value will be reached where drag and acceleration forces are equal. From then on, the velocity will remain constant, and the displacement will increase linearly with time.
A Comparison of Laser and Video Techniques for Determining Displacement and Velocity during Running
ERIC Educational Resources Information Center
Harrison, Andrew J.; Jensen, Randall L.; Donoghue, Orna
2005-01-01
The reliability of a laser system was compared with the reliability of a video-based kinematic analysis in measuring displacement and velocity during running. Validity and reliability of the laser on static measures was also assessed at distances between 10 m and 70 m by evaluating the coefficient of variation and intraclass correlation…
Li, Yao; Cao, Feng; Thang Vo Doan, Tat; Sato, Hirotaka
2016-09-28
The mechanisms and principles of insect flight have long been investigated by researchers working on micro and nano air vehicles (MAVs/NAVs). However, studies of insect flight maneuvers require high speed filming and high spatial resolution in a small experimental space, or the tethering of the insect to a fixed place. Under such artificial conditions, the insects may deviate its flying behavior from that of regular flight. In this study, we mounted a tiny wireless system, or 'backpack', on live beetles (Mecynorrhina torquata; length 62 ± 8 mm; mass 7.4 ± 1.3 g) freely flying in a large laboratory space. The backpack contains a micro inertial measurement unit (IMU) that was especially designed and manufactured for this purpose. Owing to the small mass (∼1.30 g) and dimensions (∼2.3 cm 2 ) of the backpack and the high accuracy of the IMU, we could remotely record the beetle in free flight. The free flight data revealed a strong linear correlation between the roll angle and yaw angular velocity. The strength of the correlation was quantified by the correlation coefficients and mean values. The change in roll angle preceded the change in yaw angular velocity. Moreover, there were frequent fluctuations in the roll angular velocity, which were uncorrelated with the yaw angular velocity. Apart from the strong correlation, these findings imply that Mecynorrhina torquata actively manipulates its roll rotation without coupling to the yaw rotation.
Angular momentum of the N2H+ cores in the Orion A cloud
NASA Astrophysics Data System (ADS)
Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu
2016-04-01
We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.
The impact of Nordic walking training on the gait of the elderly.
Ben Mansour, Khaireddine; Gorce, Philippe; Rezzoug, Nasser
2018-03-27
The purpose of the current study was to define the impact of regular practice of Nordic walking on the gait of the elderly. Thereby, we aimed to determine whether the gait characteristics of active elderly persons practicing Nordic walking are more similar to healthy adults than that of the sedentary elderly. Comparison was made based on parameters computed from three inertial sensors during walking at a freely chosen velocity. Results showed differences in gait pattern in terms of the amplitude computed from acceleration and angular velocity at the lumbar region (root mean square), the distribution (Skewness) quantified from the vertical and Euclidean norm of the lumbar acceleration, the complexity (Sample Entropy) of the mediolateral component of lumbar angular velocity and the Euclidean norm of the shank acceleration and angular velocity, the regularity of the lower limbs, the spatiotemporal parameters and the variability (standard deviation) of stance and stride durations. These findings reveal that the pattern of active elderly differs significantly from sedentary elderly of the same age while similarity was observed between the active elderly and healthy adults. These results advance that regular physical activity such as Nordic walking may counteract the deterioration of gait quality that occurs with aging.
Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio I
2013-08-16
Clinical frailty syndrome is a common geriatric syndrome, which is characterized by physiological reserve decreases and increased vulnerability. The changes associated to ageing and frailties are associated to changes in gait characteristics and the basic functional capacities. Traditional clinical evaluation of Sit-to-Stand (Si-St) and Stand-to-Sit (St-Si) transition is based on visual observation of joint angle motion to describe alterations in coordination and movement pattern. The latest generation smartphones often include inertial sensors with subunits such as accelerometers and gyroscopes, which can detect acceleration. Firstly, to describe the variability of the accelerations, angular velocity, and displacement of the trunk during the Sit-to-Stand and Stand-to-Sit transitions in two groups of frail and physically active elderly persons, through instrumentation with the iPhone 4 smartphone. Secondly, we want to analyze the differences between the two study groups. A cross-sectional study that involved 30 subjects over 65 years, 14 frail and 16 fit subjects. The participants were classified with frail syndrome by the Fried criteria. Linear acceleration was measured along three orthogonal axes using the iPhone 4 accelerometer. Each subject performed up to three successive Si-St and St-Si postural transitions using a standard chair with armrest. Significant differences were found between the two groups of frail and fit elderly persons in the accelerometry and angular displacement variables obtained in the kinematic readings of the trunk during both transitions. The inertial sensor fitted in the iPhone 4 is able to study and analyze the kinematics of the Si-St and St-Si transitions in frail and physically active elderly persons. The accelerometry values for the frail elderly are lower than for the physically active elderly, while variability in the readings for the frail elderly is also lower than for the control group.
Sjöström, Henrik; Allum, John H J; Carpenter, Mark G; Adkin, Allan L; Honegger, Flurin; Ettlin, Thierry
2003-08-01
Trunk sway occurring during clinical stance and gait tasks was compared between a group of subjects with a chronic whiplash injury, resulting from an automobile collision, and a normal collective. To examine if population specific trunk sway patterns for stance and gait could be identified for chronic whiplash injury patients. Our previous work has established that it is possible to identify specific patterns of stance and gait deficits for vestibular loss (both acute and compensated) patients and those with Parkinson's disease. Our question was whether it was possible to use the same stance and gait tasks to identify patterns of trunk sway differences with respect to those of healthy subjects and individuals with a chronic whiplash injury. Twenty-five subjects with history of whiplash injury and 170 healthy age-matched control subjects participated in the study. Trunk sway angular displacements in chronic whiplash patients were assessed for a number of stance and gait tasks similar to those of the Tinetti and Clinical Test of Sensory Interaction and Balance (CTSIB) protocols. We used a lightweight, easy-to-attach, body-worn apparatus to measure trunk angular displacements and velocities in the roll (lateral) and the pitch (forward-backward) planes. Data analysis revealed several significant differences between the two groups. A pattern could be identified, showing greater trunk sway for stance tasks and for complex gait tasks that required task-specific gaze control such as walking up and down stairs. Trunk sway was less, however, for simple gait tasks that demanded large head movements but no task-specific gaze control, such as walking while rotating the head. Subjects who have a chronic whiplash injury show a characteristic pattern of trunk sway that is different from that of other patient groups with balance disorders. Balance was most unstable during gait involving task-specific head movements which possibly enhance a pathologic vestibulo-cervical interaction.
Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer
2015-09-01
We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.
Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang
2015-10-01
A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in vitro cervical prosthesis simulations according to the literature. Copyright © 2015. Published by Elsevier B.V.
Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo
2017-08-01
The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.
2015-05-01
A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.
Cockpit Window Edge Proximity Effects on Judgements of Horizon Vertical Displacement
NASA Technical Reports Server (NTRS)
Haines, R. F.
1984-01-01
To quantify the influence of a spatially fixed edge on vertical displacement threshold, twenty-four males (12 pilots, 12 non-pilots) were presented a series of forced choice, paired comparison trials in which a 32 deg arc wide, thin, luminous horizontal stimulus line moved smoothly downward through five angles from a common starting position within a three second-long period. The five angles were 1.4, 1.7, 2, 2.3, and 2.6 deg. Each angle was presented paired with itself and the other four angles in all combinations in random order. For each pair of trials the observer had to choose which trial possessed the largest displacement. A confidence response also was made. The independent variable was the angular separation between the lower edge of a stable 'window' aperture through which the stimulus was seen to move and the lowest position attained by the stimulus. It was found that vertical displacement accuracy is inversely related to the angle separating the stimulus and the fixed window edge (p = .05). In addition, there is a strong tendency for pilot confidence to be lower than that of non-pilots for each of the three angular separations. These results are discussed in erms of selected cockpit features and as they relate to how pilots judge changes in aircraft pitch attitude.
Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T
2015-12-01
To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.
Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations
NASA Astrophysics Data System (ADS)
Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi
1996-09-01
We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.
