DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M.; Abujetas, Diego R.
The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guidedmore » modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.« less
OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foyle, K.; Rix, H.-W.; Walter, F.
2011-07-10
We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less
Radiation Channels Close to a Plasmonic Nanowire Visualized by Back Focal Plane Imaging
Hartmann, Nicolai; Piatkowski, Dawid; Ciesielski, Richard; Mackowski, Sebastian; Hartschuh, Achim
2014-01-01
We investigated the angular radiation patterns, a key characteristic of an emitting system, from individual silver nanowires decorated with rare earth ion-doped nanocrystals. Back focal plane radiation patterns of the nanocrystal photoluminescence after local two-photon excitation can be described by two emission channels: Excitation of propagating surface plasmons in the nanowire followed by leakage radiation and direct dipolar emission observed also in the absence of the nanowire. Theoretical modeling reproduces the observed radiation patterns which strongly depend on the position of excitation along the nanowire. Our analysis allows to estimate the branching ratio into both emission channels and to determine the diameter dependent surface plasmon quasi-momentum, important parameters of emitter-plasmon structures. PMID:24131299
Quadrupole radiation from terahertz dipole antennas.
Rudd, J V; Johnson, J L; Mittleman, D M
2000-10-15
We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements.
Thermal emitter comprising near-zero permittivity materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.
A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.
CROSS-POLARIZED ANGULAR EMISSION PATTERNS FROM LENS-COUPLED TERAHERTZ ANTENNAS. (R827122)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Photoelectron Diffraction from Valence States of Oriented Molecules
NASA Astrophysics Data System (ADS)
Krüger, Peter
2018-06-01
The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei, E-mail: wguo2@ncsu.edu; Kirste, Ronny; Bryan, Zachary
Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher lightmore » extraction efficiency in deep-ultra-violet light-emitting diodes.« less
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul; ...
2016-10-05
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
NASA Astrophysics Data System (ADS)
Jacobs, V. L.; Filuk, A. B.
1999-09-01
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, V.L.; Filuk, A.B.
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less
Emissivity Measurements of Additively Manufactured Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Robert Vaughn; Reid, Robert Stowers; Baker, Andrew M.
The emissivity of common 3D printing materials such as ABS and PLA were measured using a reflectivity meter and have the measured value of approximately 0.92. Adding a conductive material to the filament appears to cause a decrease in the emissivity of the surface. The angular dependence of the emissivity and the apparent temperature was measured using a FLIR infrared camera showing that the emissivity does not change much for shallow angles less than 40 angular degrees, and drops off dramatically after 70 angular degrees.
Role of Emission Character in Auger Electron Diffraction
NASA Astrophysics Data System (ADS)
Idzerda, Y. U.
A review of the interpretation of the angle-dependent Auger intensity pattern by both Auger electron diffraction (AED), which is concerned with identifying the nearby atomic structure, and angle-resolved Auger electron spectroscopy (ARAES), which is concerned with identifying the character of the emitted electron source function, is presented. The importance of the emission character of the Auger electron (in terms of its angular momentum, l, and its magnetic quantum number, m) in understanding the generation of the AED and ARAES patterns is described. Understanding of how the various direct and secondary mechanisms for the Auger electron generation can affect the populations of these states can also be used to help identify the multiplet structure within the Auger lineshape as well as elucidate the core hole generation process.
Motion fading is driven by perceived, not actual angular velocity.
Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U
2010-06-01
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Emissive and reflective properties of curved displays in relation to image quality
NASA Astrophysics Data System (ADS)
Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne
2016-03-01
Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka
2015-11-10
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less
The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey
NASA Astrophysics Data System (ADS)
Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik
2018-05-01
Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.
Collision-energy-resolved angular distribution of Penning electrons for N 2-He ∗(2 3S)
NASA Astrophysics Data System (ADS)
Hanzawa, Yoshinori; Kishimoto, Naoki; Yamazaki, Masakazu; Ohno, Koichi
2006-07-01
The collision-energy-resolved angular distributions of Penning electrons for individual ionic state of N 2-He ∗(2 3S) were measured. The angular distributions showed increasing intensity in the backward (rebounding) directions with respect to initial He ∗(2 3S) beam vector because Penning ionization occurs with a collision against repulsive interaction wall followed by the electron emission from 2s orbital of He ∗. We also analyzed internal angular distribution by means of fitting parameters using classical trajectory calculations for N 2-He ∗(2 3S) on the modified interaction potential. These internal angular distributions suggested the electron emission from 2s orbital of He ∗ and they depended on collision energy and electron kinetic energy.
Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S
2016-03-01
Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain. Copyright © 2016 Elsevier B.V. All rights reserved.
Behavioural responses of the yellow emitting annelid Tomopteris helgolandica to photic stimuli.
Gouveneaux, Anaïd; Gielen, Marie-Charlotte; Mallefet, Jérôme
2018-05-01
In contrast to most mesopelagic bioluminescent organisms specialised in the emission and reception of blue light, the planktonic annelid Tomopteris helgolandica produces yellow light. This unusual feature has long been suggested to serve for intraspecific communication. Yet, this virtually admitted hypothesis has never been tested. In this behavioural study of spectral colour sensitivity, we first present an illustrated repertoire of the postures and action patterns described by captive specimens. Then video tracking and motion analysis are used to quantify the behavioural responses of singled out worms to photic stimuli imitating intraspecific (yellow) or interspecific (blue) bioluminescent signals. We show the ability of T. helgolandica to react and to contrast its responses to bioluminescent-like blue and yellow light signals. In particular, the attractive effect of yellow light and the variation of angular velocity observed according to the pattern of yellow stimuli (flashes versus glows) support the intraspecific communication hypothesis. However, given the behavioural patterns of T. helgolandica, including mechanically induced light emission, the possibility that bioluminescence may be part of escape/defence responses to predation, should remain an open question. Copyright © 2018 John Wiley & Sons, Ltd.
New Possibilities of Positron-Emission Tomography
NASA Astrophysics Data System (ADS)
Volobuev, A. N.
2018-01-01
The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.
Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity
NASA Technical Reports Server (NTRS)
Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor
2011-01-01
The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
Excitation enhancement and extraction enhancement with photonic crystals
Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John
2015-03-03
Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.
Polarization, spectral, and spatial emission characteristics of chiral semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Maksimov, A. A.; Peshcherenko, A. B.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Tikhodeev, S. G.; Lobanov, S. V.; Schneider, C.; Höfling, S.
2017-11-01
A detailed study of the degree of circular polarization and the angular dependence of the emission spectra of an array of InAs quantum dots embedded in GaAs photonic nanostructures with chiral symmetry in the absence of an external magnetic field is carried out. A strong angular dependence of the spectra and the degree of circular polarization of radiation from quantum dots, as well as a significant effect of the lattice period of the photonic crystal on the radiation characteristics, is observed. The dispersion of photonic modes near the (±3, 0) and (±2, ±2) Bragg resonances is investigated in detail. The experimentally observed polarization, spectral, and angular characteristics of the quantum-dot emission are explained in the framework of a theory describing radiative processes in chiral photonic nanostructures.
Analysis of the spatial pattern of strawberry angular leaf spot in California nursery production
USDA-ARS?s Scientific Manuscript database
Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. In California, angular leaf spot (ALS) is a common disease in strawberry nursery production, and a major concern for nurseries wishing to export plants. The spatial pattern of disease is an ecological property whose ch...
NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow
NASA Astrophysics Data System (ADS)
Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran
2014-12-01
We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.
Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archambault, S.; Griffin, S.; Archer, A.
2017-02-01
We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadenedmore » emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.« less
Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R.; Bergamo, M.
2012-01-01
Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.
2008-01-01
appropriate; scan cycle, emission interval, or emission probability; frequency bands; relative angular size of 2 Carl Rhodes, Jeff Hagen, and Mark...choices based on its own perceptions. An agent has autonomy. 2 In this report, “behaviors” are individual scripts , programs, instructions, or decision...relative angular size of main and side lobes (for directional signals); and the effective radiated power of each radiative lobe. With these parameters and
Light emission from compound eye with conformal fluorescent coating
NASA Astrophysics Data System (ADS)
Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2015-03-01
Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf
NASA Astrophysics Data System (ADS)
Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef
2017-09-01
An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.
Real-time particulate mass measurement based on laser scattering
NASA Astrophysics Data System (ADS)
Rentz, Julia H.; Mansur, David; Vaillancourt, Robert; Schundler, Elizabeth; Evans, Thomas
2005-11-01
OPTRA has developed a new approach to the determination of particulate size distribution from a measured, composite, laser angular scatter pattern. Drawing from the field of infrared spectroscopy, OPTRA has employed a multicomponent analysis technique which uniquely recognizes patterns associated with each particle size "bin" over a broad range of sizes. The technique is particularly appropriate for overlapping patterns where large signals are potentially obscuring weak ones. OPTRA has also investigated a method for accurately training the algorithms without the use of representative particles for any given application. This streamlined calibration applies a one-time measured "instrument function" to theoretical Mie patterns to create the training data for the algorithms. OPTRA has demonstrated this algorithmic technique on a compact, rugged, laser scatter sensor head we developed for gas turbine engine emissions measurements. The sensor contains a miniature violet solid state laser and an array of silicon photodiodes, both of which are commercial off the shelf. The algorithmic technique can also be used with any commercially available laser scatter system.
Emission of terahertz waves in the interaction of a laser pulse with clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, A. A., E-mail: frolov@ihed.ras.ru
2016-07-15
A theory of generation of terahertz radiation in the interaction of a femtosecond laser pulse with a spherical cluster is developed for the case in which the density of free electrons in the cluster plasma exceeds the critical value. The spectral, angular, and energy characteristics of the emitted terahertz radiation are investigated, as well as its spatiotemporal structure. It is shown that the directional pattern of radiation has a quadrupole structure and that the emission spectrum has a broad maximum at a frequency nearly equal to the reciprocal of the laser pulse duration. It is found that the total radiatedmore » energy depends strongly on the cluster size. Analysis of the spatiotemporal profile of the terahertz signal shows that it has a femtosecond duration and contains only two oscillation cycles.« less
Bandpass mismatch error for satellite CMB experiments I: estimating the spurious signal
NASA Astrophysics Data System (ADS)
Thuong Hoang, Duc; Patanchon, Guillaume; Bucher, Martin; Matsumura, Tomotake; Banerji, Ranajoy; Ishino, Hirokazu; Hazumi, Masashi; Delabrouille, Jacques
2017-12-01
Future Cosmic Microwave Background (CMB) satellite missions aim to use the B mode polarization to measure the tensor-to-scalar ratio r with a sensitivity σr lesssim 10-3. Achieving this goal will not only require sufficient detector array sensitivity but also unprecedented control of all systematic errors inherent in CMB polarization measurements. Since polarization measurements derive from differences between observations at different times and from different sensors, detector response mismatches introduce leakages from intensity to polarization and thus lead to a spurious B mode signal. Because the expected primordial B mode polarization signal is dwarfed by the known unpolarized intensity signal, such leakages could contribute substantially to the final error budget for measuring r. Using simulations we estimate the magnitude and angular spectrum of the spurious B mode signal resulting from bandpass mismatch between different detectors. It is assumed here that the detectors are calibrated, for example using the CMB dipole, so that their sensitivity to the primordial CMB signal has been perfectly matched. Consequently the mismatch in the frequency bandpass shape between detectors introduces differences in the relative calibration of galactic emission components. We simulate this effect using a range of scanning patterns being considered for future satellite missions. We find that the spurious contribution to r from the reionization bump on large angular scales (l < 10) is ≈ 10-3 assuming large detector arrays and 20 percent of the sky masked. We show how the amplitude of the leakage depends on the nonuniformity of the angular coverage in each pixel that results from the scan pattern.
Deconstructing the Spectrum of the Soft X-ray Background
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2000-01-01
The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.
NASA Astrophysics Data System (ADS)
Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.
2012-12-01
Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than ±0.1 mrad (≈0.036 mrad) and has an excellent repeatability with an error of less than 2%.
NASA Astrophysics Data System (ADS)
Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.
2006-06-01
We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.
Full-sky, High-resolution Maps of Interstellar Dust
NASA Astrophysics Data System (ADS)
Meisner, Aaron Michael
We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).
Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters
NASA Astrophysics Data System (ADS)
Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis
2018-03-01
We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.
Photon Beaming in External Compton models
NASA Astrophysics Data System (ADS)
Hutter, Anne; Spanier, Felix
In attempt to model blazar emission spectra, External Compton models have been employed to fit the observed data. In these models photons from the accretion disk or the CMB are upscat-tered via the Compton effect by the electrons and contribute to the emission. In previous works the resulting scattered photon angular distribution has been calculated for ultrarelativistic elec-trons. This work aims to extend the result to the case of mildly relativistic electrons. Hence, the beaming pattern produced by a relativistic moving blob consisting of isotropic distributed electrons, which scatter photons of an isotropic external radiation is calculated numerically. The isotropic photon density distribution in the blob frame is Lorentz-transformed into the rest frame of the electron and results in an anisotropic distribution with a preferred direction where it is upscattered by the electrons. The photon density distribution is determined and transformed back into the blob frame. As the photons in the rest frame of the electrons are dis-tributed anisotropically the scattering does not reproduce this anisotropic distribution. When transforming back into the blob frame the resulting photon distribution won't be isotropic. Approximations have shown that the resulting photon distribution is boosted more strongly than a distribution assumed to be isotropic in the rest frame of the electrons. Hence, in order to obtain the beaming caused by external Compton it is of particular interest to derive a more exact approximation of the resulting photon angular distribution.
Spectroscopy of excited states of unbound nuclei 30Ar and 29Cl
NASA Astrophysics Data System (ADS)
Xu, X.-D.; Mukha, I.; Grigorenko, L. V.; Scheidenberger, C.; Acosta, L.; Casarejos, E.; Chudoba, V.; Ciemny, A. A.; Dominik, W.; Duénas-Díaz, J.; Dunin, V.; Espino, J. M.; Estradé, A.; Farinon, F.; Fomichev, A.; Geissel, H.; Golubkova, T. A.; Gorshkov, A.; Janas, Z.; Kamiński, G.; Kiselev, O.; Knöbel, R.; Krupko, S.; Kuich, M.; Litvinov, Yu. A.; Marquinez-Durán, G.; Martel, I.; Mazzocchi, C.; Nociforo, C.; Ordúz, A. K.; Pfützner, M.; Pietri, S.; Pomorski, M.; Prochazka, A.; Rymzhanova, S.; Sánchez-Benítez, A. M.; Sharov, P.; Simon, H.; Sitar, B.; Slepnev, R.; Stanoiu, M.; Strmen, P.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Weick, H.; Winkler, M.; Winfield, J. S.
2018-03-01
Several states of proton-unbound isotopes 30Ar and 29Cl were investigated by measuring their in-flight decay products, 28S + proton + proton and 28S + proton, respectively. A refined analysis of 28S-proton angular correlations indicates that the ground state of 30Ar is located at 2 .45-0.10+0.05 MeV above the two-proton emission threshold. The investigation of the decay mechanism of the 30Ar ground state demonstrates that it has the transition dynamics. In the "transitional" region, the correlation patterns of the decay products present a surprisingly strong sensitivity to the two-proton decay energy of the 30Ar ground state and the one-proton decay energy as well as the one-proton decay width of the 29Cl ground state. The comparison of the experimental 28S-proton angular correlations with those resulting from Monte Carlo simulations of the detector response illustrates that other observed 30Ar excited states decay by sequential emission of protons via intermediate resonances in 29Cl. Based on the findings, the decay schemes of the observed states in 30Ar and 29Cl were constructed. For calibration purposes and for checking the performance of the experimental setup, decays of the previously known states of a two-proton emitter 19Mg were remeasured. Evidences for one new excited state in 19Mg and two unknown states in 18Na were found.
Controlled enhancement of spin-current emission by three-magnon splitting.
Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O
2011-07-03
Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.
The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Sharpness of interference pattern of the 3-pole wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je
2016-07-27
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Sharpness of Interference Pattern of the 3-Pole Wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J.; Kim, Kwang-Je
2016-07-02
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T. B.; Norin, L.; McCarrick, M.
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Radio pumping of ionospheric plasma with orbital angular momentum.
Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT
Ackermann, M.; Ajello, M.; Albert, A.; ...
2012-04-23
The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. Here, we analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes | b | > 30 ° in four energy bins spanning 1–50 GeV. At multipoles ℓ ≥ 155 , corresponding to angular scales ≲ 2 ° , angular power above the photon noise level is detected at > 99.99 % confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at > 99 % confidencemore » level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ ≥ 155 , suggesting that it originates from the contribution of one or more unclustered source populations. Furthermore, the amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C P / < I > 2 = 9.05 ± 0.84 × 10 - 6 sr , while the energy dependence of C P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ s = 2.40 ± 0.07 . We also discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.« less
Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT
NASA Technical Reports Server (NTRS)
Ferrara, E. C.; McEnery, J. E.; Troja, E.
2012-01-01
The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.
Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*
GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.
2006-01-01
Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726
On the angular variation of thermal infrared emissivity of inorganic soils
NASA Astrophysics Data System (ADS)
GarcíA-Santos, Vicente; Valor, Enric; Caselles, Vicente; ÁNgeles Burgos, M.; Coll, CéSar
2012-10-01
Land surface temperature (LST), a key parameter for many environmental studies, can be most readily estimated by using thermal infrared (TIR) sensors onboard satellites. Accurate LST are contingent upon simultaneously accurate estimates of land surface emissivity (ɛ), which depend on sensor viewing angle and the anisotropy of optical and structural properties of surfaces. In the case of inorganic bare soils (IBS), there are still few data that quantify emissivity angular effects. The present work deals with the angular variation of TIR emissivity for twelve IBS types, representative of nine of the twelve soil textures found on Earth according to United States Department of Agriculture classification. Emissivity was measured with a maximum error of ±0.01, in several spectral ranges within the atmospheric window 7.7-14.3 μm, at different zenithal (θ) and azimuthal (φ) angles. Results showed that ɛ of all IBS studied is almost azimuthally isotropic, and also zenithally up to θ = 40°, from which ɛ values decrease with the increase of θ. This decrease is most pronounced in sandy IBS which is rich in quartz reaching a maximum difference from nadir of +0.101 at θ = 70°. On the other hand, clayey IBS did not show a significant decrease of ɛ up to θ= 60°. A parameterization of the relative-to-nadir emissivity in terms ofθ and sand and clay percentage was established. Finally, the impact of ignoring ɛangular effects on the retrievals of LST, using split-window-type algorithms, and of outgoing longwave radiation, was analyzed. Results showed systematic errors ranging between ±0.4 K to ±1.3 K for atmospheres with water vapor values lower than 4 cm in the case of LST, and errors between 2%-8%, in the estimation of different terms of the surface energy balance.
On the angular and energy distribution of solar neutrons generated in P-P reactions
NASA Technical Reports Server (NTRS)
Efimov, Y. E.; Kocharov, G. E.
1985-01-01
The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.
ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia
2015-11-01
The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persistsmore » on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.« less
SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.
2013-12-01
High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.
The Cosmology Large Angular Scale Surveyor
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; McMahon, Jeff; Miller, Nathan T.; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián.; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2016-07-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
The Cosmology Large Angular Scale Surveyor (CLASS)
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Dotta, Blake T; Lafrenie, Robert M; Karbowski, Lukasz M; Persinger, Michael A
2014-01-01
If parameters for lateral diffusion of lipids within membranes are macroscopic metaphors of the angular magnetic moment of the Bohr magneton then the energy emission should be within the visible wavelength for applied ~1 µT magnetic fields. Single or paired digital photomultiplier tubes (PMTs) were placed near dishes of ~1 million B16 mouse melanoma cells that had been removed from incubation. In very dark conditions (10(-11) W/m(2)) different averaged (RMS) intensities between 5 nT and 3.5 µT were applied randomly in 4 min increments. Numbers of photons were recorded directly over or beside the cell dishes by PMTs placed in pairs within various planes. Spectral analyses were completed for photon power density. The peak photon emissions occurred around 1 µT as predicted by the equation. Spectra analyses showed reliable discrete peaks between 0.9 and 1.8 µT but not for lesser or greater intensities; these peak frequencies corresponded to the energy difference of the orbital-spin magnetic moment of the electron within the applied range of magnetic field intensities and the standard solution for Rydberg atoms. Numbers of photons from cooling cells can be modified by applying specific intensities of temporally patterned magnetic fields. There may be a type of "cellular" magnetic moment that, when stimulated by intensity-tuned magnetic fields, results in photon emissions whose peak frequencies reflect predicted energies for fundamental orbital/spin properties of the electron and atomic aggregates with large principal quantum numbers.
Angular-momentum-assisted dissociation of CO in strong optical fields
NASA Astrophysics Data System (ADS)
Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos
2017-04-01
Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-03-27
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.
Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang
2015-01-01
Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975
Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures
NASA Astrophysics Data System (ADS)
Sakr, Enas; Bermel, Peter
2017-02-01
Simultaneously controlling both the spectral and angular emission of thermal photons can qualitatively change the nature of thermal radiation, and offers a great potential to improve a broad range of applications, including infrared light sources and thermophotovoltaic (TPV) conversion of waste heat to electricity. For TPV in particular, frequency-selective emission is necessary for spectral matching with a photovoltaic converter, while directional emission is needed to maximize the fraction of emission reaching the receiver at large separation distances. This can allow the photovoltaics to be moved outside vacuum encapsulation. In this work, we demonstrate both directionally and spectrally-selective thermal emission for p-polarization, using a combination of an epsilon-near-zero (ENZ) thin film backed by a metal reflector, a high contrast grating, and an omnidirectional mirror. Gallium-doped zinc oxide is selected as an ENZ material, with cross-over frequency in the near-infrared. The proposed structure relies on coupling guided modes (instead of plasmonic modes) to the ENZ thin film using the high contrast grating. The angular width is thus controlled by the choice of grating period. Other off-directional modes are then filtered out using the omnidirectional mirror, thus enhancing frequency selectivity. Our emitter design maintains both a high view factor and high frequency selectivity, leading to a factor of 8.85 enhancement over a typical blackbody emitter, through a combination of a 22.26% increase in view factor and a 6.88x enhancement in frequency selectivity. This calculation assumes a PV converter five widths away from the same width emitter in 2D at 1573 K.
Development of wide-angle 2D light scattering static cytometry
NASA Astrophysics Data System (ADS)
Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao
2016-10-01
We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method
NASA Astrophysics Data System (ADS)
Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus
2016-10-01
Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.
Investigation of the ion beam emission from a pulsed power plasma device
NASA Astrophysics Data System (ADS)
Henríquez, A.; Bhuyan, H.; Favre, M.; Retamal, M. J.; Volkmann, U.; Wyndham, E.; Chuaqui, H.
2014-05-01
Plasma Focus (PF) devices are well known as ion beam sources with characteristic energy among the hundreds of keV to tens of MeV. The information on ion beam energy, ion distribution and composition is essential from the viewpoint of understanding fundamental physics behind their production and acceleration and also their applications in various fields, such as surface properties modification, ion implantation, thin film deposition, semiconductor doping and ion assisted coating. An investigation from a low energy, 1.8 kJ 160 kA, Mather type plasma focus device operating with nitrogen using CR-39 detectors was conducted to study the emission of ions at different angular positions. Tracks on CR-39 detectors at different angular positions reveal the existence of angular ion anisotropy. The results obtained are comparable with the time integrated measurements using FC. Preliminary results of this work are presented.
NASA Astrophysics Data System (ADS)
Algabri, Y. A.; Rookkapan, S.; Chatpun, S.
2017-09-01
An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.
Reflective all-sky thermal infrared cloud imager.
Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino
2018-04-30
A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.
1999-01-01
To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions
NASA Astrophysics Data System (ADS)
Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.
2018-05-01
We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.
NASA Astrophysics Data System (ADS)
Stalevski, Marko; Asmus, Daniel; Tristram, Konrad R. W.
2017-12-01
Recent high angular resolution observations resolved for the first time the mid-infrared (MIR) structure of nearby active galactic nuclei (AGN). Surprisingly, they revealed that a major fraction of their MIR emission comes from the polar regions. This is at odds with the expectation based on AGN unification, which postulates a dusty torus in the equatorial region. The nearby, archetypical AGN in the Circinus galaxy offers one of the best opportunities to study the MIR emission in greater detail. New, high-quality MIR images obtained with the upgraded VISIR instrument at the Very Large Telescope show that the previously detected bar-like structure extends up to at least 40 pc on both sides of the nucleus along the edges of the ionization cone. Motivated by observations across a wide wavelength range and on different spatial scales, we propose a phenomenological dust emission model for the AGN in the Circinus galaxy consisting of a compact dusty disc and a large-scale dusty cone shell, illuminated by a tilted accretion disc with an anisotropic emission pattern. Undertaking detailed radiative transfer simulations, we demonstrate that such a model is able to explain the peculiar MIR morphology and account for the entire IR spectral energy distribution. Our results call for caution when attributing dust emission of unresolved sources entirely to the torus and warrant further investigation of the MIR emission in the polar regions of the AGN.
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.
Hu, Wenjun; Chung, Fu-Lai; Wang, Shitong
2012-03-01
Although pattern classification has been extensively studied in the past decades, how to effectively solve the corresponding training on large datasets is a problem that still requires particular attention. Many kernelized classification methods, such as SVM and SVDD, can be formulated as the corresponding quadratic programming (QP) problems, but computing the associated kernel matrices requires O(n2)(or even up to O(n3)) computational complexity, where n is the size of the training patterns, which heavily limits the applicability of these methods for large datasets. In this paper, a new classification method called the maximum vector-angular margin classifier (MAMC) is first proposed based on the vector-angular margin to find an optimal vector c in the pattern feature space, and all the testing patterns can be classified in terms of the maximum vector-angular margin ρ, between the vector c and all the training data points. Accordingly, it is proved that the kernelized MAMC can be equivalently formulated as the kernelized Minimum Enclosing Ball (MEB), which leads to a distinctive merit of MAMC, i.e., it has the flexibility of controlling the sum of support vectors like v-SVC and may be extended to a maximum vector-angular margin core vector machine (MAMCVM) by connecting the core vector machine (CVM) method with MAMC such that the corresponding fast training on large datasets can be effectively achieved. Experimental results on artificial and real datasets are provided to validate the power of the proposed methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Direct Evidence for Maser Emission from the 36.2 GHz Class I Transition of Methanol in NGC253
NASA Astrophysics Data System (ADS)
Chen, Xi; Ellingsen, Simon P.; Shen, Zhi-Qiang; McCarthy, Tiege P.; Zhong, Wei-Ye; Deng, Hui
2018-04-01
Observations made with the Jansky Very large Array (JVLA) at an angular resolution of ∼0.″1 have detected class I methanol maser emission from the 36.2 GHz transition toward the starburst galaxy NGC 253. The methanol emission is detected toward four sites which lie within the regions of extended methanol emission detected in previous lower angular resolution (a few arcseconds) observations. The peak flux densities of the detected compact components are in the range 3–9 mJy beam‑1. Combining the JVLA data with single-dish observations from the Shanghai Tianma Radio Telescope (TMRT) and previous interferometric observations with the Australia Telescope Compact Array (ATCA), we show that the 36.2 GHz class I methanol emission consists of both extended and compact structures, with typical scales of ∼6″ (0.1 kpc) and ∼0.″05 (1 pc), respectively. The strongest components have a brightness temperature of >103 K, much higher than the maximum kinetic temperature (∼100 K) of the thermal methanol emission from NGC 253. Therefore, these observations conclusively demonstrate for the first time the presence of maser emission from a class I methanol transition in an external galaxy.
