Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri
1999-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.
Sliding Mode Control of the X-33 with an Engine Failure
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.
2000-01-01
Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
Results from a series of simulation and flight investigations undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-earth (NOE) agility and instrument flying tasks were analyzed to assess handling-quality factors common to both tasks. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping and rotor-system cross-coupling due to helicopter angular rate and collective pitch input. Application of rate-command, attitude-command, and control-input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. NOE agility and instrument flying handling-quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1979-01-01
Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1978-01-01
A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
C 3, A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs
NASA Astrophysics Data System (ADS)
Riccio, Giuseppe; Brescia, Massimo; Cavuoti, Stefano; Mercurio, Amata; di Giorgio, Anna Maria; Molinari, Sergio
2017-02-01
Modern Astrophysics is based on multi-wavelength data organized into large and heterogeneous catalogs. Hence, the need for efficient, reliable and scalable catalog cross-matching methods plays a crucial role in the era of the petabyte scale. Furthermore, multi-band data have often very different angular resolution, requiring the highest generality of cross-matching features, mainly in terms of region shape and resolution. In this work we present C 3 (Command-line Catalog Cross-match), a multi-platform application designed to efficiently cross-match massive catalogs. It is based on a multi-core parallel processing paradigm and conceived to be executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline, providing the maximum flexibility to the end-user, in terms of portability, parameter configuration, catalog formats, angular resolution, region shapes, coordinate units and cross-matching types. Using real data, extracted from public surveys, we discuss the cross-matching capabilities and computing time efficiency also through a direct comparison with some publicly available tools, chosen among the most used within the community, and representative of different interface paradigms. We verified that the C 3 tool has excellent capabilities to perform an efficient and reliable cross-matching between large data sets. Although the elliptical cross-match and the parametric handling of angular orientation and offset are known concepts in the astrophysical context, their availability in the presented command-line tool makes C 3 competitive in the context of public astronomical tools.
Guidance, steering, load relief and control of an asymmetric launch vehicle. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Boelitz, Frederick W.
1989-01-01
A new guidance, steering, and control concept is described and evaluated for the Third Phase of an asymmetrical configuration of the Advanced Launch System (ALS). The study also includes the consideration of trajectory shaping issues and trajectory design as well as the development of angular rate, angular acceleration, angle of attack, and dynamic pressure estimators. The Third Phase guidance, steering and control system is based on controlling the acceleration-direction of the vehicle after an initial launch maneuver. Unlike traditional concepts, the alignment of the estimated and commanded acceleration-directions is unimpaired by an add-on load relief. Instead, the acceleration-direction steering-control system features a control override that limits the product of estimated dynamic pressure and estimated angle of attack. When this product is not being limited, control is based exclusively on the commanded acceleration-direction without load relief. During limiting, control is based on nulling the error between the limited angle of attack and the estimated angle of attack. This limiting feature provides full freedom to the acceleration-direction steering and control to shape the trajectory within the limit, and also gives full priority to the limiting of angle of attack when necessary. The flight software concepts were analyzed on the basis of their effects on pitch plane motion.
NASA Technical Reports Server (NTRS)
Key, David L.; Heffley, Robert K.
2002-01-01
The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.
Torque command steering law for double-gimbaled control moment gyros applied to rotor energy storage
NASA Technical Reports Server (NTRS)
Kennel, H. F.
1984-01-01
A steering law is presented which has all the features required for space applications, assuming the CMG outer gimbal freedom is unlimited. The reason is the idea of mounting all the outer gimbal axes of the CMGs parallel to each other. This allows the decomposition of the steering law problem into a linear one for the inner gimbal angle rates and a planar one for the outer gimbal angle rates. The inner gimbal angle rates are calculated first, since they are not affected by the outer gimbal angle rates. For the calculation of the outer rates, the inner rates are then known quantities. An outer gimbal angle distribution function (to avoid singularities internal to the total angular momentum envelope) generates distribution rates next, and finally the pseudoinverse method is used to insure that the desired total torque is delivered.
A Homing Missile Control System to Reduce the Effects of Radome Diffraction
NASA Technical Reports Server (NTRS)
Smith, Gerald L.
1960-01-01
The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.
Tong, K Y; Mak, A F T; Ip, W Y
2003-11-01
Recent commercially available miniature sensors have the potential to improve the functions of functional electrical stimulation (FES) systems in terms of control, reliability and robustness. A new control approach using a miniature gyroscope and an accelerometer was studied. These sensors were used to detect the linear acceleration and angular velocity of residual voluntary movements on upper limbs and were small and easy to put on. Five healthy subjects and three cervical spinal cord injured subjects were recruited to evaluate this controller. Sensors were placed on four locations: the shoulder, upper arm, wrist and hand. A quick forward-and-backward movement was employed to produce a distinctive waveform that was different from general movements. A detection algorithm was developed to generate a command signal by identifying this distinctive waveform through the detection of peaks and valleys in the sensor's signals. This command signal was used to control different FES hand grasp patterns. With a specificity of 0.9, the sensors had a success rate of 85-100% on healthy subjects and 82-97% on spinal cord injured subjects. In terms of sensor placement, the gyroscope was better as a control source than the accelerometer for wrist and hand positions, but the reverse was true for the shoulder.
The natural moon illusion: a multifactor angular account.
Plug, C; Ross, H E
1994-01-01
It is argued that the failure to explain the celestial illusion results from conceptual confusion about perceived size and from disregard of the observational evidence relating to the natural moon illusion. The evidence shows that the illusion consists of a perceived angular size enlargement of horizon objects, by a factor of about 1.5-2.0 in diameter in comparison with elevated objects. Most measurements of the illusion have been made in terms of angular size, although in some proposed explanations an illusion of linear size is assumed. The magnitude of the illusion varies, particularly with the detail of the horizon scene. The illusion can be explained as the sum of several factors that affect perceived angular size: size contrast, vergence commands and eye or head position, aerial perspective, and colour. The relative contributions of these factors are assessed.
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
Special-Purpose High-Torque Permanent-Magnet Motors
NASA Technical Reports Server (NTRS)
Doane, George B., III
1995-01-01
Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.
NASA Technical Reports Server (NTRS)
McCrea, R. A.; Chen-Huang, C.; Peterson, B. W. (Principal Investigator)
1999-01-01
The contributions of vestibular nerve afferents and central vestibular pathways to the angular (AVOR) and linear (LVOR) vestibulo-ocular reflex were studied in squirrel monkeys during fixation of near and far targets. Irregular vestibular afferents did not appear to be necessary for the LVOR, since when they were selectively silenced with galvanic currents the LVOR was essentially unaffected during both far- and near-target viewing. The linear translation signals generated by secondary AVOR neurons in the vestibular nuclei were, on average, in phase with head velocity, inversely related to viewing distance, and were nearly as strong as AVOR-related signals. We suggest that spatial-temporal transformation of linear head translation signals to angular eye velocity commands is accomplished primarily by the addition of viewing distance multiplied, centrally integrated, otolith regular afferent signals to angular VOR pathways.
Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft
NASA Technical Reports Server (NTRS)
Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas
2001-01-01
Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
A microprocessor-based position control system for a telescope secondary mirror
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.
1983-01-01
The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
Attitude profile design program
NASA Technical Reports Server (NTRS)
1991-01-01
The Attitude Profile Design (APD) Program was designed to be used as a stand-alone addition to the Simplex Computation of Optimum Orbital Trajectories (SCOOT). The program uses information from a SCOOT output file and the user defined attitude profile to produce time histories of attitude, angular body rates, and accelerations. The APD program is written in standard FORTRAN77 and should be portable to any machine that has an appropriate compiler. The input and output are through formatted files. The program reads the basic flight data, such as the states of the vehicles, acceleration profiles, and burn information, from the SCOOT output file. The user inputs information about the desired attitude profile during coasts in a high level manner. The program then takes these high level commands and executes the maneuvers, outputting the desired information.
System and method for correcting attitude estimation
NASA Technical Reports Server (NTRS)
Josselson, Robert H. (Inventor)
2010-01-01
A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.
Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.
Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu
2017-07-22
GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.
Kolev, Ognyan I; Reschke, Millard F
2014-06-01
In an operational setting acquisition of visual targets using both head and eye movements can be driven by memorized sequence of commands - internal triggering (IT) or by commands issued through secondary operator - external triggering (ET). The primary objective of our research was to examine differences in target acquisition using IT compared with ET. Using a forced time optimal strategy eight subjects were required to acquire targets with angular offsets of ±20°, 30° and 60° along the horizontal plane in both IT and ET conditions. The data showed that the eye/head latency difference in IT condition is longer than that for ET, the target acquisition time is also longer for IT commands. Consistent with this finding were similar results when examining the peak head velocity and peak head acceleration. Under IT protocol head amplitude is higher than when using ET. In conclusion, the study demonstrates that the pattern of performance of target acquisition task is influenced by the way of command triggering. Copyright © 2014 Elsevier B.V. All rights reserved.
Vulnerability Analysis of the Player Command and Control Protocol
2012-06-14
client plug-ins currentl:v only exist for C++, . Java . and Python. Player is designed a.’:i a. client-server architecture in which robots running Player...I 0.. double -1.0272 angular velocity ;.... ~ va t- <ll ~ 38 2D 73 65 * :>, ""’::!’ ell I 0, +’ 00 00 00 01 uint8 t state 1 motor state v .S 2.5
Model Following and High Order Augmentation for Rotorcraft Control, Applied via Partial Authority
NASA Astrophysics Data System (ADS)
Spires, James Michael
This dissertation consists of two main studies, a few small studies, and design documentation, all aimed at improving rotorcraft control by employing multi-input multi-output (MIMO) command-modelfollowing control as a baseline, together with a selectable (and de-selectable) MIMO high order compensator that augments the baseline. Two methods of MIMO command-model-following control design are compared for rotorcraft flight control. The first, Explicit Model Following (EMF), employs SISO inverse plants with a dynamic decoupling matrix, which is a purely feed-forward approach to inverting the plant. The second is Dynamic Inversion (DI), which involves both feed-forward and feedback path elements to invert the plant. The EMF design is purely linear, while the DI design has some nonlinear elements in vertical rate control. For each of these methods, an architecture is presented that provides angular rate model-following with selectable vertical rate model-following. Implementation challenges of both EMF and DI are covered, and methods of dealing with them are presented. These two MIMO model-following approaches are evaluated regarding (1) fidelity to the command model, and (2) turbulence rejection. Both are found to provide good tracking of commands and reduction of cross coupling. Next, an architecture and design methodology for high order compensator (HOC) augmentation of a baseline controller for rotorcraft is presented. With this architecture, the HOC compensator is selectable and can easily be authority-limited, which might ease certification. Also, the plant for this augmentative MIMO compensator design is a stabilized helicopter system, so good flight test data could be safely gathered for more accurate plant identification. The design methodology is carried out twice on an example helicopter model, once with turbulence rejection as the objective, and once with the additional objective of closely following pilot commands. The turbulence rejection HOC is feedback only (HOC_FB), while the combined objective HOC has both feedback and feedforward elements (HOC_FBFF). The HOC_FB was found to be better at improving turbulence rejection but generally degrades the following of pilot commands. The HOC_FBFF improves turbulence rejection relative to the Baseline controller, but not by as much as HOC_FB. However, HOC_FBFF also generally improves the following of pilot commands. Future work is suggested and facilitated in the areas of DI, MIMO EMF, and HOC augmentation. High frequency dynamics, neglected in the DI design, unexpectedly change the low frequency behavior of the DI-plant system, in addition to the expected change in high frequency dynamics. This dissertation shows why, and suggests a technique for designing a pseudo-command pre-filter that at least partially restores the intended DI-plant dynamics. For EMF, a procedure is presented that avoids use of a reducedorder model, and instead uses a full-order model or even frequency-domain flight test data. With HOC augmentation, future research might investigate the utility of adding an H? constraint to the design objective, which is known as an equal-weighting mixed-norm H2/H infinity design. Because all the formulas in the published literature either require solution of three coupled Riccati Equations (for which there is no readily available tool), or make assumptions that do not fit the present problem, appropriate equalweighting H2/H infinity design formulas are derived which involve two de-coupled Riccati Equations.
Proposed CMG momentum management scheme for space station
NASA Technical Reports Server (NTRS)
Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.
1987-01-01
A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.
LCD-based digital eyeglass for modulating spatial-angular information.
Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan
2015-05-04
Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.
1976-03-01
Milestones will be established after staffing at 6WW. Long-Term Procedures: A capability will be acquired in automated support to Command and Control under... geocentric latitude f = ZttsinQ g = geopotential a = mean radius of earth Ü = angular rotation of the earth 7.29 x 10" rad/sec u,v
Sway control method and system for rotary cranes
Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.
1999-06-01
Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.
Sway control method and system for rotary cranes
Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.
1999-01-01
Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
Development of guidance laws for a variable-speed missile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazit, R.; Gutman, S.
1991-05-01
The most used guidance law for short-range homing missiles is proportional navigation (PN). In PN, the acceleration command is proportional to the line-of-sight (LOS) angular velocity. Indeed, if a missile and a target move on a collision course with constant speeds, the LOS rate is zero. The speed of a highly maneuverable modern missile varies considerably during flight. The performance of PN is far from being satisfactory in that case. In this article the collision course for a variable-speed missile is analyzed and a guidance law that steers the heading of the missile to the collision course is defined. Guidancemore » laws based on optimal control and differential game formulations are developed, and note that both optimal laws coincide with the Guidance to Collision law at impact. The performance improvement of the missile using the new guidance law as compared to PN is demonstrated. 19 refs.« less
Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.
2003-01-01
A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.
Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.
2007-01-01
This paper describes the performance of a simplified dynamic inversion controller with neural network supplementation. This 6 DOF (Degree-of-Freedom) simulation study focuses on the results with and without adaptation of neural networks using a simulation of the NASA modified F-15 which has canards. One area of interest is the performance of a simulated surface failure while attempting to minimize the inertial cross coupling effect of a [B] matrix failure (a control derivative anomaly associated with a jammed or missing control surface). Another area of interest and presented is simulated aerodynamic failures ([A] matrix) such as a canard failure. The controller uses explicit models to produce desired angular rate commands. The dynamic inversion calculates the necessary surface commands to achieve the desired rates. The simplified dynamic inversion uses approximate short period and roll axis dynamics. Initial results indicated that the transient response for a [B] matrix failure using a Neural Network (NN) improved the control behavior when compared to not using a neural network for a given failure, However, further evaluation of the controller was comparable, with objections io the cross coupling effects (after changes were made to the controller). This paper describes the methods employed to reduce the cross coupling effect and maintain adequate tracking errors. The IA] matrix failure results show that control of the aircraft without adaptation is more difficult [leas damped) than with active neural networks, Simulation results show Neural Network augmentation of the controller improves performance in terms of backing error and cross coupling reduction and improved performance with aerodynamic-type failures.
Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite
NASA Technical Reports Server (NTRS)
Robertson, Michael J.
2005-01-01
The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Oliver, Emerson; Smith, Austin
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
Voltage linear transformation circuit design
NASA Astrophysics Data System (ADS)
Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael
2017-09-01
Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
1991-03-08
acceleration and angular rates (produced by roll, pitch. and yaw motions) experienced by the LP. 12 ___________________________________ Synetics Table 3 2...at time tlP,INIT. The corresponding n-frame to b-frame D(’NI is: Cb(t) = L.q(Y’LP,INIT). (A.30) 41). (’onipute angular rates: The angular rates with...respect to inertial space (p, q, and r) are computed from the angular rates with respect to the n-frame (P, Q, and R), which in turn are computed from
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
Accuracy of visual estimates of joint angle and angular velocity using criterion movements.
Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip
2005-06-01
A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.
Blurred Star Image Processing for Star Sensors under Dynamic Conditions
Zhang, Weina; Quan, Wei; Guo, Lei
2012-01-01
The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666
Whole-body Motion Planning with Simple Dynamics and Full Kinematics
2014-08-01
optimizations can take an excessively long time to run, and may also suffer from local minima. Thus, this approach can become intractable for complex robots...motions like jumping and climbing. Additionally, the point-mass model suggests that the centroidal angular momentum is zero, which is not valid for motions...use in the DARPA Robotics Challenge. A. Jumping Our first example is to command the robot to jump off the ground, as illustrated in Fig.4. We assign
NASA Technical Reports Server (NTRS)
Groom, N. J.
1979-01-01
The rim inertial measuring system (RIMS) is introduced and an approach for extracting angular rate and linear acceleration information from a RIMS unit is presented and discussed. The RIMS consists of one or more small annular momentum control devices (AMCDs), mounted in a strapped down configuration, which are used to measure angular rates and linear accelerations of a moving vehicle. An AMCD consists of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, and a noncontacting electromagnetic spin motor. The approach for extracting angular rate and linear acceleration information is for a single spacecraft mounted RIMS unit.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-05-04
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.
Decrease in medical command errors with use of a "standing orders" protocol system.
Holliman, C J; Wuerz, R C; Meador, S A
1994-05-01
The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
The Army's Use of the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Ilse, Kenneth
1996-01-01
Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Integrated source and channel encoded digital communication system design study. [for space shuttles
NASA Technical Reports Server (NTRS)
Huth, G. K.
1976-01-01
The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-01-01
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3336-000] Command Power Corp.; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Command Power...
High angle of attack flying qualities criteria for longitudinal rate command systems
NASA Technical Reports Server (NTRS)
Wilson, David J.; Citurs, Kevin D.; Davidson, John B.
1994-01-01
This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.
Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs)
2008-02-29
forces and moments are expressed as functions of angle of attack, sideslip angle, angular rates, and control surface deflection. L, M, and N are...invertible. As for matrix B, the control surfaces of the reusable launch vehicle are designed to control each axes angular rate of aircraft...literature as being invertible. As for matrix B, the control surfaces of the UAV are designed to control angular rate along each axis of the aircraft
Satellite angular velocity estimation based on star images and optical flow techniques.
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-09-25
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.
Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-01-01
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023
Flight Dynamics Aspects of a Large Civil Tiltrotor Simulation Using Translational Rate Command
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Malpica, Carlos A.; Theodore, Colin R.; Decker, William A.; Lindsey, James E.
2011-01-01
An in-depth analysis of a Large Civil Tiltrotor simulation with a Translational Rate Command control law that uses automatic nacelle deflections for longitudinal velocity control and lateral cyclic for lateral velocity control is presented. Results from piloted real-time simulation experiments and offline time and frequency domain analyses are used to investigate the fundamental flight dynamic and control mechanisms of the control law. The baseline Translational Rate Command conferred handling qualities improvements over an attitude command attitude hold control law but in some scenarios there was a tendency to enter PIO. Nacelle actuator rate limiting strongly influenced the PIO tendency and reducing the rate limits degraded the handling qualities further. Counterintuitively, increasing rate limits also led to a worsening of the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired pitching motions proportional to the allowable amount of nacelle rate. A modification that applied a counteracting amount of longitudinal cyclic proportional to the nacelle rate significantly improved the handling qualities. The lateral axis of the Translational Rate Command conferred Level 1 handling qualities in a Lateral Reposition maneuver. Analysis of the influence of the modeling fidelity on the lateral flapping angles is presented. It is showed that the linear modeling approximation is likely to have under-predicted the side-force and therefore under-predicted the lateral flapping at velocities above 15 ft/s. However, at lower velocities, and therefore more weakly influenced by the side force modeling, the accelerations that the control law commands also significantly influenced the peak levels of lateral flapping achieved.
NASA Technical Reports Server (NTRS)
Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.
1998-01-01
A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.
Zugaro, Michaël B; Berthoz, Alain; Wiener, Sidney I
2002-01-01
Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor command, efference copy, and associated kinesthetic signals). Three unrestrained rats consumed water from a reservoir at the center of a circular platform while passively subjected to sinusoidal rotatory oscillations at fast (153 +/- 27 degrees/s, sd) and slow (38 +/- 15 degrees/s) peak velocities. In 14 anterodorsal thalamic head direction cells, the preferred directions, angular response ranges and baseline firing rates remained stable, but the peak firing rates were, on average, 36% higher during the fast rotations (Wilcoxon matched-pairs test, p < 0.001; variation range: +11% to approximately +100%). No cell changed its peak firing rate by less than 10%, while three cells (21%) increased their peak firing rates by more than 50%. The velocity-dependent increase in peak firing rates was similar for left and right rotations, and the skewness of the directional response curves were not significantly different between left and right turns (Wilcoxon matched-pairs tests, n = 14, ns). These results show that sensory signals concerning self-movements modulate the responses of the head direction cells in the absence of active locomotion.