García-Alsina, Joan; García Almazan, Concepción; Moranta Mesquida, José; Pleguezuelos Cobo, Eulogio
2005-11-01
To define the normal range, velocity and consistency of the movement of active arm elevation with humerus in neutral or in external rotation using a simplified kinematic model. Nine normal volunteers and the non-involved side of twenty five patients with unilateral shoulder lesion participated. A 3D optoelectronic tracking system was used to register the movement of raising the arm from the normal upright position to maximal elevation in a repetitive way. Peak humeral position, range of movement, velocity of motion and consistency of cycles were analyzed. Descriptive statistics, correlation between variables and with sex, age and side are presented, including differences between performances of movement done in neutral or external rotation. Data of the six variables were: maximal abduction 142 degrees [137.4-147.0], range of motion 118.1 degrees [112-124], maximal velocity 238 degrees/s [209-265]; mean velocity 113 degrees/s [96-130]; coefficient of variation of maximal angular abduction was 2.2% [1.7-2.7]; coefficient of variation of maximal velocity 8.6% [7.3-9.9]. No significant differences were observed either on side, sex or between the shoulder of normal volunteers or that of the patients with opposite shoulder lesions. Participants older than 45 years old showed only a significant slightly lower average velocity. The study confirms the weak association between dependent (biomechanical) and independent variables. As it is described here, analysis of arm elevation has not been previously studied and shows that has a good consistency in angular position, velocity and repeatability of motion in normal conditions which permits a picture of the overall performance of the shoulder.
Petersen, S R; Bagnall, K M; Wenger, H A; Reid, D C; Castor, W R; Quinney, H A
1989-01-01
This work was supported by Sport Canada end Hydra-Fitness Industries. In order to investigate the effects of velocity-specific resistance training, 30 healthy, male varsity athletes were assigned to either high (HVR) or low (LVR) velocity training or control (CG) groups. Subjects completed two 20-sec sets of maximal exercise at each of six hydraulic resistance stations for the lower limb. Resistances were adjusted as necessary to maintain consistent average angular velocities of approximately 1.05 and 3.14 rad/sec for the LVR and HVR groups, respectively. Subjects trained on alternate days for 6 weeks, completing either two (weeks 1 and 2) or three (weeks 3-6) circuits of the six stations each session. Peak knee extension torques were improved (p < 0.05) for the LVR group at all of seven angular velocities tested between 1.05 and 4.19 rad/sec. Improvements (p < 0.05) were also observed for the HVR group, but only at angular velocities of 2.62, 3.14, 3.66, and 4.19 rad/sec. Cross-sectional area of the quadriceps femoris muscle group obtained from serial computer tomography (CT) scans was increased (p < 0.05) for both training groups. No significant changes in either strength or cross-sectional area were observed for control subjects. These results indicate that while both of the training programs resulted in increased cross-sectional area of the knee extensors, the observed changes in strength performance are likely due to other factors which may be mediated by the different training velocities. J Orthop Sports Phys Ther 1989;10(11):456-462.
DOT National Transportation Integrated Search
1965-09-01
Professional figure skaters who, as part of their daily routine, subject themselves to high levels of disorientation-and vertigo-producing stimuli, were given a series of laboratory tests consisting primarily of caloric irrigations and mild angular a...
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
Control of speed during the double poling technique performed by elite cross-country skiers.
Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-01-01
Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.
Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Zheng, L.; Kreemer, C.
2014-12-01
The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.
Dedicated ultrasound speckle tracking to study tendon displacement
NASA Astrophysics Data System (ADS)
Korstanje, Jan-Wiebe H.; Selles, Ruud W.; Stam, Henk J.; Hovius, Steven E. R.; Bosch, Johan G.
2009-02-01
Ultrasound can be used to study tendon and muscle movement. However, quantization is mostly based on manual tracking of anatomical landmarks such as the musculotendinous junction, limiting the applicability to a small number of muscle-tendon units. The aim of this study is to quantify tendon displacement without employing anatomical landmarks, using dedicated speckle tracking in long B-mode image sequences. We devised a dedicated two-dimensional multikernel block-matching scheme with subpixel accuracy to handle large displacements over long sequences. Images were acquired with a Philips iE33 with a 7 MHz linear array and a VisualSonics Vevo 770 using a 40 MHz mechanical probe. We displaced the flexor digitorum superficialis of two pig cadaver forelegs with three different velocities (4,10 and 16 mm/s) over 3 distances (5, 10, 15 mm). As a reference, we manually determined the total displacement of an injected hyperechogenic bullet in the tendons. We automatically tracked tendon parts with and without markers and compared results to the true displacement. Using the iE33, mean tissue displacement underestimations for the three different velocities were 2.5 +/- 1.0%, 1.7 +/- 1.1% and 0.7 +/- 0.4%. Using the Vevo770, mean tissue displacement underestimations were 0.8 +/- 1.3%, 0.6 +/- 0.3% and 0.6 +/- 0.3%. Marker tracking displacement underestimations were only slightly smaller, showing limited tracking drift for non-marker tendon tissue as well as for markers. This study showed that our dedicated speckle tracking can quantify extensive tendon displacement with physiological velocities without anatomical landmarks with good accuracy for different types of ultrasound configurations. This technique allows tracking of a much larger range of muscle-tendon units than by using anatomical landmarks.
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2009-04-01
"For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core") is offered. Apparently, this mechanism results in spasmodic variations of axial rotation of the Earth, causes gallop in value of a phase of Chandler motion of a pole, to sharp changes of the intense condition in zones of catastrophes" ([1], p. 61). According to geodynamic model the step changes first of all should to be observed in motion of a geocenter as it reflects relative displacement of the centers of mass of the core and the mantle [1]. A gallop of natural processes in northern and southern hemispheres is characterized by the certain asymmetry. In result the step changes are tested by trend components of secular changes of parameters. In another words and activity (intensity) and trends of its secular changes test synchronous certain steps. Geocenter. According to observation data of DORIS spasmodic changes of polar rotation of a geocenter in a projection to an equatorial coordinate plane in 1997-1999 are revealed. On data DORIS in values of polar coordinate of a geocenter were observed gallop up to 20-30 cm. Changes of trend components have tested gallop which can be estimated in -2 mm in coordinate x, -5 mm in coordinate y and in -10 mm in coordinate z. Trajectory of a geocenter. A bend of a trajectory of long - periodic trend "trace" of a geocenter (its epicentre) on a surface of the Earth in 1997-1998 has been discovered (Zotov, Barkin, Lyubushin, 2008). It serves as direct confirmation of the assumption about a fundamental role of interaction and the forced relative displacements of the basic shells of the Earth, first of all the core and the mantle, both their stimulating and directing role in all planetary processes (Barkin, 2002). Gravitational field. On the data of satellite observations the secular trend of zonal coefficient of geopotentialJ2 is characterized by velocity JË2=-3.70 × 10-11 1/yr (Cheng et al., 1999). In 1997-1998 the positive step in value of coefficient J2=2.5 × 10-10had place. Gravity. Daily gravity values corrected for air pressure, polar motion and tides have been obtained for the period October 1996 June 2000 on superconducting gravimeters (by Zerbini et al., 2002). The phenomenon of galloping of the core generated observed gravity burst (jump, step, glitch) in gravity variations at Medicine station in 1997-1998 with remarkable step about +5.5 mikrogalls. Global ocean. An action of this mechanism has caused appreciable spasmodic change of a level of ocean in same years. For periods of time: 1993.5-1997.0 and 1999.0 - 2002.0 on the base of Topex-Poseidon observations the following values of increase of mean sea level have been obtained: +2.75 mm/yr, +4.28 mm/yr. A positive step in mean sea level in galloping period 1997-1998 makes about 7.2 mm. Another characteristics have been determined from coastal observations: mean velocities before 1997 and after 1999 make +0.72 mm/yr and +0.60 mm/yr with a jump in 4.8 mm. Ocean hemispheres. On altimetry data velocities of increasing of mean sea levels in northern hemisphere have made about 0.0 mm/yr during 1993.0 - 1997.0 and 1.5 mm/yr after 1999.0 (Barkin et al., 2008). While in a southern hemisphere in both periods velocity of trend of mean sea level has made about 3.5 mm/yr. In northern hemisphere it is marked significant "altimetry" jump of a mean sea level in +15 mm in galloping years 