ALMA detection of a disk wind from HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, Pamela; Juhasz, Attila; Mathews, Geoffrey; Mottram, Joseph; De Gregorio-Monsalvo, Itziar; van Dishoeck, Ewine; Takahashi, Satoko; Akiyama, Eiji; Chapillon, Edwige; Espada, Daniel; Hales, Antonio; Hogerheijde, Michiel; Rawlings, Mark; Schmalzl, Markus; Testi, Leonardo
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star, signaling the end of the main accretion phase.
RadioAstron Maser Observations: a Record in Angular Resolution
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team
2017-06-01
Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.
Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum
NASA Astrophysics Data System (ADS)
Chassé, A.; Niebergall, L.; Kucherenko, Yu.
2002-04-01
The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.
Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)
NASA Astrophysics Data System (ADS)
Britton, T. B.; Hickey, J. L. R.
2018-01-01
High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
Auger electron diffraction study of V/Fe(100) interface formation
NASA Astrophysics Data System (ADS)
Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.
1998-05-01
Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.
Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung
2017-05-01
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
NASA Astrophysics Data System (ADS)
Itoh, Katsumi; Kazama, Yoichi
1986-03-01
As one of the possible mechanisms which may reduce the rate for the monopole-catalyzed proton decay, the radiative transition of the fermionic state with vanishing angular momentum ( J) into those with higher J is investigated. The lowest-order formula for the transition rate, which nevertheless takes full account of the interaction with the background monopole field, is derived and numerically evaluated. It is found that the decay rate for a light fermion is unusually large. (e.g. one photon emission rate for a positron, with an incident energy of 300 MeV, is about 30 MeV.) Our results indicate that by itself the one gauge boson emission rate is not expected to affect the catalysis substantially, but that it is large enough to call for further study of multiple emissions and higher-order corrections.
Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation
NASA Astrophysics Data System (ADS)
Alton, G. D.; Bilheux, H.
2004-05-01
Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.
Analysis of angular momentum properties of photons emitted in fundamental atomic processes
NASA Astrophysics Data System (ADS)
Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.
2018-04-01
Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.
Differential electron emission from polycyclic aromatic hydrocarbon molecules under fast ion impact
Biswas, Shubhadeep; Champion, Christophe; Weck, P. F.; ...
2017-07-17
Interaction between polycyclic aromatic hydrocarbon (PAH) molecule and energetic ion is a subject of interest in different areas of modern physics. Here, we present measurements of energy and angular distributions of absolute double differential electron emission cross section for coronene (C 24H 12) and fluorene (C 13H 10) molecules under fast bare oxygen ion impact. For coronene, the angular distributions of the low energy electrons are quite different from that of simpler targets like Ne or CH 4, which is not the case for fluorene. The behaviour of the higher electron energy distributions for both the targets are similar tomore » that for simple targets. In case of coronene, a clear signature of plasmon resonance is observed in the analysis of forward-backward angular asymmetry of low energy electron emission. For fluorene, such signature is not identified probably due to lower oscillator strength of plasmon compared to the coronene. The theoretical calculation based on the first-order Born approximation with correct boundary conditions (CB1), in general, reproduced the experimental observations qualitatively, for both the molecules, except in the low energy region for coronene, which again indicates the role of collective excitation. Single differential and total cross sections are also deduced. An overall comparative study is presented.« less
NASA Astrophysics Data System (ADS)
Gratadour, D.; Rouan, D.; Grosset, L.; Boccaletti, A.; Clénet, Y.
2015-09-01
Aims: One of the main observational challenges for investigating the central regions of active galactic nuclei (AGN) at short wavelengths, using high angular resolution, and high contrast observations, is to directly detect the circumnuclear optically thick material hiding the central core emission when viewed edge-on. The lack of direct evidence is limiting our understanding of AGN, and several scenarios have been proposed to cope for the diverse observed aspects of activity in a unified approach. Methods: Observations in the near-infrared spectral range have shown themselves to be powerful for providing essential hints to the characterisation of the unified model ingredients because of the reduced optical depth of the obscuring material. Moreover, it is possible to trace this material through light scattered from the central engine's closest environment, so that polarimetric observations are the ideal tool for distinguishing it from purely thermal and stellar emissions. Results: Here we show strong evidence that there is an extended nuclear torus at the center of NGC 1068 thanks to new adaptive-optics-assisted polarimetric observations in the near-infrared. The orientation of the polarization vectors proves that there is a structured hourglass-shaped bicone and a compact elongated (20 × 60 pc) nuclear structure perpendicular to the bicone axis. The linearly polarized emission in the bicone is dominated by a centro-symmetric pattern, but the central compact region shows a clear deviation from the latter with linear polarization aligned perpendicular to the bicone axis. Figure 2 is available in electronic form at http://www.aanda.orgData obtained with the SPHERE an instrument designed and built by a consortium consisting of IPAG (France), MPIA (Germany), LAM (France), LESIA (France), Laboratoire Lagrange (France), INAF - Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France), and ASTRON (Netherlands) in collaboration with ESO.
RadioAstron Science Program Five Years after Launch: Main Science Results
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.
2017-12-01
The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).
1981-02-01
pattern. If KXM<l, the pattern is plotted over the angular -i range corresponding to sin (KXM); if KXMI, the angular angle is (-90*, 900). Subroutine...injcidkence- (P0I) doim h y k 11il 1i Rs I us tra t d i i Fi ;ur, T!- ’ihc un it vect or ic(r] end icu Ia r t I t POI i x 1 x n i~~ 11 iii t vst or ’td a...patttrn is comp utd over the angular range (-H ,axmax 6 ) , but in equal incrtme.nts in si,, .7o that Fourier interpolation can ho applie-d directly in
Yamada, Akira; Terakawa, Mitsuhiro
2015-04-10
We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.
Confining the angular distribution of terrestrial gamma ray flash emission
NASA Astrophysics Data System (ADS)
Gjesteland, T.; Østgaard, N.; Collier, A. B.; Carlson, B. E.; Cohen, M. B.; Lehtinen, N. G.
2011-11-01
Terrestrial gamma ray flashes (TGFs) are bremsstrahlung emissions from relativistic electrons accelerated in electric fields associated with thunder storms, with photon energies up to at least 40 MeV, which sets the lowest estimate of the total potential of 40 MV. The electric field that produces TGFs will be reflected by the initial angular distribution of the TGF emission. Here we present the first constraints on the TGF emission cone based on accurately geolocated TGFs. The source lightning discharges associated with TGFs detected by RHESSI are determined from the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) network and the World Wide Lightning Location Network (WWLLN). The distribution of the observation angles for 106 TGFs are compared to Monte Carlo simulations. We find that TGF emissions within a half angle >30° are consistent with the distributions of observation angle derived from the networks. In addition, 36 events occurring before 2006 are used for spectral analysis. The energy spectra are binned according to observation angle. The result is a significant softening of the TGF energy spectrum for large (>40°) observation angles, which is consistent with a TGF emission half angle (<40°). The softening is due to Compton scattering which reduces the photon energies.
Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.
ERIC Educational Resources Information Center
Engelhorn, Richard
1983-01-01
Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)
Radio and near-infrared images of IRAS 21282+5050: A transitional planetary nebula
NASA Astrophysics Data System (ADS)
Likkel, L.; Morris, M.; Kastner, J. H.; Forveille, T.
1994-02-01
We present 2 and 6 cm Very Large Array (VLA) images of the young planetary nebula IRAS 21282+5050. The nebular dimensions at 2 and 6 cm are about 4 sec x 3 sec, and the total flux density is almost 7 mJy at each wavelength, suggesting a spectral index of approximately 0. The emission is not centrally peaked and appears to arise in a shell or torus. The relatively low flux for the angular size and assumed distance implies an average electron density of 2000-10000/cu cm, low for compact planetary nebulae. An image and a polarization map of IRAS 21282+5050 at 2.2 microns are also presented. At 2.2 microns (K-band), the nebula has a diameter of approximately 6 sec. The image is centrally peaked, in large part because the central star contributes significantly to the K magnitude of 9.46 (104 mJy). The 2.2 micron polarization map does not display a centrosymmetric pattern characteristic of scattering; within a 7 sec aperture, we find an upper limit of 1.1% for the polarization. These results indicate that there is not a large component of scattered light in the near-infrared. IRAS 21282+5050 has significantly more emission at 2 microns than is expected for free-free and free-bound emission, however. We suggest that this emission may arise from transiently heated dust.
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David
1998-01-01
The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
Reflective all-sky thermal infrared cloud imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.
A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less
Reflective all-sky thermal infrared cloud imager
Redman, Brian J.; Shaw, Joseph A.; Nugent, Paul W.; ...
2018-04-17
A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference thatmore » is used to estimate and remove thermal emission from the metal sphere. In conclusion, once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Chr. Dudder, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; López, J. A.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Meng, X.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spannowsky, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-02-01
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy √{ s} = 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb-1. The focus is on the contributions to W +jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.
NASA Technical Reports Server (NTRS)
Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.;
2016-01-01
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.
Electromagnetic radiation detector
Benson, Jay L.; Hansen, Gordon J.
1976-01-01
An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.
NASA Astrophysics Data System (ADS)
Ali, Sk. Saiyad; Bharadwaj, Somnath; Choudhuri, Samir; Ghosh, Abhik; Roy, Nirupam
2016-12-01
The Diffuse Galactic Syncrotron Emission (DGSE) is the most important diffuse foreground component for future cosmological 21-cm observations. The DGSE is also an important probe of the cosmic ray electron and magnetic field distributions in the turbulent interstellar medium (ISM) of our galaxy. In this paper we briefly review the Tapered Gridded Estimator (TGE) which can be used to quantify the angular power spectrum C ℓ of the sky signal directly from the visibilities measured in radio-interferometric observations. The salient features of the TGE are: (1) it deals with the gridded data which makes it computationally very fast, (2) it avoids a positive noise bias which normally arises from the system noise inherent to the visibility data, and (3) it allows us to taper the sky response and thereby suppresses the contribution from unsubtracted point sources in the outer parts and the side lobes of the antenna beam pattern. We also summarize earlier work where the TGE was used to measure the C ℓ of the DGSE using 150 MHz GMRT data. Earlier measurements of C ℓ are restricted to ℓ ≤ ℓ _{max } ˜ 103 for the DGSE, the signal at the larger ℓ values is dominated by the residual point sources after source subtraction. The higher sensitivity of the upcoming SKA1 Low will allow the point sources to be subtracted to a fainter level than possible with existing telescopes. We predict that it will be possible to measure the C ℓ of the DGSE to larger values of ℓ _{max } with SKA1 Low. Our results show that it should be possible to achieve ℓ _{max }˜ 104 and ˜105 with 2 minutes and 10 hours of observations respectively.
Circular dichroism in photo-single-ionization of unoriented atoms.
Feagin, James M
2002-01-28
We predict circular dichroism in photo-single-ionization angular distributions from spherically symmetric atomic states if the ionized electron is detected using two-slit interferometry. We demonstrate that the resulting electron interference pattern captures phase information on quadrupole corrections to the photoionization amplitude lost in conventional angular distributions.
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, Vijay A.
2012-01-01
Student difficulties regarding the angular velocity ([image omitted]) and angular acceleration ([image omitted]) of a particle have remained relatively unexplored in contrast to their linear counterparts. We present an inventory comprising multiple choice questions aimed at probing misconceptions and eliciting ill-suited reasoning patterns. The…
Color in the corners: ITO-free white OLEDs with angular color stability.
Gaynor, Whitney; Hofmann, Simone; Christoforo, M Greyson; Sachse, Christoph; Mehra, Saahil; Salleo, Alberto; McGehee, Michael D; Gather, Malte C; Lüssem, Björn; Müller-Meskamp, Lars; Peumans, Peter; Leo, Karl
2013-08-07
High-efficiency white OLEDs fabricated on silver nanowire-based composite transparent electrodes show almost perfectly Lambertian emission and superior angular color stability, imparted by electrode light scattering. The OLED efficiencies are comparable to those fabricated using indium tin oxide. The transparent electrodes are fully solution-processable, thin-film compatible, and have a figure of merit suitable for large-area devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlling thermal emission of phonon by magnetic metasurfaces
Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.
2017-01-01
Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206
Effect of a magnetic field on molecule-solvent angular momentum transfer
NASA Astrophysics Data System (ADS)
Rzadkowski, Wojciech; Lemeshko, Mikhail
2018-03-01
Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the "angulon" quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.
NASA Astrophysics Data System (ADS)
Torbet, E.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L.; Puchalla, J.; Tran, H. T.
1999-08-01
We report on a measurement of the angular spectrum of the anisotropy of the microwave sky at 30 and 40 GHz between l=50 and l=200. The data, covering roughly 600 deg2, support a rise in the angular spectrum to a maximum with δTl~85 μK at l=200. We also give a 2 σ upper limit of δTl<122 μK at l=432 at 144 GHz. These results come from the first campaign of the Mobile Anisotropy Telescope on Cerro Toco, Chile. To assist in assessing the site, we present plots of the fluctuations in atmospheric emission at 30 and 144 GHz.
Angular correlations in pair production at the LHC in the parton Reggeization approach
NASA Astrophysics Data System (ADS)
Karpishkov, Anton; Nefedov, Maxim; Saleev, Vladimir
2017-10-01
We calculate angular correlation spectra between beauty (B) and anti-beauty mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of additional hard gluon (NLO* approximation). To describe b-quark hadronization we use the universal scale-depended parton-to-meson fragmentation functions extracted from the combined e+e- annihilation data. The Kimber-Martin-Ryskin model for the unintegrated parton distribution functions in a proton is implied. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy TeV for angular correlations within uncertainties and without free parameters.
Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan
2018-05-01
Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.
Diffraction effects on angular response of X-ray collimators
NASA Technical Reports Server (NTRS)
Blake, R. L.; Barrus, D. M.; Fenimore, E.
1976-01-01
Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.
Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin
2006-12-01
We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.
Electron coherent diffraction tomography of a nanocrystal
NASA Astrophysics Data System (ADS)
Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong
2010-05-01
Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
Infrared Atmospheric Emission. I.
1982-03-01
work efitrely in the I-i coupling scheme. Since the electrostatic energies are usually given in a coupling scheme resulting in total orbital angular...For heteronuclear diatomic molecules, the case either molecule or atom. The energy lor sufered IR emission does not necessitate the electronic...apparently to work sufficiently pood in many cases, they are not ccurate enough . .. . . .. . . . . . .... . .1 6 S for the computation of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy √s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb -1 . The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data inmore » terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.« less
Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hong; Duan, Lian; Lan, Hui
Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less
Two-dimensional angular transmission characterization of CPV modules.
Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G
2010-11-08
This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement.
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-12-06
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy √s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb -1 . The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data inmore » terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.« less
Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma
NASA Astrophysics Data System (ADS)
Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang
2015-05-01
Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.
Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.
Habibi, Morteza
2018-03-01
Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atmospheric Science Data Center
2013-04-16
article title: Waves on White: Ice or Clouds? View Larger ... like a wavy cloud pattern was actually a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature ...
Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi
2014-01-20
The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.
Terahertz emission from thermally-managed square intrinsic Josephson junction microstrip antennas
NASA Astrophysics Data System (ADS)
Klemm, Richard; Davis, Andrew; Wang, Qing
We show for thin square microstrip antennas that the transverse magnetic electromagnetic cavity modes are greatly restricted in number due to the point group symmetry of a square. For the ten lowest frequency emissions, we present plots of the orthonormal wave functions and of the angular distributions of the emission power obtained from the uniform Josephson current source and from the excitation of an electromagnetic cavity mode excited in the intrinsic Josephson junctions between the layers of a highly anisotropic layered superconductor.
Light sources and output couplers for a backlight with switchable emission angles
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko
2007-09-01
For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.
Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.
2013-01-01
Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. Conclusions: This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams. PMID:24089916
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise
2015-04-06
Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp
2016-05-01
We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO{sup +} J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ∼1.1 mm (∼266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecularmore » emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ∼10 pc and ∼several × 10{sup 5} M {sub ⊙}, respectively. HCN-to-HCO{sup +} J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ∼2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited ( v {sub 2} = 1f) J = 3–2 emission lines were detected for HCN and HCO{sup +} across the field of view.« less
NASA Astrophysics Data System (ADS)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma
2016-05-01
We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.
Angular Distribution of light emission in ELVES events
NASA Astrophysics Data System (ADS)
Mussa, Roberto
2017-04-01
The Pierre Auger Observatory, located in Malargüe (Argentina), is the largest facility (3000 kmq ) for the study of Ultra High Energy Cosmic Rays (E>0.3 EeV). The four sites of the Fluorescence Detector (FD) are continuously observing the night sky with moon fraction below 50% (13% duty cycle) with 100 ns time resolution and a space resolution below one degree. Since 2013, the Observatory has implemented a dedicated trigger for the study of ELVES events, produced by lightning activity in Northern Argentina during summer months. A network of ancillary devices (lidars, cloud cameras, weather stations, lightning sensors, E-field mills) complements the FD data to correct for the variation of atmospheric optical properties. This paper will report about the angular distribution of the light emission around the vertical above the lightning source and compare with existing models.
Characterization of Forest Opacity Using Multi-Angular Emission and Backscatter Data
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; O'Neill, Peggy; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.
2010-01-01
This paper discusses the results from a series of field experiments using ground-based L-band microwave active/passive sensors. Three independent approaches are employed to the microwave data to determine vegetation opacity of coniferous trees. First, a zero-order radiative transfer model is fitted to multi-angular microwave emissivity data in a least-square sense to provide "effective" vegetation optical depth. Second, a ratio between radar backscatter measurements with the corner reflector under trees and in an open area is calculated to obtain "measured" tree propagation characteristics. Finally, the "theoretical" propagation constant is determined by forward scattering theorem using detailed measurements of size/angle distributions and dielectric constants of the tree constituents (trunk, branches, and needles). The results indicate that "effective" values underestimate attenuation values compared to both "theoretical" and "measured" values.
The relationship between Class I and Class II methanol masers at high angular resolution
NASA Astrophysics Data System (ADS)
McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.
2018-06-01
We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N. J.; Marriage, T. A.; Appel, J. W.
2016-02-20
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Shubhadeep; Champion, Christophe; Weck, P. F.
Interaction between polycyclic aromatic hydrocarbon (PAH) molecule and energetic ion is a subject of interest in different areas of modern physics. Here, we present measurements of energy and angular distributions of absolute double differential electron emission cross section for coronene (C 24H 12) and fluorene (C 13H 10) molecules under fast bare oxygen ion impact. For coronene, the angular distributions of the low energy electrons are quite different from that of simpler targets like Ne or CH 4, which is not the case for fluorene. The behaviour of the higher electron energy distributions for both the targets are similar tomore » that for simple targets. In case of coronene, a clear signature of plasmon resonance is observed in the analysis of forward-backward angular asymmetry of low energy electron emission. For fluorene, such signature is not identified probably due to lower oscillator strength of plasmon compared to the coronene. The theoretical calculation based on the first-order Born approximation with correct boundary conditions (CB1), in general, reproduced the experimental observations qualitatively, for both the molecules, except in the low energy region for coronene, which again indicates the role of collective excitation. Single differential and total cross sections are also deduced. An overall comparative study is presented.« less
NASA Astrophysics Data System (ADS)
Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.
2017-11-01
We calculate the angular distribution spectra between beauty (B ) and antibeauty (B ¯) mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of an additional hard gluon. To describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation functions extracted from the world e+e- annihilation data. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy √{S }=7 TeV for B B ¯ angular correlations within uncertainties and without free parameters. Predictions for analogous correlation observables at √{S }=13 TeV are provided.
Testing vision with angular and radial multifocal designs using Adaptive Optics.
Vinas, Maria; Dorronsoro, Carlos; Gonzalez, Veronica; Cortes, Daniel; Radhakrishnan, Aiswaryah; Marcos, Susana
2017-03-01
Multifocal vision corrections are increasingly used solutions for presbyopia. In the current study we have evaluated, optically and psychophysically, the quality provided by multizone radial and angular segmented phase designs. Optical and relative visual quality were evaluated using 8 subjects, testing 6 phase designs. Optical quality was evaluated by means of Visual Strehl-based-metrics (VS). The relative visual quality across designs was obtained through a psychophysical paradigm in which images viewed through 210 pairs of phase patterns were perceptually judged. A custom-developed Adaptive Optics (AO) system, including a Hartmann-Shack sensor and an electromagnetic deformable mirror, to measure and correct the eye's aberrations, and a phase-only reflective Spatial Light Modulator, to simulate the phase designs, was developed for this study. The multizone segmented phase designs had 2-4 zones of progressive power (0 to +3D) in either radial or angular distributions. The response of an "ideal observer" purely responding on optical grounds to the same psychophysical test performed on subjects was calculated from the VS curves, and compared with the relative visual quality results. Optical and psychophysical pattern-comparison tests showed that while 2-zone segmented designs (angular & radial) provided better performance for far and near vision, 3- and 4-zone segmented angular designs performed better for intermediate vision. AO-correction of natural aberrations of the subjects modified the response for the different subjects but general trends remained. The differences in perceived quality across the different multifocal patterns are, in a large extent, explained by optical factors. AO is an excellent tool to simulate multifocal refractions before they are manufactured or delivered to the patient, and to assess the effects of the native optics to their performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mattson, D. L.
1975-01-01
The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.
Curve Appeal: Exploring Individual Differences in Preference for Curved Versus Angular Objects
Cotter, Katherine N.; Bertamini, Marco; Palumbo, Letizia; Vartanian, Oshin
2017-01-01
A preference for smooth curvature, as opposed to angularity, is a well-established finding for lines, two-dimensional shapes, and complex objects, but little is known about individual differences. We used two-dimensional black-and-white shapes—randomly generated irregular polygons, and arrays of circles and hexagons—and measured many individual differences, including artistic expertise, personality, and cognitive style. As expected, people preferred curved over angular stimuli, and people’s degree of curvature preference correlated across the two sets of shapes. Multilevel models showed varying patterns of interaction between shape and individual differences. For the irregular polygons, people higher in artistic expertise or openness to experience showed a greater preference for curvature. This pattern was not evident for the arrays of circles and hexagons. We discuss the results in relation to the nature of the stimuli, and we conclude that individual differences do play a role in moderating the preference for smooth curvature. PMID:28491269
Position feedback system for volume holographic storage media
Hays, Nathan J [San Francisco, CA; Henson, James A [Morgan Hill, CA; Carpenter, Christopher M [Sunnyvale, CA; Akin, Jr William R. [Morgan Hill, CA; Ehrlich, Richard M [Saratoga, CA; Beazley, Lance D [San Jose, CA
1998-07-07
A method of holographic recording in a photorefractive medium wherein stored holograms may be retrieved with maximum signal-to noise ratio (SNR) is disclosed. A plurality of servo blocks containing position feedback information is recorded in the crystal and made non-erasable by heating the crystal. The servo blocks are recorded at specific increments, either angular or frequency, depending whether wavelength or angular multiplexing is applied, and each servo block is defined by one of five patterns. Data pages are then recorded at positions or wavelengths enabling each data page to be subsequently reconstructed with servo patterns which provide position feedback information. The method of recording data pages and servo blocks is consistent with conventional practices. In addition, the recording system also includes components (e.g. voice coil motor) which respond to position feedback information and adjust the angular position of the reference angle of a reference beam to maximize SNR by reducing crosstalk, thereby improving storage capacity.
Reproduction and optical analysis of Morpho-inspired polymeric nanostructures
NASA Astrophysics Data System (ADS)
Tippets, Cary A.; Fu, Yulan; Jackson, Anne-Martine; Donev, Eugenii U.; Lopez, Rene
2016-06-01
The brilliant blue coloration of the Morpho rhetenor butterfly originates from complex nanostructures found on the surface of its wings. The Morpho butterfly exhibits strong short-wavelength reflection and a unique two-lobe optical signature in the incident (θ) and reflected (ϕ) angular space. Here, we report the large-area fabrication of a Morpho-like structure and its reproduction in perfluoropolyether. Reflection comparisons of periodic and quasi-random ‘polymer butterfly’ nanostructures show similar normal-incidence spectra but differ in the angular θ-ϕ dependence. The periodic sample shows strong specular reflection and simple diffraction. However, the quasi-random sample produces a two-lobe angular reflection pattern with minimal specular refection, approximating the real butterfly’s optical behavior. Finite-difference time-domain simulations confirm that this pattern results from the quasi-random periodicity and highlights the significance of the inherent randomness in the Morpho’s photonic structure.
High brightness diode lasers controlled by volume Bragg gratings
NASA Astrophysics Data System (ADS)
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?
NASA Astrophysics Data System (ADS)
Hod, Shahar
2015-10-01
Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.
NASA Technical Reports Server (NTRS)
Sahai, Raghvendra; Bieging, John H.
1993-01-01
High- and medium-resolution images of SiO J = 2-1(V = 0) from the circumstellar envelopes (CSEs) of three oxygen-rich stars, Chi Cyg, RX Boo, and IK Tau, were obtained. The SIO images were found to be roughly circular, implying that the CSEs are spherically symmetric on angular-size scales of about 3-9 arcsec. The observed angular half-maximum intensity source radius is nearly independent of the LSR velocity for all three CSEs. Chi Cyg and RX Boo are argued to be less than 450 pc distant, and have mass-loss rates larger than about 10 exp -6 solar mass/yr. In Chi Cyg and RX Boo, the line profiles at the peak of the brightness distribution are rounded, typical of optically-thick emission from a spherical envelope expanding with a constant velocity. In the IK Tau line profiles, an additional narrower central component is present, probably a result of emission from an inner circumstellar shell with a significantly smaller expansion velocity than the extended envelope.