Reduction Expansion Synthesis for Magnetic Alloy Powders
2015-12-01
x- ray source with a wavelength of 1.56 Angstroms. The angular scan rate was changed for practical reasons, for example, when trying to identify a...sample of pure metallic iron, the angular scan rate of the XRD can be accelerated due to the highly crystalline nature of the sample producing...minimal to no noise in the spectrum. However, if the iron was part of an amorphous compound, the XRD’s angular scan rate would need to be reduced in order
Network device interface for digitally interfacing data channels to a controller via a network
NASA Technical Reports Server (NTRS)
Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)
2006-01-01
The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.
A Theory of Rate-Dependent Plasticity
1984-05-01
crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Smith, Austin; Oliver, T. Emerson
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.
Angular momentum transfer in low velocity oblique impacts - Implications for asteroids
NASA Technical Reports Server (NTRS)
Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.
1991-01-01
An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.
1943-06-01
derivative Cnr, the rate of change of yawing-momer.t coefficient with yawing angular velocity, contributed ’by the wing, the fuselage, and the...derivative Cn , the rate of change of yawing--moraent coefficient with yawing angular velocity. Al- though theoretical methods for obtaining the...yaw. T CD -3 SYMBOLS ’n rate of change of yawing-moment coefficient with yawing angular velocity per unit of rh/2V ÖCn/d (^-’ \\ 27 J P
Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis
2016-01-01
Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.
Franklin, Robert G; Adams, Reginald B; Steiner, Troy G; Zebrowitz, Leslie A
2018-05-14
Through 3 studies, we investigated whether angularity and roundness present in faces contributes to the perception of anger and joyful expressions, respectively. First, in Study 1 we found that angry expressions naturally contain more inward-pointing lines, whereas joyful expressions contain more outward-pointing lines. Then, using image-processing techniques in Studies 2 and 3, we filtered images to contain only inward-pointing or outward-pointing lines as a way to approximate angularity and roundness. We found that filtering images to be more angular increased how threatening and angry a neutral face was rated, increased how intense angry expressions were rated, and enhanced the recognition of anger. Conversely, filtering images to be rounder increased how warm and joyful a neutral face was rated, increased the intensity of joyful expressions, and enhanced recognition of joy. Together these findings show that angularity and roundness play a direct role in the recognition of angry and joyful expressions. Given evidence that angularity and roundness may play a biological role in indicating threat and safety in the environment, this suggests that angularity and roundness represent primitive facial cues used to signal threat-anger and warmth-joy pairings. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bringing the Visible Universe into Focus with Robo-AO
Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit
2013-01-01
The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078
Bringing the visible universe into focus with Robo-AO.
Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit
2013-02-12
The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.
NASA Astrophysics Data System (ADS)
He, Shaoming; Wang, Jiang; Wang, Wei
2017-12-01
This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.
Pseudo-Linear Attitude Determination of Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2004-01-01
This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
A study of angular dependence in the ablation rate of polymers by nanosecond pulses
NASA Astrophysics Data System (ADS)
Pedder, James E. A.; Holmes, Andrew S.
2006-02-01
Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.
A measurement concept for hot-spot BRDFs from space
NASA Technical Reports Server (NTRS)
Gerstl, S.A.W.
1996-01-01
Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.
1980-09-01
1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Bar, Nadav S.; Skogestad, Sigurd; Marçal, Jose M.; Ulanovsky, Nachum; Yovel, Yossi
2015-01-01
Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity (“proportional-derivative” controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. PMID:25629809
How are tonic and phasic cardiovascular changes related to central motor command?
Jennings, J R; van der Molen, M W; Brock, K; Somsen, R J
1993-07-01
We examined the influence of central motor command on heart rate, respiration, and peripheral vascular activity. Central command was enhanced or reduced using tendon vibration. Muscle tension was held constant permitting the examination of variation in central command. Experiment 1 demonstrated in 13 college-aged males an enhancement of heart rate and vascular responses to an isometric, extensor contraction when vibration of the flexor tendon was added. Experiment 2 asked whether changes in central command interacted with phasic cardiovascular changes such as stimulus-linked anticipatory cardiac deceleration. Twenty college-aged males performed either an isometric flexor or extensor contraction with or without flexor tendon vibration. As expected, vibration enhanced cardiovascular change with extensor contraction more than with flexor contraction. Relative to control contractions, however, the flexor change was not an absolute decrease in cardiovascular change. More importantly, tendon vibration failed to alter phasic cardiovascular changes. Force and central commands for force induce cardiovascular change, but this change seems independent of phasic changes induced by the anticipation and processing of environmental stimuli.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
Recent progress in MEMS technology development for military applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Burgett, Sherrie J.
2001-08-01
The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.
Factors influencing perceived angular velocity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Multi-application controls: Robust nonlinear multivariable aerospace controls applications
NASA Technical Reports Server (NTRS)
Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob
1994-01-01
This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls.
Angular oversampling with temporally offset layers on multilayer detectors in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats
2016-06-15
Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less
Implementation of an Adaptive Controller System from Concept to Flight Test
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve
2009-01-01
The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a "floating limiter" (FL) concept that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly "floating" and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually "hit" the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The tunable metrics for the FL are (1) window size, (2) drift rate, and (3) persistence counter. Ultimate range limits are also included in case the NN command should drift slowly to a limit value that would cause the FL to be defeated. The FL has proven to work as intended. Both high-g transients and excessive structural loads are controlled with NN hard-over commands. This presentation discusses the FL design features and presents test cases. Simulation runs are included to illustrate the dramatic improvement made to the control of NN hard-over effects. A mission control room display from a flight playback is presented to illustrate the neural net fault display representation. The FL is very adaptable to various requirements and is independent of flight condition. It should be considered as a cost-effective safety monitor to control single-string inputs in general.
Neural Net Safety Monitor Design
NASA Technical Reports Server (NTRS)
Larson, Richard R.
2007-01-01
The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The tunable metrics for the FL are (1) window size, (2) drift rate, and (3) persistence counter. Ultimate range limits are also included in case the NN command should drift slowly to a limit value that would cause the FL to be defeated. The FL has proven to work as intended. Both high-g transients and excessive structural loads are controlled with NN hard-over commands. This presentation discusses the FL design features and presents test cases. Simulation runs are included to illustrate the dramatic improvement made to the control of NN hard-over effects. A mission control room display from a flight playback is presented to illustrate the neural net fault display representation. The FL is very adaptable to various requirements and is independent of flight condition. It should be considered as a cost-effective safety monitor to control single-string inputs in general.
A novel approach to piecewise analytic agricultural machinery path reconstruction
NASA Astrophysics Data System (ADS)
Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz
2017-12-01
Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.
NASA Technical Reports Server (NTRS)
1986-01-01
All three flowmeter concepts (vortex, dual turbine, and angular momentum) were subjected to experimental and analytical investigation to determine the potential portotype performance. The three concepts were subjected to a comprehensive rating. Eight parameters of performance were evaluated on a zero-to-ten scale, weighted, and summed. The relative ratings of the vortex, dual turbine, and angular momentum flowmeters are 0.71, 1.00, and 0.95, respectively. The dual turbine flowmeter concept was selected as the primary candidate and the angular momentum flowmeter as the secondary candidate for prototype development and evaluation.
Schwartz, Oren; Kanevsky, Boris; Kutikov, M A J Sergey; Olsen, Cara H; Dudkiewicz, Israel
2018-03-14
Attrition from training is associated with substantial financial and personnel loss. There is a plethora of medical literature and research of attrition rates related to initial/phase 1 training (basic combat training); however, the analysis of second phase training (commanders training, consisting of schools that qualify junior commanders and officers for infantry and non-infantry combat units) is limited. The purpose of this study is to perform a comprehensive survey regarding to medical attrition from commanders training in the IDF (Israeli Defense Forces) in order to present the commanders of the IDF a detailed situation report that will serve as an evidence-based platform for future policy planning and implementation. A cross-sectional study including all soldiers (23,841) who participated in commanders training in the IDF in the period of 2012-2015 was performed. Soldiers for whom the attrition reason (medical or not medical) was missing were excluded from this study. Data were collected from the adjutancy-computerized system as well as the IDF's computerized medical consultation records package (CPR). Descriptive statistics were performed using mean, standard deviation, and median in order to express results. For the determination of statistical significance, chi-square test, Student's t-test, and Poisson regression models were used. Out of 23,841 soldiers that participated in this study, 75% (17,802) were males and 25% (6,039) were females. The overall attrition rate was 0.7% (164). The attrition rate for males was 0.86% (148 out of 17,082 males) and 0.26% (16 out of 6,039 females) for females. After adjusting for training unit, age, and BMI, the risk for attrition was 1.6 (160%) times higher for males as compared with females, and this result was statistically significant (IRR = 1.6, p = 0.01, CI 1.1, 2.2). The re-injury rate was 41% (68 out of 164 soldiers). The three most frequent diagnoses for attrition were orthopedics (66%), general surgery diagnoses (12%), and diagnoses related to internal medicine (11%). Out of 107 soldiers that attired due to orthopedic reasons, 36 (34%) suffered from calf and ankle injuries, 22 (21%) attired due to diagnoses related to the lower back, and 22 (21%) attired due to diagnoses related to the knee region. The highest attrition rate was encountered in the school for infantry junior command (2.2%) and the lowest rate was encountered in the officer training school for non-infantry units (0.11%). After adjusting for age and BMI, the risk for ankle injury was 2.55 (255%) times higher for soldiers in the school for infantry junior command as compared with soldiers in the officer school for infantry units (IRR = 2.55 p = 0.017, CI 1.18, 5.47). The attrition rate from commanders training in the IDF is low, and at this point, however, due to lack of uniform criteria for attrition, it cannot serve as an objective measure. We suggest measuring and discussing overuse injury rates (which is the most frequent cause of attrition), instead. Based on our results, we recommend an implementation of a better medical screening policy in order to reduce the re-injury rates during commanders training.
Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.
Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua
2016-04-14
A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.
Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer
Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua
2016-01-01
A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... required without notice and comment a pilot serving as a second in command in part 135 commuter operations to have an airline transport pilot certificate and an aircraft type rating, and a pilot in command in... pilot certificate requirements for a second in command (SIC) in part 121 operations. Specifically, Sec...
NASA Astrophysics Data System (ADS)
Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki
2018-05-01
Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.
System and method for tracking a signal source. [employing feedback control
NASA Technical Reports Server (NTRS)
Mogavero, L. N.; Johnson, E. G.; Evans, J. M., Jr.; Albus, J. S. (Inventor)
1978-01-01
A system for tracking moving signal sources is disclosed which is particularly adaptable for use in tracking stage performers. A miniature transmitter is attached to the person or object to be tracked and emits a detectable signal of a predetermined frequency. A plurality of detectors positioned in a preset pattern sense the signal and supply output information to a phase detector which applies signals representing the angular orientation of the transmitter to a computer. The computer provides command signals to a servo network which drives a device such as a motor driven mirror reflecting the beam of a spotlight, to track the moving transmitter.
Apollo Rendezvous Docking Simulator
1964-11-02
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.
Fast two-position initial alignment for SINS using velocity plus angular rate measurements
NASA Astrophysics Data System (ADS)
Chang, Guobin
2015-10-01
An improved two-position initial alignment model for strapdown inertial navigation system is proposed. In addition to the velocity, angular rates are incorporated as measurements. The measurement equations in full three channels are derived in both navigation and body frames and the latter of which is found to be preferred. The cross-correlation between the process and the measurement noises is analyzed and addressed in the Kalman filter. The incorporation of the angular rates, without introducing additional device or external signal, speeds up the convergence of estimating the attitudes, especially the heading. In the simulation study, different algorithms are tested with different initial errors, and the advantages of the proposed method compared to the conventional one are validated by the simulation results.
Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2017-01-01
This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.
Angular velocity discrimination
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J
2006-02-01
We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2003-01-01
The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.
Angular dependence of DRAM upset susceptibility
NASA Technical Reports Server (NTRS)
Guertin, S. M.; Swift, G. M.; Edmonds, L. D.
2000-01-01
Heavy ion irradiations of two types of commercial DRAMs reveal unexpected angular responses. One device's cross section varied by two orders of magnitude with azimuthal angle. Accurate prediction of space rates requires accommodating this effect.
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh
2017-09-12
We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.
Angular-Rate Estimation Using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Angular-Rate Estimation using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
2013-03-01
attrition (Goodstadt, 1981). Kubisiak, et al. contend that leaders should consider attrition a negative occurrence and that each leader should develop...related to the information, and the consequences associated with the options. The ability to ruminate before acting when presented with new information or
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.
2003-01-01
Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.
NASA Technical Reports Server (NTRS)
1972-01-01
A Tracking and Data Relay Satellite System (TDRSS) concept for service of low and medium data rate user spacecraft has been defined. The TDRS system uses two geosynchronous dual spin satellites compatible with Delta 2914 to provide command, tracking, and telemetry service between multiple low earth orbiting users and a centrally located ground station. The low data rate user service capability via each TDRS is as follows: (1) forward link at UHF: voice to one user, commands to 20 users (sequential), range and range rate service, and (2) return link at VHF: voice from one user, data from 20 users (simultaneous), range and range rate return signals. The medium data rate user service via each TDRS is as follows: (1) forward link at S band: voice or command and tracking signals to one user, and (2) return link at S band: voice, data and tracking signals from one user "order wire" for high priority service requests (implemented with an earth coverage antenna).
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
EVA Robotic Assistant Project: Platform Attitude Prediction
NASA Technical Reports Server (NTRS)
Nickels, Kevin M.
2003-01-01
The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways: first, a standalone head stabilizer has been implemented and second, the estimates have been used to influence the search algorithm of the stereo tracking algorithm. Studies of the image motion of a tracked object indicate that the image motion of objects is suppressed while the robot crossing rough terrain. This work expands the range of speed and surface roughness over which the robot should be able to track and follow a field geologist and accept arm gesture commands from the geologist.
Revolution evolution: tracing angular momentum during star and planetary system formation
NASA Astrophysics Data System (ADS)
Davies, Claire Louise
2015-04-01
Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.
Predicting Military Recruiter Effectiveness: A Literature Review
1987-04-01
employing commanding officer nominations and/or supervisor ratings as criteria for success in recruiting. Wollack and KiDnis (1960). Commanding officer...ratings can be used to predict field recruiter performance. The authors attribute the failure to predict field recruiter performance to the...Time to Complete -12 -27 -5 -09 5. MC 431 Completion/ Failure 08 Studies 1. Cross-validities obtained via rMonte Carlo procedure by Borman, Toquam
NASA Technical Reports Server (NTRS)
Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Raven, P. B.; Secher, N. H.
2001-01-01
This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.
2013-08-05
preliminary design phase the operational modes defined here will be implemented in MATLAB/Simulink/Stateflow and will be used as a master mission script ...3. the detumble mode during which the nanosat uses the rate gyros of the IMU and its RCS thrusters to cancel the angular rates about each axis...the mode is exited nominally if the angular rate about each axis has been brought below a certain threshold, the largest solar panel has been pointed
NASA Technical Reports Server (NTRS)
Longuski, J. M.
1982-01-01
During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.
Personnel Evaluation: Noncommissioned Officer Evaluation Reporting System
2002-05-15
Maintenance System), paper copies will be maintained in state, command, or local career manage- ment individual files ( CMIF ) such as AGR management...Routine use DA Form 2166-8 will be maintained in the rated NCO’s official military personnel file (OMPF) and career manage- ment individual file ( CMIF ). A...CAR Chief, Army Reserve CDR commander CE commander’s evaluation CG commanding general CMIF career management individual file CNGB Chief, National Guard
Study on pixel matching method of the multi-angle observation from airborne AMPR measurements
NASA Astrophysics Data System (ADS)
Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han
2015-10-01
For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.
Flux-Feedback Magnetic-Suspension Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1990-01-01
Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.
Testing statistical isotropy in cosmic microwave background polarization maps
NASA Astrophysics Data System (ADS)
Rath, Pranati K.; Samal, Pramoda Kumar; Panda, Srikanta; Mishra, Debesh D.; Aluri, Pavan K.
2018-04-01
We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l = 40 - 150), our preliminary analysis detects many statistically anisotropic multipoles in foreground cleaned full sky PLANCK polarization maps viz., COMMANDER and NILC. We also study the effect of residual foregrounds that may still be present in the Galactic plane using both common UPB77 polarization mask, as well as the individual component separation method specific polarization masks. However, some of the statistically anisotropic modes still persist, albeit significantly in NILC map. We further probed the data for any coherent alignments across multipoles in several bins from the chosen multipole range.
Bio-Inspired Micro-Fluidic Angular-Rate Sensor for Vestibular Prostheses
Andreou, Charalambos M.; Pahitas, Yiannis; Georgiou, Julius
2014-01-01
This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation. PMID:25054631
Bio-inspired micro-fluidic angular-rate sensor for vestibular prostheses.
Andreou, Charalambos M; Pahitas, Yiannis; Georgiou, Julius
2014-07-22
This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
NASA Technical Reports Server (NTRS)
Liebe, Wolfgang
1944-01-01
In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
Development of a Night Vision Goggle Heads-Up Display for Paratrooper Guidance
2008-06-01
and GPS data [MIC07]. requiring altitude, position, velocity, acceleration, and angular rates for navigation or control. An internal GPS receiver...Language There are several programming languages that provide the operating capabilities for this program. Languages like JAVA and C# provide an...acceleration, and angular rates. Figure 3.6 illustrates the MIDG hardware’s input and output data. The sensor actually generates the INS data, which is
Measuring Angular Rate of Celestial Objects Using the Space Surveillance Telescope
2015-03-01
is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-019 MEASURING ANGULAR RATE OF CELESTIAL OBJECTS USING THE SPACE ...Hypothesis Test MHTOR Multi-Hypothesis Test with Outlier Removal NEAs Near Earth Asteroids NASA National Aeronautics and Space Administration OTF...capabilities to warfighters, protecting them from collision with space debris, meteors and microsatellites has become a top priority [19]. In general, EO
Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro
2011-09-01
To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.
A device for recording automatic audio tape recording1
Bernal, Martha E.; Gibson, Dennis M.; Williams, Donald E.; Pesses, Danny I.
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time. ImagesFig. 1 PMID:16795287
A device for recording automatic audio tape recording.
Bernal, M E; Gibson, D M; Williams, D E; Pesses, D I
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time.
NASA Astrophysics Data System (ADS)
Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao
2018-03-01
Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.
Magnetic braking in young late-type stars. The effect of polar spots
NASA Astrophysics Data System (ADS)
Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.
2007-10-01
Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.
CASSIUS: The Cassini Uplink Scheduler
NASA Technical Reports Server (NTRS)
Bellinger, Earl
2012-01-01
The Cassini Uplink Scheduler (CASSIUS) is cross-platform software used to generate a radiation sequence plan for commands being sent to the Cassini spacecraft. Because signals must travel through varying amounts of Earth's atmosphere, several different modes of constant telemetry rates have been devised. These modes guarantee that the spacecraft and the Deep Space Network agree with respect to the data transmission rate. However, the memory readout of a command will be lost if it occurs on a telemetry mode boundary. Given a list of spacecraft message files as well as the available telemetry modes, CASSIUS can find an uplink sequence that ensures safe transmission of each file. In addition, it can predict when the two on-board solid state recorders will swap. CASSIUS prevents data corruption by making sure that commands are not planned for memory readout during telemetry rate changes or a solid state recorder swap.
Monitoring and Controlling an Underwater Robotic Arm
NASA Technical Reports Server (NTRS)
Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.
2009-01-01
The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.
Matsukawa, Kanji
2012-01-01
Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.