1997-1998. In a southern hemisphere the jump of mean sea level is not swept up almost. We shall note, that under northern and southern hemispheres the oceanic areas located between parallels 60N - 820N and 820S - 60S here are meant. AAM. On the data of observations for period 1970.0 -1997.0 the axial angular momentum of atmosphere executes trend with positive velocity ḣ3 = á¹ ° = +0.0294 unit/yr AAM had a negative step in -0.91 unit in period of galoping years 1997-1998. Equatorial components of AAM are characterized by trends: ḣ1 = á¹- = -0.0057 unit/yr, ḣ2 = ËQ = 0.0007 unit/yr. OAM. The trend of the angular momentum of ocean in northern hemisphere makes -0.12 ms/cy for the period of 1981-1989 (Brosche et al., 1997). And for southern hemisphere for the same period trend of axial angular momentum is characterized by velocity -0.24 ms/cy. Accordingly the general trend of OAM is estimated in -0.36 ms/cy(on data of Chen, 2005). HAM. Negative trends of the hydrological angular momentum for periods of time 1993.0 - 1997.0 and 1999.0-2004.3 consist about: -0.0052 ms/yr and -0.0061 ms/yr. The step of the hydrological angular momentum in 1997.0-1999.0 years consists +0.017 ms. Climate. In 1997-1998 sharp spasmodic increase of amplitude of change of quantity of low clouds (approximately in three times) has been observed. Sharp reduction of number of days of tropical cyclones in northern hemisphere had place in 1997-1998 (approximately for 130 days at the maximal values in 300-400). Temperature. On the data of observations for the period 1979 - 2007 the estimations of jumps in trends of temperatures have been obtained. In 1997-1998 years the global temperature has increased approximately on+0017, the average temperature in northern hemisphere has increased on +0015, and in a southern hemisphere is a little bit more essential on +0024. Cyclones. The number of storm days in the period November - April of each year for area of east Pacific tropical zone for three years 1996-1998 has grown three times in comparison with the similar three-annual periods of last 55 years. The step is in three times. Stratosphere. Daily values of the global contents of water pair in troposphere (mb) for the period 1979 - 2005 has tested one appreciable jump - step in 1997-1998 on +0.28 mb. The linear trend of decreasing of water pair in troposphere also was changed from velocity -0.021 mb/yr before 1997 to velocity -0.019 mb/yr after 1999. Sea ice. Hemispheres. Trends in increase of ice cover in a southern hemisphere consist +28065 km2yr during 1979.0 - 1997.0 and +56452 km2yr during period 1999.0 - 2008. A negative step of the area of an ice cover during 1997.0 - 1999.0 has made big value -325000 km2. Trends of increase of an ice cover in northern hemisphere make +24194 km2yrduring 1979.0 - 1997.0 and 172200 km2yr during 1999.0 - 2008. A negative jump of the area of an ice cover during 1997.0 - 1999.0 has made-130000 km2. Rotation of the Earth. LOD. During 1997.0-1999.0 when there was rather fast spasmodic increase of duration of day approximately on 0.038 ms. Similar sudden changes in natural processes in geodynamic model (Barkin, 2002) are explained by spasmodic displacement of the centre of mass of the core relatively to the mantle (phenomenon of galloping of the core, [1]). FCN. The period of Free Core Nutation has step changed in 1997-1998 years. It has decreased in this short period on about 45 days. The previous years the period decreased with velocity about -1.67 day/yr. The similar steps in change of activity of natural processes and in their trends before and after steps are observed in all planetary geodynamical and geophysical processes of the Earth. The discussed phenomenon is universal and will be observed on all solar system bodies including the Sun. I've suggested for discussion also a hypothesis that observed on pulsars glitch-phenomena have same nature and are connected with forced relative displacements of pulsar shells. References [1] Barkin Yu.V. (2007) Mechanism of tectonic activity of the Earth: deep geodynamics, its modern displays. Fundamental problems of geotectonics. Materials of XL Tectonic meeting. Vol. 1. M.: GEOS. pp. 59-62. In Russian.
Guedry, F E; Benson, A J; Moore, H J
1982-06-01
Visual search within a head-fixed display consisting of a 12 X 12 digit matrix is degraded by whole-body angular oscillation at 0.02 Hz (+/- 155 degrees/s peak velocity), and signs and symptoms of motion sickness are prominent in a number of individuals within a 5-min exposure. Exposure to 2.5 Hz (+/- 20 degrees/s peak velocity) produces equivalent degradation of the visual search task, but does not produce signs and symptoms of motion sickness within a 5-min exposure.
Noncircular Chainrings Do Not Influence Maximum Cycling Power.
Leong, Chee-Hoi; Elmer, Steven J; Martin, James C
2017-12-01
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc = 1.13; HIGH ecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Star formation with disc accretion and rotation. I. Stars between 2 and 22 M⊙ at solar metallicity
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.
2013-09-01
Context. The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. Aims: In the framework of the cold disc accretion scenario, we study how angular momentum builds up inside the star during its formation for the first time and what the consequences are for its evolution on the main sequence (MS). Methods: Computation begins from a hydrostatic core on the Hayashi line of 0.7 M⊙ at solar metallicity (Z = 0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered, which vary between 1.5 × 10-5 and 1.7 × 10-3 M⊙ yr-1. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 M⊙. Results: We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Typically, the 6 M⊙ model has a core that rotates 50% faster than the surface on the ZAMS. The degree of differential rotation on the ZAMS decreases when the mass increases (for a fixed value of vZAMS/vcrit). The MS evolution of our models with a pre-MS accreting phase show no significant differences with respect to those of corresponding models computed from the ZAMS with an initial solid-body rotation. Interestingly, there exists a maximum surface velocity that can be reached through the present scenario of formation for masses on the ZAMS larger than 8 M⊙. Typically, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed for 14 M⊙ models. Reaching higher velocities would require starting from cores that rotate above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, there is no restriction below 8 M⊙, and the whole domain of velocities to the critical point can be reached.
A nonlinear dynamics of trunk kinematics during manual lifting tasks.
Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin
2015-01-01
Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.
Positive force feedback in human walking
Grey, Michael J; Nielsen, Jens Bo; Mazzaro, Nazarena; Sinkjær, Thomas
2007-01-01
The objective of this study was to determine if load receptors contribute to the afferent-mediated enhancement of ankle extensor muscle activity during the late stance phase of the step cycle. Plantar flexion perturbations were presented in late stance while able-bodied human subjects walked on a treadmill that was declined by 4%, inclined by 4% or held level. The plantar flexion perturbation produced a transient, but marked, presumably spinally mediated decrease in soleus EMG that varied directly with the treadmill inclination. Similarly, the magnitude of the control step soleus EMG and Achilles' tendon force also varied directly with the treadmill inclination. In contrast, the ankle angular displacement and velocity were inversely related to the treadmill inclination. These results suggest that Golgi tendon organ feedback, via the group Ib pathway, is reduced when the muscle–tendon complex is unloaded by a rapid plantar flexion perturbation in late stance phase. The changes in the unload response with treadmill inclination suggest that the late stance phase soleus activity may be enhanced by force feedback. PMID:17331984
Design and control of a hand exoskeleton for use in extravehicular activities
NASA Technical Reports Server (NTRS)
Shields, B.; Peterson, S.; Strauss, A.; Main, J.
1993-01-01
To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.
Unbalance vibration suppression for AMBs system using adaptive notch filter
NASA Astrophysics Data System (ADS)
Chen, Qi; Liu, Gang; Han, Bangcheng
2017-09-01
The unbalance of rotor levitated by active magnetic bearings (AMBs) will cause synchronous vibration which greatly degrade the performance at high speeds in the rotating machinery. To suppress the unbalance vibration without angular velocity information, a novel modified adaptive notch filter (ANF) with phase shift in the AMBs system is presented in this study. Firstly, a 4-degree-of-freedom (DOF) radial unbalanced AMB rotor system is described and analyzed, and the solution of rotor vibration displacement is compared with the experimental data to verify the preciseness of the dynamic model. Then the principle and structure of the proposed notch filter used for the frequency estimation and online identification of synchronous component are presented. As well, the convergence property of the algorithm is investigated. In addition, the stability analysis of the closed-loop AMB system with the proposed ANF is conducted. Simulation and experiments on an AMB driveline system demonstrate the effectiveness and the adaptive characteristics of the proposed ANF on the elimination of synchronous controlled current in a widely operating speed range.