The structure and temperature of Pluto's Sputnik Planum using 4.2 cm radiometry
NASA Astrophysics Data System (ADS)
Linscott, Ivan; Protopapa, Silvia; Hinson, David P.; Bird, Mike; Tyler, G. Leonard; Grundy, William M.; McKinnon, William B.; Olkin, Catherine B.; Stern, S. Alan; Stansberry, John A.; Weaver, Harold A.; Pluto Composition Team, Pluto Geophysics and Geology Team, Pluto Atmospheres Team
2016-10-01
New Horizons measured the radiometric brightness temperature of Pluto at 4.2 cm, during the encounter with two scans of the spacecraft's high gain antenna shortly after closest approach. The Pluto mid-section scan included the region informally known as Sputnik Planum, now understood to be filled with nitrogen ice. The mean radiometric brightness temperature at 4.2 cm, obtained in this region is 25 K, for both Right Circular Polarization (RCP) and Left Circular Polarization (LCP), well below the sublimation temperature for nitrogen ice. Sputnik Planum was near the limb and the termination of the radiometric scan. Consequently, the thermal emission was measured obliquely over a wide range of emission angles. This geometry affords detailed modeling of the angular dependence of the thermal radiation, incorporating surface and subsurface electromagnetic scattering models as well as emissivity models of the nitrogen ice. In addition, a bistatic radar measurement detected the scattering of a 4.2 cm uplink transmitted from Earth. The bistatic specular point was within Sputnik Planum and the measurements are useful for constraining the dielectric constant as well as the surface and subsurface scattering functions of the nitrogen ice. The combination of the thermal emission's angular dependence, RCP and LCP polarization dependence, and the bistatic scattering, yields estimates of the radiometric thermal emissivity, nitrogen ice temperature and spatial correlation scales.This work is supported by the NASA New Horizons Mission.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Soltani, Z.; Sarlak, Z.
2018-03-01
Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.
A superior architecture of brightness enhancement for display backlighting
NASA Astrophysics Data System (ADS)
Dross, Oliver; Parkyn, William A.; Chaves, Julio; Falicoff, Waqidi; Miñano, Juan Carlos; Benitez, Pablo; Alvarez, Roberto
2006-08-01
Brightness enhancement of backlighting for displays is typically achieved via crossed micro prismatic films that are introduced between a backlight unit and a transmissive (LCD) display. Prismatic films let pass light only into a restricted angular range, while, in conjunction with other reflective elements below the backlight, all other light is recycled within the backlight unit, thereby increasing the backlight luminance. This design offers no free parameters to influence the resulting light distribution and suffers from insufficient stray light control. A novel strategy of light recycling is introduced, using a microlens array in conjunction with a hole array in a reflective surface, that can provide higher luminance, superior stray light control, and can be designed to meet almost any desired emission pattern. Similar strategies can be applied to mix light from different colored LEDs being mounted upside down to shine into a backlight unit.
Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft
NASA Astrophysics Data System (ADS)
Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.
2010-07-01
This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Costen, Nicholas P.; Hidrobo, Gregory B.; Glavin, Daniel P.
2013-01-01
Simulations of field emission of electrons from an electron gun are used to determine the angular distribution of the emitted electron beam and the percentage of charge transmitted through the grid. The simulations are a first step towards understanding the spherical aberration present after focusing the electron beam. The effect of offset of the cathode with respect to the grid and the separation between cathode and grid on the angular distributions of emitted electrons and transmission of the grid are explored.
util_2comp: Planck-based two-component dust model utilities
NASA Astrophysics Data System (ADS)
Meisner, Aaron
2014-11-01
The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.
Out-of-focal plane imaging by leakage radiation microscopy
NASA Astrophysics Data System (ADS)
Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wen, Xiaolei; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-09-01
Leakage radiation microscopy (LRM) is used to investigate the optical properties of surfaces. The front-focal plane (FFP) image with LRM reveals the structural features on the surfaces. A back-focal plane (BFP) image with LRM reveals the angular distribution of the radiation. Herein, we experimentally demonstrate that the out-of-focal plane (OFP) images present a link between the FFP and BFP images and provide optical information that cannot be resolved by either FFP or BFP images. The OFP image provides a link between the spatial location of the emission and the angular distribution from the same location, and thus information about the film’s discontinuity, nonuniformity or variable thickness can be uncovered. The use of OFP imaging will extend the scope and applications of the LRM and coupled emission imaging, which are powerful tools in nanophotonics and high throughput fluorescence screening.
A balloon-borne payload for imaging hard X-rays and gamma rays from solar flares
NASA Technical Reports Server (NTRS)
Crannell, Carol J.; Dennis, Brian R.; Orwig, Larry E.; Schmahl, Edward J.; Lang, Frederic L.; Starr, Richard; Norris, Jay P.; Greene, Michael E.; Hurford, Gordon J.; Johnson, W. N.
1991-01-01
Hard X-rays and gamma rays provide direct evidence of the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described, and the development of a balloon-borne imaging device based on this instrumental technique is presented. The detectors, together with the imaging optics, are sensitive to hard X-ray and gamma-ray emission in the energy-range from 20 to 700 keV. This payload, scheduled for its first flight in June 1992, will provide 11-arc second angular resolution and millisecond time resolution with a whole-sun field of view. For subsequent flights, the effective detector area can be increased by as much as a factor of four, and imaging optics with angular resolution as fine as 2 arcsec can be added to the existing gondola and metering structures.
Hard X-ray dosimetry of a plasma focus suitable for industrial radiography
NASA Astrophysics Data System (ADS)
Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.
2018-04-01
Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.
Studies of extra-solar Oort Clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1992-01-01
In 1991 we detected extended 1.1 mm emission around Fomalhaut (alpha PsA) at distances in order of magnitude beyond previous detections. This emission is plausibly related to the presence of an extended comet cloud, like our Oort Cloud, and may therefore represent indirect evidence for the formation of a planetary system at Fomalhaut. We propose now to extend this work to create a map of the angular and spatial extent of this emission. Fomalhaut is the only known main-sequence, submm-resolved IR excess source besides beta Pic.
Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk
Lippert, Lisa G.; Dadosh, Tali; Hadden, Jodi A.; Karnawat, Vishakha; Diroll, Benjamin T.; Murray, Christopher B.; Holzbaur, Erika L. F.; Schulten, Klaus; Reck-Peterson, Samara L.; Goldman, Yale E.
2017-01-01
The force-generating mechanism of dynein differs from the force-generating mechanisms of other cytoskeletal motors. To examine the structural dynamics of dynein’s stepping mechanism in real time, we used polarized total internal reflection fluorescence microscopy with nanometer accuracy localization to track the orientation and position of single motors. By measuring the polarized emission of individual quantum nanorods coupled to the dynein ring, we determined the angular position of the ring and found that it rotates relative to the microtubule (MT) while walking. Surprisingly, the observed rotations were small, averaging only 8.3°, and were only weakly correlated with steps. Measurements at two independent labeling positions on opposite sides of the ring showed similar small rotations. Our results are inconsistent with a classic power-stroke mechanism, and instead support a flexible stalk model in which interhead strain rotates the rings through bending and hinging of the stalk. Mechanical compliances of the stalk and hinge determined based on a 3.3-μs molecular dynamics simulation account for the degree of ring rotation observed experimentally. Together, these observations demonstrate that the stepping mechanism of dynein is fundamentally different from the stepping mechanisms of other well-studied MT motors, because it is characterized by constant small-scale fluctuations of a large but flexible structure fully consistent with the variable stepping pattern observed as dynein moves along the MT. PMID:28533393
Improved Time-Lapsed Angular Scattering Microscopy of Single Cells
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.
By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.
Influence of upstream solar wind on thermospheric flows at Jupiter
NASA Astrophysics Data System (ADS)
Yates, J. N.; Achilleos, N.; Guio, P.
2012-02-01
The coupling of Jupiter's magnetosphere and ionosphere plays a vital role in creating its auroral emissions. The strength of these emissions is dependent on the difference in speed of the rotational flows within Jupiter's high-latitude thermosphere and the planet's magnetodisc. Using an azimuthally symmetric global circulation model, we have simulated how upstream solar wind conditions affect the energy and direction of atmospheric flows. In order to simulate the effect of a varying dynamic pressure in the upstream solar wind, we calculated three magnetic field profiles representing compressed, averaged and expanded ‘middle’ magnetospheres. These profiles were then used to solve for the angular velocity of plasma in the magnetosphere. This angular velocity determines the strength of currents flowing between the ionosphere and magnetosphere. We examine the influence of variability in this current system upon the global winds and energy inputs within the Jovian thermosphere. We find that the power dissipated by Joule heating and ion drag increases by ∼190% and ∼185% from our compressed to expanded model respectively. We investigated the effect of exterior boundary conditions on our models and found that by reducing the radial current at the outer edge of the magnetodisc, we also limit the thermosphere's ability to transmit angular momentum to this region.
NASA Astrophysics Data System (ADS)
Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.
2018-02-01
This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.
Low-dimensional organization of angular momentum during walking on a narrow beam.
Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A
2018-01-08
Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.
Two-beam-excited conical emission.
Kauranen, M; Maki, J J; Gaeta, A L; Boyd, R W
1991-06-15
We describe a conical emission process that occurs when two beams of near-resonant light intersect as they pass through sodium vapor. The light is emitted on the surface of a circular cone that is centered on the bisector of the two applied beams and has an angular extent equal to the crossing angle of the two applied beams. We ascribe the origin of this effect to a perfectly phase-matched four-wave mixing process.
Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X
NASA Astrophysics Data System (ADS)
Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.
2009-05-01
Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.
NASA Astrophysics Data System (ADS)
Omar, Artur; Andreo, Pedro; Poludniowski, Gavin
2018-07-01
Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.
From Head to Sword: The Clustering Properties of Stars in Orion
NASA Astrophysics Data System (ADS)
Gomez, Mercedes; Lada, Charles J.
1998-04-01
We investigate the structure in the spatial distributions of optically selected samples of young stars in the Head (lambda Orionis) and in the Sword (Orion A) regions of the constellation of Orion with the aid of stellar surface density maps and the two-point angular correlation function. The distributions of young stars in both regions are found to be nonrandom and highly clustered. Stellar surface density maps reveal three distinct clusters in the lambda Ori region. The two-point correlation function displays significant features at angular scales that correspond to the radii and separations of the three clusters identified in the surface density maps. Most young stars in the lambda Ori region (~80%) are presently found within these three clusters, consistent with the idea that the majority of young stars in this region were formed in dense protostellar clusters that have significantly expanded since their formation. Over a scale of ~0.05d-0.5d the correlation function is well described by a single power law that increases smoothly with decreasing angular scale. This suggests that, within the clusters, the stars either are themselves hierarchically clustered or have a volume density distribution that falls steeply with radius. The relative lack of Hα emission-line stars in the one cluster in this region that contains OB stars suggests a timescale for emission-line activity of less than 4 Myr around late-type stars in the cluster and may indicate that the lifetimes of protoplanetary disks around young stellar objects are reduced in clusters containing O stars. The spatial distribution of young stars in the Orion A region is considerably more complex. The angular correlation function of the OB stars (which are mostly foreground to the Orion A molecular cloud) is very similar to that of the Hα stars (which are located mostly within the molecular cloud) and significantly different from that of the young stars in the lambda Ori region. This suggests that, although spatially separated, both populations in the Orion A region may have originated from a similar fragmentation process. Stellar surface density maps and modeling of the angular correlation function suggest that somewhat less than half of the OB and Hα stars in the Orion A cloud are presently within well-defined stellar clusters. Although all the OB stars could have originated in rich clusters, a significant fraction of the Hα stars appear to have formed outside such clusters in a more spatially dispersed manner. The close similarity of the angular correlation functions of the OB and Hα stars toward the molecular cloud, in conjunction with the earlier indications of a relatively high star formation rate and high gas pressure in this cloud, is consistent with the idea that older, foreground OB stars triggered the current episode of star formation in the Orion A cloud. One of the OB clusters (Upper Sword) that is foreground to the cloud does not appear to be associated with any of the clusterings of emission-line stars, again suggesting a timescale (<4 Myr) for emission-line activity and disk lifetimes around late-type stars born in OB clusters.
Spontaneous light emission in complex nanostructures
NASA Astrophysics Data System (ADS)
Blanco, L. A.; García de Abajo, F. J.
2004-05-01
The spontaneous emission of an excited atom surrounded by different materials is studied in the framework of a semiclassical approach, where the transition dipole moment acts as the source of the emission field. The emission in the presence of semiinfinite media, metallic nanorings, spheres, gratings, and other complex geometries is investigated. Strong emission enhancement effects are obtained in some of these geometries associated to the excitation of plasmons (e.g., in nanorings or spheres). Furthermore, the emission is shown to take place only along narrow angular distributions when the atom is located inside a low-index dielectric and near its planar surface, or when metallic nanogratings are employed at certain resonant wave lengths. In particular, axially symmetric gratings made of real silver metal are considered, and both emission rate enhancement and focused far-field emission are achieved simultaneously when the grating is decorated with further nanostructures.
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
Absolute Soft X-ray Emission Measurements at the Nike Laser
NASA Astrophysics Data System (ADS)
Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.
2002-11-01
Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE
Controlling the angular radiation of single emitters using dielectric patch nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuanqing; Li, Qiang; Qiu, Min, E-mail: minqiu@zju.edu.cn
2015-07-20
Dielectric nanoantennas have generated much interest in recent years owing to their low loss and optically induced electric and magnetic resonances. In this paper, we investigate the coupling between a single emitter and dielectric patch nanoantennas. For the coupled system involving non-spherical structures, analytical Mie theory is no longer applicable. A semi-analytical model is proposed instead to interpret the coupling mechanism and the radiation characteristics of the system. Based on the presented model, we demonstrate that the angular emission of the single emitter can be not only enhanced but also rotated using the dielectric patch nanoantennas.
2007-06-20
qz/qx) 2]1/2 is the mode dispersion relation, and ωc = qxc/ √ ε is the angular cutoff frequency. The guided mode wavelength is written as λ = λc/[(ωq...the guided modes corresponding to standing waves with respect to the X and Y axes designated by an integer pair m ,n, and propagating waves along...the angular cutoff frequency determined by the waveguide geometry. The guided mode wavelength is written as =c / q /c2−11/2, where c=2Lx is
NASA Astrophysics Data System (ADS)
Nolta, M. R.; Devlin, M. J.; Dorwart, W. B.; Miller, A. D.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.
2003-11-01
We present a measurement of the angular spectrum of the cosmic microwave background from l=26 to 225 from the 30 and 40 GHz channels of the MAT/TOCO experiment based on two seasons of observations. At comparable frequencies, the data extend to a lower l than the recent Very Small Array and DASI results. After accounting for known foreground emission in a self-consistent analysis, a rise from the Sachs-Wolfe plateau to a peak of δTl~80 μK near l~200 is observed.
Angular momentum role in the hypercritical accretion of binary-driven hypernovae
Becerra, L.; Cipolletta, F.; Fryer, Chris L.; ...
2015-10-12
Here, the induced gravitational collapse paradigm explains a class of energetic,more » $${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, $${L}_{{\\rm{acc}}},$$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, $${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$$, and (3) can support less angular momentum than the one transported by supernova ejecta, $${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$$ hence there is an angular momentum excess that necessarily leads to jetted emission.« less
Angular momentum role in the hypercritical accretion of binary-driven hypernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becerra, L.; Cipolletta, F.; Fryer, Chris L.
Here, the induced gravitational collapse paradigm explains a class of energetic,more » $${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, $${L}_{{\\rm{acc}}},$$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, $${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$$, and (3) can support less angular momentum than the one transported by supernova ejecta, $${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$$ hence there is an angular momentum excess that necessarily leads to jetted emission.« less
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.; Wyse, Rosemary F. G.
2018-05-01
The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Kotlyar, Victor V.
2015-03-01
We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca
2017-01-20
In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less
Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P
2012-09-01
The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.
Microstrip Antenna Generates Circularly Polarized Beam
NASA Technical Reports Server (NTRS)
Huang, J.
1986-01-01
Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.
Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Aranda, V M; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; Almeida, R M de; Domenico, M De; Jong, S J de; Neto, J R T de Mello; Mitri, I De; Oliveira, J de; Souza, V de; Peral, L Del; Deligny, O; Dembinski, H; Dhital, N; Giulio, C Di; Matteo, A Di; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fujii, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; Oliveira, M A Leigui de; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Melissas, M; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Carvalho, W Rodrigues de; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, D; Schröder, F G; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Kowski, A Śmiał; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Aar, G van; Bodegom, P van; Berg, A M van den; Velzen, S van; Vliet, A van; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Zuccarello, F
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.
NASA Astrophysics Data System (ADS)
Ganesan, A. R.; Arulmozhivarman, P.; Jesson, M.
2005-12-01
Accurate surface metrology and transmission characteristics measurements have become vital to certify the manufacturing excellence in the field of glass visors, windshields, menu boards and transportation industries. We report a simple, cost-effective and novel technique for the measurement of geometric aberrations in transparent materials such as glass sheets, Perspex, etc. The technique makes use of an array of spot pattern, we call the spot pattern test chart technique, in the diffraction limited imaging position having large field of view. Performance features include variable angular dynamic range and angular sensitivity. Transparent sheets as the intervening medium introduced in the line of sight, causing aberrations, are estimated in real time using the Zernike reconstruction method. Quantitative comparative analysis between a Shack-Hartmann wavefront sensor and the proposed new method is presented and the results are discussed.
Aab, Alexander
2015-06-20
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis.more » As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less
NASA Astrophysics Data System (ADS)
Toulemonde, M.; Assmann, W.; Muller, D.; Trautmann, C.
2017-09-01
Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. Four different fluoride targets, LiF, CaF2, LaF3 and UF4 were irradiated in the electronic energy loss regime using 197 MeV Au ions. The angular distribution of particles sputtered from the surface of freshly cleaved LiF and CaF2 single crystals is composed of a broad cosine distribution superimposed by a jet-like peak that appears perpendicular to the surface independent of the angle of beam incidence. For LiF, the particle emission in the entire angular distribution (jet plus broad cosine component) is stoichiometric, whereas for CaF2 the ratio of the sputtered F to Ca particles is at large angles by a factor of two smaller than the stoichiometry of the crystal. For single crystalline LaF3 no jet component is observed and the angular distribution is non-stoichiometric with the number of sputtered F particles being slightly larger than the number of sputtered La particles. In the case of UF4, the target was polycrystalline and had a much rougher surface compared to cleaved crystals. This destroys the appearance of a possible jet component leading to a broad angular distribution. The ratio of sputtered U atoms compared to F atoms is in the order of 1-2, i.e. the number of collected particles on the catcher is also non-stoichiometric. Such unlike behavior of particles sputtered from different fluoride crystals creates new questions.
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
Determining the solar-flare photospheric scale height from SMM gamma-ray measurements
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.
1991-01-01
A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.
UHE Cosmic Ray Observations Using the Cygnus Water - Array
NASA Astrophysics Data System (ADS)
Dion, Cynthia L.
1995-01-01
The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.
SPIDER: probing the early Universe with a suborbital polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraisse, A.A.; Chiang, H.C.; Ade, P.A.R.
2013-04-01
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern (B-modes) in the cosmic microwave background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r = 0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively widemore » range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the ''Southern Hole.'' We show that two ∼ 20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r < 0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.« less
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, D. P.
2014-01-01
We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu
Small-scale features observed by Wilkinson Microwave Anisotropy Probe ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-Hmore » isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.« less
Disk-Anchored Magnetic Propellers - A Cure for the SW Sex Syndrome
NASA Astrophysics Data System (ADS)
Horne, Keith
In AE Aqr, magnetic fields transfer energy and angular momentum from a rapidly-spinning white dwarf to material in the gas stream from the companion star, with the effect of spinning down the white dwarf while flinging the gas stream material out of the binary system. This magnetic propeller produces a host of observable signatures, chief among which are broad, single-peaked, flaring emission lines with phase-shifted orbital kinematics. SW Sex stars have accretion disks, but also broad, single-peaked, phase-shifted emission lines similar to those seen in AE Aqr. We propose that a magnetic propeller similar to that which operates in AE Aqr is also at work in SW Sex stars - and to some extent in all nova-like systems. The propeller is anchored in the inner accretion disk, rather than, or in addition to, the white dwarf. Energy and angular momentum are thereby extracted from the inner disk and transferred to gas-stream material flowing above the disk, which is consequently pitched out of the system. This provides a non-local, dissipationless angular-momentum-extraction mechanism, which should result in cool inner disks with temperature profiles flatter than T propto R^{-3/4}, as observed in eclipse mapping studies of nova-like variables. The disk-anchored magnetic propeller model appears to explain qualitatively most if not all of the peculiar features of the SW Sex syndrome.
Three Dimensional Structure and Time Development of Radio Emission from Solar Active Regions.
1983-01-15
8217 surrounded by a weaker unpolarized halo whose angular extent ranges between 5’ and 9’. The bright (106K) sunspot-associated cores, which were intepreted in...shorter intervals. Examination of the He film indicates that the dominant He emission was stable for periods of at least six hours. Figure 8 and 9 also...the cool loops and may occupy a substantial fraction of the region above sunspots. This intepretation has, in fact, been supported by the model of
Cooperative Security in the Pacific Basin. The 1988 Pacific Symposium,
1990-01-01
show the same pattern which Taiwan established and Singapore is following closely. Among the four Asian NICs Hong Kong led the pattern early, followed...government, have become a driving force for the tri- angular trade pattern among the United States, Japan, and the East Asian countries. JAPANESE DIRECT...Division of roles between the United States and Japan in East Asia has unintentionally effected a triangular trade pattern among the United States, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morvan, B.; Tinel, A.; Sainidou, R.
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Gohn-Kreuz, Cristian; Rohrbach, Alexander
2016-03-21
Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.
The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"
NASA Astrophysics Data System (ADS)
König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.
2013-05-01
Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that star formation is progressing radially outward within the ring, indicating that a self-triggering mechanism may also affect star formation processes. The net result of this merger therefore very likely increases the central concentration of stellar mass in the NGC 1614 remnant giant system.
Observing the Sun with micro-interferometric devices: a didactic experiment
NASA Astrophysics Data System (ADS)
Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.
2014-04-01
Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R
2015-02-12
Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage.
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.
2015-01-01
Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage. PMID:25844110
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.
2016-01-01
Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
OT2_pbjerkel_1: Herschel observations of the shocked gas in HH54
NASA Astrophysics Data System (ADS)
Bjerkeli, P.
2011-09-01
A shock that can be studied in detail, using a very limited amount of Herschel time, is the Herbig-Haro object HH54 located in the nearby Chamaeleon II cloud at a distance of 180 pc. The shocked region has an angular extent of roughly 30'' and is not contaminated with emission from other nearby objects. The gas, traced by H2O and CO, emits radiation predominantly in the far-infrared regime. For that reason, this program can only be executed using the instruments aboard the Herschel Space Observatory. We propose spectroscopy of rotational H2O and CO transitions, falling in the wavelength range covered by SPIRE and PACS. These observations will allow us to stratify the shocked region in different physical/kinematical components. We will also improve our understanding of the mechanisms responsible for water production and destruction. Given the relatively large angular extent of the region, we will determine the types of shock responsible for the emission in different positions along the shocked surface. We also propose HIFI observations of selected CO and H2O transitions. A bullet feature has previously been observed in several CO line profiles. Using HIFI, we will constrain the origin and physical properties of the region responsible for this emission.
Pre-compound emission in low-energy heavy-ion interactions
NASA Astrophysics Data System (ADS)
Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.
2017-11-01
Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.
LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu
2016-09-20
Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less
NASA Astrophysics Data System (ADS)
Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina
2018-03-01
High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.
High energy gamma-ray astronomy observations of Geminga with the VERITAS array
NASA Astrophysics Data System (ADS)
Finnegan, Gary Marvin
The closest known supernova remnant and pulsar is Geminga. The Geminga pulsar is the first pulsar to have ever been detected initially by gamma rays and the first pulsar in a class of radio-quiet pulsars. In 2007, the Milagro collaboration detected a large angularly extended (˜ 2.6°) emission of high energy gamma rays (˜ 20 TeV ) that was positionally coincident with Geminga. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground- based observatory with four imaging Cherenkov telescopes with an energy range between 100 GeV to more than 30 TeV. The imaging Cherenkov telescopes detect the Cherenkov light from charged particles in electromagnetic air showers initiated by high energy particles such as gamma rays and cosmic rays. Most gamma-ray sources detected by VERITAS are point like sources, which have an angular extension smaller than the angular resolution of the telescopes (˜ 0.1°). For a point source, the background noise can be measured in the same field of view (FOV) as the source. For an angularly extended object, such as Geminga, an external FOV from the source region must be used to estimate the background noise, to avoid contamination from the extended source region. In this dissertation, I describe a new analysis procedure that is designed to increase the observation sensitivity of angularly extended objects like Geminga. I apply this procedure to a known extended gamma-ray source, Boomerang, as well as Geminga. The results indicate the detection of very high energy emission from the Geminga region at the level of 4% of the Crab nebula with a weighted average spectral index of -2.8 ± 0.2. A possible extension less than one degree wide is shown. This detection, however, awaits a confirmation by the VERITAS collaboration. The luminosity of the Geminga extended source, the Vela Nebula, and the Crab nebula was calculated for energies greater than 1 TeV. The data suggest that older pulsars, such as Geminga and Vela, convert the spin-down power of the pulsar more efficiently to TeV energies than a younger pulsar such as the Crab pulsar.
Medical tomograph system using ultrasonic transmission
NASA Technical Reports Server (NTRS)
Heyser, Richard C. (Inventor); Nathan, Robert (Inventor)
1978-01-01
Ultrasonic energy transmission in rectilinear array scanning patterns of soft tissue provides projection density values of the tissue which are recorded as a function of scanning position and angular relationship, .theta., of the subject with a fixed coordinate system. A plurality of rectilinear scan arrays in the same plane for different angular relationships .theta..sub.1 . . . .theta..sub.n thus recorded are superimposed. The superimposition of intensity values thus yields a tomographic image of an internal section of the tissue in the scanning plane.
Probing the degenerate states of V-point singularities.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam
2017-09-15
V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.
NASA Astrophysics Data System (ADS)
Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.
2012-08-01
A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.