Logarithmic Compression of Sensory Signals within the Dendritic Tree of a Collision-Sensitive Neuron
2012-01-01
Neurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this temporal profile, the peak firing rate signals when the approaching object's subtended size reaches an angular threshold, an event which has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical basis of this angular threshold computation relies on a multiplicative combination of the object's angular size and speed, achieved through a logarithmic-exponential transform. To understand how this transform is implemented, we modeled the encoding of angular velocity along the pathway leading to the LGMD based on the experimentally determined activation pattern of its presynaptic neurons. These simulations show that the logarithmic transform of angular speed occurs between the synaptic conductances activated by the approaching object onto the LGMD's dendritic tree and its membrane potential at the spike initiation zone. Thus, we demonstrate an example of how a single neuron's dendritic tree implements a mathematical step in a neural computation important for natural behavior. PMID:22492048
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2012 CFR
2012-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2014 CFR
2014-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2013 CFR
2013-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2010 CFR
2010-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
Application of Linearized Kalman Filter-Smoother to Aircraft Trajectory Estimation.
1988-06-01
the report). The kinematic relationships between wind-axis Euler angles and angular rates are given below (Etkin, 1972: 150): q w OS r w s i n* * (4...I values, and those for RP-2 were chosen in order to explore less accurate range measurements combined with more accurate angular measurements. This...was of interest because of the uncertainty in position introduced by large angular measurement uncertainties at long ranges. Finally, radar models RR
An investigation of the 'von Restorff' phenomenon in post-test workload ratings
NASA Technical Reports Server (NTRS)
Thornton, D. C.
1985-01-01
The von Restorff effect in post-task ratings of task difficulty is examined. Nine subjects performed a hovercraft simulation task which combined elements of skill-based tracking and rule- and knowledge-based process control for five days of one hour sessions. The effects of isolated increases in workload on rating of task performance, and on the number of command errors and river band hits are analyzed. It is observed that the position of the workload increase affects the number of bank hits and command errors. The data reveal that factors not directly related to the task performance influence subjective rating, and post-task ratings of workload are biased.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
n l -> n' l' transition rates in electron and proton - Rydberg atom collision
NASA Astrophysics Data System (ADS)
Vrinceanu, Daniel
2017-04-01
Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
The evolution of angular momentum among zero-age main-sequence solar-type stars
NASA Technical Reports Server (NTRS)
Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.
1993-01-01
We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.
Brighton, Caroline H.; Thomas, Adrian L. R.
2017-01-01
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660
Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K
2017-12-19
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)
NASA Technical Reports Server (NTRS)
Ragsdale, W. A.
1992-01-01
A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.
The influence of central command on baroreflex resetting during exercise
NASA Technical Reports Server (NTRS)
Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.
2002-01-01
The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.
Biased optimal guidance for a bank-to-turn missile
NASA Astrophysics Data System (ADS)
Stallard, D. V.
A practical terminal-phase guidance law for controlling the pitch acceleration and roll rate of a bank-to-turn missile with zero autopilot lags was derived and tested, so as to minimize squared miss distance without requiring overly large commands. An acceleration bias is introduced to prevent excessive roll commands due to noise. The Separation Theorem is invoked and the guidance (control) law is derived by applying optimal control theory, linearizing the nonlinear plant equation around the present missile orientation, and obtaining a closed-form solution. The optimal pitch-acceleration and roll-rate commands are respectively proportional to two components of the projected, constant-bias, miss distance, with a resemblance to earlier derivations and proportional navigation. Simulaiation results and other related work confirm the suitability of the guidance law.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Eggleston, D. M.
1976-01-01
A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.
Modified hydraulic braking system limits angular deceleration to safe values
NASA Technical Reports Server (NTRS)
Briggs, R. S.; Council, M.; Green, P. M.
1966-01-01
Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.
Spacecraft Angular State Estimation After Sensor Failure
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); BarItzhack, Itzhack Y.; Harman, Richard R.
2002-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro failure in a spacecraft (SC) with a special mission profile. The source of the problem is presented, two algorithms are suggested, an observability study is carried out, and the efficiency of the algorithms is demonstrated.
Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)
2002-01-01
The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.
2004-03-01
2-15 2-10. Pitch Tracking Closed Loop System for Gap Criterion...................................... 2-16 2-11. Four Resulting Gap ...Level 1 Minimize Resonance Closed Loop Bode Diagram ( ) ( ) s sCommand θ θ ( ) ( ) s sCommand θ θ BWω 2-16 Gap Criterion...System for Gap Criterion In modern fly-by-wire aircraft, feedback is an integral part of obtaining more desirable closed loop flying qualities
NASA Astrophysics Data System (ADS)
Xiang, Y.; Chen, C. W.
2017-05-01
The magnetization distribution of a bilayer exchange spring system with mutually orthogonal anisotropies was investigated by micromagnetic simulation. Results showed that the spatial change rate of the magnetization direction could be engineered by varying the material parameters, layer thicknesses, and magnetic field. When no magnetic field is applied, this angular change rate is determined by three parameter ratios: a ratio of the exchange energy and anisotropy constants of both layers and two thickness ratios of both layers. If these three ratios are kept invariant, the ratio of the angular change of the soft layer over the hard layer will remain the same. When a magnetic field is applied, two more ratios concerning the magnetic field should be added to determine the spatial angular change of the magnetization direction.
The NASA Spacecraft Transponding Modem
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.
2000-01-01
A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the capability of increasing the ground received ranging SNR by up to 30 dB. Two different avionics interfaces to the command/data subsystem's data bus are provided: a MIL STD 1553B bus or an industry standard PCI interface. Digital interfaces provide the capability to control antenna selection (e.g., switching between high gain and low gain antennas) and antenna pointing (for future steered Ka-band antennas).
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Thurman, S. W.
1992-01-01
An approximate six-parameter analytic model for Earth-based differential range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 micro-rad, and angular rate precision on the order of 10 to 25 x 10(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wideband and narrowband (delta) VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 micro-rad, and angular rate precisions of 0.5 to 1.0 x 10(exp -12) rad/sec.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Thurman, S. W.
1992-01-01
An approximate six-parameter analytic model for Earth-based differenced range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 microrad, and angular rate precision on the order of 10 to 25(10)(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wide band and narrow band (delta)VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 /microrad, and angular rate precisions of 0.5 to 1.0(10)(exp -12) rad/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less
NASA Astrophysics Data System (ADS)
Schulz, Ulrich; Sierro, Philippe; Nijman, Jint
2008-07-01
The design and implementation of an angular speed control loop for a universal rheometer is not a trivial task. The combination of a highly dynamic, very low inertia (drag cup) motor (motor inertia is 10-5 kg m2) with samples which can range in viscosity from 10-3 Pas to 108 Pas, which can be between purely viscous and higly viscoelastic, which can exhibit yield-stresses, etc. asks for a highly adaptive digital control loop. For the HAAKE MARS rotational rheometer a new adaptive control loop was developed which allows the control of angular speeds as low 5×10-9 rad/s and response times a short as 10 ms. The adaptation of the control loop to "difficult" samples is performed by analysing the response of the complete system to a short pre-test. In this paper we will show that the (very) short response times at (very) low angular speeds are not only achieved with ideal samples, but due to the adaptable control loop, also with "difficult" samples. We will show measurement results on "difficult" samples like cosmetic creams and emulsions, a laponite gel, etc. to proof that angular speeds down to 10-4 rad/s are reached within 10 ms to 20 ms and angular speeds down to 10-7 rad/s within 1 s to 2 s. The response times for reaching ultra low angular speeds down to 5×10-9 rad/s are in the order of 10 s to 30 s. With this new control loop it is, for the first time, possible to measure yield stresses by applying a very low constant shear-rate to the sample and measuring the torque response as a function of time.
Distress, omnipotence, and responsibility beliefs in command hallucinations.
Ellett, Lyn; Luzon, Olga; Birchwood, Max; Abbas, Zarina; Harris, Abi; Chadwick, Paul
2017-09-01
Command hallucinations are considered to be one of the most distressing and disturbing symptoms of schizophrenia. Building on earlier studies, we compare key attributes in the symptomatic, affective, and cognitive profiles of people diagnosed with schizophrenia and hearing voices that do (n = 77) or do not (n = 74) give commands. The study employed a cross-sectional design, in which we assessed voice severity, distress and control (PSYRATs), anxiety and depression (HADS), beliefs about voices (BAVQ-R), and responsibility beliefs (RIQ). Clinical and demographic variables were also collected. Command hallucinations were found to be more distressing and controlling, perceived as more omnipotent and malevolent, linked to higher anxiety and depression, and resisted more than hallucinations without commands. Commanding voices were also associated with higher conviction ratings for being personally responsible for preventing harm. The findings suggest key differences in the affective and cognitive profiles of people who hear commanding voices, which have important implications for theory and psychological interventions. Command hallucinations are associated with higher distress, malevolence, and omnipotence. Command hallucinations are associated with higher responsibility beliefs for preventing harm. Responsibility beliefs are associated with voice-related distress. Future psychological interventions for command hallucinations might benefit from focussing not only on omnipotence, but also on responsibility beliefs, as is done in psychological therapies for obsessive compulsive disorder. Limitations The cross-sectional design does not assess issues of causality. We did not measure the presence or severity of delusions. © 2017 The British Psychological Society.
Ooue, Anna; Sato, Kohei; Hirasawa, Ai; Sadamoto, Tomoko
2012-11-07
The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Scale factor measure method without turntable for angular rate gyroscope
NASA Astrophysics Data System (ADS)
Qi, Fangyi; Han, Xuefei; Yao, Yanqing; Xiong, Yuting; Huang, Yuqiong; Wang, Hua
2018-03-01
In this paper, a scale factor test method without turntable is originally designed for the angular rate gyroscope. A test system which consists of test device, data acquisition circuit and data processing software based on Labview platform is designed. Taking advantage of gyroscope's sensitivity of angular rate, a gyroscope with known scale factor, serves as a standard gyroscope. The standard gyroscope is installed on the test device together with a measured gyroscope. By shaking the test device around its edge which is parallel to the input axis of gyroscope, the scale factor of the measured gyroscope can be obtained in real time by the data processing software. This test method is fast. It helps test system miniaturized, easy to carry or move. Measure quarts MEMS gyroscope's scale factor multi-times by this method, the difference is less than 0.2%. Compare with testing by turntable, the scale factor difference is less than 1%. The accuracy and repeatability of the test system seems good.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu
2013-09-20
Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less
Dynamic sample size detection in learning command line sequence for continuous authentication.
Traore, Issa; Woungang, Isaac; Nakkabi, Youssef; Obaidat, Mohammad S; Ahmed, Ahmed Awad E; Khalilian, Bijan
2012-10-01
Continuous authentication (CA) consists of authenticating the user repetitively throughout a session with the goal of detecting and protecting against session hijacking attacks. While the accuracy of the detector is central to the success of CA, the detection delay or length of an individual authentication period is important as well since it is a measure of the window of vulnerability of the system. However, high accuracy and small detection delay are conflicting requirements that need to be balanced for optimum detection. In this paper, we propose the use of sequential sampling technique to achieve optimum detection by trading off adequately between detection delay and accuracy in the CA process. We illustrate our approach through CA based on user command line sequence and naïve Bayes classification scheme. Experimental evaluation using the Greenberg data set yields encouraging results consisting of a false acceptance rate (FAR) of 11.78% and a false rejection rate (FRR) of 1.33%, with an average command sequence length (i.e., detection delay) of 37 commands. When using the Schonlau (SEA) data set, we obtain FAR = 4.28% and FRR = 12%.
Flight test results for a separate surface stability augmented Beech model 99
NASA Technical Reports Server (NTRS)
Jenks, G. E.; Henry, H. F.; Roskam, J.
1977-01-01
A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.
Diagnostic Studies with GLA Fields
NASA Technical Reports Server (NTRS)
Salstein, David A.
1997-01-01
Assessments of the NASA Goddard Earth Observing System-1 Data Assimilation System(GEOS-1 DAS), regarding heating rates, energetics, and angular momentum quantities were made. These diagnostics can be viewed as measures of climate variability. Comparisons with the NOAA/NCEP reanalysis system of momentum and energetics diagnostics are included. Water vapor and angular momentum are diagnosed in many models, including those of NASA, as part of the Atmospheric Model Intercomparison Project. 'Me GEOS-I and NOAA/NCEP global atmospheric angular momentum values are coherent on time scales down to about three days. Furthermore, they agree with the series of Earth angular momentum, as measured by tiny fluctuations in the rotation rate of the Earth, as variations in the length of day. The torques that effect such changes in atmospheric and Earth momentum are dominated by the influence of particular mountain systems, including the Rockies, Himalayas, and Andes, upon mountain torques on time scales shorter than about two weeks. Other project areas included collaboration with Goddard Space Flight Center to examine the impact of mountainous areas and the treatments of parameterizations on diagnoses of the atmosphere. Relevant preprints are included herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Nathaniel; Gu, Jiayin; Liu, Zhen
Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less
Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; ...
2016-03-09
Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.
NASA Astrophysics Data System (ADS)
Hou, Shuhn-Shyurng; Huang, Wei-Cheng
2015-02-01
This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).
Human dynamic orientation model applied to motion simulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Borah, J. D.
1976-01-01
The Ormsby model of dynamic orientation, in the form of a discrete time computer program was used to predict non-visually induced sensations during an idealized coordinated aircraft turn. To predict simulation fidelity, the Ormsby model was used to assign penalties for incorrect attitude and angular rate perceptions. It was determined that a three rotational degree of freedom simulation should remain faithful to attitude perception even at the expense of incorrect angular rate sensations. Implementing this strategy, a simulation profile for the idealized turn was designed for a Link GAT-1 trainer. A simple optokinetic display was added to improve the fidelity of roll rate sensations.
Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M
2004-11-02
The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.
Learning Dynamic Control of Body Roll Orientation
Vimal, Vivekanand Pandey; Lackner, James R.; DiZio, Paul
2016-01-01
Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n=10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system device (MARS) programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick commands up to 2.5 Hz with a 30 ms latency. To make the task extremely difficult, the pendulum constant was set to 600°/sec2. Each subject participated in 5 blocks of 4 trials, with a trial ending after a cumulative 100 s of balancing, excluding reset times when a subject lost control. To characterize performance and learning, we used metrics derived from joystick movements, phase portraits (joystick deflections vs MARS position and MARS velocity vs angular position), and stabilogram diffusion functions. We found that as subjects improved their balancing performance they did so by making fewer destabilizing joystick movements and reducing the number and duration of joystick commands. The control strategy they acquired involved making more persistent short-term joystick movements, waiting longer before making changes to ongoing motion, and only intervening intermittently. PMID:26525709
1987-12-01
Appendix D: Macro Listings D-1 Appendix E: MATRIXx Simulation E-1 Bibiliography Vita iv e List of Figures Figure Page 1-1 Self -Tuning Regulator 6 2-1 AFTI...Command 59 4-25 Yaw Rate Command - Three Pulses 60 4-26 Adaptive Yaw Rate Respose - Three Pulses 61 4-27 Adaptive Pitch Angle Response - Three Pulses 62 4...several types of adaptive controllers (regulators). Three of the simplest controllers are gain scheduling, model reference, and self -tuning
Engines-only flight control system
NASA Technical Reports Server (NTRS)
Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)
1994-01-01
A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Monitoring the bending and twist of morphing structures
NASA Astrophysics Data System (ADS)
Smoker, J.; Baz, A.
2008-03-01
This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.
Air To Air Helicopter Fire Control Equations and Software Generation.
1979-11-01
A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mechanisms underlying the perceived angular velocity of a rigidly rotating object.
Caplovitz, G P; Hsieh, P-J; Tse, P U
2006-09-01
The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.
NASA Technical Reports Server (NTRS)
Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.
2009-01-01
Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.
Control definition study for advanced vehicles
NASA Technical Reports Server (NTRS)
Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.
1983-01-01
The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.
Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.
van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien
2017-04-01
Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
Liu, Shi Qiang; Zhu, Rong
2016-01-01
Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm3) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. PMID:26840314
Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants
NASA Technical Reports Server (NTRS)
Drake, S. A.; Linsky, J. L.
1986-01-01
Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.
Overcoming Robot-Arm Joint Singularities
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.
1986-01-01
Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.
Electromechanically Actuated Valve for Controlling Flow Rate
NASA Technical Reports Server (NTRS)
Patterson, Paul
2007-01-01
A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces. The inlet end (the right end as depicted in the figure) of the ball screw would be the main seating valve element: in the fully closed position, it would be pressed against the valve seat, as depicted in the upper part of the figure. A retainer would hold the valve seat in an inlet fitting. In addition, the retainer would be contoured to obtain a specified flow rate as a function of axial position of the ball screw. In the fully closed position, little force would be needed to press the ball screw against the seat because the push bore area upon which the upstream pressure would act would be small. The motor would position and hold the ball screw against the seat, providing the force necessary for sealing. To open the valve to a particular position, the motor would be commanded to rotate to a particular angular position (equivalently, a particular number of revolutions) at a particular rate of rotation within its torque limitations. Once the valve was open, fluid would flow through the inlet fitting and the chamber in the inlet housing, past the seat and its retainer, along the hollow core of the ball screw, and through the outlet housing and outlet fitting. The net force generated from fluid pressure in the open position would be small because the pressure exposed to the push bore areas at the inlet and outlet are nearly equal and the forces generated would be in opposing directions.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.
Quan, Wei; Fang, Jiancheng
2010-01-01
A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.
On the Extraction of Angular Velocity from Attitude Measurements
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.
2006-01-01
In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
Equilibrium properties of the Skylab CMG rotation law
NASA Technical Reports Server (NTRS)
Elrod, B. D.; Anderson, G. M.
1972-01-01
The equilibrium properties of the control moment gyroscopes of the Skylab are discussed. A rotation law is developed to produce gimbal rates which distribute the angular momentum contributions among the control moment gyroscopes to avoid gimbal stop encounters. The implications for gimbal angle management under various angular momentum situations are described. Conditions were obtained for the existence of equilibria and corresponding stability properties.
NASA Technical Reports Server (NTRS)
Endal, A. S.; Sofia, S.
1979-01-01
Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection
NASA Technical Reports Server (NTRS)
Davidson, A. C.; Grant, M. M. (Inventor)
1973-01-01
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.
NASA Technical Reports Server (NTRS)
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
Control of interjoint coordination during the swing phase of normal gait at different speeds
Shemmell, Jonathan; Johansson, Jennifer; Portra, Vanessa; Gottlieb, Gerald L; Thomas, James S; Corcos, Daniel M
2007-01-01
Background It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. Methods Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. Results The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. Conclusion Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint. PMID:17466065
Overlapping inflow events as catalysts for supermassive black hole growth
NASA Astrophysics Data System (ADS)
Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo
2014-02-01
One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.
Inertial Orientation Trackers with Drift Compensation
NASA Technical Reports Server (NTRS)
Foxlin, Eric M.
2008-01-01
A class of inertial-sensor systems with drift compensation has been invented for use in measuring the orientations of human heads (and perhaps other, similarly sized objects). These systems can be designed to overcome some of the limitations of prior orientation-measuring systems that are based, variously, on magnetic, optical, mechanical-linkage, and acoustical principles. The orientation signals generated by the systems of this invention could be used for diverse purposes, including controlling head-orientation-dependent virtual reality visual displays or enabling persons whose limbs are paralyzed to control machinery by means of head motions. The inventive concept admits to variations too numerous to describe here, making it necessary to limit this description to a typical system, the selected aspects of which are illustrated in the figure. A set of sensors is mounted on a bracket on a band or a cap that gently but firmly grips the wearer s head to be tracked. Among the sensors are three drift-sensitive rotationrate sensors (e.g., integrated-circuit angular- rate-measuring gyroscopes), which put out DC voltages nominally proportional to the rates of rotation about their sensory axes. These sensors are mounted in mutually orthogonal orientations for measuring rates of rotation about the roll, pitch, and yaw axes of the wearer s head. The outputs of these rate sensors are conditioned and digitized, and the resulting data are fed to an integrator module implemented in software in a digital computer. In the integrator module, the angular-rate signals are jointly integrated by any of several established methods to obtain a set of angles that represent approximately the orientation of the head in an external, inertial coordinate system. Because some drift is always present as a component of an angular position computed by integrating the outputs of angular-rate sensors, the orientation signal is processed further in a drift-compensator software module.
Estimation of Untracked Geosynchronous Population from Short-Arc Angles-Only Observations
NASA Technical Reports Server (NTRS)
Healy, Liam; Matney, Mark
2017-01-01
Telescope observations of the geosynchronous regime will observe two basic types of objects --- objects related to geosynchronous earth orbit (GEO) satellites, and objects in highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure angular rates, the GTO can occasionally mimic the motion of GEO objects over short arcs. A GEO census based solely on short arc telescope observations may be affected by these ``interlopers''. A census that includes multiple angular rates can get an accurate statistical estimate of the GTO population, and that then can be used to correct the estimate of the geosynchronous earth orbit population.