Dynamics of Liquid-Filled Projectiles
1976-04-01
1 Estimate of Shape of the Free Surface of the Liquid in a Liquid-Pilled Projectile During Acceleration 6 CHAPTER II. ANGULAR ACCELERATION OF THE...LIQUID IN A LIQUID-FILLED PROJECTILE DURING FLIGHT 13 Liquid "Spinup" in Configuration A 13 Angular Acceleration of the Liquid in Con... Angular Acceleration. 13 2.2 Tangential Velocity of Liquid Versus Radial Position at Several Values of Time (Liquid Configuration A) 21 2.3 Tangential
Vestibular functions and sleep in space experiments. [using rhesus and owl monkeys
NASA Technical Reports Server (NTRS)
Perachio, A. A.
1977-01-01
Physical indices of sleep were continuously monitored in an owl monkey living in a chamber continuously rotating at a constant angular velocity. The electrophysiological data obtained from chronically implanted electrodes was analyzed to determine the chronic effects of vestibular stimulation on sleep and wakefulness cycles. The interaction of linear and angular acceleration on the vestibulo-ocular reflex was investigated in three rhesus monkeys at various angular accelerations.
Latitudinal Transport of Angular Momentum by Cellular Flows Observed with MDI
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Gilman, Peter A.; Beck, John G.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We have analyzed Doppler velocity images from the MDI instrument on SOHO to determine the latitudinal transport of angular momentum by the cellular photospheric flows. Doppler velocity images from 60-days in May to July of 1996 were processed to remove the p-mode oscillations, the convective blue shift, the axisymmetric flows, and any instrumental artifacts. The remaining cellular flows were examined for evidence of latitudinal angular momentum transport. Small cells show no evidence of any such transport. Cells the size of supergranules (30,000 km in diameter) show strong evidence for a poleward transport of angular momentum. This would be expected if supergranules are influenced by the Coriolis force, and if the cells are elongated in an east-west direction. We find good evidence for just such an east-west elongation of the supergranules. This elongation may be the result of differential rotation shearing the cellular structures. Data simulations of this effect support the conclusion that elongated supergranules transport angular momentum from the equator toward the poles, Cells somewhat larger than supergranules do not show evidence for this poleward transport. Further analysis of the data is planned to determine if the direction of angular momentum transport reverses for even larger cellular structures. The Sun's rapidly rotating equator must be maintained by such transport somewhere within the convection zone.
Hontanilla, Bernardo; Marre, Diego; Cabello, Alvaro
2013-06-01
Longstanding unilateral facial paralysis is best addressed with microneurovascular muscle transplantation. Neurotization can be obtained from the cross-facial or the masseter nerve. The authors present a quantitative comparison of both procedures using the FACIAL CLIMA system. Forty-seven patients with complete unilateral facial paralysis underwent reanimation with a free gracilis transplant neurotized to either a cross-facial nerve graft (group I, n=20) or to the ipsilateral masseteric nerve (group II, n=27). Commissural displacement and commissural contraction velocity were measured using the FACIAL CLIMA system. Postoperative intragroup commissural displacement and commissural contraction velocity means of the reanimated versus the normal side were first compared using the independent samples t test. Mean percentage of recovery of both parameters were compared between the groups using the independent samples t test. Significant differences of mean commissural displacement and commissural contraction velocity between the reanimated side and the normal side were observed in group I (p=0.001 and p=0.014, respectively) but not in group II. Intergroup comparisons showed that both commissural displacement and commissural contraction velocity were higher in group II, with significant differences for commissural displacement (p=0.048). Mean percentage of recovery of both parameters was higher in group II, with significant differences for commissural displacement (p=0.042). Free gracilis muscle transfer neurotized by the masseteric nerve is a reliable technique for reanimation of longstanding facial paralysis. Compared with cross-facial nerve graft neurotization, this technique provides better symmetry and a higher degree of recovery. Therapeutic, III.
Orbital angular momentum (OAM) spectrum correction in free space optical communication.
Liu, Yi-Dong; Gao, Chunqing; Qi, Xiaoqing; Weber, Horst
2008-05-12
Orbital angular momentum (OAM) of laser beams has potential application in free space optical communication, but it is sensitive against pointing instabilities of the beam, i.e. shift (lateral displacement) and tilt (deflection of the beam). This work proposes a method to correct the distorted OAM spectrum by using the mean square value of the orbital angular momentum as an indicator. Qualitative analysis is given, and the numerical simulation is carried out for demonstration. The results show that the mean square value can be used to determine the beam axis of the superimposed helical beams. The initial OAM spectrum can be recovered.
On the inward drift of runaway electrons during the plateau phase of runaway current
Hu, Di; Qin, Hong
2016-03-29
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less
On the inward drift of runaway electrons during the plateau phase of runaway current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Di, E-mail: hudi-2@pku.edu.cn; Qin, Hong; School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.« less
On the inward drift of runaway electrons during the plateau phase of runaway current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Di; Qin, Hong
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less
Tsang, Sharon M H; Szeto, Grace P Y; Li, Linda M K; Wong, Dim C M; Yip, Millie M P; Lee, Raymond Y W
2017-04-17
Impaired lumbo-pelvic movement in people with low back pain during bending task has been reported previously. However, the regional mobility and the pattern of the lumbo-pelvic movement were found to vary across studies. The inconsistency of the findings may partly be related to variations in the speed at which the task was executed. This study examined the effects of bending speeds on the kinematics and the coordination lumbo-pelvic movement during forward bending, and to compare the performance of individuals with and without low back pain. The angular displacement, velocity and acceleration of the lumbo-pelvic movement during the repeated forward bending executed at five selected speeds were acquired using the three dimensional motion tracking system in seventeen males with low back pain and eighteen males who were asymptomatic. The regional kinematics and the degree of coordination of the lumbo-pelvic movement during bending was compared and analysed between two groups. Significantly compromised performance in velocity and acceleration of the lumbar spine and hip joint during bending task at various speed levels was shown in back pain group (p < 0.01). Both groups displayed a high degree of coordination of the lumbo-pelvic displacement during forward bending executed across the five levels of speed examined. Significant between-group difference was revealed in the coordination of the lumbo-pelvic velocity and acceleration (p < 0.01). Asymptomatic group moved with a progressively higher degree of lumbo-pelvic coordination for velocity and acceleration while the back pain group adopted a uniform lumbo-pelvic pattern across all the speed levels examined. The present findings show that bending speed imposes different levels of demand on the kinematics and pattern of the lumbo-pelvic movement. The ability to regulate the lumbo-pelvic movement pattern during the bending task that executed at various speed levels was shown only in pain-free individuals but not in those with low back pain. Individuals with low back pain moved with a stereotyped strategy at their lumbar spine and hip joints. This specific aberrant lumbo-pelvic movement pattern may have a crucial role in the maintenance of the chronicity in back pain.
Orbital-angular-momentum transfer to optically levitated microparticles in vacuum
NASA Astrophysics Data System (ADS)
Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan
2016-11-01
We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.
Three-dimensional repositioning accuracy of semiadjustable articulator cast mounting systems.