Method and apparatus for fiber optic multiple scattering suppression
NASA Technical Reports Server (NTRS)
Ackerson, Bruce J. (Inventor)
2000-01-01
The instant invention provides a method and apparatus for use in laser induced dynamic light scattering which attenuates the multiple scattering component in favor of the single scattering component. The preferred apparatus utilizes two light detectors that are spatially and/or angularly separated and which simultaneously record the speckle pattern from a single sample. The recorded patterns from the two detectors are then cross correlated in time to produce one point on a composite single/multiple scattering function curve. By collecting and analyzing cross correlation measurements that have been taken at a plurality of different spatial/angular positions, the signal representative of single scattering may be differentiated from the signal representative of multiple scattering, and a near optimum detector separation angle for use in taking future measurements may be determined.
Limited Angle Dual Modality Breast Imaging
NASA Astrophysics Data System (ADS)
More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.
2007-06-01
We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.
Search for extended γ-ray emission around AGN with H.E.S.S. and Fermi-LAT
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.
2014-02-01
Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (H.E.S.S.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.
Very long baseline interferometric observations of the hydroxyl masers in VY Canis Majoris
NASA Technical Reports Server (NTRS)
Reid, M. J.; Muhleman, D. O.
1978-01-01
Results are presented for spectral-line VLBI observations of the OH emission from VY CMa. The main-line (1665 and 1667 MHz) emission was mapped with an angular resolution of 0.02 arcsec by analyzing interferometer phase data. The main-line emission comes from many maser components of apparent size less than 0.03 arcsec which are separated by up to 0.5 arcsec. New maser features near the center of the OH spectra were detected and found to lie within the region encompassed by the low-velocity OH emission. The 1612-MHz emission was mapped by Fourier inversion of the VLBI data from two baselines. All spatially isolated maser components appeared smaller than 0.15 arcsec; however, the maser emission is very complex at most velocities. Maser components within a velocity range of 1.3 km/s are often separated by more than 1 arcsec, while components more than 10 km/s apart in each emission complex are often coincident to 0.2 arcsec.
Disentangling X-Ray Emission Processes In Vela-Like Pulsars
NASA Technical Reports Server (NTRS)
Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)
2002-01-01
This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
Domahs, Ulrike; Klein, Elise; Huber, Walter; Domahs, Frank
2013-06-01
Using a stress violation paradigm, we investigated whether metrical feet constrain the way prosodic patterns are processed and evaluated. Processing of correctly versus incorrectly stressed words was associated with activation in left posterior angular and retrosplenial cortex, indicating the recognition of an expected and familiar pattern, whereas the inverse contrast yielded enhanced bilateral activation in the superior temporal gyrus, reflecting higher costs in auditory (re-)analysis. More fine-grained analyses of severe versus mild stress violations revealed activations of the left superior temporal and left anterior angular gyrus whereas the opposite contrast led to frontal activations including Broca's area and its right-hemisphere homologue, suggesting that detection of mild violations lead to increased effort in working memory and deeper phonological processing. Our results provide first evidence that different incorrect stress patterns are processed in a qualitatively different way and that the underlying foot structure seems to determine potential stress positions in German words. Copyright © 2013 Elsevier Inc. All rights reserved.
The measurement of Bethe-Heitler bremstrahlung in muon-hydrogen interactions at 200 GeV
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Hinssieux, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1984-12-01
Using a lead glass detector installed in the EMC forward spectrometer radiative photons have been measured in 200 GeV muon-hydrogen collisions. The results are compared with the standard QED one photon emission theory of Mo and Tsai and also with the more recent predictions of a multiphoton emission theory of Chahine. We conclude that there is no evidence for any deviation from the standard theory, in terms of the yield and angular distribution of photons with fractional energy, z>0.7.
Bound-bound transitions in the emission spectra of Ba+-He excimer
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Kono, K.
2016-05-01
We present an experimental and theoretical study of the emission and absorption spectra of the Ba+ ions and Ba+*He excimer quasimolecules in the cryogenic Ba-He plasma. We observe several spectral features in the emission spectrum, which we assign to the electronic transitions between bound states of the excimer correlating to the 6 2P3 /2 and 5 2D3 /2 ,5 /2 states of Ba+. The resulting Ba+(5 2DJ) He is a metastable electronically excited complex with orbital angular momentum L =2 , thus expanding the family of known metal-helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.
Radiation from an accelerating neutral body: The case of rotation
NASA Astrophysics Data System (ADS)
Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.
2013-11-01
When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating diatomic molecule, for instance). If the object reaches its final state in a given medium, say air, and "friction" is present, such as the case of a dental drill, then energy should keep being supplied to it, to overcome friction, which is present either inside the "inner mechanism of rotation" or in its surroundings. In other words, the object in the latter case, would be constantly subject to a friction force, countering its motion, and tending to make it fall to lower rotational energy states. Any fluctuations in the power supply, on the other hand, will slow down the rotating object, no matter how indiscernibly. The small decrease in the rotational velocity is yet reincreased by restoring the power supply, thus perpetually securing a stationary rotational motion. Thereby, the object in this final state, due to fluctuations in either friction or power supply, or both, shall further be expected to emit a radiation of energy , where is the final angular velocity of the object in rotation. What is more is that our team has very successfully measured what is predicted here, and they will report their experimental results in a subsequent article. The approach presented here seems to shed light on the mysterious sonoluminescence. It also triggers the possibility of sensing earthquakes due to radiation that should be emitted by the faults, on which the seismic stress keeps increasing until the crackdown. By the same token, also two colliding (neutral) objects are expected to emit radiation.
NASA Astrophysics Data System (ADS)
Satoh, D.; Kajimoto, T.; Shigyo, N.; Itashiki, Y.; Imabayashi, Y.; Koba, Y.; Matsufuji, N.; Sanami, T.; Nakao, N.; Uozumi, Y.
2016-11-01
Double-differential neutron yields from a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions were measured at emission angles of 15°, 30°, 45°, 60°, 75°, and 90°, and angular distributions of neutron yields and doses around the phantom were obtained. The experimental data were compared with results of the Monte-Carlo simulation code PHITS. The PHITS results showed good agreement with the measured data. On the basis of the PHITS simulation, we estimated the angular distributions of neutron yields and doses from 0° to 180° including thermal neutrons.
NASA Astrophysics Data System (ADS)
Stude, Joan; Wieser, Martin; Barabash, Stas
2016-10-01
Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.
Interaction of 1.05 μm and 0.53 μm lasers with gold disks
NASA Astrophysics Data System (ADS)
Shenye, Liu; Yaonan, Ding; Zhijian, Zheng; Daoyuan, Tang
1996-05-01
Gold disks were irradiated with 1.05 μm and 0.53 μm lasers at pulse duration of ˜0.8 ns, intensity ranging from 5×1013 W/cm2 to 4×1015 W/cm2 on the SHEN GUANG I laser facility in China. The experimental results of laser absorption, scattering light, x-ray emission and plasma blow-off are presented in this paper. When the laser irradiated the gold disk obliquely, the angular distribution of scattered lights produced by 0.53 μm lasers disagree with that predicted by the Brillouin scattering theory. The angular distribution is different from that reported previously by the others.
KrF laser amplifier with phase-conjugate Brillouin retroreflectors.
Gower, M C
1982-09-01
We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.
TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons
NASA Astrophysics Data System (ADS)
Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad
2017-09-01
For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.
The Low‐Energy Neutral Imager (LENI)
Mitchell, D. G.; Brandt, P. C.‐son.; Andrews, B. G.; Clark, G.
2016-01-01
Abstract To achieve breakthroughs in the areas of heliospheric and magnetospheric energetic neutral atom (ENA) imaging, a new class of instruments is required. We present a high angular resolution ENA imager concept aimed at the suprathermal plasma populations with energies between 0.5 and 20 keV. This instrument is intended for understanding the spatial and temporal structure of the heliospheric boundary recently revealed by Interstellar Boundary Explorer instrumentation and the Cassini Ion and Neutral Camera. The instrument is also well suited to characterize magnetospheric ENA emissions from low‐altitude ENA emissions produced by precipitation of magnetospheric ions into the terrestrial upper atmosphere, or from the magnetosheath where solar wind protons are neutralized by charge exchange, or from portions of the ring current region. We present a new technique utilizing ultrathin carbon foils, 2‐D collimation, and a novel electron optical design to produce high angular resolution (≤2°) and high‐sensitivity (≥10−3 cm2 sr/pixel) ENA imaging in the 0.5–20 keV energy range. PMID:27867800
Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.
Cowen, Stephen L; Nitz, Douglas A
2014-01-01
Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.
High-energy gamma-ray emission from pion decay in a solar flare magnetic loop
NASA Technical Reports Server (NTRS)
Mandzhavidze, Natalie; Ramaty, Reuven
1992-01-01
The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.
2016-06-07
The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30–1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin{sup 2}θ/r{sup 2} dependence of the electric dipole radiation. The normalized RF emissions were observed tomore » vary with incident laser intensity (Iλ{sup 2}), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.« less
NASA Astrophysics Data System (ADS)
Muñoz-Gorriz, J.; Monaghan, S.; Cherkaoui, K.; Suñé, J.; Hurley, P. K.; Miranda, E.
2017-12-01
The angular wavelet analysis is applied for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt capacitors with areas ranging from 104 to 105 μm2. The breakdown spot lateral sizes are in the range from 1 to 3 μm, and they appear distributed on the top metal electrode as a point pattern. The spots are generated by ramped and constant voltage stresses and are the consequence of microexplosions caused by the formation of shorts spanning the dielectric film. This kind of pattern was analyzed in the past using the conventional spatial analysis tools such as intensity plots, distance histograms, pair correlation function, and nearest neighbours. Here, we show that the wavelet analysis offers an alternative and complementary method for testing whether or not the failure site distribution departs from a complete spatial randomness process in the angular domain. The effect of using different wavelet functions, such as the Haar, Sine, French top hat, Mexican hat, and Morlet, as well as the roles played by the process intensity, the location of the voltage probe, and the aspect ratio of the device, are all discussed.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
The impact of Nordic walking training on the gait of the elderly.
Ben Mansour, Khaireddine; Gorce, Philippe; Rezzoug, Nasser
2018-03-27
The purpose of the current study was to define the impact of regular practice of Nordic walking on the gait of the elderly. Thereby, we aimed to determine whether the gait characteristics of active elderly persons practicing Nordic walking are more similar to healthy adults than that of the sedentary elderly. Comparison was made based on parameters computed from three inertial sensors during walking at a freely chosen velocity. Results showed differences in gait pattern in terms of the amplitude computed from acceleration and angular velocity at the lumbar region (root mean square), the distribution (Skewness) quantified from the vertical and Euclidean norm of the lumbar acceleration, the complexity (Sample Entropy) of the mediolateral component of lumbar angular velocity and the Euclidean norm of the shank acceleration and angular velocity, the regularity of the lower limbs, the spatiotemporal parameters and the variability (standard deviation) of stance and stride durations. These findings reveal that the pattern of active elderly differs significantly from sedentary elderly of the same age while similarity was observed between the active elderly and healthy adults. These results advance that regular physical activity such as Nordic walking may counteract the deterioration of gait quality that occurs with aging.
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 <ℓ< 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.
On the shelf resonances of the Gulf of Carpentaria and the Arafura Sea
NASA Astrophysics Data System (ADS)
Webb, D. J.
2012-09-01
A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea, and the additional insights that come from extending the analysis into the complex angular velocity plane. When the model is forced at the shelf edge with physically realistic real values of the angular velocity, the response functions at points within the region show maxima and other behaviour which imply that resonances are involved but provide little additional information. The study is then extended to complex angular velocities, and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the response at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.
1985-01-01
For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.
ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z ∼ 2
NASA Astrophysics Data System (ADS)
Alcorn, Leo Y.; Tran, Kim-Vy; Glazebrook, Karl; Straatman, Caroline M.; Cowley, Michael; Forrest, Ben; Kacprzak, Glenn G.; Kewley, Lisa J.; Labbé, Ivo; Nanayakkara, Themiya; Spitler, Lee R.; Tomczak, Adam; Yuan, Tiantian
2018-05-01
We perform a kinematic and morphological analysis of 44 star-forming galaxies at z ∼ 2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from 2.0 < z < 2.5 with K-band multi-object slit spectroscopic measurements of their Hα emission lines. Hα rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S 0.5 and angular momentum at small offsets, but V 2.2/σ g values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S 0.5, and finding {log}({S}0.5)=(0.38+/- 0.07){log}(M/{M}ȯ -10)+(2.04+/- 0.03) with no significant offset between morphological populations and similar levels of scatter (∼0.16 dex). Additionally, we identify a correlation between M ⋆ and V 2.2/σ g for the total sample, showing an increasing level of rotation dominance with increasing M ⋆, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta (j disk) of these galaxies and find a slope of 0.36 ± 0.12, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M ⋆ < 9.5 However, through a Kolmogorov–Smirnov test we find irregular galaxies to have marginally higher j disk values than regular galaxies, and high scatter at low masses in both populations.
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
Pulsar B0329+54: scattering disk resolved by RadioAstron interferometer at 324 MHz
NASA Astrophysics Data System (ADS)
Popov, M.
Propagation of pulsar radio emission through the interstellar plasma is accompanied with scattering by inhomogeneities of the plasma. The scattering produces a range of effects: angular broadening, pulse broadening, intensity modulation (scintillations), and distortion of radio spectra (diffraction pattern). In this presentation, we will primarily deal with scattering effects affecting interferometric measurements. Pulsars are point like radio sources at angular resolution provided by space VLBI even at largest baseline projections. Therefore, any structure, observed by the space-ground interferometer, is due to scattering effects. The objective of our study was to measure parameters of a scattering disk for the PSR B0329+54 at a frequency of 324 MHz with the space-ground interferometer RadioAstron. Observations were conducted on November 26-29 2012 in four sessions, one hour duration each, with progressively increasing baseline projections of 70, 90,175, and 235 thousand kilometers correspondingly. Only one ground radio telescope observed the pulsar together with the space radio telescope (SRT); it was 100-m telescope in Green Bank (GBT). Notable visibility amplitudes were detected at all baseline projections at a maximum level of 0.05 with the SNR of about 20. It was found that visibility function in delay consists of many isolated unresolved spikes. The overall spread of such spikes in delay corresponds to the scattering disk of about 4 mas at a half wide. Fine structure of the visibility amplitude in delay domain corresponds to a model of amplitude modulated noise (AMN). Fringe rate behavior with time indicates on dominant influence of refraction on traveling ionospheric disturbances (TID).
Logarithmic Compression of Sensory Signals within the Dendritic Tree of a Collision-Sensitive Neuron
2012-01-01
Neurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this temporal profile, the peak firing rate signals when the approaching object's subtended size reaches an angular threshold, an event which has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical basis of this angular threshold computation relies on a multiplicative combination of the object's angular size and speed, achieved through a logarithmic-exponential transform. To understand how this transform is implemented, we modeled the encoding of angular velocity along the pathway leading to the LGMD based on the experimentally determined activation pattern of its presynaptic neurons. These simulations show that the logarithmic transform of angular speed occurs between the synaptic conductances activated by the approaching object onto the LGMD's dendritic tree and its membrane potential at the spike initiation zone. Thus, we demonstrate an example of how a single neuron's dendritic tree implements a mathematical step in a neural computation important for natural behavior. PMID:22492048
Dynamics of dust in astrophysical plasma and implications
NASA Astrophysics Data System (ADS)
Hoang, Thiem
2012-06-01
Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a novel acceleration mechanism induced by charge fluctuations for very small grains using Monte Carlo simulations. Grain velocities from these new acceleration mechanisms are necessary for understanding dust coagulation in protoplanetary disks and formations of planets.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge.
Lim, Lian-Kuang; Yap, Seong-Ling; Bradley, D A
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1-3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic.
Time-resolved characteristics of deuteron-beam generated by plasma focus discharge
Bradley, D. A.
2018-01-01
The plasma focus device discussed herein is a Z-pinch pulsed-plasma arrangement. In this, the plasma is heated and compressed into a cylindrical column, producing a typical density of > 1025 particles/m3 and a temperature of (1–3) × 107 oC. The plasma focus has been widely investigated as a radiation source, including as ion-beams, electron-beams and as a source of x-ray and neutron production, providing considerable scope for use in a variety of technological situations. Thus said, the nature of the radiation emission depends on the dynamics of the plasma pinch. In this study of the characteristics of deuteron-beam emission, in terms of energy, fluence and angular distribution were analyzed. The 2.7 kJ plasma focus discharge has been made to operate at a pressure of less than 1 mbar rather than at its more conventional operating pressure of a few mbar. Faraday cup were used to determine deuteron-beam energy and deuteron-beam fluence per shot while CR-39 solid-state nuclear track detectors were employed in studying the angular distribution of deuteron emission. Beam energy and deuteron-beam fluence per shot have been found to be pressure dependent. The largest value of average deuteron energy measured for present conditions was found to be (52 ± 7) keV, while the deuteron-beam fluence per shot was of the order of 1015 ions/m2 when operated at a pressure of 0.2 mbar. The deuteron-beam emission is in the forward direction and is observed to be highly anisotropic. PMID:29309425
NASA Technical Reports Server (NTRS)
Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Bassistelli, E. S.; Bond, J. R.; Brown, B.;
2010-01-01
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(sup 2) of the southern sky, in a 4 deg. 2-wide strip centered on declination 53 deg. South. The CMB at arc minute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy dusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 less than l less than 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 less than l less than 1150. The power beyond the Silk damping tail of the CMB (l approximately 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma 8 = 0.8. We constrain the model's amplitude A(sub sz) less than 1.63 (95% CL). If interpreted as a measurement of as, this implies sigma (sup SZ) (sub 8) less than 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter ACDM model plus point sources and the SZ effect is consistent with these results.
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.
1989-01-01
Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.
NASA Astrophysics Data System (ADS)
Kang, N.; Liu, H.; Lin, Z.; Lei, A.; Zhou, S.; Fang, Z.; An, H.; Li, K.; Fan, W.
2017-10-01
Spectra of three-halves harmonic emissions (3{ω }0/2) from laser-produced plasmas were measured at different angles, including both forward and backward sides, from the direction of incident laser beams. The 3{ω }0/2 emitted from carbon-hydrogen (CH) targets was observed to be larger than that from aluminum (Al) targets with the same incident laser intensity, which supports the argument that the two-plasmon decay (TPD) instability could be inhibited by using medium-Z ablator instead of CH ablator in direct-drive inertial confinement fusion. Besides, the measured 3{ω }0/2-incident intensity curves for both materials suggest relatively lower threshold of TPD than the calculated values. In experiments with thin Al targets, the angular distribution of the blue- and red-shifted peaks of 3{ω }0/2 spectra were obtained, which shows that the most intense blue- and red-shifted peaks may not be produced in paired plasmons, but the spectra produced by their ‘twin’ plasmons were not observed. Because 3{ω }0/2 may have been influenced by other physical processes during their propagation from their birth places to the detectors, the mismatches on emission angle, wavelength shift, and threshold may be qualitatively explained through the assumption that small-scale light filaments widely existed in the corona of laser-produced plasmas.
Energy and angular distributions of electron emission from diatomic molecules by bare ion impact
NASA Astrophysics Data System (ADS)
Mondal, A.; Mandal, C. R.; Purkait, M.
2015-06-01
The three-Coulomb wave model has been used extensively to study the energy and angular distributions of double-differential cross sections (DDCS) of electron emissions from hydrogen and nitrogen molecules by bare ion impact at intermediate and high energies. In the present model, we have expressed the molecular triple differential cross section in terms of the corresponding atomic triple differential cross section multiplied by the occupation number and the average Rayleigh interference factor, which accounts for the two-center interference effect. Here we have used an active electron approximation of the molecule as a whole in the initial channel. To account for the effect of passive electrons, we have constructed a model potential that satisfies the initial conditions and the corresponding wavefunction has been calculated from the model Hamiltonian of the active electron in the target. In the final channel, we have used a hydrogenic model with an effective nuclear charge that is calculated from its binding energy. In this model, the correlated motion of the particles in the exit channel of the reaction is considered by an adequate product of three-Coulomb functions. The emitted electron, the incident projectile ion and the residual ion are considered to be in same plane. The obtained results are compared with other recent theoretical and experimental findings. There is an overall agreement of the calculations with the experimental data for electron emission cross sections.
Maser Emission from Gravitational States on Isolated Neutron Stars
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.
2018-04-01
Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.
NASA Astrophysics Data System (ADS)
Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Butts Pauly, Kim; Rieke, Viola; Sommer, Graham
2006-05-01
Multi-sectored ultrasound heating applicators with dynamic angular and longitudinal control of heating profiles are being investigated for the thermal treatment of tumors in sites such as prostate, uterus, and brain. Multi-sectored tubular ultrasound transducers with independent sector power control were incorporated into interstitial and transurethral applicators and provided dynamic angular control of a heating pattern without requiring device manipulation during treatment. Acoustic beam measurements of each applicator type demonstrated a 35-40° acoustic dead zone between each independent sector, with negligible mechanical or electrical coupling. Despite the acoustic dead zone between sectors, simulations and experiments under MR temperature (MRT) monitoring showed that the variance from the maximum lesion radius (scalloping) with all elements activated on a transducer was minimal and did not affect conformal heating of a target area. A biothermal model with a multi-point controller was used to adjust the applied power and treatment time of individual transducer segments as the tissue temperature changed in simulations of thermal lesions with both interstitial and transurethral applicators. Transurethral ultrasound applicators for benign prostatic hyperplasia (BPH) treatment with either three or four sectors conformed a thermal dose to a simulated target area in the angular and radial dimensions. The simulated treatment was controlled to a maximum temperature of 85°C, and had a maximum duration of 5 min when power was turned off as the 52°C temperature contour reach a predetermined control point for each sector in the tissue. Experiments conducted with multi-sectored applicators under MRT monitoring showed thermal ablation and hyperthermia treatments had little or no border `scalloping', conformed to a pretreatment target area, and correlated very well with the simulated thermal lesions. The radial penetration of the heat treatments in tissue with interstitial (1.5-1.8 mm OD transducer) and transurethral (2.5-4.0 mm OD transducer) applicators was at least 1.5 cm and 2.0 cm, respectively, for a treatment duration of 10 min. Angular control of thermal ablation and hyperthermia therapy often relies upon non-adjustable angular power deposition patterns and/or mechanical manipulation of the heating device. The multi-sectored ultrasound applicators developed in this study provide dynamic control of the angular heating distribution during treatment without device manipulation and maintain previously reported heating penetration and spatial control characteristics of similar ultrasound devices.
NASA Astrophysics Data System (ADS)
Lasa, A.; Borodin, D.; Canik, J. M.; Klepper, C. C.; Groth, M.; Kirschner, A.; Airila, M. I.; Borodkina, I.; Ding, R.; Contributors, JET
2018-01-01
Experiments at JET showed locally enhanced, asymmetric beryllium (Be) erosion at outer wall limiters when magnetically connected ICRH antennas were in operation. A first modeling effort using the 3D erosion and scrape-off layer impurity transport modeling code ERO reproduced qualitatively the experimental outcome. However, local plasma parameters—in particular when 3D distributions are of interest—can be difficult to determine from available diagnostics and so erosion / impurity transport modeling input relies on output from other codes and simplified models, increasing uncertainties in the outcome. In the present contribution, we introduce and evaluate the impact of improved models and parameters with largest uncertainties of processes that impact impurity production and transport across the scrape-off layer, when simulated in ERO: (i) the magnetic geometry has been revised, for affecting the separatrix position (located 50-60 mm away from limiter surface) and thus the background plasma profiles; (ii) connection lengths between components, which lead to shadowing of ion fluxes, are also affected by the magnetic configuration; (iii) anomalous transport of ionized impurities, defined by the perpendicular diffusion coefficient, has been revisited; (iv) erosion yields that account for energy and angular distributions of background plasma ions under the present enhanced sheath potential and oblique magnetic field, have been introduced; (v) the effect of additional erosion sources, such as charge-exchange neutral fluxes, which are dominant in recessed areas like antennas, has been evaluated; (vi) chemically assisted release of Be in molecular form has been included. Sensitivity analysis highlights a qualitative effect (i.e. change in emission patterns) of magnetic shadowing, anomalous diffusion, and inclusion of neutral fluxes and molecular release of Be. The separatrix location, and energy and angular distribution of background plasma fluxes impact erosion quantitatively. ERO simulations that include all features described above match experimentally measured Be I (457.3 nm) and Be II (467.4 nm) signals, and erosion increases with varying ICRH antenna’s RF power. However, this increase in erosion is only partially captured by ERO’s emission measurements, as most contributions from plasma wetted surfaces fall outside the volume observed by sightlines. ).
NASA Astrophysics Data System (ADS)
Kachurin, O. R.; Lebedev, F. V.; Napartovich, M. A.; Khlynov, M. E.
1991-03-01
A numerical investigation was made of the influence of the number and packing density of a linear array of periodically arranged coherent sources on the efficiency of redistributing the radiation power from the side lobes to the main lobe of the angular distribution of the emitted radiation by using a binary phase corrector mounted in the image-doubling plane. The results are given of experimental investigations of a new device for improving the radiation pattern of phase-locked laser arrays.
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joonkyu; Mangeri, John; Zhang, Qingteng
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
Park, Joonkyu; Mangeri, John; Zhang, Qingteng; ...
2018-01-22
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
Low-frequency polarization measurements of the diffuse radio emission of the galaxy
NASA Astrophysics Data System (ADS)
Vinyaikin, E. N.; Paseka, A. M.
2015-07-01
Polarization measurements of diffuse Galactic radio emission at 151.5, 198, 217, 237, and 290 MHz have been carried out in the direction of the North Celestial Pole, North Galactic Pole, one region of the North Polar Spur, minimum radio brightness of the Northern sky ( l = 190°, b = 50°), and in the direction l = 147°, b = 9° in the so-called FAN region with enhanced polarization. The results obtained testify to the presence of low spatial frequencies in the angular distribution of the Stokes parameters Q and U of the diffuse Galactic synchrotron emission that are not detectable in interferometric observations. The spectra of the brightness temperature of the polarized component, rotation measures, and intrinsic polarization position angles of the radio emission in the studied regions are presented.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2017-06-01
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.
NASA Astrophysics Data System (ADS)
Espinosa, W. Reed
A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the dimensionality of the multi-angle PI-Neph scattering data and the results are examined as a function aerosol type. Strong clustering is observed in the PCA score space, corresponding to the ancillary classification results, suggesting a robust link between the angular scattering measurements and the aerosol type. Retrievals of the DC3 scattering data suggest the presence of a significant amount of mineral dust aerosol in the inflow of storms sampled during this campaign. The retrieved size distributions of all fine mode dominated aerosols measured during SEAC4RS were found to be remarkably similar. There were however consistent differences between the angular light scattering patterns of biomass burning samples and the other fine mode aerosols, which the GRASP retrieval attributed almost entirely to a higher real refractive index in the biomass burning samples.