Malaria on a military peacekeeping operation: a case study with no cases.
Houston, David J K; Tuck, Jeremy J H
2005-03-01
Malaria continues to be a disease of importance to travelers and the military is no exception. Individual protection measures based on advice, bite avoidance, chemoprophylaxis, and diagnosis are advocated for protection against the disease. However, the military has an additional strand to malaria protection--the chain of command. To describe the experience of a British military deployment where the Force Commander took a proactive approach to malaria protection. In 512 person-weeks of exposure in a theater with high rates of transmission of malaria, with an enduring threat of asymmetric military action and with a proactive approach by the chain of command to the implementation of malaria protection policy, no malaria cases developed. The chain of command can have a significant impact on compliance with malaria protection measures, which might reduce incidence of the disease in the deployed population.
Dugré, Jules R; Guay, Jean-Pierre; Dumais, Alexandre
2018-05-01
Clinicians are often left with the difficult task of assessing and managing the risk of violent behaviors in individuals having command hallucinations, which may result in substantial rates of false positive or false negative. Moreover, findings on the association between command hallucinations and suicidal behaviors are limited. In an attempt to better understand compliance to this hallucinatory phenomenon, our objective was to identify the risk factors of compliance with self-harm command hallucinations. Secondary analyses from the MacArthur Study were performed on 82 participants with psychosis reporting such commands. Univariate logistic regression was used to examine the classification value of each characteristic associated with compliance with such commands. Seriousness and frequency of childhood physical abuse, a current comorbid substance use disorder, emotional distress, general symptomatology, history of compliance, and belief about compliance in the future were found to be significant risk factors of compliance with self-harm commands in the week preceding psychiatric inpatient. Multivariate analyses revealed that severity of childhood physical abuse, belief about compliance in the future, and a current comorbid substance use disorder were independent risk factors. The final model showed excellent classification accuracy as suggest by the receiver operating characteristic curve (AUC=0.84, 95% CI: 0.75-0.92, p<0.001). Our results suggest considerable clinical implications in regard to the assessment of risk of compliance to self-harm command hallucinations in individuals with psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Angular photogrammetric analysis of the soft tissue profile in 12-year-old southern Chinese.
Leung, Cindi Sy; Yang, Yanqi; Wong, Ricky Wk; Hägg, Urban; Lo, John; McGrath, Colman
2014-12-24
To quantify average angular measurements that define the soft tissue profiles of 12-year-old southern Chinese and to determine gender differences. A random population sample of 514 12-year-old children was recruited (about 10% of a Hong Kong Chinese birth cohort). Photographs were taken in natural head posture and 12 soft tissue landmarks were located on the photos to measure 12 angular measurements using ImageJ (V1.45s) for Windows. Approximately 10% of photographs were reanalyzed and method error was calculated. Angular norm values for the 12 parameters were determined and gender differences were assessed using 2 sample T-test with 95% confidence interval. The response rate was 54.1% (278/514). Norm values for the 12 angular measurements were generated. The greatest variability was found for the nasolabial (Cm-Sn-Ls) and labiomental (Li-Sm-Pg) angles. Gender differences were found in 4 angular parameters: vertical nasal angle (N-Prn/TV) (p < 0.05), cervicomental angle (G-Pg/C-Me) (p < 0.001), facial convexity angle (G-Sn-Pg) (p < 0.01) and total facial convexity angle (G-Prn-Pg)(p < 0.01). Norm values for 12 angular measurements among 12-year-old southern Chinese children were provided and some variability noted. Gender differences were apparent in several angular measurements. This study has implications in developing norm values for southern Chinese and for comparison with other ethnic groups.
NASA Astrophysics Data System (ADS)
Itoh, Katsumi; Kazama, Yoichi
1986-03-01
As one of the possible mechanisms which may reduce the rate for the monopole-catalyzed proton decay, the radiative transition of the fermionic state with vanishing angular momentum ( J) into those with higher J is investigated. The lowest-order formula for the transition rate, which nevertheless takes full account of the interaction with the background monopole field, is derived and numerically evaluated. It is found that the decay rate for a light fermion is unusually large. (e.g. one photon emission rate for a positron, with an incident energy of 300 MeV, is about 30 MeV.) Our results indicate that by itself the one gauge boson emission rate is not expected to affect the catalysis substantially, but that it is large enough to call for further study of multiple emissions and higher-order corrections.
Miyashita, Tetsuya; Mizuno, Yusuke; Sugawara, Yo; Nagamine, Yusuka; Koyama, Yukihide; Miyazaki, Tomoyuki; Uchimoto, Kazuhiro; Iketani, Yasuhiro; Tojo, Kentaro; Goto, Takahisa
2015-03-01
We studied the use of tele-anaesthesia between Sado General Hospital (SGH) located on Sado Island and Yokohama City University Hospital (YCUH) located in mainland Japan. The two sites were connected via a virtual private network (VPN). We investigated the relationship between the bandwidth of the VPN and both the frame rate and the delay time of the tele-anaesthesia monitoring system. The tool used for communication between the two hospitals was free videoconferencing software (FaceTime), which can be used over Wi-Fi connections. We also investigated the accuracy of the commands given during teleanaesthesia: any commands from the anaesthetist at the YCUH that were not carried out for any reason, were recorded in the anaesthetic records at the SGH. The original frame rate and data rate at the SGH were 5 fps and approximately 18 Mbit/s, respectively. The frame rate at the transmission speeds of 1, 5 and 20 Mbit/s was 0.6, 1.6 and 5.0 fps, respectively. The corresponding delay time was 12.2, 4.9 and 0.7 s. Twenty-five adult patients were enrolled in the study and tele-anaesthesia was performed. The total duration of anaesthesia was 37 hours. All 888 anaesthetic commands were completed. There were 7 FaceTime disconnections, which lasted for 10 min altogether. Because no commands needed to be given during the FaceTime disconnection, the telephone was not used. The anaesthesia assistance system might form part of the solution to medical resource shortages. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
A modern approach to superradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endlich, Solomon; Penco, Riccardo
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
A modern approach to superradiance
Endlich, Solomon; Penco, Riccardo
2017-05-10
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.
NASA Technical Reports Server (NTRS)
Berthe, C. J.; Chalk, C. R.; Sarrafian, S.
1984-01-01
The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.
The Survival of the Company Man in Iraq
2008-03-01
counter to their career success , even 29 Out of the 32 interviews there were at least 10 that...problem and informing their own commanders is not conducive to their own career success . Then the soldiers write home or tell their family upon their...balancing the need to meet the measures of success set forth by his commanders, with only the rating by his superiors affecting his long term career
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Evolutionary Telemetry and Command Processor (TCP) architecture
NASA Technical Reports Server (NTRS)
Schneider, John R.
1992-01-01
A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.
Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams
van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien
2017-01-01
Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856
Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices
NASA Technical Reports Server (NTRS)
Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.
Kinematic rate control of simulated robot hand at or near wrist singularity
NASA Technical Reports Server (NTRS)
Barker, K.; Houck, J. A.; Carzoo, S. W.
1985-01-01
A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears.
NASA Astrophysics Data System (ADS)
Song, YoungJae; Sepulveda, Francisco
2017-02-01
Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.
Mid-IR Lasers: Challenges Imposed by the Population Dynamics of the Gain System
2010-09-01
MicroSystems (IOMS) Central-Field Approximation: Perturbations 1. a) Non-centrosymmetric splitting (Coulomb interaction) ⇒ total orbital angular momentum b...Accordingly: ⇒ total electron-spin momentum 2. Spin-orbit coupling (“LS” coupling) ⇒ total angular momentum lanthanides: intermediate coupling (LS / jj) 3...MicroSystems (IOMS) Luminescence Decay Curves Rate-equation for decay: Solution ( Bernoulli -Eq.): Linearized solution: T. Jensen, Ph.D. Thesis, Univ. Hamburg
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
NASA Technical Reports Server (NTRS)
Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)
2003-01-01
Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-01-01
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm. PMID:29498643
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-03-02
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Command and data handling of science signals on Spacelab
NASA Technical Reports Server (NTRS)
Mccain, H. G.
1975-01-01
The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.
Command and Service Module Communications
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.
Error rate information in attention allocation pilot models
NASA Technical Reports Server (NTRS)
Faulkner, W. H.; Onstott, E. D.
1977-01-01
The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.
MCC level C formulation requirements. Shuttle TAEM guidance and flight control, STS-1 baseline
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The TAEM guidance and body rotational dynamics models required for the MCC simulation of the TAEM mission phase are defined. This simulation begins at the end of the entry phase and terminates at TAEM autoland interface. The logic presented is the required configuration for the first shuttle orbital flight (STS-1). The TAEM guidance is simulated in detail. The rotational dynamics simulation is a simplified model that assumes that the commanded rotational rates can be achieved in the integration interval. Thus, the rotational dynamics simulation is essentially a simulation of the autopilot commanded rates and integration of these rates to determine orbiter attitude. The rotational dynamics simulation also includes a simulation of the speedbrake deflection. The body flap and elevon deflections are computed in the orbiter aerodynamic simulation.
Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution
NASA Astrophysics Data System (ADS)
Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.
2016-12-01
The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Majid, Walid
2009-01-01
At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.
A nonlinear estimator for reconstructing the angular velocity of a spacecraft without rate gyros
NASA Technical Reports Server (NTRS)
Polites, M. E.; Lightsey, W. D.
1991-01-01
A scheme for estimating the angular velocity of a spacecraft without rate gyros is presented. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble Space Telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented for verification.
A grid of MHD models for stellar mass loss and spin-down rates of solar analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.
2014-03-01
Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less
Command History Calendar Year 1992 (Navy Personnel Research and Development Center)
1993-07-01
efficiently. and manage our personnel resources optimally. By combining a deep understanding of operational requirements with first-rate scientific and...the needs of manpower, personnel, and training managers in the Navy, Marine Corps, and Department of Defense (DOD); to the operating forces; and to the...NPRDC Professional Publications Award and the 1990 Commander’s Award for Management Excellence. He is a fellow of the American Association for the
On the secular decrease in the semimajor axis of Lageos orbit
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1980-01-01
The semimajor axis of the Lageos orbit is decreasing secularly at the rate of -1.1 mm/day due to an unknown force. Nine possible mechanisms are investigated. Five of the mechanisms, resonance with the Earth's gravitational field, gravitational radiation, the Poynting-Robertson effect, transfer of spin angular momentum to the orbital angular momentum, and drag from near Earth dust are ruled out because they are too small to require unacceptable assumptions to account for the observed rate. Three other mechanisms, the Yarkovsky effect, the Schach effect, and terrestrial radiation pressure could possibly give the proper order of magnitude for the decay rate, but the characteristic signatures of these perturbations do not agree with the observed secular decrease. Atmospheric drag from a combination of charged and neutral particles is the most likely cause for the orbital decay. This mechanism explains at least 71 percent of the observed rate of decrease of the semimajor axis.
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.
Diagnostic Studies With GLA Fields
NASA Technical Reports Server (NTRS)
Salstein, David A.
1997-01-01
Assessments of the NASA Goddard Earth Observing System-1 Data Assimilation System (GEOS-1 DAS) regarding heating rates, energetics and angular momentum quantities were made. These diagnostics can be viewed as measures of climate variability. Comparisons with the NOAA/NCEP reanalysis system of momentum and energetics diagnostics are included. Water vapor and angular momentum are diagnosed in many models, including those of NASA, as part of the Atmospheric Model Intercomparison Project. Relevant preprints are included herein.
Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy
Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward
2012-01-01
Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476
Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko
2012-08-15
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E
2018-05-01
Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
Altukhov, Alexey V.; Andrews, Russel D.; Calkins, Donald G.; Gelatt, Thomas S.; Gurarie, Eliezer D.; Loughlin, Thomas R.; Mamaev, Evgeny G.; Nikulin, Victor S.; Permyakov, Peter A.; Ryazanov, Sergey D.; Vertyankin, Vladimir V.; Burkanov, Vladimir N.
2015-01-01
After a dramatic population decline, Steller sea lions have begun to recover throughout most of their range. However, Steller sea lions in the Western Aleutians and Commander Islands are continuing to decline. Comparing survival rates between regions with different population trends may provide insights into the factors driving the dynamics, but published data on vital rates have been extremely scarce, especially in regions where the populations are still declining. Fortunately, an unprecedented dataset of marked Steller sea lions at rookeries in the Russian Far East is available, allowing us to determine age and sex specific survival in sea lions up to 22 years old. We focused on survival rates in three areas in the Russian range with differing population trends: the Commander Islands (Medny Island rookery), Eastern Kamchatka (Kozlov Cape rookery) and the Kuril Islands (four rookeries). Survival rates differed between these three regions, though not necessarily as predicted by population trends. Pup survival was higher where the populations were declining (Medny Island) or not recovering (Kozlov Cape) than in all Kuril Island rookeries. The lowest adult (> 3 years old) female survival was found on Medny Island and this may be responsible for the continued population decline there. However, the highest adult survival was found at Kozlov Cape, not in the Kuril Islands where the population is increasing, so we suggest that differences in birth rates might be an important driver of these divergent population trends. High pup survival on the Commander Islands and Kamchatka Coast may be a consequence of less frequent (e.g. biennial) reproduction there, which may permit females that skip birth years to invest more in their offspring, leading to higher pup survival, but this hypothesis awaits measurement of birth rates in these areas. PMID:26016772
Optical communication beyond orbital angular momentum
Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew
2016-01-01
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799
NASA Technical Reports Server (NTRS)
Khurana, Krishan K.; Kivelson, Margaret G.
1993-01-01
The averaged angular velocity of plasma from magnetic observations is evaluated using plasma outflow rate as a parameter. New techniques are developed to calculate the normal and azimuthal components of the magnetic field in and near to the plasma sheet in a plasma sheet coordinate system. The revised field components differ substantially from the quantities used in previous analyses. With the revised field values, it appears that during the Voyager 2 flyby for an outflow rate of 2.5 x 10 exp 29 amu/s, the observed magnetic torque may be sufficient to keep the plasma in corotation to radial distances of 50 Rj in the postmidnight quadrant.
Simulation of the dynamical transmission of several-hundred-keV protons through a conical capillary
NASA Astrophysics Data System (ADS)
Yang, A. X.; Zhu, B. H.; Niu, S. T.; Pan, P.; Han, C. Z.; Song, H. Y.; Shao, J. X.; Chen, X. M.
2018-05-01
The time evolution of the trajectories, angular distributions, and two-dimensional images of intermediate-energy protons being transmitted through a conical capillary was simulated. The simulation results indicate that the charge deposited in the capillary significantly enhances the probability of surface specular scattering and thus greatly enhances the transmission rate. Furthermore, this deposited-charge-assisted specular reflection causes the transmission rate to exhibit an energy dependence proportional to E-1, which is very consistent with the experimental data. After transmission at nonzero tilt angles, the angular distribution of several-hundred-keV protons is far from symmetric, unlike in the case of keV protons.
Testing of the on-board attitude determination and control algorithms for SAMPEX
NASA Technical Reports Server (NTRS)
Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.
1993-01-01
Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.
Light controlled 3D micromotors powered by bacteria
NASA Astrophysics Data System (ADS)
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto
2017-06-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.
Light controlled 3D micromotors powered by bacteria
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto
2017-01-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975
How well does voice interaction work in space?
NASA Technical Reports Server (NTRS)
Morris, Randy B.; Whitmore, Mihriban; Adam, Susan C.
1993-01-01
The methods and results of an evaluation of the Voice Navigator software package are discussed. The first phase or ground phase of the study consisted of creating, or training, computer voice files of specific commands. This consisted of repeating each of six commands eight times. The files were then tested for recognition accuracy by the software aboard the microgravity aircraft. During the second phase, both voice training and testing were performed in microgravity. Inflight training was done due to problems encountered in phase one which were believed to be caused by ambient noise levels. Both quantitative and qualitative data were collected. Only one of the commands was found to offer consistently high recognition rates across subjects during the second phase.
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.; Carzoo, S. W.
1984-01-01
An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Astrophysics Data System (ADS)
Ames, Troy J.; Case, Lynne
2002-12-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device?s IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a principal investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Technical Reports Server (NTRS)
Ames, Troy J.; Case, Lynne
2002-01-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
Joint Forward Operating Base Elements of Command and Control
NASA Astrophysics Data System (ADS)
Summers, William C.
2002-01-01
Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.
Pool, Sean M; Hoyle, John M; Malone, Laurie A; Cooper, Lloyd; Bickel, C Scott; McGwin, Gerald; Rimmer, James H; Eberhardt, Alan W
2016-04-08
One approach to encourage and facilitate exercise is through interaction with virtual environments. The present study assessed the utility of Microsoft Kinect as an interface for choosing between multiple routes within a virtual environment through body gestures and voice commands. The approach was successfully tested on 12 individuals post-stroke and 15 individuals with cerebral palsy (CP). Participants rated their perception of difficulty in completing each gesture using a 5-point Likert scale questionnaire. The "most viable" gestures were defined as those with average success rates of 90% or higher and perception of difficulty ranging between easy and very easy. For those with CP, hand raises, hand extensions, and head nod gestures were found most viable. For those post-stroke, the most viable gestures were torso twists, head nods, as well as hand raises and hand extensions using the less impaired hand. Voice commands containing two syllables were viable (>85% successful) for those post-stroke; however, participants with CP were unable to complete any voice commands with a high success rate. This study demonstrated that Kinect may be useful for persons with mobility impairments to interface with virtual exercise environments, but the effectiveness of the various gestures depends upon the disability of the user.
Factors associated with compliance and resistance to command hallucinations.
Mackinnon, Andrew; Copolov, David L; Trauer, Tom
2004-05-01
Command hallucinations (CHs) are hallucinations that direct the patient to perform an action. Beyond issues related to the danger that some CHs may pose, comparatively little is known about the broader clinical context of CHs. To investigate this, 199 patients were interviewed using the Mental Health Research Institute Unusual Perceptions Scale. More than two thirds of the sample reported hearing CHs. A quarter of these patients felt unable to resist them. Patients with CHs reported their voices more negatively than those who did not hear commands. More of those unable to resist CHs rated their hallucinations as intrusive, they had fewer coping strategies than those able to resist, and they were prescribed higher dosages of medication. CHs are associated with a greater degree of adverse hallucinatory and illness experience. Patients who experience CHs may have a more malignant form of the underlying disorder. Thus, CHs warrant special therapeutic attention for reasons beyond any harm that their commands pose to themselves or others.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Orbital angular momentum of photons, plasmons and neutrinos in a plasma
NASA Astrophysics Data System (ADS)
Mendonca, J. T.; Thidé, Bo; Then, H.; Ali, S.
2009-11-01
We study the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscatering processes [1]. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived. The characteristic features of the plasmon modes with finite angular momentum are also discussed. The potential problem is solved and the angular momentum is explicitly calculated [2]. Finally, it is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum states, similar to that of photon states. Coupling between different neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. [1] J.T. Mendonca et al., PRL 102, 185005 (2009). [2] S. Ali and J.T. Mendonca, PoP (2009) submitted. [3] J.T. Mendonca and B. Thide, Europhys. Lett. 84, 41001 (2008).
Stackman, R W; Taube, J S
1998-11-01
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.
EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu
2016-12-10
The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport.more » For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.« less
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-08-19
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-01-01
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
1992-01-01
The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document.
Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry
2014-01-01
Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
An analysis of superrotation in the atmosphere of planets, with rotation axis perpendicular to the orbital plane is presented. As the atmosphere expands, Hadley cells develop producing a redistribution of mass and angular momentum. A three dimensional thermally driven zonally symmetric spectral model and Laplace transformation simulate the time evolution of a fluid leading from corotation under globally uniform heating to superrotation under globally nonuniform heating. For high viscosities the rigid shell component of atmospheric superrotation can be understood in analogy with a pirouette. During spin up angular momentum is transferred to the planet. For low iscosities, the process is reversed. A tendency toward geostrophy, combined with increase of surface pressure toward the poles (due to meridional mass transport), induces the atmosphere to subrotate temporarily at lower altitudes. Resultant viscous shear near the surface permits angular momentum to flow from the planet into the atmosphere propagating upwards to produce high altitude superrotation rates.