Tan, Ming Yi; Ung, Justina Youlin; Low, Ada Hui Yin; Tan, En En; Tan, Keson Beng Choon
2014-10-01
In spite of its importance in prosthesis precision and quality, the 3-dimensional repositioning accuracy of cast mounting systems has not been reported in detail. The purpose of this study was to quantify the 3-dimensional repositioning accuracy of 6 selected cast mounting systems. Five magnetic mounting systems were compared with a conventional screw-on system. Six systems on 3 semiadjustable articulators were evaluated: Denar Mark II with conventional screw-on mounting plates (DENSCR) and magnetic mounting system with converter plates (DENCON); Denar Mark 330 with in-built magnetic mounting system (DENMAG) and disposable mounting plates; and Artex CP with blue (ARTBLU), white (ARTWHI), and black (ARTBLA) magnetic mounting plates. Test casts with 3 high-precision ceramic ball bearings at the mandibular central incisor (Point I) and the right and left second molar (Point R; Point L) positions were mounted on 5 mounting plates (n=5) for all 6 systems. Each cast was repositioned 10 times by 4 operators in random order. Nine linear (Ix, Iy, Iz; Rx, Ry, Rz; Lx, Ly, Lz) and 3 angular (anteroposterior, mediolateral, twisting) displacements were measured with a coordinate measuring machine. The mean standard deviations of the linear and angular displacements defined repositioning accuracy. Anteroposterior linear repositioning accuracy ranged from 23.8 ±3.7 μm (DENCON) to 4.9 ±3.2 μm (DENSCR). Mediolateral linear repositioning accuracy ranged from 46.0 ±8.0 μm (DENCON) to 3.7 ±1.5 μm (ARTBLU), and vertical linear repositioning accuracy ranged from 7.2 ±9.6 μm (DENMAG) to 1.5 ±0.9 μm (ARTBLU). Anteroposterior angular repositioning accuracy ranged from 0.0084 ±0.0080 degrees (DENCON) to 0.0020 ±0.0006 degrees (ARTBLU), and mediolateral angular repositioning accuracy ranged from 0.0120 ±0.0111 degrees (ARTWHI) to 0.0027 ±0.0008 degrees (ARTBLU). Twisting angular repositioning accuracy ranged from 0.0419 ±0.0176 degrees (DENCON) to 0.0042 ±0.0038 degrees (ARTBLA). One-way ANOVA found significant differences (P<.05) among all systems for Iy, Ry, Lx, Ly, and twisting. Generally, vertical linear displacements were less likely to reach the threshold of clinical detectability compared with anteroposterior or mediolateral linear displacements. The overall repositioning accuracy of DENSCR was comparable with 4 magnetic mounting systems (DENMAG, ARTBLU, ARTWHI, ARTBLA). DENCON exhibited the worst repositioning accuracy for Iy, Ry, Lx, Ly, and twisting. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Looking and homing: how displaced ants decide where to go
Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang
2014-01-01
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s−1 and intermittent changes in turning direction. By mapping the ants’ gaze directions onto the local panorama, we find that neither the ants’ gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants’ habitat and how the insects’ behaviour informs us about how they may acquire and retrieve that information. PMID:24395961
Optimisation of the mean boat velocity in rowing.
Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P
2012-01-01
In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight path (radians, positive when axis is pointing aft); Ω=The angular velocity of rotor (radians per... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight path (radians, positive when axis is pointing aft); omega= The angular velocity of rotor (radians... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is...
Constant angular velocity of the wrist during the lifting of a sphere.
Chappell, P H; Metcalf, C D; Burridge, J H; Yule, V T; Pickering, R M
2010-05-01
The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A six-camera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move their wrist at a constant angular velocity. This phenomenon has not been reported previously. Theoretically, the muscles of the wrist provide an impulse of force at the start of the rotation while the forearm maintains a constant vertical force on a sphere. Light-heavy mean differences for the velocities, absolute velocities, angles and times taken showed no significant differences (p = 0.05).
Output of skeletal muscle contractions. a study of isokinetic plantar flexion in athletes.
Fugl-Meyer, A R; Mild, K H; Hörnsten, J
1982-06-01
Maximum torques, total work and mean power of isokinetic plantar flexions were measured with simultaneous registrations. The integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. The method applied offers possibilities for adequate description of dynamic muscular work which in the case of plantar flexion in trained man declines as a negative exponential function of angular motion velocity. The decline is parallel to that of maximum torques. The summed triceps surae iEMG was inversely proportional to the velocity and direct proportional to time suggesting that structural rather than neural factors determine the relationships between velocity of angular motion and maximum torque/total work of single Mmaneuvers. Moreover, the fact that maximum mean power as well as maximum electrical efficiency were reached at the functional velocity of toe-off during gait suggests an influence of pragmatic demands on plantar flexion mechanical output.
Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R
2010-05-28
The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shpeĭzman, V. V.; Peschanskaya, N. N.
2007-07-01
It is shown that the interferometric measurement of small displacements and small-displacement velocities can be used to determine internal stresses or the stresses induced by an applied load in solids and to control structural changes in them. The interferometric method based on the measurement of the reaction of a solid to a small perturbation in its state of stress is applied to determine stresses from the deviation of the reaction to perturbations from that in the standard stress-free case. For structural control, this method is employed to study the specific features of the characteristics of microplastic deformation that appear after material treatment or operation and manifest themselves in the temperature and force dependences of the rate of a small inelastic strain.
2016-08-21
less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17
NASA Astrophysics Data System (ADS)
Liu, Zengjun; Wang, Lei; Li, Kui; Gao, Jiaxin
2017-05-01
Hybrid inertial navigation system (HINS) is a new kind of inertial navigation system (INS), which combines advantages of platform INS, strap-down INS and rotational INS. HINS has a physical platform to isolate the angular motion as platform INS does, HINS also uses strap-down attitude algorithms and applies rotation modulation technique. Tri-axis HINS has three gimbals to isolate the angular motion in the dynamic base, in which way the system can reduce the effects of angular motion and improve the positioning precision. However, the angular motion will affect the compensation of some error parameters, especially for the lever arm effect. The lever arm effect caused by position errors between the accelerometers and rotation center cannot be ignored due to the rapid rotation of inertial measurement unit (IMU) and it will cause fluctuation and stage in velocity in HINS. The influences of angular motion on the lever arm effect compensation are analyzed firstly in this paper, and then the compensation method of lever arm effect based on the photoelectric encoders in dynamic base is proposed. Results of experiments on turntable show that after compensation, the fluctuations and stages in velocity curve disappear.
Consideration of Gravity Gradient Stabilization for Orion
1989-03-01
AND ERIC ANDionl STABILIZATION TION. MAY NEED SECOND CONTROL SYSTEM TO CONTROL OVERALL ANGULAR MOMENTUM I MOMENTUM DUMPING I IN RESPONSE TO...FURTHER EXPERIENCE IS GAINED RPEFERS TO ANY DEVICE THAT MAY BEl USED Ift A PRIOCESS TOE ECHANGE ANGULAR MOMENTUM WITH THME SPACIECRAFTI BODY Figure 5...rotating with angular velocity w relative to XYZ. If unit vectors along the X, Y, and Z axes are ij, and k, respectively, the vector r can be written
NASA Astrophysics Data System (ADS)
Lai, Y. P.; Ching, K. E.; Chuang, R.; Wen, Y. Y.; Chen, C. L.
2016-12-01
The ML 6.6 Meinong earthquake occurred in SW Taiwan, which is located at 22.92°N, 120.54°E, and depth of 14.6 km, at 03:57:26.1 (UTC+8) on February 6th 2016 in SW Taiwan. To understand the kinematics and geodynamics of this earthquake event, we select 43 continuous GPS (CGPS) stations, installed by the CGS, CWB, IES and NCKU, 94 campaign-mode GPS (RGPS) stations and 4 precise leveling routes, surveyed by the CGS from 2002 to 2016. The GPS coordinate daily solution is calculated using the software Bernese v.5.0 under the ITRF2008 as the velocity and coseismic displacement fields are relative to the station KMNM at the Chinese continental margin. To verify the reliability of the velocity inferred from the RGPS stations, we first consider the misfit value which is highly correlated to the quality of the time series. The misfit values from 67 stations are smaller than 20 mm and the misfit values from the other 27 stations are larger than 20 mm. We then interpolated the velocities from 43 CGPS stations into 67 RGPS stations, and compared the residuals between the observed velocities and the interpolated velocities with three standard deviation of the observation. All of the 67 RGPS stations meet the standard so we interpolated the velocity from 43 CGPS stations and 67 RGPS stations into the rest 27 RGPS stations, and then checked the value of residuals between the observed velocity and the interpolated velocity divided by the observed velocity. Finally, 19 RGPS stations are rejected, and the remaining stations are believe to increase the constraint of modeling. By using CGPS data, we correct the coseismic displacement fields of the RGPS stations and the precise leveling route by removing the postseismic effect. The horizontal coseismic displacement fields show a spreading trend start from the epicenter to the SW, west and NW while the horizontal velocity fields show only westward in the interseismic period. The vertical coseismic displacement fields are mainly uplift at the west of the epicenter while subsidence at the east of the epicenter. The maximum vertical coseismic displacement area is slightly north of the area that has the highest uplift velocity from precise leveling during the interseismic period. Joint inversion of the GPS and teleseismic data will soon be processed for the spatial and temporal distribution of earthquake slip.