Problem of the Optical Model for Deuterons; ZAGADNIENIA MODELU OPTYCZNEGO DLA DEUTERONOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.
1963-01-01
Problems concerning parameters of the optical potential for deuterons are presented. Total cross-sections for the interaction of deuterons with nuclei were determined by the evaluation of the cross-sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured, 47 references. (auth)
NASA Astrophysics Data System (ADS)
Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.
1987-04-01
An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).
Limits on soft X-ray flux from distant emission regions
NASA Technical Reports Server (NTRS)
Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.
1984-01-01
The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.
Electron impact ionization of O2 and the interference effect from forward-backward asymmetry
NASA Astrophysics Data System (ADS)
Chowdhury, Madhusree Roy; Tribedi, Lokesh C.
2017-08-01
Absolute double differential cross sections (DDCSs) of secondary electrons emitted from O2 under the impact of 7 keV electrons were measured for different emission angles between 30° and 145° having energies from 1-600 eV. The forward-backward angular asymmetry was observed from angular distribution of the DDCS of secondary electrons. The asymmetry parameter, thus obtained from the DDCS of two complementary angles, showed a clear signature of interference oscillation. The Cohen-Fano model of Young type electron interference at a molecular double slit is found to provide a good fit to the observed oscillatory structures. The present observation is in qualitative agreement with the recent results obtained from photoionization.
Angular selective window systems: Assessment of technical potential for energy savings
Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; ...
2014-10-16
Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less
VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.
Goldberg, Lew; McIntosh, Chris; Cole, Brian
2011-02-28
A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.
Observations and analysis of lunar radio emission at 3.09 mm wavelength
NASA Technical Reports Server (NTRS)
Ulich, B. L.; Cogdell, J. R.; Davis, J. H.; Calvert, T. A.
1974-01-01
An analysis of data on lunar radio emission at 3.09 mm wavelength is presented. The data were obtained during a single lunation in a manner that facilitates their comparison with a calculated model. Specific regions of the moon (Copernicus, Sea of Serenity, Sea of Tranquillity, Ocean of Storms, and an highland region near the mean center) were studied with enough angular resolution to distinguish between different types of terrain. The data were absolutely calibrated and yield a new measurement of the lunation average brightness temperature of the center of the moon.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range of the primordial recombination bump (40 <ℓ< 120); the statistical uncertainty is ± 0.29 × 10-2 μKCMB2 and there is an additional uncertainty (+0.28, -0.24) × 10-2 μKCMB2 from the extrapolation. This level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.
The nature of radio emission from distant galaxies
NASA Astrophysics Data System (ADS)
Richards, Eric A.
I describe an observational program aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA centered on the Hubble Deep Field. Further MERLIN observations of the HDF region at 1.4 GHz provided an angular resolution of 0.2'' and when combined with the VLA data produced an image with an unprecedented rms noise of 4 μJy. All radio sources detected in the VLA complete sample are resolved with a median angular size of 1-2''. The differential count of the radio sources is marginally sub-Euclidean (γ = -2.4 +/- 0.1) and fluctuation analysis suggests nearly 60 sources per armin2 are present at the 1 μJy level. A correlation analysis indicates spatial clustering among the 371 radio sources on angular scales of 1-40 arcmin. Optical identifications are made primarily with bright (I = 22) disk systems composed of irregulars, peculiars, interacting/merging galaxies, and a few isolated field spirals. Available redshifts span the range 0.2-3. These clues coupled with the steep spectral index of the 1.4 GHz selected sample are indicative of diffuse synchrotron radiation in distant galactic disks. Thus the evolution in the microjansky radio population is driven principally by star-formation. I have isolated a number of optically faint radio sources (about 25% of the overall sample) which remain unidentified to I = 26-28 in the HDF and flanking optical fields. Several of these objects have extremely red counterparts and constitute a new class of radio sources which are candidate high redshift dusty protogalaxies.
NASA Astrophysics Data System (ADS)
Carjan, Nicolae; Rizea, Margarit; Talou, Patrick
2017-09-01
Prompt fission neutrons (PFN) angular and energy distributions for the reaction 235U(nth,f) are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1) PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10-21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2) PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.
NASA Technical Reports Server (NTRS)
Helgason, K.; Cappelluti, N.; Hasinger, G.; Kashlinsky, A.; Ricotti, M.
2014-01-01
A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, approx. 1deg. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction.We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (1), the 4.5microns versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (approx.10), we find that the net contribution from the modeled populations is only able to account for approx. 3% of the measured CIB×CXB cross-power. The discrepancy suggests that the CIB×CXB signal originates from the same unknown source population producing the CIB clustering signal out to approx. 1deg.
First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.
2003-01-01
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.
NASA Astrophysics Data System (ADS)
Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan
2018-03-01
Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.
The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were d...
Constraining ejecta particle size distributions with light scattering
NASA Astrophysics Data System (ADS)
Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William
2017-06-01
The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.
Holographic memories with encryption-selectable function
NASA Astrophysics Data System (ADS)
Su, Wei-Chia; Lee, Xuan-Hao
2006-03-01
Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.
Cassini Imaging Results at Titan
NASA Technical Reports Server (NTRS)
McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.
2005-01-01
The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.
ERIC Educational Resources Information Center
Barrow, Gordon M.
1970-01-01
Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)
NASA Astrophysics Data System (ADS)
Ram, Farangis; De Graef, Marc
2018-04-01
In an electron backscatter diffraction pattern (EBSP), the angular distribution of backscattered electrons (BSEs) depends on their energy. Monte Carlo modeling of their depth and energy distributions suggests that the highest energy BSEs are more likely to hit the bottom of the detector than the top. In this paper, we examine experimental EBSPs to validate the modeled angular BSE distribution. To that end, the Kikuchi bandlet method is employed to measure the width of Kikuchi bands in both modeled and measured EBSPs. The results show that in an EBSP obtained with a 15 keV primary probe, the width of a Kikuchi band varies by about 0 .4∘ from the bottom of the EBSD detector to its top. The same is true for a simulated pattern that is composed of BSEs with 5 keV to 15 keV energies, which validates the Monte Carlo simulations.
Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal
2016-01-01
Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471
Interferometric Quasi-Autocollimator
NASA Technical Reports Server (NTRS)
Turner, Matthew D. (Inventor); Gundlach, Jens H. (Inventor); Schlamminger, Stephan (Inventor); Hagedorn, Charles A. (Inventor)
2014-01-01
Systems and method are disclosed for measuring small angular deflections of a target using weak value amplification. A system includes a beam source, a beam splitter, a target reflecting surface, a photodetector, and a processor. The beam source generates an input beam that is split into first and second beams by the beam splitter. The first and second beams are propagated to the target reflecting surface, at least partially superimposed at the target reflecting surface, and incident to the target reflecting surface normal to the target reflecting surface. The first beam is reflected an additional even number of times during propagation to the photodetector. The second beam is reflected an additional odd number of times during propagation to the photodetector. The first and second beams interfere at the photodetector so as to produce interference patterns. The interference patterns are interpreted to measure angular deflections of the target reflecting surface.
Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment.
Teague, Caitlin N; Hersek, Sinan; Toreyin, Hakan; Millard-Stafford, Mindy L; Jones, Michael L; Kogler, Geza F; Sawka, Michael N; Inan, Omer T
2016-08-01
We present the framework for wearable joint rehabilitation assessment following musculoskeletal injury. We propose a multimodal sensing (i.e., contact based and airborne measurement of joint acoustic emission) system for at-home monitoring. We used three types of microphones-electret, MEMS, and piezoelectric film microphones-to obtain joint sounds in healthy collegiate athletes during unloaded flexion/extension, and we evaluated the robustness of each microphone's measurements via: 1) signal quality and 2) within-day consistency. First, air microphones acquired higher quality signals than contact microphones (signal-to-noise-and-interference ratio of 11.7 and 12.4 dB for electret and MEMS, respectively, versus 8.4 dB for piezoelectric). Furthermore, air microphones measured similar acoustic signatures on the skin and 5 cm off the skin (∼4.5× smaller amplitude). Second, the main acoustic event during repetitive motions occurred at consistent joint angles (intra-class correlation coefficient ICC(1, 1) = 0.94 and ICC(1, k) = 0.99). Additionally, we found that this angular location was similar between right and left legs, with asymmetry observed in only a few individuals. We recommend using air microphones for wearable joint sound sensing; for practical implementation of contact microphones in a wearable device, interface noise must be reduced. Importantly, we show that airborne signals can be measured consistently and that healthy left and right knees often produce a similar pattern in acoustic emissions. These proposed methods have the potential for enabling knee joint acoustics measurement outside the clinic/lab and permitting long-term monitoring of knee health for patients rehabilitating an acute knee joint injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.
2011-10-15
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in interstellar scintillation (ISS) for sources at redshifts z {approx}> 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the intergalactic medium (IGM) in excess of the expected (1 + z){sup 1/2} angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a samplemore » of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H{alpha} intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15-3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at {alpha} < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at four-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of three decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.« less
NASA Technical Reports Server (NTRS)
Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.
2012-01-01
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.
NASA Astrophysics Data System (ADS)
Ali, Rahbar; Afzal Ansari, M.; Singh, D.; Kumar, Rakesh; Singh, D. P.; Sharma, M. K.; Gupta, Unnati; Singh, B. P.; Shidling, P. D.; Negi, Dinesh; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.
2017-12-01
Spin distributions of various residues populated via complete fusion (CF) and incomplete fusion (ICF) reactions in the interaction of 16O with 160Gd at the projectile energy Eproj ∼ 5.6 MeV/A have been studied. The experimentally measured spin distributions of the residues associated with the ICF reactions are found to be distinctly different from those populated via the CF reactions. An attempt has been made to extract the side-feeding pattern from the spin distributions of CF and ICF reaction products. It has been observed that the CF products are strongly fed over a broad spin range. But, no side-feeding takes place in the low observed spins as low partial waves are strongly hindered in the fast α-emission channels (associated with ICF) in the forward direction. It has also been observed that the mean input angular momentum for direct α-emitting (ICF) channels is relatively higher than evaporation α-emitting (CF) channels, and it increases with direct α-multiplicity in forward direction.
The High Energy Particle Detector (HEPD) for the CSES satellite
NASA Astrophysics Data System (ADS)
Sparvoli, Roberta
2016-04-01
We present the advanced High Energy Particle Detector (HEPD) developed to be installed on the China Seismo-Electromagnetic Satellite (CSES), launch scheduled by the end of 2016. The HEPD instrument aims at studying the temporal stability of the inner Van Allen radiation belts and at investigating precipitation of trapped particles induced by magnetospheric, ionosferic and tropospheric EM emissions, as well as by the seismo-electromagnetic and anthropogenic disturbances. In occasion of many earthquakes and volcanic eruptions, several measurements, on ground and by experiments on LEO satellites revealed: electromagnetic and plasma perturbations, and anomalous increases of high-energy Van Allen charged particle flux. The precipitation of trapped electrons and protons (from a few MeV to several tens of MeV) could be induced by diffusion of particles pitch-angle possibly caused by the seismo-electromagnetic emissions generated before (a few hours) earthquakes. Due to the longitudinal drift along a same L-shell, anomalous particle bursts of precipitating particles could be detected by satellites not only on the epicentral area of the incoming earthquake, but along the drift path. Moreover, the opposite drift directions of positive and negative particles could allow reconstructing the longitude of the earthquake focal area. Although, the earthquake prediction is not within the reach of current knowledge, however the study of the precursors aims at collecting all relevant information that can infer the spatial and temporal coordinates of the seismic events from measurements. At this purposes, it is essential to detect particles in a wide range of energies (because particles of different energies are sensitive to different frequencies of seismo-electromagnetic emissions), with a good angular resolution (in order to separate fluxes of trapped and precipitating particles), and excellent ability to recognize the charge (that determines the direction of the longitudinal drift of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).
A Novel Optical/digital Processing System for Pattern Recognition
NASA Technical Reports Server (NTRS)
Boone, Bradley G.; Shukla, Oodaye B.
1993-01-01
This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.
Tilt angle measurement with a Gaussian-shaped laser beam tracking
NASA Astrophysics Data System (ADS)
Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej
2014-05-01
We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.
NASA Astrophysics Data System (ADS)
Kaverin, N. S.; Kobrin, M. M.; Korshunov, A. I.; Shushunov, V. V.; Aurass, H.; Fürstenberg, F.; Hildebrandt, J.; Krüger, A.; Seehafer, N.
Spectrographic observations of the microwave emission from selected active regions were analysed and compared with S-component emission models. The observations were obtained by spectrographs of the NIRFI working in the ranges 12 - 8 and 7 - 5 GHz covering the high-frequency part of the S-component spectrum. The measurements were carried out at the RT-22 radio telescope of the FIAN Radio Astronomy Station at Pushtshino with an angular resolution of about 9 arc minutes. The conclusions obtained mainly relate to the reversal of the slope of the flux spectrum in the short cm-region by the change of the emission mechanism, to an excess of the observed flux spectrum at long cm-waves and to the interpretation of the proton-flare criterion of Tanaka and Kakinuma on the basis of model calculations.
Some aspects of cosmic synchrotron sources
NASA Technical Reports Server (NTRS)
Epstein, R. I.
1973-01-01
Synchrotron emission is considered from individual particles which have small pitch angles and the general properties of synchrotron sources which mainly contain such particles, as well as the emissivities and degrees of circular polarization for specific source distributions. The limitation of synchrotron source models for optical pulsars and compact extragalactic objects are discussed, and it is shown that several existing models for the pulsar NP 0532 are inconsistent with the measured time variations and polarizations of the optical emission. Discussion is made also of whether the low frequency falloffs in the extragalactic objects PKS 2134 + 004, OQ 208, and NGC 1068 is due to emission from particles with small pitch angles or absorption by a thermal plasma or synchrotron self-absorption. It is concluded that the absorption interpretations cannot account for the turnover in the spectrum of PKS 2134 + 004. Measurements of polarization, angular structure, and X-ray flux are also described.
Design and Performance of the ARIANNA HRA-3 Neutrino Detector Systems
NASA Astrophysics Data System (ADS)
Barwick, S. W.; Berg, E. C.; Besson, D. Z.; Duffin, T.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Ratzlaff, K.; Reed, C.; Roumi, M.; Stezelberger, T.; Tatar, J.; Walker, J.; Young, R.; Zou, L.
2015-10-01
We report on the development, installation, and operation of the first three of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array (HRA) in Antarctica. The primary goal of the ARIANNA project is to observe ultrahigh energy ( > 100 PeV) cosmogenic neutrino signatures using a large array of autonomous stations, each 1 km apart on the surface of the Ross Ice Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU, 32 GB of solid-state data storage, and long-distance wireless and satellite communications. Power is provided by the sun and buffered in LiFePO 4 storage batteries, and each station consumes an average of 7 W of power. Operation on solar power has resulted in ≥58% per calendar-year live-time. The station's pattern-trigger capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma voltage thresholds while retaining good stability and high efficiency for neutrino signals. The timing resolution of the station has been found to be 0.049 ns, RMS, and the angular precision of event reconstructions of signals bounced off of the sea-ice interface of the Ross Ice Shelf ranged from 0.14 to 0.17 °.
Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.; ...
2016-06-10
Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waitz, M.; Metz, D.; Lower, J.
Here, wWe investigate the photodouble ionization of H 2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. Conversely, the quasiparticle consisting of both electrons (i.e., the "dielectron") does. The work highlights the fact that nonlocal effects are embedded everywhere in nature where many-particle processes are involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.
Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki
We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3–2), {sup 13}CO (3–2), SO (7{sub 8}–6{sub 7}), and CS (7–6) emission. At 0.″18 (=25 au) resolution, ∼4 times higher than that of our Cycle 0 observations, the circumbinary disk (CBD) as seen in the 0.9 mm emission is shown to be composed of a northern and a southern spiral arm, with the southern arm connecting to the circumstellar disk (CSD) around Source B. The western parts of the spiral arms are brighter than the eastern parts,more » suggesting the presence of an m = 1 spiral mode. In the C{sup 18}O emission, the infall gas motions in the interarm regions and the outward gas motions in the arms are identified. These observed features are well reproduced with our numerical simulations, where gravitational torques from the binary system impart angular momenta to the spiral-arm regions and extract angular momenta from the interarm regions. Chemical differentiation of the CBD is seen in the four molecular species. Our Cycle 2 observations have also resolved the CSDs around the individual protostars, and the beam-deconvolved sizes are 0.″29 × 0.″19 (=40 × 26 au) (P.A. = 144°) and 0.″26 × 0.″20 (=36 × 27 au) (P.A. = 147°) for Sources A and B, respectively. The position and inclination angles of these CSDs are misaligned with those of the CBD. The C{sup 18}O emission traces the Keplerian rotation of the misaligned disk around Source A.« less
NASA Technical Reports Server (NTRS)
Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.;
2011-01-01
Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution
Variable rotational line broadening in the Be star Achernar
NASA Astrophysics Data System (ADS)
Rivinius, Th.; Baade, D.; Townsend, R. H. D.; Carciofi, A. C.; Štefl, S.
2013-11-01
Aims: The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and offers an excellent opportunity to observe this process from relatively close-up. Methods: Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by Hα emission. The variable strength of the non-radial pulsation is confirmed, but does not affect the other results. Results: For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as Δv sini ≲ 35 km s-1. However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of Hα line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the Hα line emission becomes undetectable. Based on observations collected at the European Southern Observatory at La Silla and Paranal, Chile, Prog. IDs: 62.H-0319, 64.H-0548, 072.C-0513, 073.C-0784, 074.C-0012, 073.D-0547, 076.C-0431, 077.D-0390, 077.D-0605, and the technical program IDs 60.A-9120 and 60.A-9036.Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki; Saito, Masao; Lim, Jeremy; Hanawa, Tomoyuki; Yen, Hsi-Wei; Ho, Paul T. P.
2017-03-01
We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C18O (3-2), 13CO (3-2), SO (78-67), and CS (7-6) emission. At 0.″18 (=25 au) resolution, ˜4 times higher than that of our Cycle 0 observations, the circumbinary disk (CBD) as seen in the 0.9 mm emission is shown to be composed of a northern and a southern spiral arm, with the southern arm connecting to the circumstellar disk (CSD) around Source B. The western parts of the spiral arms are brighter than the eastern parts, suggesting the presence of an m = 1 spiral mode. In the C18O emission, the infall gas motions in the interarm regions and the outward gas motions in the arms are identified. These observed features are well reproduced with our numerical simulations, where gravitational torques from the binary system impart angular momenta to the spiral-arm regions and extract angular momenta from the interarm regions. Chemical differentiation of the CBD is seen in the four molecular species. Our Cycle 2 observations have also resolved the CSDs around the individual protostars, and the beam-deconvolved sizes are 0.″29 × 0.″19 (=40 × 26 au) (P.A. = 144°) and 0.″26 × 0.″20 (=36 × 27 au) (P.A. = 147°) for Sources A and B, respectively. The position and inclination angles of these CSDs are misaligned with those of the CBD. The C18O emission traces the Keplerian rotation of the misaligned disk around Source A.
CLASS: The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.;
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Particle Dark Matter Searches Outside the Local Group.
Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo
2015-06-19
If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ-ray maps. We show that this technique is more sensitive than other extragalactic γ-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ-ray production mechanism. This solicits further data collection and dedicated analyses.
Particle Dark Matter Searches Outside the Local Group
NASA Astrophysics Data System (ADS)
Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo
2015-06-01
If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ -ray maps. We show that this technique is more sensitive than other extragalactic γ -ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ -ray production mechanism. This solicits further data collection and dedicated analyses.
Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora
2017-02-06
We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.
NASA Astrophysics Data System (ADS)
Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.
2018-07-01
The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.
Probing Protoplanetary Disks: From Birth to Planets
NASA Astrophysics Data System (ADS)
Cox, Erin Guilfoil
2018-01-01
Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of 49 pre main-sequence stellar systems and detected either gaps or cavities in ~6 of these sources. Combined, these results build upon how early protoplanetary disks can form around young protostars and thus how early planets can begin to form.
Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.
2016-01-01
Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.
Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface
NASA Astrophysics Data System (ADS)
Yang, Kunpeng; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Luo, Jun; Gao, Hui; Luo, Xiangang
2016-06-01
Nanoapertures with space-variant geometries are designed in a gold thin film to construct an ultrathin plasmonic metasurface, which has been demonstrated both numerically and experimentally to selectively generate and focus orbital angular momentum (OAM) beams with different topological charges at the wavelengths of 930 nm and 766 nm, respectively. Moreover, the interference patterns between the different circularly polarized transmission light were used to confirm the topological charges unambiguously. The agreement between the simulated and measured results suggests that the metasurface of wavelength-selective OAM modes may have potential applications in future optical communication systems.
Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface.
Yang, Kunpeng; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Luo, Jun; Gao, Hui; Luo, Xiangang
2016-06-16
Nanoapertures with space-variant geometries are designed in a gold thin film to construct an ultrathin plasmonic metasurface, which has been demonstrated both numerically and experimentally to selectively generate and focus orbital angular momentum (OAM) beams with different topological charges at the wavelengths of 930 nm and 766 nm, respectively. Moreover, the interference patterns between the different circularly polarized transmission light were used to confirm the topological charges unambiguously. The agreement between the simulated and measured results suggests that the metasurface of wavelength-selective OAM modes may have potential applications in future optical communication systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Andringa, S.
2017-06-01
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less
X-ray Emission from Highly Charged Heavy Ions Studied at Storage Rings
NASA Astrophysics Data System (ADS)
Ma, X.; Stöhlker, Th.; Bosch, F.; Gumberidze, A.; Kozhuharov, C.; Muthig, A.; Mokler, P. H.; Warczak, A.
2003-01-01
Radiative electron capture at low projectile energies is studied via angular differential cross sections for collisions of bare uranium with low-Z target atoms. Our results show that for high-Z systems relativistic effects such as spin-flip transitions show up in an unambiguous fashion which still persist even in the low-energy domain. Moreover, following REC into the 2p3/2 state a strong alignment of this level was observed by measuring the angular distribution of the Lyα1 transition in H-like uranium. Here, an interference between the leading E1 decay channel and the much weaker M2 multipole transition gives rise to a remarkable modified angular distribution of the emitted photons. For the particular case of hydrogen-like uranium the former variance of the experimental data with theoretical findings is removed when this E1/M2 multipole mixing is taken into account. Finally, with respect to atomic structure studies, a very recent experiment will be discussed aiming on a precise determination of the electron-electron QED contribution to the groundstate ionization potential in He-like uranium.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.
NASA Astrophysics Data System (ADS)
Martínez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; Hernán-Caballero, A.; González-Martín, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; Díaz-Santos, T.; Elitzur, M.; Esquej, P.; García-Bernete, I.; Imanishi, M.; Levenson, N. A.; Rodríguez Espinosa, J. M.
2015-12-01
We present an analysis of the nuclear infrared (IR, 1.6-18 μm) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3-0.5 arcsec) imaging using the Si-2 filter (λC = 8.7 μm) and 7.5-13 μm spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 μm silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol ˜ 1.9 × 1045 erg s-1 that is in good agreement with other estimates in the literature.
Collapse of differentially rotating neutron stars and cosmic censorship
NASA Astrophysics Data System (ADS)
Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos
2011-07-01
We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.
Ultraviolet luminosity density of the universe during the epoch of reionization
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-01-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033
Design of a double-anode magnetron-injection gun for the W-band gyrotron
NASA Astrophysics Data System (ADS)
Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho
2015-07-01
A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.
A model for neutrino emission from nuclear accretion disks
NASA Astrophysics Data System (ADS)
Deaton, Michael
2015-04-01
Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).
TeV Gamma Rays From Galactic Center Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, Dan; Cholis, Ilias; Linden, Tim
Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requiresmore » a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.« less
Investigating the physical and geometrical properties of the dusty torus in QSO
NASA Astrophysics Data System (ADS)
Martínez-Paredes, M.; González-Martín, O.; Aretxaga, I.; Alonso-Herrero, A.
2017-07-01
Usining mid-IR high angular resolution (0.3 arcsec) data from CanariCam on the 10.4m Gran Telescopio CANARIAS we study the mid-IR nuclear emission of a nearby (z<0.1) sample of QSOs. The QSOs are selected with N-band flux (fN>0.02 Jy) and hard X-ray flux (fX(2-10 keV)>1043 erg s-1). From the analysis of this data we find that the mid-IR emission is unresolved at scales of a few hundred of pc. We use unresolved emission at H-band (e.g., Veilleux et al. 2009b) and the IRS-Spitzer spectrum (e.g., Schweitzer et al. 2006) to build near- to mid-IR unresolved spectral energy distribution (SEDs).
Molecular emission in chemically active protostellar outflows
NASA Astrophysics Data System (ADS)
Lefloch, B.
2011-12-01
Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.
Ultraviolet luminosity density of the universe during the epoch of reionization
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
[Gait characteristics of women with fibromyalgia: a premature aging pattern].
Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F
2014-01-01
Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Nonlinear effects in the laser-assisted scattering of a positron by a muon
NASA Astrophysics Data System (ADS)
Du, Wen-Yuan; Wang, Bing-Hong; Li, Shu-Min
2018-02-01
The scattering of a positron by a muon in the presence of a linearly polarized laser field is investigated in the first Born approximation. The theoretical results reveal: (1) At large scattering angle, an amount of multiphoton processes take place in the course of scattering. The photon emission processes predominate the photon absorption ones. (2) Some nonlinear phenomena about oscillations, dark angular windows, and asymmetry can be observed in angular distributions. We analyze the cause giving rise to dark windows and geometric asymmetry initially noted in the potential scattering. (3) We also analyze the total differential cross-section, the result shows that the larger the incident energy is, the smaller the total differential cross-section is. The reasons of these new results are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumming, J.B.; Haustein, P.E.; Stoenner, R.W.
1986-03-01
Angular distributions are reported for /sup 37/Ar and /sup 127/Xe produced by the interaction of 8-GeV /sup 20/Ne and 25-GeV /sup 12/C ions with Au. A shift from a forward to a sideward peaked distribution is observed for /sup 37/Ar, similar to that known to occur for incident protons over the same energy interval. Analysis of these data and those for Z = 8 fragments indicate that reactions leading to heavy fragment emission become more peripheral as bombarding energies increase. A mechanistic analysis is presented which explores the ranges of applicability of several models and the reliability of their predictionsmore » to fragmentation reactions induced by both energetic heavy ions and protons.« less
Poster 8: ALMA observations of Titan : Vertical and spatial distributions of nitriles
NASA Astrophysics Data System (ADS)
Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq
2016-06-01
We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.