Shocks in the relativistic transonic accretion with low angular momentum
NASA Astrophysics Data System (ADS)
Suková, P.; Charzyński, S.; Janiuk, A.
2017-12-01
We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.
1985-01-01
For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
Angular circulation speed of tablets in a vibratory tablet coating pan.
Kumar, Rahul; Wassgren, Carl
2013-03-01
In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.
A New MEMS Gyroscope Used for Single-Channel Damping
Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao
2015-01-01
The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638
A User’s Guide to the MOFO Model
1989-08-01
8592 8591 8589 8588 8586 8585 8583 8582 8580 6 4 2 1 1 0 0 0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...radians to degrees ( ISO /it degrees/radian) Common Block ICONTRLI CH1DOT—present commanded heading rate after time filtering CHIDOTO—previous commanded
Simple method enabling pulse on command from high power, high frequency lasers
NASA Astrophysics Data System (ADS)
Baer, David J.; Marshall, Graham D.; Coutts, David W.; Mildren, Richard P.; Withford, Michael J.
2006-09-01
A method for addressing individual laser pulses in high repetition frequency systems using an intracavity optical chopper and novel electronic timing system is reported. This "pulse on command" capability is shown to enable free running and both subharmonic pulse rate and burst mode operation of a high power, high pulse frequency copper vapor laser while maintaining a fixed output pulse energy. We demonstrate that this technique can be used to improve feature finish when laser micromachining metal.
2011-06-01
effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the
Hu, Qinglei
2007-10-01
This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.
Acute severe male hypo-testosteronemia affects central motor command in humans.
Felici, Francesco; Bazzucchi, Ilenia; Sgrò, Paolo; Quinzi, Federico; Conti, Alessandra; Aversa, Antonio; Gizzi, Leonardo; Mezzullo, Marco; Romanelli, Francesco; Pasquali, Renato; Lenzi, Andrea; Di Luigi, Luigi
2016-06-01
To indirectly evaluate the effect of androgens on neuromuscular system in humans we analyzed if an induced short-term hypogonadal state (serum total testosterone-TT<2.3ng/ml) may affect central drive to skeletal muscle and/or muscle neuro-mechanical performance. We compared voluntary and electrically evoked muscle sEMG signals from biceps brachii in nine hypogonadal male volunteers (Hypo) and in ten healthy controls (Cont). Serum TT and dihydrotestosterone (DHT) were assayed. With respect to Hypo, Cont exhibited significantly higher median frequency content (MDF) at any angular velocity; normalized MDF [95.9% (SD=23.3) vs 73.8% (SD=9.3)]; muscle fiber conduction velocity (CV) from lowest to highest angular velocities; initial MDF at fatigue test [91.78Hz (SD=22.03) vs 70.94Hz (SD=11.06)] as well as was the normalized slope [-0.64 (SD=0.14 vs -0.5 (SD=0.11)]. In the non-fatigued state, Hypo showed a slower single twitches time to peak (TTP). In Cont, half relaxation time (HRT) decreased after fatigue while increased in Hypo (p<0.05 between groups). A significant correlation between both TT and dihydrotestosterone with MDF and CV was found during voluntary contractions only. A brief exposure to very low serum TT concentration in males seem to determine a reduced excitability of the NM system which, in turn, would favor a predominant recruitment of slow twitch MUs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power of performance of the thumb adductor muscles: effect of laterality and gender.
Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas
2006-01-01
The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.
NASA Astrophysics Data System (ADS)
Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe
2017-09-01
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver
NASA Technical Reports Server (NTRS)
Janicik, Jeffrey; Friedman, Assi
2013-01-01
Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.
NASA Astrophysics Data System (ADS)
Zheng, Dawei; Ding, Xiaoli; Zhou, Yonghong; Chen, Yongqi
2003-03-01
Time series of the length of day characterizing the rate of Earth rotation, the atmospheric angular momentum and the Southern Oscillation Index from 1962 to 2000 are used to reexamine the relationships between the ENSO events and the changes in the length of day, as well as the global atmospheric angular momentum. Particular attention is given to the different effects of the 1982-1983 and 1997-1998 ENSO events on the variations of Earth rotation. The combined effects of multiscale atmospheric oscillations (seasonal, quasi-biennial and ENSO time scales) on the anomalous variations of the interannual rates of Earth rotation are revealed in this paper by studying the wavelet spectra of the data series.
NASA Astrophysics Data System (ADS)
Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.
2016-12-01
Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.
Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2017-12-01
The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.
Landsat thematic mapper attitude data processing
NASA Technical Reports Server (NTRS)
Sehn, G. J.; Miller, S. F.
1984-01-01
The Landsat 4 and 5 satellites carry a new, high resolution, seven band thematic mapper imaging instrument. The spacecraft also carry two types of attitude sensors: a gyroscopic internal reference unit (IRU) which senses angular rate from dc to about 2 Hz, and an AC-coupled angular displacement sensor (ADS) measuring angular deviation above 2 Hz. A description of the derivation of the crossover network used to combine and equalize the IRU and ADS data is made. Also described are the digital data processing algorithms which produce the time history of the satellites' attitude motion including the finite impulse response (FIR) implementation of G and F filters; the resampling (interpolation/decimation) and synchronization of the IRU and ADS data; and the axis rotations required as a result of the on-board sensor locations on three orthogonal axes.
Application of the top-on-top model to 135Pr
NASA Astrophysics Data System (ADS)
Sugawara-Tanabe, Kazuko; Tanabe, Kosai
2017-09-01
It is proved that the Holstein-Primakoff (HP) boson expansion method is very effective for a case where both total and single-particle angular momenta have the diagonal representation along the same direction. The algebraic solution is described by two kinds of quantum numbers classifying the rotational band’s characteristic of the particle-rotor model. One is related with the wobbling motion of the rotor, and the other to the precession of the single-particle angular momentum. Employing angular-momentum dependent rigid (rig) moments of inertia (MoI), which simulate Coriolis anti-pairing effect based on the constrained self-consistent Hartree-Fock-Bogoliubov (HFB) equation, we obtain good fitting not only to the energy-level scheme, but also to the electromagnetic transition rates and the mixing ratio for 135Pr.
Role of misalignment-induced angular chirp in the electro-optic detection of THz waves.
Walsh, D A; Cliffe, M J; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P
2014-05-19
A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the χ(2)-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system.
Angular resolution of the gaseous micro-pixel detector Gossip
NASA Astrophysics Data System (ADS)
Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.
2011-06-01
Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.
Introduction to Sonar, Naval Education and Training Command. Revised Edition.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
This Rate Training Manual (RTM) and Nonresident Career Course form a self-study package for those U.S. Navy personnel who are seeking advancement in the Sonar Technician Rating. Among the requirements of the rating are the abilities to obtain and interpret underwater data, operate and maintain upkeep of sonar equipment, and interpret target and…
Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction
2014-06-01
20 4.4 Transient Effects During the Jet Event and Time-Accuracy of...35 Figure 27. Transient effects of jet maneuver event for the no initial angular...rate case. ................36 Figure 28. Effect of time step on the coupled solution for the initial low roll rate case: (a) roll rate, (b) roll angle
Illinois Ratings of Teacher Effectiveness Manual. Grades 9-12.
ERIC Educational Resources Information Center
Blanchard, B. Everard
The Illinois Ratings of Teacher Effectiveness (IRTE) is an instrument for recording senior high school student perceptions of teacher performance in ten trait areas: teacher appearance, ability to explain, friendliness, grading fairness, discipline, outside classroom assignments, enjoyment of teaching, voice, mannerisms, and command of subject…
Birchwood, Max; Dunn, Graham; Meaden, Alan; Tarrier, Nicholas; Lewis, Shon; Wykes, Til; Davies, Linda; Michail, Maria; Peters, Emmanuelle
2017-12-05
Acting on harmful command hallucinations is a major clinical concern. Our COMMAND CBT trial approximately halved the rate of harmful compliance (OR = 0.45, 95% CI 0.23-0.88, p = 0.021). The focus of the therapy was a single mechanism, the power dimension of voice appraisal, was also significantly reduced. We hypothesised that voice power differential (between voice and voice hearer) was the mediator of the treatment effect. The trial sample (n = 197) was used. A logistic regression model predicting 18-month compliance was used to identify predictors, and an exploratory principal component analysis (PCA) of baseline variables used as potential predictors (confounders) in their own right. Stata's paramed command used to obtain estimates of the direct, indirect and total effects of treatment. Voice omnipotence was the best predictor although the PCA identified a highly predictive cognitive-affective dimension comprising: voices' power, childhood trauma, depression and self-harm. In the mediation analysis, the indirect effect of treatment was fully explained by its effect on the hypothesised mediator: voice power differential. Voice power and treatment allocation were the best predictors of harmful compliance up to 18 months; post-treatment, voice power differential measured at nine months was the mediator of the effect of treatment on compliance at 18 months.
NASA Astrophysics Data System (ADS)
Lough, James D.
The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.
Research on the water-entry attitude of a submersible aircraft.
Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian
2016-01-01
The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.
Probing the Higgs with angular observables at future e +e – colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen
In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less
Probing the Higgs with angular observables at future e +e – colliders
Liu, Zhen
2016-10-24
In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less
Park, Kyeong-Hyeon; Oh, Chang-Wug; Kim, Joon-Woo; Park, Il-Hyung; Kim, Hee-June; Choi, Young-Seo
2017-09-01
Guided growth using the eight-plate (8-plate) is the most commonly used method to correct angular deformities in children; however, implant failure has been reported. Recently, the 3.5-mm reconstruction plate (R-plate) has been used as an alternative option for guided growth; however, hardware prominence has been problematic. This study aimed to compare the coronal angular deformity correction results of guided growth between relatively thin 8-plates with cannulated screws and thick R-plates with solid screws. Thirty-nine physes (24 distal femoral, 15 proximal tibial) in 20 patients underwent hemiepiphysiodesis using 8-plates, and 61 physes (40 distal femoral, 21 proximal tibial) in 35 patients underwent hemiepiphysiodesis using R-plates. Coronal angular corrections were measured and compared preoperatively, and after the completion of corrections. Amounts and rates of correction and complications were compared between the groups. Mean body mass index was 18.7 kg/m2 in the 8-plate group, and 22.7 kg/m2 in the R-plate group. Angular correction was achieved in all deformities at a mean of 13.7 months and 19.7 months in the 8-plate and the R-plate group, respectively. The mean corrected mechanical lateral distal femoral angle was 9.0° in the 8-plate group, and 9.9° in the R-plate group (P = 0.55). The mean corrected medial proximal tibial angle was 7.1° in the 8-plate group, and 9.0° in the R-plate group (P = 0.07). The mean rates of angular correction were also not significantly different in the distal femur (1.03°/month vs. 0.77°/month, P = 0.2) and the proximal tibia (0.66°/month vs. 0.63°/month, P = 0.77). There was one superficial infection in each group, and one case of implant failure in the R-plate group. Two rebound deformities were observed and needed repeat hemiepiphysiodesis. Permanent physeal arrest was not observed in this series. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Noncircular Chainrings Do Not Influence Maximum Cycling Power.
Leong, Chee-Hoi; Elmer, Steven J; Martin, James C
2017-12-01
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc = 1.13; HIGH ecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
Hyperquenched hyaloclastites from Axial Seamount
NASA Astrophysics Data System (ADS)
Zezin, D.; Helo, C.; Richard, D.; Clague, D. A.; Dingwell, D. B.; Stix, J.
2009-12-01
We determined apparent cooling rates for basaltic hyaloclastites from Axial caldera, Juan de Fuca Ridge. Samples originate from different stratigraphic layers within the unconsolidated volcaniclastic sequences, on flanks of the volcanic edifice. Water depth is ~1400 m below sea level. The hyaloclastite glass fragments comprise two principal morphologies: (1) angular fragments, and (2) thin glassy melt films interpreted as bubble walls, called deep-sea limu o Pele. A natural cooling rate was estimated for each sample of ~50 carefully selected glass shards. The heat capacity was first measured with a differential scanning calorimeter in two heating scans with heating rates of 20 K/min, and a matching cooling rate between those scans. The fictive temperatures Tf were then determined from both heating cycles, and the natural cooling rate derived by the non-Arrhenian relationship between Tf and cooling rate. All samples display hyperquenched states, manifested in a strong exothermic energy release during the initial heating cycle before reaching the glass transition. Cooling rates range from 10 6.73 K/s to 10 3.94 K/s for the limu, and 10 4.92 K/s to 10 2.34 K/s for the angular fragments. Almost all samples of limu shards show elevated cooling rates compared to their angular counterparts of comparable grain mass. In addition, the exothermic part of the enthalpy curves reveal two superimposed relaxation domains, the main broad exothermal peak, ranging from ~350 K to the onset of the glass transition, and a small subordinate peak/shoulder occurring between 550 K and 700 K. The magnitude of the latter varies from clearly identifiable to nearly absent, and tends to be more pronounced in curves obtained from angular fragments. The main exothermal peak is related to the frozen-in structure of the glass and consequently to its thermal history when passing through the glass transition. The subordinate peak may represent strain rate-induced and tensile stress accumulation-induced excess enthalpy. It could reveal certain aspects of the mechanical history of the fragments, and may imply flow at the onset of the viscoelastic regime in order to allow for stress-accumulation. The quench rates of the investigated hyaloclastites slightly exceed the limits of hyperquenched glass documented form Loihi Seamount, and are significantly higher than those of glassy pillow or sheet lava rims. Such short cooling timescales may only be achieved by fragmentation-coupled quenching, which allows for efficient heat conduction. This range of cooling rates spanning several orders of magnitude points towards a dynamic eruption environment with the possibility of multiple processes influencing cooling rates. The two types of glass shards may have experienced slightly different mechanical histories prior to quenching. Based on an interpretation of stress accumulation, strain rates are close to those necessary for the onset of non-Newtonian behaviour. To match the requirements of a dynamic environment with efficient fragmentation, rapid cooling, and high strain rates, we propose that the hyaloclastites are products of an explosive eruption environment.
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.
Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P
2002-04-01
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.
Computer controlled synchronous shifting of an automatic transmission
Davis, Roy I.; Patil, Prabhakar B.
1989-01-01
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.
NASA Technical Reports Server (NTRS)
Dodson, D. W.; Shields, N. L., Jr.
1979-01-01
Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.; Hardy, G. H.
1980-01-01
A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.
Commander Lousma records PGU data on middeck
1982-03-30
STS003-22-122 (30 March 1982) --- STS-3 Commander Lousma, wearing communications kit assembly (ASSY) mini-headset (HDST), records Plant Growth Unit (PGU) data for the Influence of Weightlessness on Plant Lignification Experiment at forward middeck locker MF14K. The experiment is designed to demonstrate the effect of weightlessness on the quantity and rate of lignin formation in different plant species during early stages of development. Port side bulkhead with window shade and filter kit appears behind Lousma and potable water tank below him. Trash bag also appears in view. Photo credit: NASA
Assessment of feedback modalities for wearable visual aids in blind mobility
Sorrentino, Paige; Bohlool, Shadi; Zhang, Carey; Arditti, Mort; Goodrich, Gregory; Weiland, James D.
2017-01-01
Sensory substitution devices engage sensory modalities other than vision to communicate information typically obtained through the sense of sight. In this paper, we examine the ability of subjects who are blind to follow simple verbal and vibrotactile commands that allow them to navigate a complex path. A total of eleven visually impaired subjects were enrolled in the study. Prototype systems were developed to deliver verbal and vibrotactile commands to allow an investigator to guide a subject through a course. Using this mode, subjects could follow commands easily and navigate significantly faster than with their cane alone (p <0.05). The feedback modes were similar with respect to the increased speed for course completion. Subjects rated usability of the feedback systems as “above average” with scores of 76.3 and 90.9 on the system usability scale. PMID:28182731
Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.
Classification of response-types for single-pilot NOE helicopter combat tasks
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.
1987-01-01
Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.
Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent
2017-04-01
We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.
ERIC Educational Resources Information Center
Naval Education and Training Command, Washington, DC.
Designed as a self-study text for enlisted personnel of the Navy and Naval Reserve, this rate training manual presents information that is directly related to the professional standards for advancement to Petty Officer Third Class and Petty Officer Second Class in the Tradevman (TD) rating. (Tradevmen install, repair, modify, and maintain…
Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.
Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M
2014-09-01
Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.
The Solar Wind Environment in Time
NASA Astrophysics Data System (ADS)
Pognan, Quentin; Garraffo, Cecilia; Cohen, Ofer; Drake, Jeremy J.
2018-03-01
We use magnetograms of eight solar analogs of ages 30 Myr–3.6 Gyr obtained from Zeeman Doppler Imaging and taken from the literature, together with two solar magnetograms, to drive magnetohydrodynamical wind simulations and construct an evolutionary scenario of the solar wind environment and its angular momentum loss rate. With observed magnetograms of the radial field strength as the only variant in the wind model, we find that a power-law model fitted to the derived angular momentum loss rate against time, t, results in a spin-down relation Ω ∝ t ‑0.51, for angular speed Ω, which is remarkably consistent with the well-established Skumanich law Ω ∝ t ‑0.5. We use the model wind conditions to estimate the magnetospheric standoff distances for an Earth-like test planet situated at 1 au for each of the stellar cases, and to obtain trends of minimum and maximum wind ram pressure and average ram pressure in the solar system through time. The wind ram pressure declines with time as \\overline{{P}ram}}\\propto {t}2/3, amounting to a factor of 50 or so over the present lifetime of the solar system.
Study of the Structure of Turbulence in Accelerating Transitional Boundary Layers.
1987-12-23
be sufficient to relaminarize even fully turbulent boundary layers. Since local heat transfer rates are very sensitive to the state of the boundary...was calibrated for velocity and angular sensitivity in a low- .’ turbulence 1 1/2-in. dia. jet flow for approximately twenty jet flow speeds "-’ ranging...intersection of the wires of the x. The angular sensitivity of the wires was assumed to conform to Champagne’s k2 law (Ref. 20), UE2 (0) = U2(0 = 0) (cos 2
Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1. Algorithm Development
1990-06-01
Dynamic Module 39 Table 3.1 Aircraft Approach Category Classification (FAA, 1988). Category Landing Speed (1.3 Vst ,,,) A less than 91 Knots B From 91 to...inertia about the vertical axis, in Kg-m-m, a is the angular acceleration (rad/sec,) of the aircraft fuselage as it executes the turning maneuver, wb is the...breakdown of the angular acceleration yields for Eq. 3.13 the following, I/ (V R 2 / g"= m g wb Im/100 (1- Im100) (3.16) where, R represents the rate of
Angular Motion of Projectiles with a Moving Internal Part.
1977-02-01
Ball Rotor T317 hellIntermal Projectile RingsM505 Fuze Quasi-linear Angular Motion N\\ ANSTRACT (-jCanhs si rveree side ff naeweemv end identify by...LIST OF FIGURES Figure Page 1. 20mm Shell T282E1 with Arming Ball Rotor .... .......... 20 2. Fast Mode Damping Rate for the 20mm T282E1...fuze has a spherical arming rotor in a cylindrical cavity with small but non-zero clearanc’es (Figure 1). The fourth sa.ell - the 8-inch T317 - showed
Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin
2012-08-01
Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.
Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2012-11-15
We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.
Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pronin, E. A.; Starace, Anthony F.; Peng Liangyou
2011-07-15
The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, N.; Song, S.G.; Gray, G.T., III
1996-05-01
Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard; Bilimoria, Karl D.; Frost, Chad Ritchie
2010-01-01
A piloted simulation that studied the handling qualities for a precision lunar landing task from final approach to touchdown is presented. A vehicle model based on NASA's Altair Lunar Lander was used to explore the design space around the nominal vehicle configuration to determine which combination of factors provides satisfactory pilot-vehicle performance and workload; details of the control and propulsion systems not available for that vehicle were derived from Apollo Lunar Module data. The experiment was conducted on a large motion base simulator. Eight Space Shuttle and Apollo pilot astronauts and three NASA test pilots served as evaluation pilots, providing Cooper-Harper ratings, Task Load Index ratings and qualitative comments. Each pilot flew seven combinations of control response types and three sets of displays, including two varieties of guidance and a nonguided approach. The response types included Rate Command with Attitude Hold, which was used in the original Apollo Moon landings, a Velocity Increment Command response type designed for up-and-away flight, three response types designed specifically for the vertical descent portion of the trajectory, and combinations of these. It was found that Velocity Increment Command significantly improved handling qualities when compared with the baseline Apollo design, receiving predominantly Level 1 ratings. This response type could be flown with or without explicit guidance cues, something that was very difficult with the baseline design, and resulted in approximately equivalent touchdown accuracies and propellant burn as the baseline response type. The response types designed to be used exclusively in the vertical descent portion of the trajectory did not improve handling qualities.