Attitude guidance and tracking for spacecraft with two reaction wheels
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bai, Yuliang; Henninger, Helen
2018-04-01
This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.
Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin
2014-03-10
The star tracker is one of the most promising attitude measurement devices widely used in spacecraft for its high accuracy. High dynamic performance is becoming its major restriction, and requires immediate focus and promotion. A star image restoration approach based on the motion degradation model of variable angular velocity is proposed in this paper. This method can overcome the problem of energy dispersion and signal to noise ratio (SNR) decrease resulting from the smearing of the star spot, thus preventing failed extraction and decreased star centroid accuracy. Simulations and laboratory experiments are conducted to verify the proposed methods. The restoration results demonstrate that the described method can recover the star spot from a long motion trail to the shape of Gaussian distribution under the conditions of variable angular velocity and long exposure time. The energy of the star spot can be concentrated to ensure high SNR and high position accuracy. These features are crucial to the subsequent star extraction and the whole performance of the star tracker.
Modelling the vestibular head tilt response.
Heibert, D; Lithgow, B
2005-03-01
This paper attempts to verify the existence of potentially diagnostically significant periodic signals thought to exist in recordings of neural activity originating from the vestibular nerve, following a single tilt of the head. It then attempts to find the physiological basis of this signal, in particular focusing on the mechanical response of the vestibular system. Simple mechanical models of the semi circular canals having angular velocities applied to them were looked at. A simple single canal model was simulated using CFX software. Finally, a simple model of all three canals with elastic duct walls and a moving cupula was constructed. Pressure waves within the canals were simulated using water hammer or pressure transient theory. In particular, it was investigated whether pressure waves within the utricle following a square pulse angular velocity applied to the canal(s) may be responsible for quasi-periodic oscillatory signals. The simulations showed that there are no pressure waves resonating within the canals following a square pulse angular velocity applied to the canal(s). The results show that the oscillatory signals are most likely not mechanical in origin. It was concluded that further investigation is required.
The rotation of discs around neutron stars: dependence on the Hall diffusion
NASA Astrophysics Data System (ADS)
Faghei, Kazem; Salehi, Fatemeh
2018-01-01
In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.
NASA Astrophysics Data System (ADS)
Kissin, Yevgeni; Thompson, Christopher
2015-07-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.
Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.
Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D
2013-03-01
To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, Vijay A.
2012-01-01
Student difficulties regarding the angular velocity ([image omitted]) and angular acceleration ([image omitted]) of a particle have remained relatively unexplored in contrast to their linear counterparts. We present an inventory comprising multiple choice questions aimed at probing misconceptions and eliciting ill-suited reasoning patterns. The…
Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices
NASA Astrophysics Data System (ADS)
Spektor, G.; Kilbane, D.; Mahro, A. K.; Frank, B.; Ristok, S.; Gal, L.; Kahl, P.; Podbiel, D.; Mathias, S.; Giessen, H.; Meyer zu Heringdorf, F.-J.; Orenstein, M.; Aeschlimann, M.
2017-03-01
The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy. We observe both long- and short-range plasmonic vortices confined to deep subwavelength dimensions on the scale of 100 nanometers with nanometer spatial resolution and subfemtosecond time-step resolution. Finally, by measuring the angular velocity of the vortex, we directly extract the OAM magnitude of light.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
An Investigation of the Role of Friction in the Motion of a Tippe Top
NASA Astrophysics Data System (ADS)
Kager, Elisabeth; Howald, Craig; Kuhl, Dennis
2008-03-01
The time it takes a Tippe Top to turn over was measured as a function of friction. The reproducibility of the measured tipping time was also examined. Two experiments were conducted: One to measure a frictional figure of merit and the second to test the time it takes the Tippe Top to tip on three surfaces with varying friction. The three surfaces used were glass, Teflon, and Vinyl. Several runs of spinning Tippe Tops were recorded by means of a video camera. The data was analyzed by extracting the angular position and the angular velocity of the Tippe Top. By graphing the angular velocity vs. time and using the slope of the line, a frictional figure of merit was found. The time it took the Tippe Top to tip in each case was also determined.
NASA Technical Reports Server (NTRS)
Guedry, F. E.; Paloski, W. F. (Principal Investigator)
1996-01-01
When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-12-15
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
Correcting a Widespread Error concerning the Angular Velocity of a Rotating Rigid Body.
ERIC Educational Resources Information Center
Leubner, C.
1981-01-01
Since many texts use an incorrect argument in obtaining the instantaneous velocity of a rotating body, a correct and concise derivation of this quantity for a rather general case is given. (Author/SK)
Engine including hydraulically actuated valvetrain and method of valve overlap control
Cowgill, Joel [White Lake, MI
2012-05-08
An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.
Sozzi, Stefania; Nardone, Antonio; Schieppati, Marco
2016-01-01
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders. PMID:27625599
Inertial effects during irreversible meniscus reconfiguration in angular pores
NASA Astrophysics Data System (ADS)
Ferrari, Andrea; Lunati, Ivan
2014-12-01
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.
Developing Soft-Kill Capability for Light Armoured Vehicles through Battlefield Simulations
2007-02-01
scripted so they can move, fire, sense, communicate and react without operator intervention. The entities, can interact with each other as well as manned...trace of the laser illuminator. The horizontal scan is 135◦ followed by a vertical angular displacement of 15◦ and retracement. The 15◦ vertical scan...properties based on combined characteristics. An example of a new detector is the laser detecting HARLID. With an angular resolution of ±1◦, it is a
Arm-Positioning Accuracy as a Function of Direction, Extent, and Presentation
ERIC Educational Resources Information Center
Casher, Bonnie Berger; Stadulis, Robert E.
1975-01-01
Accuracy of horizontal arm-positioning toward the midline of the body was investigated, comparing two methods of presentation of the test position (verbal versus passive movement) and three extents of angular displacement. (RC)
Aeroelastically coupled blades for vertical axis wind turbines
Paquette, Joshua; Barone, Matthew F.
2016-02-23
Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1984-01-01
The potential effects of high frequency vibrations on the final Thematic Mapper (TM) image are evaluated for 26 scenes. The angular displacements of the TM detectors from their nominal pointing directions as measured by the TM Angular Displacement Sensor (ADS) and the spacecraft Dry Rotor Inertial Reference Unit (DRIRU) give data on the along scan and cross scan high frequency vibrations present in each scan of a scene. These measurements are to find the maximum overlap and underlap between successive scans, and to analyze the spectrum of the high frequency vibrations acting on the detectors. The Fourier spectrum of the along scan and cross scan vibrations for each scene also evaluated. The spectra of the scenes examined indicate that the high frequency vibrations arise primarily from the motion of the TM and MSS mirrors, and that their amplitudes are well within expected ranges.
High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.
Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo
2013-11-26
In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.
Spatially resolved photodiode response for simulating precise interferometers.
Fernández Barranco, Germán; Tröbs, Michael; Müller, Vitali; Gerberding, Oliver; Seifert, Frank; Heinzel, Gerhard
2016-08-20
Quadrant photodiodes (QPDs) are used in laser interferometry systems to simultaneously detect longitudinal displacement of test masses and angular misalignment between the two interfering beams. The latter is achieved by means of the differential wavefront sensing (DWS) technique, which provides ultra-high precision for measuring angular displacements. We have developed a setup to obtain the spatially resolved response of QPDs that, together with an extension of the simulation software IfoCAD, allows us to use the measured response in simulations and accurately predict the desired longitudinal and DWS phase observables. Three different commercial off-the-shelf QPD candidates for space-based interferometry were characterized. The measured response of one QPD was used in optical simulations. Nonuniformities in the response of the device and crosstalk between segments do not introduce significant variations in the longitudinal and DWS measurands with respect to the standard case when a uniform QPD without crosstalk is used.