Zhao, Wei; Ji, Songbai
2017-04-01
Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.
Zhao, Wei; Ji, Songbai
2016-01-01
Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles, and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction, and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29–17.89% in the whole-brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9%) but not pattern (correlation coefficient of 0.94–0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91% on average, with a typical range of 0–6%). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future. PMID:27644441
On the Shelf Resonances of the Gulf of Carpentaria and the Arafura Sea
NASA Astrophysics Data System (ADS)
Webb, D. J.
2012-02-01
A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea. The model is forced at the shelf edge, first with physically realistic real values of angular velocity. The response functions at points within the region show maxima and other behaviour which imply that resonances are involved but it is difficult to be more specific. The study is then extended to complex angular velocities and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the responses at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.
Angular Deformities of the Lower Limb in Children
Espandar, Ramin; Mortazavi, Seyed Mohammad-Javad; Baghdadi, Taghi
2010-01-01
Angular deformities of the lower limbs are common during childhood. In most cases this represents a variation in the normal growth pattern and is an entirely benign condition. Presence of symmetrical deformities and absence of symptoms, joint stiffness, systemic disorders or syndromes indicates a benign condition with excellent long-term outcome. In contrast, deformities which are asymmetrical and associated with pain, joint stiffness, systemic disorders or syndromes may indicate a serious underlying cause and require treatment. Little is known about the relationship between sport participation and body adaptations during growth. Intense soccer participation increases the degree of genu varum in males from the age of 16. Since, according to some investigations, genu varum predisposes individuals to more injuries, efforts to reduce the development of genu varum in soccer players are warranted. In this article major topics of angular deformities of the knees in pediatric population are practically reviewed. PMID:22375192
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Representational momentum, centripetal force, and curvilinear impetus.
Hubbard, T L
1996-07-01
In 3 experiments, observers witnessed a target moving along a circular orbit and indicated the location at which the target vanished. The judged vanishing point was displaced forward in the direction of implied momentum and inward in the direction of implied centripetal force. In general, increases in either the angular velocity of the target or the radius length of the orbit increased the magnitude of forward displacement. If both angular velocity and radius length were varied, then increases in either angular velocity or radius length also increased the magnitude of inward displacement. The displacement patterns were consistent with hypotheses that analogues of momentum and centripetal force were incorporated into the representational system. A framework is proposed that accounts for (a) the forward and inward displacements and (b) naive-physics data on the spiral tube problem previously interpreted as suggesting a belief in a naive curvilinear-impetus principle.
Realizing Rec. 2020 color gamut with quantum dot displays.
Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson
2015-09-07
We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.
Branches of the Facial Artery.
Hwang, Kun; Lee, Geun In; Park, Hye Jin
2015-06-01
The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.
Feedforward ankle strategy of balance during quiet stance in adults
Gatev, Plamen; Thomas, Sherry; Kepple, Thomas; Hallett, Mark
1999-01-01
We studied quiet stance investigating strategies for maintaining balance. Normal subjects stood with natural stance and with feet together, with eyes open or closed. Kinematic, kinetic and EMG data were evaluated and cross-correlated.Cross-correlation analysis revealed a high, positive, zero-phased correlation between anteroposterior motions of the centre of gravity (COG) and centre of pressure (COP), head and COG, and between linear motions of the shoulder and knee in both sagittal and frontal planes. There was a moderate, negative, zero-phased correlation between the anteroposterior motion of COP and ankle angular motion.Narrow stance width increased ankle angular motion, hip angular motion, mediolateral sway of the COG, and the correlation between linear motions of the shoulder and knee in the frontal plane. Correlations between COG and COP and linear motions of the shoulder and knee in the sagittal plane were decreased. The correlation between the hip angular sway in the sagittal and frontal planes was dependent on interaction between support and vision.Low, significant positive correlations with time lags of the maximum of cross-correlation of 250-300 ms were found between the EMG activity of the lateral gastrocnemius muscle and anteroposterior motions of the COG and COP during normal stance. Narrow stance width decreased both correlations whereas absence of vision increased the correlation with COP.Ankle mechanisms dominate during normal stance especially in the sagittal plane. Narrow stance width decreased the role of the ankle and increased the role of hip mechanisms in the sagittal plane, while in the frontal plane both increased.The modulation pattern of the lateral gastrocnemius muscle suggests a central program of control of the ankle joint stiffness working to predict the loading pattern. PMID:9882761
Advanced morphological analysis of patterns of thin anodic porous alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.
2014-08-15
Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less
Synoptic Patterns Related to Tropical Cyclone Recurvature
1988-03-01
STY :Yfarge. Dominant and secondary contour patterns (Fig. 3.2) are identified and the angular difference (Table 5) between the pattern and the best...DATA l\\LVL/4/ DATA VRU/’ 1’/,VRV/’/ c DATA C/.0436610743/ ,DD/ 114.5915590262/ 1\\AYIELIST/~GRID/ 0:\\ VST ,:\\EST,l\\STH,l\\l\\TH c EQUIV ALE:\\CE...READ (5,:\\GRID) \\VRITE (6,:\\GRID) l\\1 = i\\\\ VST + l\\EST + 1 :\\J = 1\\STH + 1\\NTH + 1 IuCOYIP=20 IVCOl’viP= 20 0:RECU=O 1’\\RECV=O C** READ IN NO
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
NASA Technical Reports Server (NTRS)
Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.
2002-01-01
The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinol, Lucas; Cahn, Robert N.; Hand, Nick
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with amore » typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.« less
Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies
NASA Astrophysics Data System (ADS)
Pinol, Lucas; Cahn, Robert N.; Hand, Nick; Seljak, Uroš; White, Martin
2017-04-01
The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of vec k. We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.
NASA Astrophysics Data System (ADS)
Das, G. S.; Hazarika, P.; Goswami, U. D.
2018-07-01
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
OLED emission zone measurement with high accuracy
NASA Astrophysics Data System (ADS)
Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.
2013-09-01
Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.
Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays
NASA Astrophysics Data System (ADS)
Nelson, Gregory James
Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-06-01
The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Descriptive laboratory study. Research laboratory. A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission
NASA Astrophysics Data System (ADS)
Chen, Xi
The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years, separately, in comparison to t 0.40 from the WMAP catalogs. Our source catalogs are a good supplement to the existing WMAP source catalogs, and the method itself is proven to be both complementary to and competitive with all the current source finding techniques in WMAP maps. Scattered light and thermal emission from the interplanetary dust (IPD) within our Solar System are major contributors to the diffuse sky brightness at most infrared wavelengths. For wavelengths longer than 3.5 mm, the thermal emission of the IPD dominates over scattering, and the emission is often referred to as the Zodiacal Light Emission (ZLE). To set a limit of ZLE contribution to the WMAP data, we have performed a simultaneous fit of the yearly WMAP time-ordered data to the time variation of ZLE predicted by the DIRBE IPD model (Kelsallet al. 1998) evaluated at 240 mm, plus [cursive l] = 1 - 4 CMB components. It is found that although this fitting procedure can successfully recover the CMB dipole to a 0.5% accuracy, it is not sensitive enough to determine the ZLE signal nor the other multipole moments very accurately.
Modeling the radiation pattern of LEDs.
Moreno, Ivan; Sun, Ching-Cherng
2008-02-04
Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.
2018-03-01
Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
Zheng, Shuang; Wang, Jian
2017-01-17
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.
Toyoda, Hiromitsu; Takahashi, Shinji; Hoshino, Masatoshi; Takayama, Kazushi; Iseki, Kazumichi; Sasaoka, Ryuichi; Tsujio, Tadao; Yasuda, Hiroyuki; Sasaki, Takeharu; Kanematsu, Fumiaki; Kono, Hiroshi; Nakamura, Hiroaki
2017-09-23
This study demonstrated four distinct patterns in the course of back pain after osteoporotic vertebral fracture (OVF). Greater angular instability in the first 6 months after the baseline was one factor affecting back pain after OVF. Understanding the natural course of symptomatic acute OVF is important in deciding the optimal treatment strategy. We used latent class analysis to classify the course of back pain after OVF and identify the risk factors associated with persistent pain. This multicenter cohort study included 218 consecutive patients with ≤ 2-week-old OVFs who were enrolled at 11 institutions. Dynamic x-rays and back pain assessment with a visual analog scale (VAS) were obtained at enrollment and at 1-, 3-, and 6-month follow-ups. The VAS scores were used to characterize patient groups, using hierarchical cluster analysis. VAS for 128 patients was used for hierarchical cluster analysis. Analysis yielded four clusters representing different patterns of back pain progression. Cluster 1 patients (50.8%) had stable, mild pain. Cluster 2 patients (21.1%) started with moderate pain and progressed quickly to very low pain. Patients in cluster 3 (10.9%) had moderate pain that initially improved but worsened after 3 months. Cluster 4 patients (17.2%) had persistent severe pain. Patients in cluster 4 showed significant high baseline pain intensity, higher degree of angular instability, and higher number of previous OVFs, and tended to lack regular exercise. In contrast, patients in cluster 2 had significantly lower baseline VAS and less angular instability. We identified four distinct groups of OVF patients with different patterns of back pain progression. Understanding the course of back pain after OVF may help in its management and contribute to future treatment trials.
Global and local approaches to population analysis: Bonding patterns in superheavy element compounds
NASA Astrophysics Data System (ADS)
Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.
2018-03-01
Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.
Melo, Leandro A; Jesus-Silva, Alcenísio J; Chávez-Cerda, Sabino; Ribeiro, Paulo H Souto; Soares, Willamys C
2018-04-23
We introduce a simple method to characterize the topological charge associated with the orbital angular momentum of a m-order elliptic light beam. This method consists in the observation of the far field pattern of the beam carrying orbital angular momentum, diffracted from a triangular aperture. We show numerically and experimentally, for Mathieu, Ince-Gaussian, and vortex Hermite-Gaussian beams, that only isosceles triangular apertures allow us to determine in a precise and direct way, the magnitude m of the order and the number and sign of unitary topological charges of isolated vortices inside the core of these beams.
Depth and latitude dependence of the solar internal angular velocity
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.
1990-01-01
One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.
The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications
NASA Astrophysics Data System (ADS)
Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less
Shiga, Yoichi P; Michalak, Anna M; Gourdji, Sharon M; Mueller, Kim L; Yadav, Vineet
2014-06-28
The ability to monitor fossil fuel carbon dioxide (FFCO 2 ) emissions from subcontinental regions using atmospheric CO 2 observations remains an important but unrealized goal. Here we explore a necessary but not sufficient component of this goal, namely, the basic question of the detectability of FFCO 2 emissions from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO 2 emissions patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric CO 2 observations. Analyses using a CO 2 monitoring network of 35 continuous measurement towers over North America show that FFCO 2 emissions are difficult to detect during nonwinter months. We find that the compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO 2 flux signal dramatically hamper the detectability of FFCO 2 emissions. Results from several synthetic data case studies highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric measurement-based FFCO 2 emissions detection and estimation is to be achieved beyond urban scales. Poor detectability of fossil fuel CO 2 emissions from subcontinental regionsDetectability assessed via attribution of emissions patterns in atmospheric dataLoss in detectability due to transport modeling errors and biospheric signal.
Time correlations between low and high energy gamma rays from discrete sources
NASA Technical Reports Server (NTRS)
Ellsworth, R. W.
1995-01-01
Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.
Dark matter in the Reticulum II dSph: a radio search
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio
2017-07-01
We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.
Dark matter in the Reticulum II dSph: a radio search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio, E-mail: regis@to.infn.it, E-mail: llrichter@gmail.com, E-mail: sergio.colafrancesco@wits.ac.za
2017-07-01
We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources.more » Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.« less
NASA Astrophysics Data System (ADS)
Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.
2007-05-01
First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
NASA Technical Reports Server (NTRS)
Holt, S. S.; Petre, R.; Shafer, R. A.; Urry, C. M.; Mushotzky, R. F.
1982-01-01
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects.
Engineering a light-emitting planar defect within three-dimensional photonic crystals
Liu, Guiqiang; Chen, Yan; Ye, Zhiqing
2009-01-01
Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309
Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil
2014-12-01
Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani
2018-01-01
In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.
A novel optical rotary encoder with eccentricity self-detection ability.
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
A novel optical rotary encoder with eccentricity self-detection ability
NASA Astrophysics Data System (ADS)
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
Analytical investigation of adaptive control of radiated inlet noise from turbofan engines
NASA Technical Reports Server (NTRS)
Risi, John D.; Burdisso, Ricardo A.
1994-01-01
An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichner, Christoph, E-mail: christoph.meichner@uni-bayreuth.de; Kador, Lothar, E-mail: lothar.kador@uni-bayreuth.de; Schedl, Andreas E.
2015-08-15
We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidthmore » of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.« less
Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com
2016-05-21
Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less
Hydrodynamic Simulation of the Cosmological X-Ray Background
NASA Astrophysics Data System (ADS)
Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.
2001-08-01
We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A clear prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved even as observations reach deeper point-source sensitivity.
Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances
NASA Astrophysics Data System (ADS)
Vesseur, E. J. R.
2011-07-01
Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show that the ring supports resonances with increasing azimuthal or radial order. The smallest cavity fits only one wavelength in its circumference. We theoretically show that in these cavities, spontaneous emission can be enhanced over a broad spectral band due to the small modal volume of the plasmon resonances. A Purcell factor >2000 was found. We further study the mode symmetries and coupling of the ring resonances using far-field excitation, fluorescence, angle-resolved cathodoluminescence and photoelectron emission microscopy. We demonstrate spectral reshaping of emitters, mode-specific angular emission patterns, and a mode-selective excitation by incoming light, and we directly resolve the modal fields at high resolution. In the next chapter, we present metal-insulator-metal plasmon waveguides in which we engineer the dispersion to reach a refractive index of zero. Using spatially- and angle-resolved CL we directly observe the spatial mode profiles and determine the dispersion relation of plasmon modes. At the cutoff frequency, the emission pattern corresponds to that of a line dipole antenna demonstrating the entire waveguide is in phase (n=0). A strongly enhanced density of optical states is directly observed at cutoff from the enhanced CL intensity. Finally, we present 5 possible applications: a localized surface plasmon sensor, a plasmon ring laser, template stripping technique, an in-situ monitor of ionoluminescence and cathodoluminescence in a FIB system and a single-photon source.
Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Arnaud, M.; Ashdown, M.
In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect
Aghanim, N.; Arnaud, M.; Ashdown, M.; ...
2016-09-20
In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less
Cross section calculations for subthreshold pion production in peripheral heavy-ion collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.
1986-01-01
Total cross sections angular distributions, and spectral distributions for the exclusive production of charged and neutral subthreshold pions produced in peripheral nucleus-nucleus collisions are calculated by using a particle-hole formalism. The pions result from the formation and decay of an isobar giant resonance state formed in a C-12 nucleus. From considerations of angular momentum conservation and for the sake of providing a unique experimental signature, the other nucleus, chosen for this work to be C-12 also, is assumed to be excited to one of its isovector (1+) giant resonance states. The effects of nucleon recoil by the pion emission are included, and Pauli blocking and pion absorption effects are studied by varying the isobar width. Detailed comparisons with experimental subthreshold pion data for incident energies between 35 and 86 MeV/nucleon are made.
Ring structure in the HII region of NGC 5930
NASA Astrophysics Data System (ADS)
Su, Bu-Mei; Mutel, R. L.; Zhang, Fu-Jing; Li, Yong-Sheng
1992-03-01
Radio continuous observations of the barred spiral galaxy NGC5930 at 2- and 3.6-cm wavelengths have been carried out with the VLA. It has been found that at 2 cm the HII region appears to be a ring structure on which hot spots are distributed. The outer angular diameter of the ring is 2.2 arcsec, and the inner angular diameter - 0.3 arcsec. The center is a hole from which no radio emission has been detected. The electron density in the HII region is 80 - 90 cu cm, and its mass is 10 exp 7 solar mass units. In NGC 5930 there is very strong infrared radiation. The infrared luminosity is 10 exp 6 times larger than the radio luminosity. There is a steep Balmer attenuation. This is a region where a star is being formed violently.
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.
2001-03-01
Core collapse in a massive rotating star may halt at subnuclear density if the core contains angular momentum J>~1049 g cm2 s-1. An aborted collapse can lead to the formation of a rapidly rotating equilibrium object, which, because of its high electron fraction, Ye>0.4, and high entropy per baryon, Sb/k~1-2, is secularly and dynamically stable. The further evolution of such a ``fizzler'' is driven by deleptonization and cooling of the hot, dense material. These processes cause the fizzler both to contract toward neutron star densities and to spin up, driving it toward instability points of the barlike modes. Using linear stability analyses to study the latter case, we find that the stability properties of fizzlers are similar to those of Maclaurin spheroids and polytropes despite the nonpolytropic nature and extreme compressibility of the fizzler equation of state. For fizzlers with the specific angular momentum distribution of the Maclaurin spheroids, secular and dynamic barlike instabilities set in at T/|W|~0.14 and 0.27, respectively, where T is the rotational kinetic energy and W is the gravitational energy of the fizzler, the same limits as found for Maclaurin spheroids. For fizzlers in which angular momentum is more concentrated toward the equator, the secular stability limits drop dramatically. For the most extreme angular momentum distribution we consider, the secular stability limit for the barlike modes falls to T/|W|~0.038, compared with T/|W|~0.09-0.10 for the most extreme polytropic cases known previously (Imamura et al.). For fixed equation-of-state parameters, the secular and dynamic stability limits occur at roughly constant mass over the range of typical fizzler central densities. Deleptonization and cooling decrease the limiting masses on timescales shorter than the growth time for secular instability. Consequently, unless an evolving fizzler reaches neutron star densities first, it will always encounter dynamic barlike instabilities before secular instabilities have time to grow. Quasi-linear analysis shows that the angular momentum loss during the early nonlinear evolution of the dynamic barlike instability is dominated by Newtonian self-interaction gravitational torques rather than by the emission of gravitational wave (GW) radiation. GW emission may dominate after the initial dynamic evolutionary phase ends. Nonlinear hydrodynamics simulations with a proper equation of state will be required to determine the ultimate outcome of such evolutions and to refine predictions of GW production by barlike instabilities.
ESA DUE GlobTemperature project: Infrared-based LST Product
NASA Astrophysics Data System (ADS)
Ermida, Sofia; Pires, Ana; Ghent, Darren; Trigo, Isabel; DaCamara, Carlos; Remedios, John
2016-04-01
One of the purposes of the GlobTemperature project is to provide a product of global Land Surface Temperature (LST) based on Geostationary Earth Orbit (GEO) and Low Earth polar Orbit (LEO) satellite data. The objective is to use existing LST products, which are obtained from different sensors/platforms, combining them into a harmonized product for a reference view angle. In a first approach, only infra-red based retrievals are considered, and LEO LSTs will be used as a common denominator among geostationary sensors. LST data is provided by a wide range of sensors to optimize spatial coverage, namely: (i) 2 LEO sensors - the Advanced Along Track Scanning Radiometer (AATSR) series of instruments on-board ESA's Envisat, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and (ii) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). The merged LST product is generated in two steps: 1) calibration between each LEO and each GEO that consists in the removal of systematic differences (associated to sensor type and LST algorithms, including calibration, atmospheric and surface emissivity corrections, amongst others) represented by linear regressions; 2) angular correction that consists in bringing all LST data to reference (nadir) view. Angular effects on LST are estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as function of viewing and illumination geometry. The model is adjusted to MODIS and SEVIRI/MSG LST estimates and validated against LST retrievals from those sensors obtained for other years (not used in the calibration). It is shown that the model leads to a reduction of LST differences between the two sensors, indicating that it may be used to effectively estimate/correct angular dependence in LST. A global set of kernel model parameters is finally obtained by adjusting the model to either a GEO and a LEO or the two LEOs (poles). A first version of the merged product will be released in 2016, available for download through the GlobTemperature portal. This includes only the calibration process (step 1), incorporating LST data from SEVIRI, GOES, MTSAT and MODIS; information on directional effects added as an extra layer of information. A second version of the dataset with a better incorporation of the angular correction is currently in preparation.
Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R
2014-01-01
Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.
1963-01-01
An experiment for determination of the parameters of the optical potential for deuterons is presented. Total reaction cross sections for the interaction of deuterons with nuclei were determined by evaluating the cross sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured. (auth)
NASA Astrophysics Data System (ADS)
Fedorov, N. A.; Grozdanov, D. N.; Bystritskiy, V. M.; Kopach, Yu. N.; Ruskov, I. N.; Skoy, V. R.; Tretyakova, T. Yu.; Zamyatin, N. I.; Wang, D.; Aliev, F. A.; Hramco, C.; Gandhi, A.; Kumar, A.; Dabylova, S.; Bogolubov, E. P.; Barmakov, Yu. N.
2018-04-01
The characteristic gamma radiation from the interaction of 14.1 MeV neutrons with a natural silicon sample is investigated with Tagged Neutron Method (TNM). The anisotropy of gamma-ray emission of 1.779 MeV was measured at 11 azimuth angles with a step of ∠15°. The present results are in good agreement with some recent experimental data.
Marchevsky, M.; Ambrosio, G.; Lamm, M.; ...
2016-02-12
Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less
Particle dark matter searches in the anisotropic sky
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao; Regis, Marco
2014-02-01
Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.
L x-ray production cross sections in Th and U at 17.8, 25.8 and 46.9 keV photon energies
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Puri, Sanjiv; Shahi, J. S.; Garg, M. L.; Mehta, D.; Singh, Nirmal
2001-02-01
The L x-ray production (XRP) differential cross sections in Th and U have been measured at the 17.8 keV incident photon energy (E_L3
Thermal emission and absorption of radiation in finite inverted-opal photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang
We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less
Breakthrough in 4π ion emission mechanism understanding in plasma focus devices.
Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza
2016-12-12
Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from "anode top" upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the "anode top" in a PFD space after plasma pinch instability and radial run-away of ions from the "anode cathodes array" during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a "Point Ion Source" and a "Line Ion Source" forming "Ion Cathode Shadows" on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology.
Mulpur, Pradyumna; Podila, Ramakrishna; Ramamurthy, Sai Sathish; Kamisetti, Venkataramaniah; Rao, Apparao M.
2015-01-01
In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of 30-fold enhancement in the emission intensity of rhodamine b (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes. PMID:25785916
Circumstellar Disks Around Rapidly Rotating Be-type Stars
NASA Astrophysics Data System (ADS)
Touhami, Yamina
2012-01-01
Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.
VLA observations of the supernova remnant Puppus A at 327 and 1515 MHz
NASA Technical Reports Server (NTRS)
Dubner, G. M.; Braun, R.; Winkler, P. F.; Goss, W. M.
1991-01-01
Very Large Array radio images of Puppis A at 327 and 1515 MHz are presented. The observations were performed with the VLA in the C/D and B/C configurations, respectively. The angular resolution is about 77 arcsec x 43 arcsec. The observed radio shell shows signs of interaction between the expanding shock front and the inhomogeneous surrounding medium. An excellent correlation is found between radio and X-ray emission, mainly toward the NE border of the remnant. There is little correspondence between the optical and radio images, suggesting a different origin for the emission. A region of steeper radio spectral index is associated with the highly decelerated eastern periphery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Diwakar, P. K.; Polek, M. P.
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less
The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV
NASA Astrophysics Data System (ADS)
Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.
1996-10-01
Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.
INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics
NASA Technical Reports Server (NTRS)
Watanabe, Ken
2005-01-01
Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.
Highly directional thermal emitter
Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W
2015-03-24
A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.
Visualization of natural convection heat transfer on a sphere
NASA Astrophysics Data System (ADS)
Lee, Dong-Young; Chung, Bum-Jin
2017-12-01
Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.
Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki
2013-03-01
Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.
Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; ...
2016-12-09
The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Here, we analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 monthsmore » of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. The derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Furthermore, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ~ 2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.« less
Evaluation of True Power Luminous Efficiency from Experimental Luminance Values
NASA Astrophysics Data System (ADS)
Tsutsui, Tetsuo; Yamamato, Kounosuke
1999-05-01
A method for obtaining true external power luminous efficiencyfrom experimentally obtained luminance in organic light-emittingdiodes (LEDs) wasdemonstrated. Conventional two-layer organic LEDs with different electron-transport layer thicknesses wereprepared. Spatial distributions of emission intensities wereobserved. The large deviation in both emission spectra and spatialemission patterns were observed when the electron-transport layerthickness was varied. The deviation of emission patterns from thestandard Lambertian pattern was found to cause overestimations ofpower luminous efficiencies as large as 30%. A method for evaluatingcorrection factors was proposed.
Vortex Chain in a Resonantly Pumped Polariton Superfluid
Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.
2015-01-01
Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592
LCD-based digital eyeglass for modulating spatial-angular information.
Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan
2015-05-04
Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.
Li, Guangyuan; Zhang, Jiasen
2014-01-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate–metal interface and the first-order SPP resonance at the metal–substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results. PMID:25081812
Li, Guangyuan; Zhang, Jiasen
2014-08-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.
A study of small impact parameter ion channeling effects in thin crystals
NASA Astrophysics Data System (ADS)
Motapothula, Mallikarjuna Rao; Breese, Mark B. H.
2018-03-01
We have recorded channeling patterns produced by 1-2 MeV protons aligned with ⟨1 1 1⟩ axes in 55 nm thick silicon crystals which exhibit characteristic angular structure for deflection angles up to and beyond the axial critical angle, ψ a . Such large angular deflections are produced by ions incident on atomic strings with small impact parameters, resulting in trajectories which pass through several radial rings of atomic strings before exiting the thin crystal. Each ring may focus, steer or scatter the channeled ions in the transverse direction and the resulting characteristic angular structure beyond 0.6 ψ a at different depths can be related to peaks and troughs in the nuclear encounter probability. Such "radial focusing" underlies other axial channeling phenomena in thin crystals including planar channeling of small impact parameter trajectories, peaks around the azimuthal distribution at small tilts and large shoulders in the nuclear encounter probability at tilts beyond ψ a .
Reusable, tamper-indicating seal
Ryan, Michael J.
1978-01-01
A reusable, tamper-indicating seal comprises a drum confined within a fixed body and rotatable in one direction therewithin, the top of the drum constituting a tray carrying a large number of small balls of several different colors. The fixed body contains parallel holes for looping a seal wire therethrough. The base of the drums carries cams adapted to coact with cam followers to lock the wire within the seal at one angular position of the drum. A channel in the fixed body -- visible from outside the seal -- adjacent the tray constitutes a segregated location for a small plurality of the colored balls. A spring in the tray forces colored balls into the segregated location at one angular position of the drum, further rotation securing the balls in position and the wires in the seal. A wedge-shaped plough removes the balls from the segregated location, at a different angular position of the drum, the wire being unlocked at the same position. A new pattern of colored balls will appear in the segregated location when the seal is relocked.