Theory of quasi-spherical accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.
2012-02-01
A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.
Compressive myelopathy in severe angular kyphosis: a series of ten patients.
Zhang, Zhengfeng; Wang, Honggang; Liu, Chao
2016-06-01
Compressive myelopathy in severe angular kyphosis is rare and challenging for surgical treatment. The goal of this retrospective study was to report a series of ten patients with compressive myelopathy in severe angular kyphosis and the results of surgical decompression and correction of kyphosis. Between 2010 and 2014, 10 patients were surgically treated for severe angular kyphosis with a progressive onset or a sudden onset of paraplegia in investigator group. In these ten patients (seven males and three females), the etiologic diagnosis included eight cases of congenital kyphosis and two of neurofibromatosis; the distribution of spine level was from C5 to T11; the duration from onset until surgery ranged from 1 to 120 months; follow-up ranged from 12 to 26 months (mean 18.5 months); the kyphosis angle of the patients ranged from 50° to 180°. Magnetic resonance imaging demonstrated the spinal cord thinning and compression at apex in most of patients. All patients underwent decompressive surgery by single-stage posterior vertebral column resection or both anterior corpectomy fusion and posterior fixation. Neurological status was evaluated using the ASIA impairment classification and the motor score. Postoperatively, all patients had different kyphosis correction rate from 24 to 100 %. Nine patients showed neurological improvement; one patient showed no improvement. Among them, one sudden onset ASIA A adolescent paraplegic patient improved to ASIA E within 1 year of follow-up. One ASIA C adolescent paraplegic patients deteriorated neurologically to ASIA A after surgery and improved to ASIA D with 12-month follow-up. Compressive myelopathy in severe angular congenital kyphosis is usually occurred high incidence rate at apex of upper thoracic spine (T1-T4). The duration from onset of paraplegia until surgery and the severity of paraplegia before surgery are two key factors for neurological prognosis after surgery.
Characterization of the Bell-Shaped Vibratory Angular Rate Gyro
Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang
2013-01-01
The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183
Characterization of the bell-shaped vibratory angular rate gyro.
Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang
2013-08-07
The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
75 FR 51191 - Great Lakes Pilotage Rates-2011 Annual Review and Adjustment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
...-AB48 Great Lakes Pilotage Rates--2011 Annual Review and Adjustment AGENCY: Coast Guard, DHS. ACTION... the Great Lakes to generate sufficient revenue to cover allowable expenses, target pilot compensation..., Chief, Great Lakes Pilotage Division, Commandant (CG-5522), U.S. Coast Guard, at 202-372-1535, by fax...
Quality and adequacy of training of expanded function dental auxiliaries in the U.S. Army.
Chisick, M C
1994-08-01
This study explores the quality and adequacy of training U.S. Army expanded function dental auxiliaries (X2s). Data were collected in the spring of 1989 using self-administered questionnaires from dental commanders, clinic chiefs, X2 graduates, dentists working with X2s, and potential X2 students. Nearly all (94.2%) dental activities personnel responded. Results show overall performance of X2s was rated excellent or very good by 76% of commanders, 70% of clinic chiefs, and 42% of dentists. Of 23 job-specific tasks assessed, X2s received lowest performance ratings for placement of complex composite restorations and highest ratings for individual topical fluoride application. Of X2 graduates, 82% rated the overall quality of X2 training as very good or excellent. X2 graduates and their supervisors recommend retaining each job-specific skill in the X2 training program while lengthening the program from 16 to 28-30 weeks. Training of U.S. Army X2s may offer a model to other dental care systems with limited resources.
On-board data management study for EOPAP
NASA Technical Reports Server (NTRS)
Davisson, L. D.
1975-01-01
The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.
Quadcopter Control Using Speech Recognition
NASA Astrophysics Data System (ADS)
Malik, H.; Darma, S.; Soekirno, S.
2018-04-01
This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).
Hsu, Hao-Teng; Lee, I-Hui; Tsai, Han-Ting; Chang, Hsiang-Chih; Shyu, Kuo-Kai; Hsu, Chuan-Chih; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Chang, Chun-Yen; Lee, Po-Lei
2016-05-01
This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.
Measuring the Spin Rate Change of V455 And
NASA Astrophysics Data System (ADS)
Szkody, Paula; Mukadam, Anjum S.; Gaensicke, Boris T; Hermes, JJ
2014-06-01
V455 And (HS2331+3905) is an unusual cataclysmic variable that displays both an orbital (81 min) and a spin (67s) period, thus classifying it as an Intermediate Polar. The magnetic field of this interacting white dwarf channels the accretion stream from the secondary towards the white dwarf poles, which become heated, resulting in the visibility of both the spin period and its harmonic in the lightcurves of V455 And. Our group has been observing this object since its discovery. In 2007, V455 And underwent a large amplitude dwarf nova outburst. This provided an unique opportunity to gauge the overall angular momentum gain due to its long-term accretion as well as its 2007 outburst. Using these data that span the timebase of a decade from 2003 to 2013, we constrain the rate of change of its spin period with time to be dP/dt = (-6.8 +/- 4.8) 10^{-15} s/s for the spin period of 67.61970396 +/- 0.00000024s. We were able to fit the pre- and post-outburst data together because we did not find any evidence for a significant discontinuity in the O-C diagram due to the 2007 outburst. This implies that the magnetic field couples the angular momentum gain to the white dwarf interior. Our next goal is to constrain the angular momentum evolution of a non-magnetic accreting white dwarf to probe how the gain in angular momentum due to accretion is transferred to the envelope and core of the white dwarf.
Ando, Kei; Kobayashi, Kazuyoshi; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Nishida, Yoshihiro; Ishiguro, Naoki; Imagama, Shiro
2018-03-29
There is little information on intraoperative neuromonitoring during correction fusion surgery for syndromic scoliosis. To investigate intraoperative TcMEPs and conditions (body temperature and blood pressure) for syndromic scoliosis. The subjects were 23 patients who underwent 25 surgeries for corrective fusion using TcMEP. Patients were divided into groups based on a decrease (DA+) or no decrease (DA-) of the amplitude of the TcMEP waveform of ≥70%. The groups were compared for age, sex, disease, type of surgery, fusion area, operation time, estimated blood loss, body temperature, blood pressure, Cobb angle, angular curve (Cobb angle/number of vertebra), bending flexibility, correction rate, and recovery. The mean Cobb angles before and after surgery were 85.2° and 29.1°, giving a correction rate of 68.2%. There were 16 surgeries (64.0%) with intraoperative TcMEP wave changes. The DA+ and DA- groups had similar intraoperative conditions, but the short angular curve differed significantly between these groups. Amplitude deterioration occurred in 4 cases during first rod placement, in 8 during rotation, and in 3 during second rod placement after rotation. Seven patients had complete loss of TcMEP. However, most TcMEP changes recovered after pediclectomy or decreased correction. The preoperative angular curve differed significantly between patients with and without TcMEP changes (P < .05). Intraoperative TcMEP wave changes occurred in 64.0% of surgeries for corrective fusion, and all but one of these changes occurred during the correction procedure. The angular curve was a risk factor for intraoperative motor deficit.
Effects of intermediate wettability on entry capillary pressure in angular pores.
Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima
2016-07-01
Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Trilateration range and range rate system. Volume 1: CDA system manual
NASA Technical Reports Server (NTRS)
1976-01-01
This document is one of a series of manuals designed to provide the information required to operate and maintain the Command and Data Acquisition (CDA) equipment of the Trilateration Range and Range Rate (TRRR) System. Information pertaining to the equipment in the Trilateration Range and Range Rate System which is designed to interface with existing NASA equipment located at Wallops Island, Virginia is presented.
Kinematic equations for resolved-rate control of an industrial robot arm
NASA Technical Reports Server (NTRS)
Barker, L. K.
1983-01-01
An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
NASA Astrophysics Data System (ADS)
Hokamoto, Shinji
This study deals with orbital transfer of a satellite using a tether extension / retrieval mechanism. Instead of using propellant for the orbital transfer, the present concept uses electrical energy. By controlling the pitch motion of the tether system, we can achieve a prescribed velocity of the satellite at a prescribed position. By cutting the tether at that instant, we can inject the satellite into a designed new orbit. This paper considers co-planar motion and proposes a technique to achieve the desired tether length, pitch angle, and pitch angular rate at a designated position in orbit by using only tether length control. These three state variables are adjusted to their target values in three consecutive sections in the orbit; 1) control for the angular momentum of the pitching motion, which implies to adjust the tether length, 2) control for the pitch angle, and 3) control for the pitch angular rate. In each section, a pitch acceleration profile can be formed by using Fourier series as an alternative input for tether length profile. Their coefficients can be obtained without numerical iterations by using the simple initial / final relationships for the pitch angle and pitch angular rate. Therefore, this proposed procedure requires less computational cost than a numerical search, is easily applicable for different models and orbits, and can cope with physical restrictions of the system, such as tether tension or maximum tether length. Furthermore, the resulting final states precisely coincide with the target values. To demonstrate that the proposed procedure can successfully generate proper input profiles, this paper presents an orbital transfer problem as an example, and verifies its effectiveness. The simulation results show that the maximum tether length is less than 5km, and that the tether tension is kept positive during the mission.
Rigid Body Rate Inference from Attitude Variation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.
2006-01-01
In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
Kinematic properties of the helicopter in coordinated turns
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Jeske, J. A.
1981-01-01
A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system joints (in push-pull systems) that are subject to angular motion, except those in ball and roller... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...
Lunar and Solar Torques on the Oceanic Tides
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.
1998-01-01
Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.
Spin force and torque in non-relativistic Dirac oscillator on a sphere
NASA Astrophysics Data System (ADS)
Shikakhwa, M. S.
2018-03-01
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.
A rough end for smooth microstate geometries
Marolf, Donald; Michel, Ben; Puhm, Andrea
2017-05-03
Supersymmetric microstate geometries with five non-compact dimensions have recently been shown by Eperon, Reall, and Santos (ERS) to exhibit a non-linear instability featuring the growth of excitations at an “evanescent ergosurface” of infinite redshift. We argue that this growth may be treated as adiabatic evolution along a family of exactly supersymmetric solutions in the limit where the excitations are Aichelburg-Sexl-like shockwaves. In the 2-charge system such solutions may be constructed explicitly, incorpo-rating full backreaction, and are in fact special cases of known microstate geometries. In a near-horizon limit, they reduce to Aichelburg-Sexl shockwaves in AdS 3 × S 3 propagatingmore » along one of the angular directions of the sphere. Noting that the ERS analysis is valid in the limit of large microstate angular momentum j, we use the above identification to interpret their instability as a transition from rare smooth microstates with large angular momentum to more typical microstates with smaller angular momentum. This entropic driving terminates when the angular momentum decreases to j~√n 1n 5 where the density of microstates is maximal. Finally, we argue that, at this point, the large stringy corrections to such microstates will render them non-linearly stable. We identify a possible mechanism for this stabilization and detail an illustrative toy model.« less
Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.
Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M
2017-03-01
This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Satellite-Based EMI Detection, Identification, and Mitigation
NASA Astrophysics Data System (ADS)
Stottler, R.; Bowman, C.
2016-09-01
Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.
A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Cox, Timothy H.
2005-01-01
A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.
Apollo 16 Mission Anomaly Report No. 1: Oxidizer Deservicing Tank Failure
NASA Technical Reports Server (NTRS)
1972-01-01
The command module reaction control system is emptied of all remaining propellant using ground support equipment designed to provide an acid/base neutralization of the propellant in both the liquid and gaseous phases so that it may be disposed of safely. During the deactivation operation of the oxidizer from the Apollo 16 command module on 7 May 1972, the scrubber tank of the decontamination unit exploded, destroying the ground support equipment unit and damaging the building that housed the operation. Only minor injuries were received by the personnel in the area and the command module was not damaged. Test results show that the failure was caused by an insufficient quantity of neutralizer for the quantity of oxidizer. This insufficiency lead to exothermic nitration-type reactions which produced large quantities of gas at a very high rate and failed the decontamination tank.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
Design considerations of manipulator and feel system characteristics in roll tracking
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Aponso, Bimal L.
1988-01-01
A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such control system features of typical modern fighter aircraft roll rate command mechanizations as: (1) force versus displacement sensing side-stick type manipulator, (2) feel force/displacement gradient, (3) feel system versus command prefilter dynamic lag, and (4) flight control system effective time delay. The experiment encompassed some 48 manipulator/filter/aircraft configurations. Displacement side-stick experiment results are given and compared with the previous force sidestick experiment results. Attention is focused on control bandwidth, excitement (peaking) of the neuromuscular mode, feel force/displacement gradient effects, time delay effects, etc. Section 5 is devoted to experiments with a center-stick in which force versus displacement sensing, feel system lag, and command prefilter lag influences on tracking performance and pilot preference are investigated.
1964-10-29
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. "The LEM pilot's compartment, with overhead window and the docking ring (idealized since the pilot cannot see it during the maneuvers), is shown docked with the full-scale Apollo Command Module." A.W. Vogeley described the simulator as follows: "The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect." -- Published in A.W. Vogeley, "Piloted Space-Flight Simulation at Langley Research Center," Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966;
46 CFR 162.018-7 - Flow rating tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow... the Commanding Officer, USCG Marine Safety Center. (b) [Reserved] [CGFR 68-82, 33 FR 18908, Dec. 18...
46 CFR 162.018-7 - Flow rating tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow... the Commanding Officer, USCG Marine Safety Center. (b) [Reserved] [CGFR 68-82, 33 FR 18908, Dec. 18...
46 CFR 162.018-7 - Flow rating tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow... the Commanding Officer, USCG Marine Safety Center. (b) [Reserved] [CGFR 68-82, 33 FR 18908, Dec. 18...
46 CFR 162.018-7 - Flow rating tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow... the Commanding Officer, USCG Marine Safety Center. (b) [Reserved] [CGFR 68-82, 33 FR 18908, Dec. 18...
46 CFR 162.018-7 - Flow rating tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow... the Commanding Officer, USCG Marine Safety Center. (b) [Reserved] [CGFR 68-82, 33 FR 18908, Dec. 18...
The MAP Spacecraft Angular State Estimation After Sensor Failure
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2003-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, the conclusions have a far reaching consequence.
Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E
2017-12-01
We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5 dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.
Limited sinus tarsi approach for intra-articular calcaneus fractures.
Kikuchi, Christian; Charlton, Timothy P; Thordarson, David B
2013-12-01
Operative treatment of calcaneal fractures has a historically high rate of wound complications, so the most optimal operative approach has been a topic of investigation. This study reviews the radiographic and clinical outcomes of the use of the sinus tarsi approach for operative fixation of these fractures with attention to the rate of infection and restoration of angular measurements. The radiographs and charts of 20 patients with 22 calcaneal fractures were reviewed to assess for restoration of angular and linear dimensions of the calcaneus as well as time to radiographic union. Secondary outcome measures included the rate of postoperative infection, osteomyelitis, revision surgeries, and nonunion. We found a statistically significant restoration of Böhler's angle and calcaneal width. Three of the 22 cases had a superficial wound infection. One patient had revision surgery for symptomatic hardware removal. There were no events of osteomyelitis, deep infection, malunion, or nonunion. We found that the sinus tarsi approach yielded similar outcomes to those reported in the literature. Level IV, retrospective case series.
NASA Technical Reports Server (NTRS)
1972-01-01
A dual spin stabilized TDR spacecraft design is presented for low data rate (LDR) and medium data rate (MDR) user spacecraft telecommunication relay service. The relay satellite provides command and data return channels for unmanned users together with duplex voice and data communication channels for manned user spacecraft. TDRS/ground links are in the Ku band. Command links are provided at UHF for LDR users and S band for MDR users. Voice communication channels are provided at UHF/VHF for LDR users and at S band for MDR users. The spacecraft is designed for launch on the Delta 2914 with system deployment planned for 1978. This volume contains a description of the overall TDR spacecraft configuration, a detailed description of the spacecraft subsystems, a reliability analysis, and a product effectiveness plan.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-03-01
One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers' visual and manual distractions with 'infotainment' technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual-manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox 'one-shot' voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory-vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers' interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-01-01
Abstract One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers’ visual and manual distractions with ‘infotainment’ technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual–manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox ‘one-shot’ voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory–vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers’ interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation. PMID:26269281
Experimental Studies of the Effect of Intent Information on Cockpit Traffic Displays
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Hansman, R. John
1997-01-01
Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: Position, Rate, Commanded State, and FMS (Flight Management System)-Path. The current TCAS (traffic collision avoidance systems) Display, which shows altitude rate in addition to current position and altitude, was used as a baseline and represents the lowest level of intent. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An initial experiment was run on the MIT (Massachusetts Institute of Technology) Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.
NASA Astrophysics Data System (ADS)
Wu, Haotian; Tang, Jin; Yu, Zhenliang; Yi, Jun; Chen, Shuqing; Xiao, Jiangnan; Zhao, Chujun; Li, Ying; Chen, Lin; Wen, Shuangchun
2017-06-01
Orbital angular momentum (OAM), an emerging and fascinating degree of freedom, has highlighted an innovation in communication and optical manipulation field. The beams with different OAM state, which manifest as the phase front ;twisting; of electromagnetic waves, are mutually orthogonal, which is exactly what a new freedom applied to practical communication eagers for. Herein, we proposed a novel millimeter-wave OAM modulation technique by electrically optical phase controlling. By modulating OAM and phase of optical-millimeter-wave synchronously, the multi-modulation: quadrature orbital angular momentum modulation (QOM) communication system at W band is structured and simulated, allowing a 50 Gbit/s signal transmitting with bit-error rates less than 10-4. Our work might suggest that OAM could be compounded to more complex multi-modulation signal, and revealed a new insight into OAM based high capacity wireless and radio-over-fiber communication.
Dynamical Model for Spindown of Solar-type Stars
NASA Astrophysics Data System (ADS)
Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer
2016-12-01
After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.
NASA Astrophysics Data System (ADS)
Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John
2013-03-01
We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.
Intracycle angular velocity control of cross-flow turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven L.; Polagye, Brian
2017-08-01
Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helled, R., E-mail: rhelled@ucla.edu
Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to {approx}2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertaintymore » in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.« less
NASA Astrophysics Data System (ADS)
Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli
2018-06-01
Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.
Communications processor for C3 analysis and wargaming
NASA Astrophysics Data System (ADS)
Clark, L. N.; Pless, L. D.; Rapp, R. L.
1982-03-01
This thesis developed the software capability to allow the investigation of c3 problems, procedures and methodologies. The resultant communications model, that while independent of a specific wargame, is currently implemented in conjunction with the McClintic Theater Model. It provides a computerized message handling system (C3 Model) which allows simulation of communication links (circuits) with user-definable delays; garble and loss rates; and multiple circuit types, addresses, and levels of command. It is designed to be used for test and evaluation of command and control problems in the areas of organizational relationships, communication networks and procedures, and combat doctrine or tactics.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
1994-03-01
Mr. Lou Knotts , Mr. Jeff Peer, and Mr. Eric Ohmit for their support. Mr. Knotts and Mr. Peer served as safety pilots during the inflight evaluations...5129 Taschner Peer 1.6 Griffith, Rauch Hoy, Mattedi 5 5130 Watrous Peer 1.5 Griffith, Rauch Hoy, Mattedi 6 5131 Taschner Knotts 1.5 Griffith, Rauch Hoy...Mattedi 7 5132 Watrous Knott : 1.6 Andreas, Hill Kipp 8 5133 Taschner Knotts 1.6 Andreas, Hill Wiflcox F.2 Pilot Commentary The pilot commentary from
Mariner Mars 1971 attitude control subsystem
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1974-01-01
The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.
Computer controllable synchronous shifting of an automatic transmission
Davis, R.I.; Patil, P.B.