NASA Technical Reports Server (NTRS)
Mattson, D. L.
1975-01-01
The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.
Very Low Cost Expendable Harassment System Design Study. Volume 3
1975-12-01
Vst = W = wf. w = g a, = a O. 3D LO * n ■ 0 = thrust horsepower anailable (hp) thrust horsepower required (hp) airspeed (mph) stall...A-113 ^rr-r-^rfr^r- "- -—’^’ iääaääiäitämäiA Hi^l^Wt^MjMW^1^-^^^ APPENDIX A-6-2 DESIGN OUTPUT VST SL VST 3K WEIGHT VST (S=17,0... angular velocity change of rolling moment from a change in yaw angular velocity change of rolling moment from a change in sideslip angle change of
Stellar Angular Momentum Distributions and Preferential Radial Migration
NASA Astrophysics Data System (ADS)
Wyse, Rosemary; Daniel, Kathryne J.
2018-04-01
I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.
Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints
NASA Astrophysics Data System (ADS)
Shahrooei, Abolfazl; Kazemi, Mohammad Hosein
2018-04-01
In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.
On the Origin of Rotation of a Celestial Body
NASA Astrophysics Data System (ADS)
Vujičić, V. A.
1988-03-01
The differential equations of the self-rotation of a celestial body have been evaluated. From an integral of these equations a formula for angular velocity of the celestial body was obtained. This formula after being applied to the rotation of the Sun and of the Earth gives, respectively, the following angular velocity ranges: 0.588×10-6<ω<18, 187×10-6 and 0.7533×10-5<ω<12,4266×10-5. These are up to three times narrower than those previously obtained by Savić and Kašanin [1].
NASA Astrophysics Data System (ADS)
Delhi Babu, R.; Ganesh, S.
2018-04-01
The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.
The role of biomechanics in maximising distance and accuracy of golf shots.
Hume, Patria A; Keogh, Justin; Reid, Duncan
2005-01-01
Golf biomechanics applies the principles and technique of mechanics to the structure and function of the golfer in an effort to improve golf technique and performance. A common recommendation for technical correction is maintaining a single fixed centre hub of rotation with a two-lever one-hinge moment arm to impart force on the ball. The primary and secondary spinal angles are important for conservation of angular momentum using the kinetic link principle to generate high club-head velocity. When the golfer wants to maximise the distance of their drives, relatively large ground reaction forces (GRF) need to be produced. However, during the backswing, a greater proportion of the GRF will be observed on the back foot, with transfer of the GRF on to the front foot during the downswing/acceleration phase. Rapidly stretching hip, trunk and upper limb muscles during the backswing, maximising the X-factor early in the downswing, and uncocking the wrists when the lead arm is about 30 degrees below the horizontal will take advantage of the summation of force principle. This will help generate large angular velocity of the club head, and ultimately ball displacement. Physical conditioning will help to recruit the muscles in the correct sequence and to optimum effect. To maximise the accuracy of chipping and putting shots, the golfer should produce a lower grip on the club and a slower/shorter backswing. Consistent patterns of shoulder and wrist movements and temporal patterning result in successful chip shots. Qualitative and quantitative methods are used to biomechanically assess golf techniques. Two- and three-dimensional videography, force plate analysis and electromyography techniques have been employed. The common golf biomechanics principles necessary to understand golf technique are stability, Newton's laws of motion (inertia, acceleration, action reaction), lever arms, conservation of angular momentum, projectiles, the kinetic link principle and the stretch-shorten cycle. Biomechanics has a role in maximising the distance and accuracy of all golf shots (swing and putting) by providing both qualitative and quantitative evidence of body angles, joint forces and muscle activity patterns. The quantitative biomechanical data needs to be interpreted by the biomechanist and translated into coaching points for golf professionals and coaches. An understanding of correct technique will help the sports medicine practitioner provide sound technical advice and should help reduce the risk of golfing injury.
KRASH 85 User’s Guide - Input/Output Format.
1985-07-01
speaking, any significant .crror in the model will result in a very large value for EPSILON (1>0.1) or will ca;use the NASTRAN solution to terminate with...with NASTRAN ) * A comprehensive energy balance, * Center of gravity (c.g.) displacement, velocity, acceleration and force time histories * Revised...initial conditions subroutine (combined with NASTRAN ) * A comprehensive energy balance * Center of gravity (e.g.) displacement, velocity, acceleration and
ERIC Educational Resources Information Center
Kanderakis, Nikos E.
2009-01-01
According to the principle of virtual velocities, if on a simple machine in equilibrium we suppose a slight virtual movement, then the ratio of weights or forces equals the inverse ratio of velocities or displacements. The product of the weight raised or force applied multiplied by the height or displacement plays a central role there. British…
Tympanal mechanics and neural responses in the ears of a noctuid moth
NASA Astrophysics Data System (ADS)
Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.
2011-12-01
Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.
Stegman, Kelly J; Park, Edward J; Dechev, Nikolai
2012-07-01
The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices.
Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin
2014-03-01
Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.
Validity and reliability of the G-Cog device for kinematic measurements.
Chiementin, X; Crequy, S; Bertucci, W
2013-11-01
The aim of this study was to test the validity and the reliability of the G-Cog which is a new BMX powermeter allowing for the measurements of the acceleration on X-Y-Z axis (250 Hz) at the BMX rear wheel. These measurements allow computing lateral, angular, linear acceleration, angular, linear velocity and the distance. Mechanical measurements at submaximal intensities in standardized laboratory conditions and during maximal exercises in the field conditions were performed to analyse the reliability of the G-Cog accelerometers. The performances were evaluated in comparison with an industrial accelerometer and with 2 powermeters, the SRM and PowerTap. Our results in laboratory conditions show that the G-Cog measurements have low value of variation coefficient (CV=2.35%). These results suggest that the G-cog accelerometers measurements are reproducible. The ratio limits of agreement of the rear hub angular velocity differences between the SRM and the G-Cog were 1.010 × ÷ 1.024 (95%CI=0.986-1.034) and between PowerTap and G-Cog were 0.993 × ÷ 1.019 (95%CI=0.974-1.012). In conclusion, our results suggest that the G-Cog angular velocity measurements are valid and reliable compared with SRM and PowerTap and could be used to analyse the kinematics during BMX actual conditions. © Georg Thieme Verlag KG Stuttgart · New York.
Sadykov, R A; Migunov, V V
1987-01-01
The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
A Variational Property of the Velocity Distribution in a System of Material Particles
ERIC Educational Resources Information Center
Siboni, S.
2009-01-01
A simple variational property concerning the velocity distribution of a set of point particles is illustrated. This property provides a full characterization of the velocity distribution which minimizes the kinetic energy of the system for prescribed values of linear and angular momentum. Such a characterization is applied to discuss the kinetic…
Functional phases and angular momentum characteristics of Tkatchev and Kovacs.
Irwin, Gareth; Exell, Timothy A; Manning, Michelle L; Kerwin, David G
2017-03-01
Understanding the technical requirements and underlying biomechanics of complex release and re-grasp skills on high bar allows coaches and scientists to develop safe and effective training programmes. The aim of this study was to examine the differences in the functional phases between the Tkatchev and Kovacs skills and to explain how the angular momentum demands are addressed. Images of 18 gymnasts performing 10 Tkatchevs and 8 Kovacs at the Olympic Games were recorded (50 Hz), digitised and reconstructed (3D Direct Linear Transformation). Orientation of the functional phase action, defined by the rapid flexion to extension of the shoulders and extension to flexion of the hips as the performer passed through the lower vertical, along with shoulder and hip angular kinematics, angular momentum and key release parameters (body angle, mass centre velocity and angular momentum about the mass centre and bar) were compared between skills. Expected differences in the release parameters of angle, angular momentum and velocity were observed and the specific mechanical requirement of each skill were highlighted. Whilst there were no differences in joint kinematics, hip and shoulder functional phase were significantly earlier in the circle for the Tkatchev. These findings highlight the importance of the orientation of the functional phase in the preceding giant swing and provide coaches with further understanding of the critical timing in this key phase.