Variations in the rotation of the earth
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.
Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.
Thermal effects in light scattering from ultracold bosons in an optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek
2009-10-15
We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
Ultraviolet luminosity density of the universe during the epoch of reionization.
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-08
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
The inner radio structure of Centaurus A - Clues to the origin of the jet X-ray emission
NASA Technical Reports Server (NTRS)
Burns, J. O.; Feigelson, E. D.; Schreier, E. J.
1983-01-01
VLA observations at 1.4 and 4.9 GHz of the jet and inner lobes of the nearby radio galaxy Centaurus A have been used to construct maps of total intensity and polarization at resolutions of 31 x 10 and 3.6 x 1.1 arcsec. Surface brightness and pressure distributions in the jet, combined with the apparent X-ray emission from the ISM of NGC 5128, indicate that it is thermally confined. A comparison of the radio structure and the optical galaxy shows that the jet in Cen A emerges nearly along the major axis of the elliptical stellar component that is parallel to the angular momentum vector of the dust lane. The outer radio structure bends toward the galaxy minor axis. Evidence is found for a common synchrotron radiation origin of the full spectrum jet emission.
Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.
Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J
2014-11-28
Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. Copyright © 2014, American Association for the Advancement of Science.
Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter
2009-12-07
Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.
Winds from T Tauri stars. II - Balmer line profiles for inner disk winds
NASA Technical Reports Server (NTRS)
Calvet, Nuria; Hartmann, Lee; Hewett, Robert
1992-01-01
Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.
Dark field photoelectron emission microscopy of micron scale few layer graphene
NASA Astrophysics Data System (ADS)
Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.
2012-08-01
We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.
The Galactic Center View with Simbol-X
NASA Astrophysics Data System (ADS)
Raimondi, L.; Malaguti, G.; Angelini, L.; Cappi, M.; Grandi, P.; Palumbo, G. G. C.; Puccetti, S.
2009-05-01
The nature of the hard X-ray emission above 3 keV of the Galactic Centre (GC) is still source of controversy. Recent observations with Chandra are consistent with either a population of discrete sources or with a diffuse non thermal emission or, most likely, a combination of the two. The Simbol-X mission will be equipped with a grazing incident telescope imaging up to ~80 keV, providing an improvement of three orders of magnitude in sensitivity and angular resolution compared with the instruments that have operated so far above 10 keV. This capability will enable to directly disentangle between the discrete source versus the diffuse emission scenarios. This is demonstrated by the Simbol-X simulations of the GC shown here, where the input model includes a list of both diffuse and point sources (both resolved and unresolved) using the input spectrum observed with presently operating X-ray telescopes.
NASA Astrophysics Data System (ADS)
De Filippo, E.; Pagano, A.; Russotto, P.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cap, T.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; Dayras, R.; Di Toro, M.; Frankland, J.; Galichet, E.; Gawlikowicz, W.; Geraci, E.; Grzeszczuk, A.; Guazzoni, P.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Le Neindre, N.; Lombardo, I.; Maiolino, C.; Papa, M.; Piasecki, E.; Pirrone, S.; Płaneta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rizzo, F.; Rosato, E.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zetta, L.; Zipper, W.
2012-07-01
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at midrapidity in semiperipheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of
ANS hard X-ray experiment development program. [emission from X-ray sources
NASA Technical Reports Server (NTRS)
Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.
1974-01-01
The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.
Observability of planet-disc interactions in CO kinematics
NASA Astrophysics Data System (ADS)
Pérez, Sebastián; Casassus, S.; Benítez-Llambay, P.
2018-06-01
Empirical evidence of planets in gas-rich circumstellar discs is required to constrain giant planet formation theories. Here we study the kinematic patterns which arise from planet-disc interactions and their observability in CO rotational emission lines. We perform three-dimensional hydrodynamical simulations of single giant planets, and predict the emergent intensity field with radiative transfer. Pressure gradients at planet-carved gaps, spiral wakes and vortices bear strong kinematic counterparts. The iso-velocity contours in the CO(2-1) line centroids vo reveal large-scale perturbations, corresponding to abrupt transitions from below sub-Keplerian to super-Keplerian rotation along with radial and vertical flows. The increase in line optical depth at the edge of the gap also modulates vo, but this is a mild effect compared to the dynamical imprint of the planet-disc interaction. The large-scale deviations from the Keplerian rotation thus allow the planets to be indirectly detected via the first moment maps of molecular gas tracers, at ALMA angular resolutions. The strength of these deviations depends on the mass of the perturber. This initial study paves the way to eventually determine the mass of the planet by comparison with more detailed models.
Autonomous intelligent cruise control system
NASA Astrophysics Data System (ADS)
Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.
1995-01-01
Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.
The Contribution of the Parietal Lobes to Speaking and Writing
Wise, Richard J. S.
2010-01-01
The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing. PMID:19531538
Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.
Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle
2010-05-24
We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.
Near-ideal optical metamaterial absorbers with super-octave bandwidth.
Bossard, Jeremy A; Lin, Lan; Yun, Seokho; Liu, Liu; Werner, Douglas H; Mayer, Theresa S
2014-02-25
Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity absorptivity with super-octave bandwidth over a specified optical wavelength range have not yet been demonstrated experimentally. Here, we show a broadband, polarization-insensitive metamaterial with greater than 98% measured average absorptivity that is maintained over a wide ± 45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 μm. The nearly ideal absorption is realized by using a genetic algorithm to identify the geometry of a single-layer metal nanostructure array that excites multiple overlapping electric resonances with high optical loss across greater than an octave bandwidth. The response is optimized by substituting palladium for gold to increase the infrared metallic loss and by introducing a dielectric superstrate to suppress reflection over the entire band. This demonstration advances the state-of-the-art in high-performance broadband metamaterial absorbers that can be reliably fabricated using a single patterned layer of metal nanostructures.
Multi-field electron emission pattern of 2D emitter: Illustrated with graphene
NASA Astrophysics Data System (ADS)
Luo, Ma; Li, Zhibing
2016-11-01
The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.
Directional Emissivity Effects on Martian Surface Brightness Temperatures
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.
2001-11-01
The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.
NASA Astrophysics Data System (ADS)
Carbajal, L.; del-Castillo-Negrete, D.
2017-12-01
Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.
THE DISK-OUTFLOW SYSTEM IN THE S255IR AREA OF HIGH-MASS STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinchenko, I.; Zemlyanukha, P.; Liu, S.-Y.
We report the results of our observations of the S255IR area with the Submillimeter Array (SMA) at 1.3 mm in the very extended configuration and at 0.8 mm in the compact configuration as well as with the IRAM 30 m at 0.8 mm. The best achieved angular resolution is about 0.4 arcsec. The dust continuum emission and several tens of molecular spectral lines are observed. The majority of the lines is detected only toward the S255IR-SMA1 clump, which represents a rotating structure (probably a disk) around the young massive star. The achieved angular resolution is still insufficient to make anymore » conclusions about the Keplerian or non-Keplerian character of the rotation. The temperature of the molecular gas reaches 130–180 K. The size of the clump is about 500 AU. The clump is strongly fragmented as follows from the low beam-filling factor. The mass of the hot gas is significantly lower than the mass of the central star. A strong DCN emission near the center of the hot core most probably indicates a presence of a relatively cold (≲80 K) and rather massive clump there. High-velocity emission is observed in the CO line as well as in lines of high-density tracers HCN, HCO{sup +}, CS and other molecules. The outflow morphology obtained from a combination of the SMA and IRAM 30 m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow. The outflow is most probably driven by jet bow shocks created by episodic ejections from the center. We detected a dense high velocity clump associated apparently with one of the bow shocks. The outflow strongly affects the chemical composition of the surrounding medium.« less
Two-Particle Interference of Electron Pairs on a Molecular Level
Waitz, M.; Metz, D.; Lower, J.; ...
2016-08-15
Here, wWe investigate the photodouble ionization of H 2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. Conversely, the quasiparticle consisting of both electrons (i.e., the "dielectron") does. The work highlights the fact that nonlocal effects are embedded everywhere in nature where many-particle processes are involved.
Chandra Observations of the Nuclei of Radio Galaxies: 3C 295 and Hydra A
NASA Technical Reports Server (NTRS)
Harris, D. E.; McNamara, B. R.; David, L. P.; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
The angular resolution available with Chandra allows us to isolate the X-ray emission from the nucleus of many radio galaxies and obtain their spectra. As expected from unification schemes, spectra so far obtained can best be interpreted as heavily absorbed power laws. We present the spectral parameters so derived for 3C 295 and Hydra A and compare them to data obtained at other wavelengths.
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
1995-09-01
We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.
NASA Astrophysics Data System (ADS)
Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro
1999-12-01
Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigut, T. A. A.; Tycner, C.; Jansen, B.
Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ± 3° with a position angle on the sky of 110° ± 8° measured East from North. From the best-fit disk density model, we find that 90% ofmore » the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.« less
Two-dimensional frequency scanning from a metasurface-based Fabry–Pérot resonant cavity
NASA Astrophysics Data System (ADS)
Yang, Pei; Yang, Rui
2018-06-01
A spatial angular filtering metasurface is introduced into a Fabry–Pérot (FP) resonant cavity design for the frequency scanning performance in this paper. More specifically, asymmetrical unit cells printed on the metasurface enable the radiation energy to move in different directions as the frequency changes, and the released emissions, meanwhile, are split into dual-beams from the initial pencil beam. We continue to implement a patch array to provide excitation with the aim of achieving scanned beams in another dimension, and the proposed design ultimately demonstrates a two-dimensional dual-beam scanning performance with 42° and 9° scanning angles respectively in two dimensions of the coordinate system over a frequency range from 10.50 GHz–11.25 GHz. The proposed technique, by integrating a spatial angular filtering metasurface with a patch array feed to generate steerable beams, should offer an efficient way to fulfill FP resonant cavities with reconfigurable radiation.
Interferometry on a Balloon; Paving the Way for Space-based Interferometers
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to-far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths- a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2008-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juhasz, Z.; Sulik, B.; Racz, R.
2010-12-15
A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less
Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.
Morgan, Dane V; Macy, Don; Stevens, Gerald
2008-11-01
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
Dynamics of the Venus atmosphere
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1992-01-01
The superrotation of the Venus atmosphere is a major unanswered problem in planetary science. At cloud-top levels (65-70 km altitude) the atmosphere rotates with a five-day period, corresponding to an equatorial wind speed of 90 m/s. Angular velocity is roughly constant on spherical shells, and decreases linearly with altitude to zero at the surface. The direction of rotation is the same as that of the solid planet, which is retrograde--opposite to the direction of orbital motion, but the 5-day period is short compared to the 243-day spin period of the solid planet or to the mean solar day, which is 117 Earth-days at the surface. The problem with the superrotation is that shearing stresses tend to transfer angular momentum downward, and would slow the atmosphere until it is spinning with the solid planet. Some organized circulation pattern is counteracting the tendency, but the pattern has not been identified. A simple Hadley-type circulation cannot do it because such a circulation is zonally symmetric and Hide's Theorem states that in an axisymmetric circulation an extremum in angular momentum per unit mass M can exist only at the surface. Venus violates the last condition, having a maximum of retrograde M on the equator at 70-80 km altitude. This leaves waves and eddies to maintain the superrotation but the length scales and forcing mechanisms for these motions need to be specified. Possible forcing mechanisms associated with waves, eddies and tides are discussed.
Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats
2005-05-13
BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.
Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.
2008-01-01
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674
Antenna pattern measurements to characterize the out-of-band behavior of reflector antennas
NASA Astrophysics Data System (ADS)
Cown, B. J.; Weaver, E. E.; Ryan, C. E., Jr.
1983-12-01
Research was conducted to collect and describe out-of-band antenna pattern data. The research efforts were devoted: (1) to deriving valid measured data for a reflector antenna for out-of-band frequencies spanning intervals around the second and third harmonics of the in-band design frequency, and (2) to statistically characterize the measured data. The second harmonic data were collected for both polarization senses for the out-of-band frequencies of 5.5 GHz to 7.5 GHz in steps of 0.1 GHz. The third harmonic data were collected for both polarization senses for the out-of-band frequencies of 8.0 GHz to 10.0 GHz in steps of 0.1 GHz. Additionally, in-band data were collected at 2.9, 3.0, and 3.1 GHz for both polarization senses. The measured data were collected on the Georgia Tech compact antenna range test facility with the aid of an automated data logger system designed expressly for efficient collection of broadband antenna data. The pattern data, recorded directly on magnetic disks, were analyzed: (1) to compute average gain and standard deviation over selected angular sectors, (2) to construct cumulative probability curves, and (3) to specify the peak gain and the angular coordinates of the peak at each frequency.
Round and angular kyphosis in paediatric patients.
Miladi, L
2013-02-01
Structural kyphosis is a posterior convex deformity of the spine that may appear in childhood then worsen with growth, most notably during the pubertal growth spurt. The abnormal curvature may be smooth, defining round kyphosis, or may display a sharp angular pattern. Angular kyphosis is the more severe of the two forms. The main causes of round kyphosis are postural kyphosis and Scheuermann's disease. The spontaneous outcome is favourable, and round kyphosis is well tolerated in adulthood. The treatment relies on orthopaedic methods in the overwhelming majority of cases. Surgery is reserved for severe rigid kyphosis in older children and for kyphosis responsible for refractory pain or neurological deficits. Surgical treatment carries a non-negligible risk of neurological, gastrointestinal, mechanical, and septic complications, which should be explained clearly to the family. Advances in contemporary posterior instrumentation have considerably limited the indications for anterior approaches. Many conditions may cause angular kyphosis, whose greater severity is related to a greater potential for progression and neurological impairment. Clinical investigations are in order to identify the cause and to plan the surgical strategy. Early surgery may be indicated, via a combined anterior and posterior approach. Anterior strut grafting, anterior or posterior osteotomies, or even vertebral column resections may be necessary to correct a major deformity. Copyright © 2012. Published by Elsevier Masson SAS.
Synthesis of composite TiN/Ni3N/a-Si3N4 thin films using the plasma focus device
NASA Astrophysics Data System (ADS)
Adeel Umar, Zeshan; Ahmad, Riaz; Khan, Ijaz Ahmad; Hussain, Tousif; Hussnain, Ali; Khalid, Nida; Awais, Ali; Ali, T.
2013-12-01
Composite films of TiN/Ni3N/a-Si3N4 were synthesized using the Mather-type plasma focus device with varying numbers of focus deposition shots (5, 15, and 25) at 0° and 10° angular positions. The composition and structural analysis of these films were analyzed by using Rutherford backscattering (RBS) and X-ray diffraction (XRD). Scanning electron microscope and atomic force microscope were used to study the surface morphology of films. XRD patterns confirm the formation of composite TiN/Ni3N/a-Si3N4 films. The crystallite size of TiN (200) plane is 11 and 22 nm, respectively, at 0° and 10° angular positions for same 25 focus deposition shots. Impurity levels and thickness were measured using RBS. Scanning electron microscopy results show the formation of net-like structures for multiple focus shots (5, 15, and 25) at angular positions of 0° and 10°. The average surface roughness of the deposited films increases with increasing focus shots. The roughness of the film decreases at higher angle 10° and the films obtained are smoother as compared with the films deposited at 0° angular positions.
Coggon, Matthew M; McDonald, Brian C; Vlasenko, Alexander; Veres, Patrick R; Bernard, François; Koss, Abigail R; Yuan, Bin; Gilman, Jessica B; Peischl, Jeff; Aikin, Kenneth C; DuRant, Justin; Warneke, Carsten; Li, Shao-Meng; de Gouw, Joost A
2018-05-15
Decamethylcyclopentasiloxane (D 5 ) is a cyclic volatile methyl siloxane (cVMS) that is widely used in consumer products and commonly observed in urban air. This study quantifies the ambient mixing ratios of D 5 from ground sites in two North American cities (Boulder, CO, USA, and Toronto, ON, CA). From these data, we estimate the diurnal emission profile of D 5 in Boulder, CO. Ambient mixing ratios were consistent with those measured at other urban locations; however, the diurnal pattern exhibited similarities with those of traffic-related compounds such as benzene. Mobile measurements and vehicle experiments demonstrate that emissions of D 5 from personal care products are coincident in time and place with emissions of benzene from motor vehicles. During peak commuter times, the D 5 /benzene ratio (w/w) is in excess of 0.3, suggesting that the mass emission rate of D 5 from personal care product usage is comparable to that of benzene due to traffic. The diurnal emission pattern of D 5 is estimated using the measured D 5 /benzene ratio and inventory estimates of benzene emission rates in Boulder. The hourly D 5 emission rate is observed to peak between 6:00 and 7:00 AM and subsequently follow an exponential decay with a time constant of 9.2 h. This profile could be used by models to constrain temporal emission patterns of personal care products.
Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier
2012-10-16
A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (<29.4 nm) and around 98 nm. We suggest potential approaches to reduce particle number emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions <40 nm is only possible under real-world driving conditions.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data
NASA Astrophysics Data System (ADS)
Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.
2016-01-01
Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.
Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.
NASA Astrophysics Data System (ADS)
Devereux, Nicholas
2018-01-01
Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
NASA Astrophysics Data System (ADS)
Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang
2017-01-01
This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.
Goss, Donald L.; Lewek, Michael; Yu, Bing; Ware, William B.; Teyhen, Deydre S.; Gross, Michael T.
2015-01-01
Context The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior–foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear–foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior–foot-strike pattern remains unclear. Objective To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior–foot-strike pattern after transitioning to minimalist running shoes. PMID:26098391
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-02-19
Context : The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. Objective : To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design : Descriptive laboratory study. Setting : Research laboratory. Patients or Other Participants : A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) : Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) : Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results : Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions : Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
Wang, Pengyun; Li, Rui; Yu, Jing; Huang, Zirui; Yan, Zhixiong; Zhao, Ke; Li, Juan
2017-01-01
Few studies to date have investigated the background network in the cognitive state relying on executive function in mild cognitive impairment (MCI) patients. Using the index of degree of centrality (DC), we explored distant synchronization of background network in MCI during a hybrid delayed-match-to-sample task (DMST), which mainly relies on the working memory component of executive function. We observed significant interactions between group and cognitive state in the bilateral posterior cingulate cortex (PCC) and the ventral subregion of precuneus. For normal control (NC) group, the long distance functional connectivity (FC) of the PCC/precuneus with the other regions of the brain was higher in rest state than that working memory state. For MCI patients, however, this pattern altered. There was no significant difference between rest and working memory state. The similar pattern was observed in the other cluster located in the right angular gyrus. To examine whether abnormal DC in PCC/precuneus and angular gyrus partially resulted from the deficit of FC between these regions and the other parts in the whole brain, we conducted a seed-based correlation analysis with these regions as seeds. The results indicated that the FC between bilateral PCC/precuneus and the right inferior parietal lobule (IPL) increased from rest to working memory state for NC participants. For MCI patients, however, there was no significant change between rest and working memory state. The similar pattern was observed for the FC between right angular gyrus and right anterior insula. However, there was no difference between MCI and NC groups in global efficiency and modularity. It may indicate a lack of efficient reorganization from rest state to a working memory state in the brain network of MCI patients. The present study demonstrates the altered distant synchronization of background network in MCI during a task relying on executive function. The results provide a new perspective regarding the neural mechanisms of executive function deficits in MCI patients, and extend our understanding of brain patterns in task-evoked cognitive states.
Targeted Prostate Thermal Therapy with Catheter-Based Ultrasound Devices and MR Thermal Monitoring
NASA Astrophysics Data System (ADS)
Diederich, Chris; Ross, Anthony; Kinsey, Adam; Nau, Will H.; Rieke, Viola; Butts Pauly, Kim; Sommer, Graham
2006-05-01
Catheter-based ultrasound devices have significant advantages for thermal therapy procedures, including potential for precise spatial and dynamic control of heating patterns to conform to targeted volumes. Interstitial and transurethral ultrasound applicators, with associated treatment strategies, were developed for thermal ablation of prostate combined with MR thermal monitoring. Four types of multielement transurethral applicators were devised, each with different levels of selectivity and intended therapeutic goals: sectored tubular transducer devices with fixed directional heating patterns; planar and lightly focused curvilinear devices with narrow heating patterns; and multi-sectored tubular devices capable of dynamic angular control without applicator movement. These devices are integrated with a 4 mm delivery catheter, incorporate an inflatable cooling balloon (10 mm OD) for positioning within the prostate and capable of rotation via an MR-compatible motor. Similarly, interstitial devices (2.4 mm OD) have been developed for percutaneous implantation with fixed directional heating patterns (e.g., 180 deg.). In vivo experiments in canine prostate (n=15) under MR temperature imaging were used to evaluate the heating technology and develop treatment strategies. MR thermal imaging in a 0.5 T interventional MRI was used to monitor temperature contours and thermal dose in multiple slices through the target volume. Sectored transurethral devices produce directional coagulation zones, extending 15-20 mm radial distance to the outer prostate capsule. The curvilinear applicator produces distinct 2-3 mm wide lesions, and with sequential rotation and modulated dwell time can precisely conform thermal ablation to selected areas or the entire prostate gland. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the gland in short treatment times without applicator manipulation. Interstitial implants with directional devices can be used to effectively ablate the posterior peripheral zone of the gland while protecting the rectum. An implant with multi-sectored interstitial devices can effectively control the angular heating pattern without applicator rotation. The MR derived 52 °C and lethal thermal dose contours (t43=240 min) allowed for real-time control of the applicators and effectively defined the extent of thermal damage. Catheter-based ultrasound devices, combined with MR thermal monitoring, can produce relatively fast and precise thermal ablation of prostate, with potential for treatment of cancer or BPH.
NASA Astrophysics Data System (ADS)
Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves
2018-05-01
Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).
NASA Astrophysics Data System (ADS)
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The ring shape morphology of a beam with orbital angular momentum (OAM) is ideal for the observation of solar corona around the sun where the intensity of the beam is minimum at the center, in solar experiments, and Earth's ionosphere. The twisted plasma modes carrying OAM are mostly studied either by the fluid theory or Maxwellian distributed Kinetic Theory. But most of the space plasmas and some laboratory plasmas have non-thermal distributions due to super-thermal population of the plasma particles. Therefore the Kinetic Theory of twisted plasma modes carrying OAM are recently studied using non-thermal (kappa) distribution of the super-thermal particles in the presence of the helical electric field and significant change in the damping rates are observed by tuning appropriate parameters.
Microoptical device for efficient read-out of active WGM resonators
NASA Astrophysics Data System (ADS)
Wienhold, Tobias; Brammer, Marko; Grossmann, Tobias; Schneider, Marc; Kalt, Heinz; Mappes, Timo
2012-06-01
Whispering-gallery mode (WGM) resonators are known to offer outstanding properties for applications in photonics and telecommunication. Despite their promising performance, one major obstacle for the use of WGM resonators in industrial products is the need of expensive components and high-precision setups for their operation, requiring a controlled lab environment. For industrial applications technically simpler and more robust realizations are desired. Active WGM resonators utilize an optical gain medium for light amplification within the resonator and may be operated as lasers. They offer several advantages over their passive counterparts, such as cheap pump sources, free space excitation of resonator modes, and potentially narrower line widths. However, collection of the light emitted from the resonator still bears several challenges. Emission occurs in plane of the resonator and radiation is emitted isotropically along the circumference. Thus, detectors positioned in plane of the resonator may collect only a limited angular segment of the resonator's light emission. We report on a microoptical device which is integrated on the resonator chip and redirects all in-plane emission of active WGM resonators into a defined off-plane direction. Redirected light can easily be collected using a standard detector. Contrary to other approaches our microoptical device does not decrease the quality factor (Q factor) of the resonator. As light from all angular segments of the resonator is collected, the detected signal-to-noise ratio is expected to be largely improved. Our microoptical device therefore offers a promising approach towards mass-producible integration of active WGM resonators, e. g. into a Lab-on-a-Chip, for sensor applications, where smallest possible frequency shifts need to be read out by a highly sensitive detector.
NASA Astrophysics Data System (ADS)
Meadors, G. D.; Goetz, E.; Riles, K.; Creighton, T.; Robinet, F.
2017-02-01
Scorpius X-1 (Sco X-1) and x-ray transient XTE J1751-305 are low-mass x-ray binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a torque-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque balance predicts a scale for detectable gravitational-wave strain based on observed x-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO science run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, upper limits on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational-wave frequencies from 40 to 2040 Hz and projected semimajor axes from 0.90 to 1.98 light-seconds. These upper limits are injection validated, equal any previous set in initial LIGO data, and extend over a broader parameter range. At optimal strain sensitivity, achieved at 165 Hz, the 95% confidence level random-polarization upper limit on dimensionless strain h0 is approximately 1.8 ×10-24. The closest approach to the torque-balance limit, within a factor of 27, is also at 165 Hz. Upper limits are set in particular narrow frequency bands of interest for J1751-305. These are the first upper limits known to date on r -mode emission from this XTE source. The TwoSpect method will be used in upcoming searches of Advanced LIGO and Virgo data.
An accreting black hole model for Sagittarius A(*). 2: A detailed study
NASA Technical Reports Server (NTRS)
Melia, Fulvio
1994-01-01
Sgr A(*) is a unique, compact radio source at the Galactic center whose characteristics suggest that it may be a massive (i.e., approximately 10(exp 6) solar mass) black hole accreting from an ambient wind in that region. Earlier (simplified) calculations suggested that its 10(exp 8) - 10(exp 20) Hz spectrum could be derived from bremsstrahlung and magnetic bremsstrahlung emission from plasma descending toward the event horizon at a rate of roughly 10(exp 22) g/s. Here, we introduce several significant improvements to the model, including (1) an exact treatment of the cyclotron/synchrotron emissivity that is valid for all temperatures, (2) the actual determination of the temperature distribution in the inflow, and (3) the effect on the spectrum should the accreting plasma have a residual angular momentum, possibly forming a disk at small radii. We find that the most likely value of the mass in this improved model is approximately equals 2 +/- 1 x 10(exp 6) solar mass, close to the range inferred earlier, but about a factor of 2 greater than the previous 'best-fit' number. The main reason for this difference is that the more realistic (new) formulation of the magnetic bremsstrahlung emissivity has fluctuations with frequency that decrease the overall line-of-sight intensity, thereby pointing to a slightly larger mass in order to account for the observed spectrum. We also find that a slight excess of angular momentum in the accreting gas may be necessary in order to account for the IR luminosity from this source. Such an excess is consistent with the results of ongoing three-dimensional simulations that will be reported elsewhere.