1989-08-08
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements. 6 figs.
High-order orbital angular momentum mode generator based on twisted photonic crystal fiber.
Fu, Cailing; Liu, Shen; Wang, Ying; Bai, Zhiyong; He, Jun; Liao, Changrui; Zhang, Yan; Zhang, Feng; Yu, Bin; Gao, Shecheng; Li, Zhaohui; Wang, Yiping
2018-04-15
High-order orbital angular momentum (OAM) modes, namely, OAM +5 and OAM +6 , were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20 dB.
Variations in atmospheric angular momentum and the length of day
NASA Technical Reports Server (NTRS)
Rosen, R. D.; Salstein, D. A.
1982-01-01
Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described.
Experimental quantum cryptography with qutrits
NASA Astrophysics Data System (ADS)
Gröblacher, Simon; Jennewein, Thomas; Vaziri, Alipasha; Weihs, Gregor; Zeilinger, Anton
2006-05-01
We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre Gaussian modes with azimuthal index l + 1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10%.
GMTIFS: cryogenic rotary mechanisms for the GMT Integral-Field Spectrograph
NASA Astrophysics Data System (ADS)
Hart, John; Espeland, Brady; Bloxham, Gabe; Boz, Robert; Bundy, Dave; Davies, John; Fordham, Bart; Herald, Nick; Sharp, Rob; Vaccarella, Annino; Vest, Colin
2016-07-01
A representative range of the rotary mechanisms proposed for use in GMTIFS is described. All are driven by cryogenically rated stepper motors. For each mechanism, angular position is measured by means of eddy current sensors arranged to function as a resolver. These measure the linear displacement of a decentered aluminum alloy target in two orthogonal directions, from which angular position is determined as a function of the displacement ratio. Resolver function and performance is described. For each mechanism, the mechanical design is described and the adequacy of positioning repeatability assessed. Options for improvement are discussed.
NASA Astrophysics Data System (ADS)
Delhi Babu, R.; Ganesh, S.
2018-04-01
The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.
Bodien, Yelena G; Giacino, Joseph T; Edlow, Brian L
2017-01-01
Severe traumatic brain injury impairs arousal and awareness, the two components of consciousness. Accurate diagnosis of a patient's level of consciousness is critical for determining treatment goals, access to rehabilitative services, and prognosis. The bedside behavioral examination, the current clinical standard for diagnosis of disorders of consciousness, is prone to misdiagnosis, a finding that has led to the development of advanced neuroimaging techniques aimed at detection of conscious awareness. Although a variety of paradigms have been used in functional magnetic resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of these paradigms in the patient population is unknown. Here, we compare the rate of covert consciousness detection by hand squeezing and tennis playing motor imagery paradigms in 10 patients with traumatic disorders of consciousness [six male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive wakefulness syndrome, two minimally conscious without language function, and three minimally conscious with language function, per bedside examination with the Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, the hand squeezing paradigm detected covert command following in 7/10 and the tennis playing paradigm in 9/10 subjects. In patients who followed commands on the CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy (ACC) of detecting covert command following in patients who demonstrated this behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis paradigm performed better than the hand squeezing paradigm in healthy subjects, but in patients, the hand squeezing paradigm detected command following with greater ACC. These findings indicate that current fMRI motor imagery paradigms frequently fail to detect command following and highlight the need for paradigm optimization to improve the accuracy of covert consciousness detection.
Bodien, Yelena G.; Giacino, Joseph T.; Edlow, Brian L.
2017-01-01
Severe traumatic brain injury impairs arousal and awareness, the two components of consciousness. Accurate diagnosis of a patient’s level of consciousness is critical for determining treatment goals, access to rehabilitative services, and prognosis. The bedside behavioral examination, the current clinical standard for diagnosis of disorders of consciousness, is prone to misdiagnosis, a finding that has led to the development of advanced neuroimaging techniques aimed at detection of conscious awareness. Although a variety of paradigms have been used in functional magnetic resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of these paradigms in the patient population is unknown. Here, we compare the rate of covert consciousness detection by hand squeezing and tennis playing motor imagery paradigms in 10 patients with traumatic disorders of consciousness [six male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive wakefulness syndrome, two minimally conscious without language function, and three minimally conscious with language function, per bedside examination with the Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, the hand squeezing paradigm detected covert command following in 7/10 and the tennis playing paradigm in 9/10 subjects. In patients who followed commands on the CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy (ACC) of detecting covert command following in patients who demonstrated this behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis paradigm performed better than the hand squeezing paradigm in healthy subjects, but in patients, the hand squeezing paradigm detected command following with greater ACC. These findings indicate that current fMRI motor imagery paradigms frequently fail to detect command following and highlight the need for paradigm optimization to improve the accuracy of covert consciousness detection. PMID:29326648
On the role of surface friction in tropical cyclone intensification
NASA Astrophysics Data System (ADS)
Wang, Yuqing
2017-04-01
Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.
40 CFR 1065.405 - Test engine preparation and maintenance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... modulates an “operator demand” signal such as commanded fuel rate, torque, or power), choose the governor... in the standard-setting part, you may consider emission levels stable without measurement after 50 h...
Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*
GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.
2006-01-01
Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726
Builder 1 & C: Naval Training Command Rate Training Manual. Revised 1973.
ERIC Educational Resources Information Center
Naval Training Command, Pensacola, FL.
The training manual is designed to help Navy personnel meet the occupational qualifications for advancement to Builder First Class and Chief Builder. The introductory chapter provides information to aid personnel in their preparation for advancement and outlines the scope of the Builder rating and the types of billets to which he can be assigned.…
Aircrew Survival Equipmentman 3 & 2; Naval Training Command Rate Training Manual.
ERIC Educational Resources Information Center
Naval Training Command, Pensacola, FL.
The training manual is one of a series prepared for enlisted personnel of the Regular Navy and the Naval Reserve who are training for performance proficiency and studying for advancement in the Aircrew Survival Equipmentman (PR) rating. The illustrated and indexed manual focuses on the personnel parachute and other related survival equipment.…
ERIC Educational Resources Information Center
Countryman, Gene L.
This Rate Training Manual (Textbook) and Nonresident Career Course form a correspondence, self-study package to provide information related to tasks assigned to Builders Third and Second Class. Focus is on constructing, maintaining, and repairing wooden, concrete, and masonry structures, concrete pavement, and waterfront and underwater structures;…
Global Plate Velocities from the Global Positioning System
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven
1997-01-01
We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu
2015-05-15
Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-11-12
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.
New fundamental parameters for attitude representation
NASA Astrophysics Data System (ADS)
Patera, Russell P.
2017-08-01
A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.
Fetlock joint kinematics differ with age in Thoroughbred [was thoroughbred] racehorses.
Butcher, Michael T; Ashley-Ross, M A
2002-05-01
Fetlock joint kinematics during galloping in 2-, 3-, 4-, and 5-year-old Thoroughbreds in race training were quantified to determine if differences due to age could account for the observation that 2-year old Thoroughbred racehorses incur a high number of injuries to the bones and soft tissues in the distal forelimbs during training and at the outset of racing. Twelve Thoroughbred racehorses were videotaped in the sagittal plane at 250 frames/s during their daily galloping workout on a 7/8 mile sand-surface training track. Four galloping strides were recorded for each horse and subsequently digitized to determine fetlock joint angles of the leading forelimb during the limb support period of a stride. Four kinematic variables were measured from each stride's angular profile: angle of fetlock joint dorsi-flexion at mid-stance, negative angular velocity, positive angular velocity and time from hoof impact to mid-stance phase of limb support. The 2-year old Thoroughbreds had significantly quicker rates of dorsi-flexion of their fetlock joints than 3- (p=0.01), 4- (p=0.01), and 5-year old (p<0.01) Thoroughbreds following impact of the leading forelimb during moderate galloping (avg. 14 m/s). Higher rates of dorsi-flexion in young Thoroughbreds may reflect immaturity (lack of stiffness) of the suspensory apparatus tissues.
Optimization of Angular-Momentum Biases of Reaction Wheels
NASA Technical Reports Server (NTRS)
Lee, Clifford; Lee, Allan
2008-01-01
RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-01-01
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.
2012-12-01
Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.
Critical gravitational collapse with angular momentum. II. Soft equations of state
NASA Astrophysics Data System (ADS)
Gundlach, Carsten; Baumgarte, Thomas W.
2018-03-01
We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ <1 /9 . For 1 /9 <κ ≲0.49 , the critical solution has only one unstable, growing mode, which is spherically symmetric. For supercritical data it controls the black-hole mass, while for subcritical data it controls the maximum density. For κ <1 /9 , an additional axial l =1 mode becomes unstable. This controls either the black-hole angular momentum, or the maximum angular velocity. In theory, the additional unstable l =1 mode changes the nature of the black-hole threshold completely: at sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black-hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical phase transitions in thermodynamics) governing the black-hole mass and angular momentum, and, with further fine-tuning, eventually a finite black-hole mass almost everywhere on the threshold. In practice, however, the second unstable mode grows so slowly that we do not observe this breakdown of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).
A plausible neural circuit for decision making and its formation based on reinforcement learning.
Wei, Hui; Dai, Dawei; Bu, Yijie
2017-06-01
A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
Wrist sensor for warfighter status monitor
NASA Astrophysics Data System (ADS)
Chen, Wuping
2000-04-01
There is a pressing need to improve human status monitoring in the medical and military communities. The heart rate and breading rate are the most important human vital signs. The current heart rate and breading rate monitors are rather cumbersome, expensive, and usually confined to the intensive care unit or ambulatory setting. These techniques are therefore unavailable to certain applications, such as home care and military applications. The purpose of this work is to develop new methods and new technologies for heart rate and breathing rate monitoring. To accomplish this task, a novel optical acoustic laser sensor (OALS) is characterized and used to generate an optical signal corresponding to human heart beat and breathing. An application specific integrated circuit (ASIC) is developed for this unique compact human status monitor Extensive experimental data analysis and simulation are conducted to investigate robust digital signal processing (DSP) methods. The Gauss-Hermite wavelet transform (GHWT) is utilized as a time-frequency representative technique to provide a method for the detection of the very low frequency heart rate and breathing rate from the large and noisy biomedical lasergram (BLG) signal. A 915MHz RF transceiver provides a reliable wireless link for the monitor to receive commands or transmit the measurement results to a remote commander center. A complete micro-instrument based on the ideas and methods above are developed and tested. The results show that the heart rate and breathing rate could be measured under difficult environmental situations.
MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-11-01
When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due tomore » anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.« less
The {sup 18}O(d,p){sup 19}O reaction and the ANC method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burjan, V.; Hons, Z.; Kroha, V.
2014-05-09
The neutron capture rate {sup 18}O(n,γ){sup 19}O is important for analysis of nucleosynthesis in inhomogeneous Big Bang models and also for models of processes in massive red giant stars and AGB stars. Angular distributions of the {sup 18}O(d,p){sup 19}O reaction were measured at a deuteron energy of 16.3 MeV in NPI in Řež, Czech Republic, with the aim to determine Asymptotic Normalization Coefficients which can then be used for indirect determination of the direct contribution to the {sup 18}O(n,γ){sup 19}O process. In the experiment, the gas target with {sup 18}O isotope of high purity 99.9 % was used thus eliminatingmore » any contaminating reactions. Reaction products were measured by the set of 8 ΔE-E telescopes consisting of thin and thick silicon surface-barrier detectors. Angular distributions of proton transfers corresponding to 6 levels of {sup 19}O up to the 4.1093 MeV excitation energy were determined. The analysis of angular distributions in the angular range from 6 to 64 degree including also the angular distribution of elastically scattered deuterons was carried out by means of ECIS and DWUCK codes. From the determined ANCs the direct contribution to the radiative capture {sup 18}O(n,γ){sup 19}O was deduced and compared with existing direct measurements.« less
Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.
Damiano, Diane L; Laws, Edward; Carmines, Dave V; Abel, Mark F
2006-01-01
This study investigated the effects of spasticity in the hamstrings and quadriceps muscles on gait parameters including temporal spatial measures, knee position, excursion and angular velocity in 25 children with spastic diplegic cerebral palsy (CP) as compared to 17 age-matched peers. While subjects were instructed to relax, an isokinetic device alternately flexed and extended the left knee at one of the three constant velocities 30 degrees/s, 60 degrees/s and 120 degrees/s, while surface electromyography (EMG) electrodes over the biceps femoris and the rectus femoris recorded muscle activity. Patients then participated in 3D gait analysis at a self-selected speed. Results showed that, those with CP who exhibited heightened stretch responses (spasticity) in both muscles, had significantly slower knee angular velocities during the swing phase of gait as compared to those with and without CP who did not exhibit stretch responses at the joint and the tested speeds. The measured amount (torque) of the resistance to passive flexion or extension was not related to gait parameters in subjects with CP; however, the rate of change in resistance torque per unit angle change (stiffness) at the fastest test speed of 120 degrees/s showed weak to moderate relationships with knee angular velocity and motion during gait. For the subset of seven patients with CP who subsequently underwent a selective dorsal rhizotomy, knee angular extension and flexion velocity increased post-operatively, suggesting some degree of causality between spasticity and movement speed.
Angular momentum transport by heat-driven g-modes in slowly pulsating B stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.
2018-03-01
Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.
NASA Astrophysics Data System (ADS)
Ade, N.; Nam, T. L.; Mhlanga, S. H.
2013-05-01
Although the near-tissue equivalence of diamond allows the direct measurement of dose for clinical applications without the need for energy-corrections, it is often cited that diamond detectors require pre-irradiation, a procedure necessary to stabilize the response or sensitivity of a diamond detector before dose measurements. In addition it has been pointed out that the relative dose measured with a diamond detector requires dose rate dependence correction and that the angular dependence of a detector could be due to its mechanical design or to the intrinsic angular sensitivity of the detection process. While the cause of instability of response has not been meticulously investigated, the issue of dose rate dependence correction is uncertain as some studies ignored it but reported good results. The aims of this study were therefore to investigate, in particular (1) the major cause of the unstable response of diamond detectors requiring pre-irradiation; (2) the influence of dose rate dependence correction in relative dose measurements; and (3) the angular dependence of the diamond detectors. The study was conducted with low-energy X-rays and electron therapy beams on HPHT and CVD synthesized diamonds. Ionization chambers were used for comparative measurements. Through systematic investigations, the major cause of the unstable response of diamond detectors requiring the recommended pre-irradiation step was isolated and attributed to the presence and effects of ambient light. The variation in detector's response between measurements in light and dark conditions could be as high as 63% for a CVD diamond. Dose rate dependence parameters (Δ values) of 0.950 and 1.035 were found for the HPHT and CVD diamond detectors, respectively. Without corrections based on dose rate dependence, the relative differences between depth-doses measured with the diamond detectors and a Markus chamber for exposures to 7 and 14 MeV electron beams were within 2.5%. A dose rate dependence correction using the Δ values obtained seemed to worsen the performance of the HPHT sample (up to about 3.3%) but it had a marginal effect on the performance of the CVD sample. In addition, the angular response of the CVD diamond detector was shown to be comparable with that of a cylindrical chamber. This study concludes that once the responses of the diamond detectors have been stabilised and they are properly shielded from ambient light, pre-irradiation prior to each measurement is not required. Also, the relative dose measured with the diamond detectors do not require dose rate dependence corrections as the required correction is only marginal and could have no dosimetric significance.
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Sue, Chung-Yang
2010-02-01
Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.
Kelvin-Helmholtz instability of counter-rotating discs
NASA Astrophysics Data System (ADS)
Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.
2015-01-01
Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.
Orientation illusions and heart-rate changes during short-radius centrifugation
NASA Technical Reports Server (NTRS)
Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.
2001-01-01
Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested 20 subjects who executed yaw and pitch head movements while rotating at constant angular velocity. They were supine with their main body axis perpendicular to earth gravity. The head was placed at the centrifuge's axis of rotation. Head movements produced a transient elevation of heart-rate. All observers reported head-contingent sensations of body tilt although their bodies remained supine. Mostly, the subjective sensations conform to a model based on semicircular canal responses to angular acceleration. However, some surprising deviations from the model were found. Also, large inter-individual differences in direction, magnitude, and quality of the illusory body tilt were observed. The results have implications for subject screening and prediction of subjective tolerance for centrifugation.
Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria
2018-02-01
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.
A Predictive Validity Study of an Assessment Center for Research and Development Supervisors.
1981-09-01
Implementation, to All AFSC Organi- zation Commanders, 24 July 1974. Szilagyi , Andrew D., Jr., and Marc J. Wallace , Jr. Organ- izational Behavior and...vali- dation of’ projective personality tests. These tests attempt to assess a person through his or her fantasies and inter- pretations ( Szilagyi ...leniency, strictness, and halo errors ( Szilagyi and W’allace, 1980). Finally, a variant to supervisory ratings are jeer ratings. Peer ratings are
Spiral Orbit Tribometry. 2; Evaluation of Three Liquid Lubricants in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)
2002-01-01
The coefficients of friction and relative degradation rates of three lubricants run in the boundary regime in vacuum are evaluated in a Spiral Orbit Tribometer. This tribometer subjected the lubricants to rolling contact conditions similar to those found in angular contact ball bearings. A multiply alkylated cyclopentane (MAC) hydrocarbon lubricant suffered degradation at a rate almost two orders of magnitude less than the degradation rate of two perfluoropolyalkylether (PFPE) lubricants.
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2012 CFR
2012-01-01
... helicopter is not used during the practical test for a type rating in a helicopter (except for preflight... and the applicant must meet one of the following requirements— (1) Hold a type rating in a helicopter... appointed by the U.S. Armed Forces as pilot in command of a helicopter; (3) Have 500 hours of flight time in...
ERIC Educational Resources Information Center
Naval Education and Training Program Development Center, Pensacola, FL.
This document contains a U.S. Navy Rate Training Manual and Nonresident Career Course which form a self-study package to teach the theoretical knowledge and mental skills needed by the Opticalman Third Class and Opticalman Second Class. (Opticalmen maintain, repair, and overhaul telescopic alidades, azimuth and bearing circles, binoculars,…
A New Technique for Compensating Joint Limits in a Robot Manipulator
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Hickman, Andre; Guo, Ten-Huei
1996-01-01
A new robust, optimal, adaptive technique for compensating rate and position limits in the joints of a six degree-of-freedom elbow manipulator is presented. In this new algorithm, the unmet demand as a result of actuator saturation is redistributed among the remaining unsaturated joints. The scheme is used to compensate for inadequate path planning, problems such as joint limiting, joint freezing, or even obstacle avoidance, where a desired position and orientation are not attainable due to an unrealizable joint command. Once a joint encounters a limit, supplemental commands are sent to other joints to best track, according to a selected criterion, the desired trajectory.
An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test
NASA Technical Reports Server (NTRS)
Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.
2017-01-01
NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.
Soviet and American ASTP crew sample candidate food items
NASA Technical Reports Server (NTRS)
1974-01-01
Candidate food items being considered for the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) mission are sampled by three ASTP crewmen in bldg 4 at JSC. They are, left to right, Cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP crew; Astronaut Vance D. Brand, command module pilot of the American ASTP crew; and Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP crew. Kubasov is marking a food rating chart on which the crewmen mark their choices, likes and dislikes of the food being sampled. Brand is drinking orange juice from an accordian-like dispenser. Leonov is eating butter cookies.
Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yamada, Masaki; ICRR, University of Tokyo, Kashiwa, 277-8582
2014-02-03
I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less
Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yamada, Masaki, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: yamadam@icrr.u-tokyo.ac.jp
2014-02-01
I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less
Mathematical model for gyroscope effects
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2015-05-01
Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).
Protoplanetary Disks as (Possibly) Viscous Disks
NASA Astrophysics Data System (ADS)
Rafikov, Roman R.
2017-03-01
Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending from 10-4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density) nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α and the central mass accretion rate \\dot{M}. This correlation is unlikely to result from the direct physical effect of \\dot{M} on internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar \\dot{M} from the global disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the variation of \\dot{M}. (2) The central \\dot{M} is decoupled from the global accretion rate as a result of an instability, or mass accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic winds or spiral density waves.
Green-Kubo relations for the viscosity of biaxial nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sarman, Sten
1996-09-01
We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.
Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator
Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong
2013-01-01
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033
The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter.