Prophylactic Ankle Braces and the Kinematics and Kinetics of Half-Squat Parachute Landing.
Wu, Di; Zheng, Chao; Wu, Ji; Hu, Tan; Huang, Rongrong; Wang, Lizhen; Fan, Yubo
2018-02-01
The objective of the study was to investigate the effects of dropping heights and prophylactic ankle braces on ankle joint biomechanics during half-squat parachute landing from two different heights. There were 30 male elite paratroopers with formal parachute landing training and more than 2 yr of parachute jumping experience who were recruited for this study. The subjects tested three different ankle brace conditions (no-brace, elastic brace, semirigid brace). Each subject was instructed to jump off a platform from two different heights of 0.4 m and 0.8 m, and land on a force plate in a half-squat posture. The Vicon 3D motion capture system and force plate were used to record and calculate kinematic and kinetic data. Dropping height had a significant effect on peak vertical ground reaction force (vGRF), maximum ankle angular displacement, and time to vGRF. As compared with the no-brace group, use of an elastic ankle brace significantly reduced peak vGRF by 18.57% and both braces significantly reduced the maximal angular displacements of dorsiflexion. The semirigid brace provided greater restriction against maximal angular displacement of inversion. The elastic and semirigid ankle braces both effectively restricted motion stability of the ankle joint in the sagittal plane, and the semirigid ankle brace prevented excessive inversion, although the comfort of this device should be improved overall.Wu D, Zheng C, Wu J, Hu T, Huang R, Wang L, Fan Y. Prophylactic ankle braces and the kinematics and kinetics of half-squat parachute landing. Aerosp Med Hum Perform. 2018; 89(2):141-146.
Earth's Surface Displacements from the GPS Time Series
NASA Astrophysics Data System (ADS)
Haritonova, D.; Balodis, J.; Janpaule, I.; Morozova, K.
2015-11-01
The GPS observations of both Latvian permanent GNSS networks - EUPOS®-Riga and LatPos, have been collected for a period of 8 years - from 2007 to 2014. Local surface displacements have been derived from the obtained coordinate time series eliminating different impact sources. The Bernese software is used for data processing. The EUREF Permanent Network (EPN) stations in the surroundings of Latvia are selected as fiducial stations. The results have shown a positive tendency of vertical displacements in the western part of Latvia - station heights are increasing, and negative velocities are observed in the central and eastern parts. Station vertical velocities are ranging in diapason of 4 mm/year. In the case of horizontal displacements, site velocities are up to 1 mm/year and mostly oriented to the south. The comparison of the obtained results with data from the deformation model NKG_RF03vel has been made. Additionally, the purpose of this study is to analyse GPS time series obtained using two different data processing strategies: Precise Point Positioning (PPP) and estimation of station coordinates relatively to the positions of fiducial stations also known as Differential GNSS.
A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors.
Grbic, Vladimir; Djuric, Sasa; Knezevic, Olivera M; Mirkov, Dragan M; Nedeljkovic, Aleksandar; Jaric, Slobodan
2017-09-01
Single outcomes of standard isokinetic dynamometry tests do not discern between various muscle mechanical capacities. In this study, we aimed to (1) evaluate the shape and strength of the force-velocity relationship of knee extensors, as observed in isokinetic tests conducted at a wide range of angular velocities, and (2) explore the concurrent validity of a simple 2-velocity method. Thirteen physically active females were tested for both the peak and averaged knee extensor concentric force exerted at the angular velocities of 30°-240°/s recorded in the 90°-170° range of knee extension. The results revealed strong (0.960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jee, I.; Komatsu, E.; Suyu, S.H., E-mail: ijee@mpa-garching.mpg.de, E-mail: komatsu@mpa-garching.mpg.de, E-mail: suyu@asiaa.sinica.edu.tw
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions ofmore » a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.« less
Andrade, Marilia Dos Santos; De Lira, Claudio Andre Barbosa; Koffes, Fabiana De Carvalho; Mascarin, Naryana Cristina; Benedito-Silva, Ana Amélia; Da Silva, Antonio Carlos
2012-01-01
The purpose of this study was to determine differences in hamstrings-to-quadriceps (H/Q) peak torque ratios evaluated at different angular velocities between men and women who participate in judo, handball or soccer. A total of 166 athletes, including 58 judokas (26 females and 32 males), 39 handball players (22 females and 17 males), and 69 soccer players (17 females and 52 males), were evaluated using an isokinetic dynamometer. The H/Q isokinetic peak torque ratios were calculated at angular velocities of 1.05 rad · s⁻¹ and 5.23 rad · s⁻¹. In the analysis by gender, female soccer players produced lower H/Q peak torque ratios at 1.05 rad · s⁻¹ than males involved in the same sport. However, when H/Q peak torque ratio was assessed at 5.23 rad · s⁻¹, there were no significant differences between the sexes. In the analysis by sport, there were no differences among females at 1.05 rad · s⁻¹. In contrast, male soccer players had significantly higher H/Q peak torque ratios than judokas (66 ± 12% vs. 57 ± 14%, respectively). Female handball players produced significantly lower peak torque ratios at 5.23 rad · s⁻¹ than judokas or soccer players, whereas males presented no ratio differences among sports At 5.23 rad · s⁻¹. In the analysis by velocity, women's muscular ratios assessed at 1.05 rad · s⁻¹ were significantly lower than at 5.23 rad · s⁻¹ for all sports; among men, only judokas presented lower ratios at 1.05 rad · s⁻¹ than at 5.23 rad · s⁻¹. The present results suggest that sport modality and angular velocity influence the isokinetic strength profiles of men and women.
Lower Extremity Kinematics During a Drop Jump in Individuals With Patellar Tendinopathy
Rosen, Adam B.; Ko, Jupil; Simpson, Kathy J.; Kim, Seock-Ho; Brown, Cathleen N.
2015-01-01
Background: Patellar tendinopathy (PT) is a common degenerative condition in physically active populations. Knowledge regarding the biomechanics of landing in populations with symptomatic PT is limited, but altered mechanics may play a role in the development or perpetuation of PT. Purpose: To identify whether study participants with PT exhibited different landing kinematics compared with healthy controls. Study Design: Controlled laboratory study. Methods: Sixty recreationally active participants took part in this study; 30 had current signs and symptoms of PT, including self-reported pain within the patellar tendon during loading activities for at least 3 months and ≤80 on the Victorian Institute of Sport Assessment Scale–Patella (VISA-P). Thirty healthy participants with no history of PT or other knee joint pathology were matched by sex, age, height, and weight. Participants completed 5 trials of a 40-cm, 2-legged drop jump followed immediately by a 50% maximum vertical jump. Dependent variables of interest included hip, knee, and ankle joint angles at initial ground contact, peak angles, and maximum angular displacements during the landing phase in 3 planes. Independent-samples t tests (P ≤ .05) were utilized to compare the joint angles and angular displacements between PT and control participants. Results: Individuals with PT displayed significantly decreased peak hip (PT, 59.2° ± 14.6°; control, 67.2° ± 13.9°; P = .03) and knee flexion angles (PT, 74.8° ± 13.2°; control, 82.5° ± 9.0°; P = .01) compared with control subjects. The PT group displayed decreased maximum angular displacement in the sagittal plane at the hip (PT, 49.3° ± 10.8°; control, 55.2° ± 11.4°; P = .04) and knee (PT, 71.6° ± 8.4°; control, 79.7° ± 8.3°; P < .001) compared with the control group. Conclusion: Participants with PT displayed decreased maximum flexion and angular displacement in the sagittal plane, at both the knee and the hip. The altered movement patterns in those with PT may be perpetuating symptoms associated with PT and could be due to the contributions of the rectus femoris during dynamic movement. Clinical Relevance: Based on kinematic alterations in symptomatic participants, rehabilitation efforts may benefit from focusing on both the knee and the hip to treat symptoms associated with PT. PMID:26665034