The Precision Array for Probing the Epoch of Re-ionization: Eight Station Results
NASA Astrophysics Data System (ADS)
Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.
2010-04-01
We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at ell = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.
High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt
2012-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours.
Source location of the smooth high-frequency radio emissions from Uranus
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Calvert, W.
1989-01-01
The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.
NASA Astrophysics Data System (ADS)
Kajii, Hirotake
2018-05-01
In this review, we focus on the improved external quantum efficiency, field-effect mobility, and emission pattern of top-gate-type polymer light-emitting transistors (PLETs) based on ambipolar fluorene-type polymers. A low-temperature, high-efficiency, printable red phosphorescent PLET based on poly(alkylfluorene) with modified alkyl side chains fabricated by a film transfer process is demonstrated. Device fabrication based on oriented films leads to an improved EL intensity owing to the increase in field-effect mobility. There are three factors that affect the transport of carriers, i.e., the energy level, threshold voltage, and mobility of each layer for heterostructure PLETs, which result in various emission patterns such as the line-shaped, multicolor and in-plane emission pattern in the full-channel area between source and drain electrodes. Fundamentals and future prospects in heterostructure devices are discussed and reviewed.
Bocksrocker, Tobias; Preinfalk, Jan Benedikt; Asche-Tauscher, Julian; Pargner, Andreas; Eschenbaum, Carsten; Maier-Flaig, Florian; Lemme, Uli
2012-11-05
White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.
Photoexcitation Cascade and Quantum-Relativistic Jets in Graphene
NASA Astrophysics Data System (ADS)
Lewandowski, Cyprian; Levitov, L. S.
2018-02-01
In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, creating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation cascade. Here we show that the decays are unblocked and the bottleneck is relieved by subtle many-body effects involving multiple off-shell e -h pairs. The decays result from a collective behavior due to simultaneous emission of many soft pairs. We discuss characteristic signatures of the off-shell pathways, in particular the sharp angular distribution of secondary carriers, resembling relativistic jets in high-energy physics. The jets can be directly probed using solid-state equivalent of particle detectors. Collinear scattering enhances carrier multiplication, allowing for emission of as many as ˜10 secondary carriers per single absorbed photon.
Possible cage motion of interstitial Fe in α-Al 2 O 3
NASA Astrophysics Data System (ADS)
Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Mantovan, R.; Mølholt, T. E.; Bharuth-Ram, K.; Gislason, H. P.; Langouche, G.; Madsen, M. B.; Naidoo, D.; Ólafsson, S.; Weyer, G.
2013-04-01
In addition to spectral components due to Fe2 + and Fe3 + , a single line is observed in emission Mössbauer spectra following low fluence (<1015 cm - 2) implantation of 57Fe*, 57Mn and 57Co in α-Al2O3. For the 57Co and 57Mn implantations, the intensity of the single line is found to depend on the emission angle relative to the crystal symmetry axis. This angular dependence can be explained by a non-isotropic f-factor and/or motion of the Fe ion between sites in an interstitial cage. It is argued that interstitial cage motion is a more likely explanation, as this can account for the lack of quadrupole splitting of the line.
Morphological changes in ultrafast laser ablation plumes with varying spot size.
Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C
2015-06-15
We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.
Calibration of a monochromator using a lambdameter
NASA Astrophysics Data System (ADS)
Schwarzmaier, T.; Baumgartner, A.; Gege, P.; Lenhard, K.
2013-10-01
The standard procedure for wavelength calibration of monochromators in the visible and near infrared wavelength range uses low-pressure gas discharge lamps with spectrally well-known emission lines as primary wavelength standard. The calibration of a monochromator in the wavelength range of 350 to 2500 nm usually takes some days due to the huge number of single measurements necessary. The useable emission lines are not for all purposes sufficiently dense and at the appropriate wavelengths. To get faster results for freely selectable wavelengths, a new method for monochromator characterization was tested. It is based on measurements with a lambdameter taken at equidistant angles distributed over the grating's entire angular range. This method provides a very accurate calibration and needs only about two hours of measuring time.
Running from Paris to Beijing: biomechanical and physiological consequences.
Millet, Guillaume Y; Morin, Jean-Benoît; Degache, Francis; Edouard, Pascal; Feasson, Léonard; Verney, Julien; Oullion, Roger
2009-12-01
The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.
Learning by strategies and learning by drill--evidence from an fMRI study.
Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S
2005-04-15
The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.
Seasonal climate change patterns due to cumulative CO2 emissions
NASA Astrophysics Data System (ADS)
Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.
2017-07-01
Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.
NASA Astrophysics Data System (ADS)
Hui, D.; Chen, H.; Deng, Q.; Wang, G.; Schadt, C. W.
2017-12-01
The major source of atmospheric nitrous oxide (N2O) is from croplands. A rapid pulse response of soil N2O emission to precipitation (PPT) is often reported, especially after a drought period. However, how precipitation pattern (i.e. frequency) and intensity, and nitrogen (N) fertilization would interactively influence soil N2O emission has not been well investigated. In this modeling study, we took advantage of a validated biogeochemical model (DNDC) in a cornfield and simulated soil N2O emission under manipulated precipitation treatments and three levels (Low, medium and high) of N application rate. The PPT treatments included precipitation pattern (from very frequent, to medium, and rare dry-wet cycles without changes in total annual precipitation) and intensity (from ambient, to -50%, +50%, and +100% ambient precipitation without changes in precipitation pattern). Results showed that both precipitation pattern and intensity, as well as nitrogen application rate had significant influences on the pulse responses and annual soil N2O emission. Very frequent dry-wet cycles tended to increase soil N2O emission while long drought-wet cycles had lower soil N2O emission, but the timing of N fertilization and precipitation also played an important role in the magnitude of pulse response and annual budget of N2O emission. As expected, soil N2O emission was higher under the high N application and lower under the low N application rate. Double precipitation (+100%) had the highest soil N2O emission, but showed no significant differences with +50% and ambient precipitation. The drought (-50%) treatment significantly reduced soil N2O emission. Annual soil N2O emission could be described as N2O=-6.7436+0.1098N+0.0049PPT, R2=0.86. Our results demonstrate that not only the intensity and pattern of precipitation greatly influence soil N2O emission, but also the timing of rainfall and N fertilization may play an important role in soil N2O pulse responses and annual N2O emission in cornfields. These modeling approaches inform our future work to deploy automated gas flux systems to validate and monitor these rapid N2O responses in the field.
Robotic gait trainer in water: development of an underwater gait-training orthosis.
Miyoshi, Tasuku; Hiramatsu, Kazuaki; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami
2008-01-01
To develop a robotic gait trainer that can be used in water (RGTW) and achieve repetitive physiological gait patterns to improve the movement dysfunctions. The RGTW is a hip-knee-ankle-foot orthosis with pneumatic actuators; the control software was developed on the basis of the angular motions of the hip and knee joint of a healthy subject as he walked in water. Three-dimensional motions and electromyographic (EMG) activities were recorded in nine healthy subjects to evaluate the efficacy of using the RGTW while walking on a treadmill in water. The device could preserve the angular displacement patterns of the hip and knee and foot trajectories under all experimental conditions. The tibialis anterior EMG activities in the late swing phase and the biceps femoris throughout the stance phase were reduced whose joint torques were assisted by the RGTW while walking on a treadmill in water. Using the RGTW could expect not only the effect of the hydrotherapy but also the standard treadmill gait training, in particular, and may be particularly effective for treating individuals with hip joint movement dysfunction.
NASA Astrophysics Data System (ADS)
Kiselev, Alexei D.; Chigrinov, Vladimir G.
2014-10-01
In order to explore electric-field-induced transformations of polarization singularities in the polarization-resolved angular (conoscopic) patterns emerging after deformed-helix ferroelectric liquid crystal (DHFLC) cells with subwavelength helix pitch, we combine the transfer matrix formalism with the results for the effective dielectric tensor of biaxial FLCs evaluated using an improved technique of averaging over distorted helical structures. Within the framework of the transfer matrix method, we deduce a number of symmetry relations and show that the symmetry axis of L lines (curves of linear polarization) is directed along the major in-plane optical axis which rotates under the action of the electric field. When the angle between this axis and the polarization plane of incident linearly polarized light is above its critical value, the C points (points of circular polarization) appear in the form of symmetrically arranged chains of densely packed star-monstar pairs. We also emphasize the role of phase singularities of a different kind and discuss the enhanced electro-optic response of DHFLCs near the exceptional point where the condition of zero-field isotropy is fulfilled.
18Ne Excited States Two-Proton Decay
NASA Astrophysics Data System (ADS)
de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.
2008-04-01
Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.
Reaction mechanisms in 12C(γ,pp) near 200 MeV
NASA Astrophysics Data System (ADS)
Hackett, E. D.; McDonald, W. J.; Opper, A. K.; Quraan, M. A.; Rodning, N. L.; Rozon, F. M.; Feldman, G.; Kolb, N. R.; Pywell, R. E.; Skopik, D. M.; Tiller, D. E.; Vogt, J. M.; Korkmaz, E.; O'rielly, G. V.
1996-03-01
Inclusive 12C(γ,pp) cross sections have been measured with tagged photons in the range Eγ=187-227 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The large angular acceptance allowed the measurement of noncoplanar pp emission. The cross sections were compared to a Monte Carlo intranuclear cascade calculation. Agreement was reasonable for the shapes of the cross sections but the calculated total cross section was 3.9 times larger than the data.
NASA Astrophysics Data System (ADS)
Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.
2005-02-01
The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.
Report on carbon and nitrogen abundance studies
NASA Technical Reports Server (NTRS)
Boehm-Vitense, Erika
1991-01-01
The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.
NASA Astrophysics Data System (ADS)
Akolkar, A.; Petrasch, J.; Finck, S.; Rahmatian, N.
2018-02-01
An inverse analysis of the phosphor layer of a commercially available, conformally coated, white LED is done based on tomographic and spectrometric measurements. The aim is to determine the radiative transfer coefficients of the phosphor layer from the measurements of the finished device, with minimal assumptions regarding the composition of the phosphor layer. These results can be used for subsequent opto-thermal modelling and optimization of the device. For this purpose, multiple integrating sphere and gonioradiometric measurements are done to obtain statistical bounds on spectral radiometric values and angular color distributions for ten LEDs belonging to the same color bin of the product series. Tomographic measurements of the LED package are used to generate a tetrahedral grid of the 3D LED geometry. A radiative transfer model using Monte Carlo Ray Tracing in the tetrahedral grid is developed. Using a two-wavelength model consisting of a blue emission wavelength and a yellow, Stokes-shifted re-emission wavelength, the angular color distribution of the LED is simulated over wide ranges of the absorption and scattering coefficients of the phosphor layer, for the blue and yellow wavelengths. Using a two-step, iterative space search, combinations of the radiative transfer coefficients are obtained for which the simulations are consistent with the integrating sphere and gonioradiometric measurements. The results show an inverse relationship between the scattering and absorption coefficients of the phosphor layer for blue light. Scattering of yellow light acts as a distribution and loss mechanism for yellow light and affects the shape of the angular color distribution significantly, especially at larger viewing angles. The spread of feasible coefficients indicates that measured optical behavior of the LEDs may be reproduced using a range of combinations of radiative coefficients. Given that coefficients predicted by the Mie theory usually must be corrected in order to reproduce experimental results, these results indicate that a more complete model of radiative transfer in phosphor layers is required.
Breakthrough in 4π ion emission mechanism understanding in plasma focus devices
Sohrabi, Mehdi; Zarinshad, Arefe; Habibi, Morteza
2016-01-01
Ion emission angular distribution mechanisms in plasma focus devices (PFD) have not yet been well developed and understood being due to the lack of an efficient wide-angle ion distribution image detection system to characterize a PFD space in detail. Present belief is that the acceleration of ions points from “anode top” upwards in forward direction within a small solid angle. A breakthrough is reported in this study, by mega-size position-sensitive polycarbonate ion image detection systems invented, on discovery of 4π ion emission from the “anode top” in a PFD space after plasma pinch instability and radial run-away of ions from the “anode cathodes array” during axial acceleration of plasma sheaths before the radial phase. These two ion emission source mechanisms behave respectively as a “Point Ion Source” and a “Line Ion Source” forming “Ion Cathode Shadows” on mega-size detectors. We believe that the inventions and discoveries made here will open new horizons for advanced ion emission studies towards better mechanisms understanding and in particular will promote efficient applications of PFDs in medicine, science and technology. PMID:27941832
Does the diurnal pattern of enteric methane emissions from dairy cows change over time?
Bell, M J; Craigon, J; Saunders, N; Goodman, J R; Garnsworthy, P C
2018-02-22
Diet manipulation and genetic selection are two important mitigation strategies for reducing enteric methane (CH4) emissions from ruminant livestock. The aim of this study was to assess whether the diurnal pattern of CH4 emissions from individual dairy cows changes over time when cows are fed on diets varying in forage composition. Emissions of CH4 from 36 cows were measured during milking in an automatic (robotic) milking station in three consecutive feeding periods, for a total of 84 days. In Periods 1 and 2, the 36 cows were fed a high-forage partial mixed ration (PMR) containing 75% forage, with either a high grass silage or high maize silage content. In Period 3, cows were fed a commercial PMR containing 69% forage. Cows were offered PMR ad libitum plus concentrates during milking and CH4 emitted by individual cows was sampled during 8662 milkings. A linear mixed model was used to assess differences among cows, feeding periods and time of day. Considerable variation was observed among cows in daily mean and diurnal patterns of CH4 emissions. On average, cows produced less CH4 when fed on the commercial PMR in feeding Period 3 than when the same cows were fed on high-forage diets in feeding Periods 1 and 2. The average diurnal pattern for CH4 emissions did not significantly change between feeding periods and as lactation progressed. Emissions of CH4 were positively associated with dry matter (DM) intake and forage DM intake. It is concluded that if the management of feed allocation remains constant then the diurnal pattern of CH4 emissions from dairy cows will not necessarily alter over time. A change in diet composition may bring about an increase or decrease in absolute emissions over a 24-h period without significantly changing the diurnal pattern unless management of feed allocation changes. These findings are important for CH4 monitoring techniques that involve taking measurements over short periods within a day rather than complete 24-h observations.
IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu
2013-09-20
Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less
Braking Index of Isolated Pulsars
NASA Astrophysics Data System (ADS)
Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela
2015-04-01
Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcos, C.; Kanaan, S.; Curé, M.
The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {submore » ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.« less
Remotely detected vehicle mass from engine torque-induced frame twisting
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.
2017-06-01
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.
NASA Technical Reports Server (NTRS)
Gaier, James R.
2009-01-01
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-07-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-05-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Mashood, K. K.; Singh, Vijay A.
2012-09-01
Student difficulties regarding the angular velocity (\\vec{\\omega }) and angular acceleration (\\vec{\\alpha }) of a particle have remained relatively unexplored in contrast to their linear counterparts. We present an inventory comprising multiple choice questions aimed at probing misconceptions and eliciting ill-suited reasoning patterns. The development of the inventory was based on interactions with students, teachers and experts. We report misconceptions, some of which are parallel to those found earlier in linear kinematics. Fixations with inappropriate prototypes were uncovered. Many students and even teachers mistakenly assume that all rotational motion is necessarily circular. A persistent notion that the direction of \\vec{\\omega } and \\vec{\\alpha } should be ‘along’ the motion exists. Instances of indiscriminate usage of equations were identified.
A SIMPLE METHOD FOR MEASURING THE ELECTRON-BEAM MAGNETIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Qiang, G.; Wisniewski, E.
2016-10-18
There are a number of projects that require magnetized beams, such as electron cooling or aiding in “flat” beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface [1]. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This methodmore » is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.« less
Projected effects of climate and development on California wildfire emissions through 2100.
Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P
2014-02-18
Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.
Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
Lee, Hongmi; Kuhl, Brice A
2016-06-01
Recent findings suggest that the contents of memory encoding and retrieval can be decoded from the angular gyrus (ANG), a subregion of posterior lateral parietal cortex. However, typical decoding approaches provide little insight into the nature of ANG content representations. Here, we tested whether complex, multidimensional stimuli (faces) could be reconstructed from ANG by predicting underlying face components from fMRI activity patterns in humans. Using an approach inspired by computer vision methods for face recognition, we applied principal component analysis to a large set of face images to generate eigenfaces. We then modeled relationships between eigenface values and patterns of fMRI activity. Activity patterns evoked by individual faces were then used to generate predicted eigenface values, which could be transformed into reconstructions of individual faces. We show that visually perceived faces were reliably reconstructed from activity patterns in occipitotemporal cortex and several lateral parietal subregions, including ANG. Subjective assessment of reconstructed faces revealed specific sources of information (e.g., affect and skin color) that were successfully reconstructed in ANG. Strikingly, we also found that a model trained on ANG activity patterns during face perception was able to successfully reconstruct an independent set of face images that were held in memory. Together, these findings provide compelling evidence that ANG forms complex, stimulus-specific representations that are reflected in activity patterns evoked during perception and remembering. Neuroimaging studies have consistently implicated lateral parietal cortex in episodic remembering, but the functional contributions of lateral parietal cortex to memory remain a topic of debate. Here, we used an innovative form of fMRI pattern analysis to test whether lateral parietal cortex actively represents the contents of memory. Using a large set of human face images, we first extracted latent face components (eigenfaces). We then used machine learning algorithms to predict face components from fMRI activity patterns and, ultimately, to reconstruct images of individual faces. We show that activity patterns in a subregion of lateral parietal cortex, the angular gyrus, supported successful reconstruction of perceived and remembered faces, confirming a role for this region in actively representing remembered content. Copyright © 2016 the authors 0270-6474/16/366069-14$15.00/0.
Gamma ray astronomy above 30 TeV and the IceCube results
NASA Astrophysics Data System (ADS)
Vernetto, Silvia; Lipari, Paolo
2017-03-01
The study of the diffuse Galactic gamma ray emission is of fundamental importance to understand the properties of cosmic ray propagation in the Milky Way, and extending the measurements to E ≳ 30 TeV is of great interest. In the same energy range the IceCube detector has also recently observed a flux of astrophysical neutrinos, and it is important to test experimentally if the neutrino production is accompanied by a comparable emission of high energy photons. For E ≳ 30 TeV, the absorption effects due to e+e- pair production when the high energy photons interact with radiation fields present in space are not negligible and must be taken into account. Gamma rays, in good approximation, are completely absorbed if they have an extragalactic origin, but the absorption is significant also for Galactic photons. In this case the size and angular dependence of the absorption depends on the space distribution of the emission. In this work we estimate the absorption for different models of the space distribution of the gamma ray emission, and discuss the potential of future detectors.
NASA Astrophysics Data System (ADS)
Chen, Xin; Sánchez-Arriaga, Gonzalo
2018-02-01
To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.
Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements
NASA Technical Reports Server (NTRS)
Robinson, Cordula A.; Wood, John A.
1993-01-01
Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.
Mirek, Elzbieta; Filip, Magdalena; Chwała, Wiesław; Banaszkiewicz, Krzysztof; Rudzinska-Bar, Monika; Szymura, Jadwiga; Pasiut, Szymon; Szczudlik, Andrzej
2017-01-01
Objective: A number of studies on gait disturbances have been conducted, however, no clear pattern of gait disorders was described. The aim of the study was to characterize the gait pattern in HD patients by conducting analysis of mean angular movement changes the lower limb joints and trunk (kinematics parameters). Methods: The study group consisted of 30 patients with HD (17 women and 13 men). The reference data include the results of 30 healthy subjects (17 women and 13 men). Registration of gait with the Vicon 250 system was performed using passive markers attached to specific anthropometric points directly on the skin, based on the Golem biomechanical model (Oxford Metrics Ltd.). The research group and the control group were tested once. Results: Statistically significant ( p < 0.05) angular changes in gait cycle for HD patients were observed in: insufficient plantar flexion during Loading Response and Pre-swing phases; insufficient flexion of the knee joint during Initial Swing and Mid Swing phases; excessive flexion of the hip in Terminal Stance and Pre-swing phases and over-normative forward inclination of the trunk in all gait phases. It should be noted that the group of patients with HD obtained, for all the mean angular movement changes higher standard deviation. Conclusion: A characteristic gait disorder common to all patients with HD occurring throughout the whole duration of the gait cycle is a pathological anterior tilt of the trunk. The results will significantly contribute to programming physiotherapy for people with HD, aimed at stabilizing the trunk in a position of extension during gait.
NASA Astrophysics Data System (ADS)
Reed Espinosa, W.; Vanderlei Martins, J.; Remer, Lorraine A.; Puthukkudy, Anin; Orozco, Daniel; Dolgos, Gergely
2018-03-01
This work provides a synopsis of aerosol phase function (F11) and polarized phase function (F12) measurements made by the Polarized Imaging Nephelometer (PI-Neph) during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. In order to more easily explore this extensive dataset, an aerosol classification scheme is developed that identifies the different aerosol types measured during the deployments. This scheme makes use of ancillary data that include trace gases, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. The PI-Neph measurements are then grouped according to their ancillary data classifications and the resulting scattering patterns are examined in detail. These results represent the first published airborne measurements of F11 and -F12/F11 for many common aerosol types. We then explore whether PI-Neph light-scattering measurements alone are sufficient to reconstruct the results of this ancillary data classification algorithm. Principal component analysis (PCA) is used to reduce the dimensionality of the multi-angle PI-Neph scattering data and the individual measurements are examined as a function of ancillary data classification. Clear clustering is observed in the PCA score space, corresponding to the ancillary classification results, suggesting that, indeed, a strong link exists between the angular-scattering measurements and the aerosol type or composition. Two techniques are used to quantify the degree of clustering and it is found that in most cases the results of the ancillary data classification can be predicted from PI-Neph measurements alone with better than 85 % recall. This result both emphasizes the validity of the ancillary data classification as well as the PI-Neph's ability to distinguish common aerosol types without additional information.
Tongue-driven sonar beam steering by a lingual-echolocating fruit bat
Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H.; Moss, Cynthia F.
2017-01-01
Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively “illuminate” a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used “piston model” that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array—an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways. PMID:29244805
Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.
Lee, Wu-Jung; Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H; Moss, Cynthia F
2017-12-01
Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.
NASA Astrophysics Data System (ADS)
Simon, Sara Michelle
The LCDM model of the universe is supported by an abundance of astronomical observations, but it does not confirm a period of inflation in the early universe or explain the nature of dark energy and dark matter. The polarization of the cosmic microwave background (CMB) may hold the key to addressing these profound questions. If a period of inflation occurred in the early universe, it could have left a detectable odd-parity pattern called B-modes in the polarization of the CMB on large angular scales. Additionally, the CMB can be used to probe the structure of the universe on small angular scales through lensing and the detection of galaxy clusters and their motions via the Sunyaev-Zel'dovich effect, which can improve our understanding of neutrinos, dark matter, and dark energy. The Atacama B-mode Search (ABS) instrument was a cryogenic crossed-Dragone telescope located at an elevation of 5190m in the Atacama Desert in Chile that observed from February 2012 until October 2014. ABS searched on degree-angular scales for inflationary B-modes in the CMB and pioneered the use of a rapidly-rotating half-wave plate (HWP), which modulates the polarization of incoming light to permit the measurement of celestial polarization on large angular scales that would otherwise be obscured by 1/f noise from the atmosphere. Located next to ABS in the Atacama is the Atacama Cosmology Telescope (ACT), which is an off-axis Gregorian telescope. Its large 6m primary mirror facilitates measurements of the CMB on small angular scales. HWPs are baselined for use with the upgraded polarization-sensitive camera for ACT, called Advanced ACTPol, to extend observations of the polarized CMB to larger angular scales while also retaining sensitivity to small angular scales. The B-mode signal is extremely faint, and measuring it poses an instrumental challenge that requires the development of new technologies and well-characterized instruments. I will discuss the use of novel instrumentation and methods on the ABS telescope and Advanced ACTPol, the characterization of the ABS instrument, and the first two seasons of ABS data, including an overview of the data selection process.
Robust X-ray angular correlations for the study of meso-structures
Lhermitte, Julien R.; Tian, Cheng; Stein, Aaron; ...
2017-05-08
As self-assembling nanomaterials become more sophisticated, it is becoming increasingly important to measure the structural order of finite-sized assemblies of nano-objects. These mesoscale clusters represent an acute challenge to conventional structural probes, owing to the range of implicated size scales (10 nm to several micrometres), the weak scattering signal and the dynamic nature of meso-clusters in native solution environments. The high X-ray flux and coherence of modern synchrotrons present an opportunity to extract structural information from these challenging systems, but conventional ensemble X-ray scattering averages out crucial information about local particle configurations. Conversely, a single meso-cluster scatters too weakly tomore » recover the full diffraction pattern. Using X-ray angular cross-correlation analysis, it is possible to combine multiple noisy measurements to obtain robust structural information. This paper explores the key theoretical limits and experimental challenges that constrain the application of these methods to probing structural order in real nanomaterials. A metric is presented to quantify the signal-to-noise ratio of angular correlations, and it is used to identify several experimental artifacts that arise. In particular, it is found that background scattering, data masking and inter-cluster interference profoundly affect the quality of correlation analyses. A robust workflow is demonstrated for mitigating these effects and extracting reliable angular correlations from realistic experimental data.« less
Intra-limb coordination in karate kicking: Effect of impacting or not impacting a target.
Quinzi, Federico; Sbriccoli, Paola; Alderson, Jacqueline; Di Mario, Alberto; Camomilla, Valentina
2014-02-01
This study aimed to investigate the kicking limb coordinative patterns adopted by karate practitioners (karateka) when impacting (IRK), or not impacting (NIRK) a target during a roundhouse kick. Six karateka performed three repetitions of both kicks while kicking limb kinematics were recorded using a stereophotogrammetric system. Intra-limb coordination was quantified for hip and knee flexion-extension from toe-off to kick completion, using the Continuous relative phase (CRP). Across the same time interval, thigh and shank angular momentum about the vertical axis of the body was calculated. For all trials, across all participants, CRP curve peaks and maximum and minimum angular momentum were determined. A RM-ANOVA was performed to test for differences between kicking conditions. The CRP analysis highlighted, during the central portion of both kicks, a delayed flexion of the hip with respect to the knee. Conversely, during the terminal portion of the CRP curves, the NIRK is performed with a more in-phase action, caused by a higher hip angular displacement. The NIRK is characterized by a lower angular momentum which may enhance control of the striking limb. It would seem that the issue of no impact appears to be solved through the control of all segments of the kicking limb, in contrast to the primary control of the lower leg only observed during the IRK. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y.; Chiba, M.; Yasuda, O.
2006-07-12
Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.