Schyboll, Felix; Jaekel, Uwe; Weber, Bernd; Neeb, Heiko
2018-02-20
Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R 2 *(= 1/T 2 *) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R 2 *, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R 1 (= 1/T 1 ), as well as the apparent water content. For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R 1 and apparent water content. The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field. These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R 1 and apparent water content in white matter.
Supranova Events from Spun-up Neutron Stars: An Explosion in Search of an Observation
NASA Astrophysics Data System (ADS)
Vietri, Mario; Stella, Luigi
1999-12-01
We consider a formation scenario for supramassive neutron stars (SMNSs) that takes place through mass and angular momentum transfer from a close companion during a low-mass X-ray binary phase, with the ensuing suppression of the magnetic field. After the end of the mass transfer phase, SMNSs will lose, through magnetic dipole radiation, most of their angular momentum, triggering the star's collapse to a black hole. We discuss the rate of occurrence of these collapses and propose that these stars, because of the baryon-clear environment in which the implosion/explosion takes place, are the originators of gamma-ray bursts.
Linear momentum, angular momentum and energy in the linear collision between two balls
NASA Astrophysics Data System (ADS)
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R
2014-01-01
Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim
2016-10-01
Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.
Interagency Evaluation of the Section 1206 Global Train and Equip Program
2009-08-31
Capabilities, Joint Staff, U.S. Africa Command, U.S. Central Command, U.S Joint Forces Command, U.S. Pacific Command, U.S. Southern Command, U.S. Special...Intensity Conflict & Interdependent Capabilities; Commanders of U.S. Africa Command, U.S. Central Command, U.S. Joint Forces Command, U.S. Pacific... Central Command, commented that coordinating the Section 1206 project proposal with the partner nation prior to submission would inflate the
Optical Studies of Orbital Debris at GEO Using Two Telescopes
NASA Technical Reports Server (NTRS)
Seitzer, P.; Abercromby, K. J.; Rodriquez,H. M.; Barker, E.
2008-01-01
Beginning in March, 2007, optical observations of debris at geosynchronous orbit (GEO) were commenced using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan's 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope's field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected on MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope then follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. Objects fainter than 15th are largely uncataloged and have a completely different angular rate distribution than brighter objects. Combining the information obtained for both faint and bright objects yields a more complete picture of the debris environment rather than just concentrating on the faint debris. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. This paper reports on results from two 14 night runs with both telescopes: in March and November 2007: (1) A significant fraction of objects fainter than R = 15th have eccentric orbits (e > 0.1) (2) Virtually all objects selected on the basis of angular rate are in the GEO and GTO regimes. (3) Calibrated magnitudes and colors in BVRI were obtained for many objects fainter than R = 15th magnitude. This work is supported by NASA's Orbital Debris Program Office, Johnson Space Center, Houston, Texas, USA.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-08-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called SimBOX that will use some of the real-time infrastructure (RTI) functionality from the current military real-time simulation architecture. The uniqueness of the approach is to provide a "plug and play environment" for various system components that run at various data rates (Hz) and the ability to replicate or transfer C2 operations to various subsystems in a scalable manner. This is possible by providing a communication bus called "Distributed Shared Data Bus" and a distributed computing environment used to scale the control needs by providing a self-contained computing, data logging and control function module that can be rapidly reconfigured to perform different functions. This kind of software-enabled control is very much needed to meet the needs of future aerospace command and control functions.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-09-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called
Analysis of a flare-director concept for an externally blown flap STOL aircraft
NASA Technical Reports Server (NTRS)
Middleton, D. B.
1974-01-01
A flare-director concept involving a thrust-required flare-guidance equation was developed and tested on a moving-base simulator. The equation gives a signal to command thrust as a linear function of the errors between the variables thrust, altitude, and altitude rate and corresponding values on a desired reference flare trajectory. During the simulator landing tests this signal drove either the horizontal command bar of the aircraft's flight director or a thrust-command dot on a head-up virtual-image display of a flare director. It was also used as the input to a simple autoflare system. An externally blown flap STOL (short take-off and landing) aircraft (with considerable stability and control augmentation) was modeled for the landing tests. The pilots considered the flare director a valuable guide for executing a proper flare-thrust program under instrument-landing conditions, but were reluctant to make any use of the head-up display when they were performing the landings visually.
Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.
Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon
2002-11-30
Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.
Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam
Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; ...
2014-11-06
The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
5. Command center doors at command center entry, building 501, ...
5. Command center doors at command center entry, building 501, looking north - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE
Dynamics of the G-excess illusion
NASA Technical Reports Server (NTRS)
Baylor, K. A.; Reschke, M.; Guedry, F. E.; Mcgrath, B. J.; Rupert, A. H.
1992-01-01
The G-excess illusion is increasingly recognized as a cause of aviation mishaps especially when pilots perform high-speed, steeply banked turns at low altitudes. Centrifuge studies of this illusion have examined the perception of subject orientation and/or target displacement during maintained hypergravity with the subject's head held stationary. The transient illusory perceptions produced by moving the head in hypergravity are difficult to study onboard centrifuges because the high angular velocity ensures the presence of strong Coriolis cross-coupled semicircular canal effects that mask immediate transient otolith-organ effects. The present study reports perceptions following head movements in hypergravity produced by high-speed aircraft maintaining a banked attitude with low angular velocity to minimize cross-coupled effects. Methods: Fourteen subjects flew on the NASA KC-135 and were exposed to resultant gravity forces of 1.3, 1.5, and 1.8 G for 3 minute periods. On command, seated subjects made controlled head movements in roll, pitch, and yaw at 30 second intervals both in the dark and with faint targets at a distance of 5 feet. Results: head movement produced transient perception of target displacement and velocity at levels as low as 1.3 G. Reports of target velocity without appropriate corresponding displacement were common. At 1.8 G when yaw head movements were made from a face down position, 4 subjects reported oscillatory rotational target displacement with fast and slow alternating components suggestive of torsional nystagmus. Head movements evoked symptoms of nausea in most subjects, with 2 subjects and 1 observer vomiting. Conclusions: The transient percepts present conflicting signals, which introduced confusion in target and subject orientation. Repeated head movements in hypergravity generate nausea by mechanisms distinct from cross-coupled Coriolis effects.
Angular displacement measuring device
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1992-01-01
A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
NASA Astrophysics Data System (ADS)
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
The influence of flywheel micro vibration on space camera and vibration suppression
NASA Astrophysics Data System (ADS)
Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo
2018-02-01
Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.
Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.
Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy
2006-11-16
The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.
The MERADCOM (Mobility Equipment Research and Development Command) in vitro Biosensor Program.
1982-06-01
a negligible decay rate at ATP concentrations less than 1 jim." This development has further increased the great value of the firefly luciferase...formation NADH molecules at a high rate which results in an ampli- fied light signal of the bacterial luciferase readout system. As above, the light...exclusively the oxidation of O-D-glucose. Enzymes are also efficient catalysts facilitating chemical reactions at rates which range from 10 thousand to 1
Mapping Autonomous System’s Router Level Topology in IPv6
2007-06-01
useful and is called rate limiting. Rate limiting sends enough probes to one of the alias addresses to cause the router to begin rate limiting the...network. The second key capability required was alias and anonymous resolution: if there was no method of making these functions happen then any graph...command, then port unreachable responses were received by probes through d5 to interface d13 or d5. Again, it is believed that this happened
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
1992-01-01
The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document. The EC&M Software Maintenance Manual, Version 1.0 (NASA-CR-189161) is a programmer's guide that describes current implementation of the EC&M software from a technical perspective. An overview of the EC&M software, computer algorithms, format representation, and computer hardware configuration are included in the manual.
Mortality Among Confirmed Lassa Fever Cases During the 2015-2016 Outbreak in Nigeria.
Buba, Maryam Ibrahim; Dalhat, Mahmood Muazu; Nguku, Patrick Mboya; Waziri, Ndadilnasiya; Mohammad, Jibreel Omar; Bomoi, Idriss Mohammed; Onyiah, Amaka Pamela; Onwujei, Jude; Balogun, Muhammad Shakir; Bashorun, Adebobola Toluwalashe; Nsubuga, Peter; Nasidi, Abdulsalami
2018-02-01
To determine factors associated with mortality among confirmed Lassa fever cases. We reviewed line lists and clinical records of laboratory-confirmed cases of Lassa fever during the 2016 outbreak in Nigeria to determine factors associated with mortality. We activated an incident command system to coordinate response. We documented 47 cases, 28 of whom died (case fatality rate [CFR] = 59.6%; mean age 31.4 years; SD = ±18.4 years). The youngest and the oldest were the most likely to die, with 100% mortality in those aged 5 years or younger and those aged 55 years or older. Patients who commenced ribavirin were more likely to survive (odds ratio [OR] = 0.1; 95% confidence interval [CI] = 0.03, 0.50). Fatality rates went from 100% (wave 1) through 69% (wave 2) to 31% (wave 3; χ 2 for linear trend: P < .01). Patients admitted to a health care center before incident command system activation were more likely to die (OR = 4.4; 95% CI = 1.1, 17.6). The only pregnant patient in the study died postpartum. Effective, coordinated response reduces mortality from public health events. Attention to vulnerable groups during disasters is essential. Public Health Implications. Activating an incident command system improves the outcome of disasters in resource-constrained settings.
Experimental Studies of Intent Information on Cockpit Traffic Displays
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Hansman, R. John, Jr.
1997-01-01
Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: No Intent, Rate, Commanded State, and Flight Management System (FMS)-Path. The TCAS Display was used as a baseline and represents the No Intent Level. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An experiment was run on the MIT Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.
Joint Chiefs of Staff > Media > Photos
U.S. Army Gen. Curtis M. Scaparrotti, left, Commander of U.S. European Command and Supreme Allied , Commander of U.S. European Command and Supreme Allied Commander, Europe; speaks after receiving the . U.S. Army Gen. Curtis M. Scaparrotti, Commander of U.S. European Command and Supreme Allied Commander
MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion
NASA Astrophysics Data System (ADS)
Lii, Patrick; Romanova, Marina; Lovelace, Richard
2014-01-01
Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.
Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors
Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian
2016-01-01
Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023
Lunar Reconnaissance Orbiter (LRO) Thruster Control Mode Design and Flight Experience
NASA Technical Reports Server (NTRS)
Hsu, Oscar C.
2010-01-01
National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, designed, built, tested, and launched the Lunar Reconnaissance Orbiter (LRO) from Cape Canaveral Air Force Station on June 18, 2009. The LRO spacecraft is the first operational spacecraft designed to support NASA s return to the Moon, as part of the Vision for Space Exploration. LRO was launched aboard an Atlas V 401 launch vehicle into a direct insertion trajectory to the Moon. Twenty-four hours after separation the propulsion system was used to perform a mid-course correction maneuver. Four days after the mid-course correction a series of propulsion maneuvers were executed to insert LRO into its commissioning orbit. The commission period lasted eighty days and this followed by a second set of thruster maneuvers that inserted LRO into its mission orbit. To date, the spacecraft has been gathering invaluable data in support of human s future return to the moon. The LRO Attitude Control Systems (ACS) contains two thruster based control modes: Delta-H and Delta-V. The design of the two controllers are similar in that they are both used for 3-axis control of the spacecraft with the Delta-H controller used for momentum management and the Delta-V controller used for orbit adjust and maintenance maneuvers. In addition to the nominal purpose of the thruster modes, the Delta-H controller also has the added capability of performing a large angle slew maneuver. A suite of ACS components are used by the thruster based control modes, for both initialization and control. For initialization purposes, a star tracker or the Kalman Filter solution is used for providing attitude knowledge and upon entrance into the thruster based control modes attitude knowledge is provided via rate propagation using a inertial reference unit (IRU). Rate information for the controller is also supplied by the IRU. Three-axis control of the spacecraft in the thruster modes is provided by eight 5-lbf class attitude control thrusters configured in two sets of four thrusters for redundancy purposes. Four additional 20-lbf class thrusters configured in two sets of two thrusters are used for Lunar Orbit Insertion maneuvers. The propulsion system is one the few systems on-board the LRO spacecraft that has built in redundancy. The Delta-H controller consists of a Proportional-Derivative (PD) controller with a structural filter on the thrusters and a Proportional controller on the reaction wheels. The PD control that employs the thrusters is used for attitude and rate control. The Proportional controller on the reaction wheels is used for commanding the wheels to a new momentum state. The ground commands used for the Delta-H controller are the system momentum vector, reaction wheel momentum, maximum expected command time, and which set of attitude control thrusters to use. The ability to command both the system momentum vector and reaction wheel momentum in the Delta-H controller provides both a capability and an additional source of operator error. Large angle slews via the Delta-H controller is achievable via this commands because these commands are used for the exit mode criteria. Setting these commands to non-consistent values prevents the mode from exiting nominally.
32 CFR 700.1053 - Commander of a task force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Commander of a task force. 700.1053 Section 700... Command Detail to Duty § 700.1053 Commander of a task force. (a) A geographic fleet commander, and any other naval commander, may detail in command of a task force, or other task command, any eligible...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...
2017-10-03
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-10-01
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.
Chirality and angular momentum in optical radiation
NASA Astrophysics Data System (ADS)
Coles, Matt M.; Andrews, David L.
2012-06-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.
Hureau, Thomas J; Weavil, Joshua C; Thurston, Taylor S; Broxterman, Ryan M; Nelson, Ashley D; Bledsoe, Amber D; Jessop, Jacob E; Richardson, Russell S; Wray, D Walter; Amann, Markus
2018-04-15
We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit μ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P > 0.4). In terms of spontaneous carotid baroreflex responsiveness, FENT did not alter the change in MAP or HR responses to NP (+13 ± 5 mmHg, P = 0.85; +9 ± 3 bpm; P = 0.99) or NS (-13 ± 5 mmHg, P = 0.99; -24 ± 11 bpm; P = 0.49) at rest or during either exercise protocol, which were of a remarkably similar magnitude to rest. In contrast, FENT administration reduced the exercise-induced resetting of the operating point for MAP and HR during both EVO (116 ± 10 mmHg to 100 ± 15 mmHg and 93 ± 14 bpm to 82 ± 10 bpm) and VOL (107 ± 13 mmHg to 100 ± 17 mmHg and 89 ± 10 bpm to 72 ± 10 bpm) exercise bouts. Together, these findings document that group III/IV muscle afferent feedback is critical for the resetting of the carotid baroreflex MAP and HR operating points, independent of exercise-induced changes in central command, but not for spontaneous carotid baroreflex responsiveness. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Exploring Granular Flows at Intermediate Velocities
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; van der Elst, N.
2012-12-01
Geophysical and geomorphological flows often encompass a wide range of strain rates. Landslides accelerate from nearly static conditions to velocities in the range of meters/seconds. The rheology of granular flows for the end-members is moderately well-understood, but the constitutive low at intermediate velocities is largely unexplored. Here we present evidence that granular flows transition through a regime in which internally generated acoustic waves play a critical role in controlling rheology. In laboratory experiments on natural sand under shear in a commercial rheometer, we observe that the steady-state flows at intermediate velocities are compacted relative to the end members. In a confined volume, this compaction results in a decrease in stress on the boundaries. We establish the key role of the acoustic waves by measuring the noise generated by the shear flows with an accelerometer and then exciting the flow with similar amplitude noise under lower shear rate conditions. The observed compaction for a given amplitude noise is the same in both cases, regardless of whether the noise is generated internally by the grains colliding or artificially applied externally. The boundaries of this acoustically controlled regime can be successfully predicted through non-dimensional analysis balancing the overburden, acoustic pressure and granular inertial terms. In our laboratory experiments, this regime corresponds to 0.1 to 10 cm/s. The controlling role of acoustic waves in intermediate velocities is significant because: (1) Geological systems must pass through this regime on their route to instability. (2) Acoustic waves are much more efficiently generated by angular particles, likely to be found in natural samples, than by perfectly spherical particles, which are more tractable for laboratory and theoretical studies. Therefore, this regime is likely to be missed in many analog and computational approaches. (3) Different mineralogies and shapes result in different noise generation. Therefore, there is a potential to extrapolate and predict rheological behavior of an active flow through studies of the recoverable granular products.Steady-state thickness vs. shear rate for angular sand and glass beads. Individual curves represent multiple up-going and down-going velocity ramps, and thick error bars show means and standard deviations between runs. Thickness is independent of shear rate at low shear rates, and strongly dependent on shear rate for intermediate and high shear rates. Compaction is observed at intermediate shear rates for angular sand, but not for smooth glass beads.
The C3-System User. Volume II. Workshop Notes
1977-02-01
system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 700.703 - To announce assumption of command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false To announce assumption of command. 700.703... Chief and Other Commanders Titles and Duties of Commanders § 700.703 To announce assumption of command. (a) Upon assuming command, commanders shall so advise appropriate superiors, and the units of their...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
32 CFR 536.8 - Responsibilities and operations of command claims services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Responsibilities and operations of command claims... operations of command claims services. (a) Chiefs of command claims services. Chiefs of command claims... Commander USARCS, and assigned an office code. However, the chief of a command claims service may...
Development of an Inertial Measurement Unit for Unmanned Aerial Vehicles
2011-02-01
Tri-axis accelerometers Dual Angular rate gyros Micro-Controller board Battery Rubber isolation stands wireless comunication module (XBee...University. Special thanks to Mr. Jesse McAvoy & Mr. Laith Sahawneh for all the support and valuable scientific contributions. gxk gyk gzk gxb
Analysis of Recruit Attrition from the Navy’s Delayed Entry Program and Recruit Training Command
2007-12-01
attrition rates were: being reclassified to a new job while in DEP, being 17 years old, being a single or married woman , being in DEP for a longer time...a new job while in DEP, being 19 years old or older, being a single or married woman , being in DEP for a longer time, enlisting in each fiscal...different ratings have different retention rates based on a variety of factors such as: job characteristics, promotion opportunities, sea- or-shore
The United States Navy Arctic Roadmap for 2014 to 2030
2014-02-01
of the Oceanographer of the Navy; the Chief of Naval Research; Commander, Naval Meteorology and Oceanography Command; Commander, Office of Naval...Q3, FY14 Q3, FY15 FY15-18 FY18 2.3.4: Improve traditional meteorological forecast capability in the polar regions through the...CNE Commander Naval Forces Europe CNIC Commander Navy Installations Command CNMOC Commander Naval Meteorology and Oceanography Command CNO Chief
Variations in the rotation of the earth
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.
Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
NASA Technical Reports Server (NTRS)
White, P. R.; Scott, D. R. (Inventor)
1981-01-01
A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.
AXIS - A High Angular Resoltuion X-ray Probe Concept Study
NASA Astrophysics Data System (ADS)
Mushotzky, Richard; AXIS Study Team
2018-01-01
AXIS is a probe-class concept under study to the 2020 Decadal survey. AXIS will extend and enhance the science of high angular resolution x-ray imaging and spectroscopy in the next decade with ~0.3" angular resolution over a 7' radius field of view and an order of magnitude more collecting area than Chandra in the 0.3-12 keV band with a cost consistent with a probe.These capabilities enable major advances in a wide range of science such as: (1) measuring the event horizon scale structure in AGN accretion disks and the spins of supermassive black holes through observations of gravitationally-microlensed quasars; (ii) determining AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) fueling of AGN by probing the Bondi radius of over 20 nearby galaxies; (iv) hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with the ELTs, LSST, ALMA, WFIRST and ATHENA. AXIS utilizes breakthroughs in the construction of lightweight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout rate detectors allowing a robust and cost effective design. The AXIS team welcomes input and feedback from the community in preparation for the 2020 Decadal review.
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 3 2012-07-01 2009-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 3 2013-07-01 2013-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 3 2011-07-01 2009-07-01 true Commanders of major Army commands. 536.14 Section... CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 3 2014-07-01 2014-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...
32 CFR 536.14 - Commanders of major Army commands.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 3 2014-07-01 2014-07-01 false Commanders of major Army commands. 536.14... ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.14 Commanders of major Army commands... respective commands for compliance with the responsibilities assigned in §§ 536.9 and 536.10. (b) Assist...
32 CFR 536.12 - Commanding General, U.S. Army Medical Command.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 3 2013-07-01 2013-07-01 false Commanding General, U.S. Army Medical Command... AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.12 Commanding General, U.S. Army Medical Command. (a) After consulting with the Commander USARCS on the selection of medical claims...