Science.gov

Sample records for angular resolution approximately

  1. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  2. Angular resolution of air-shower array-telescopes

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  3. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.

    1993-01-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70[sub [minus]0.06][sup [plus]0.07] degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a [approximately]25% improvement in the resolution. The systematic pointing error of the array is less than 0.4[degree].

  4. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.; The CYGNUS Collaboration

    1993-05-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70{sub {minus}0.06}{sup {plus}0.07} degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a {approximately}25% improvement in the resolution. The systematic pointing error of the array is less than 0.4{degree}.

  5. Microbeam High Angular Resolution Diffraction Applied to Optoelectronic Devices

    SciTech Connect

    Kazimirov, A.; Bilderback, D. H.; Sirenko, A. A.; Cai, Z.-H.; Lai, B.

    2007-01-19

    Collimating perfect crystal optics in a combination with the X-ray focusing optics has been applied to perform high angular resolution microbeam diffraction and scattering experiments on micron-size optoelectronic devices produced by modern semiconductor technology. At CHESS, we used capillary optics and perfect Si/Ge crystal(s) arrangement to perform X-ray standing waves, high angular-resolution diffraction and high resolution reciprocal space mapping analysis. At the APS, 2ID-D microscope beamline, we employed a phase zone plate producing a beam with the size of 240 nm in the horizontal plane and 350 nm in the vertical (diffraction) plane and a perfect Si (004) analyzer crystal to perform diffraction analysis of selectively grown InGaAsP and InGaAlAs-based waveguides with arc sec angular resolution.

  6. Novel Approaches to Adaptive Angular Approximations in Computational Transport

    SciTech Connect

    Marvin L. Adams; Igor Carron; Paul Nelson

    2006-06-04

    The particle-transport equation is notoriously difficult to discretize accurately, largely because the solution can be discontinuous in every variable. At any given spatial position and energy E, for example, the transport solution  can be discontinuous at an arbitrary number of arbitrary locations in the direction domain. Even if the solution is continuous it is often devoid of smoothness. This makes the direction variable extremely difficult to discretize accurately. We have attacked this problem with adaptive discretizations in the angle variables, using two distinctly different approaches. The first approach used wavelet function expansions directly and exploited their ability to capture sharp local variations. The second used discrete ordinates with a spatially varying quadrature set that adapts to the local solution. The first approach is very different from that in today’s transport codes, while the second could conceivably be implemented in such codes. Both approaches succeed in reducing angular discretization error to any desired level. The work described and results presented in this report add significantly to the understanding of angular discretization in transport problems and demonstrate that it is possible to solve this important long-standing problem in deterministic transport. Our results show that our adaptive discrete-ordinates (ADO) approach successfully: 1) Reduces angular discretization error to user-selected “tolerance” levels in a variety of difficult test problems; 2) Achieves a given error with significantly fewer unknowns than non-adaptive discrete ordinates methods; 3) Can be implemented within standard discrete-ordinates solution techniques, and thus could generate a significant impact on the field in a relatively short time. Our results show that our adaptive wavelet approach: 1) Successfully reduces the angular discretization error to arbitrarily small levels in a variety of difficult test problems, even when using the

  7. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  8. X-ray astronomy with ultra-high-angular resolution

    NASA Astrophysics Data System (ADS)

    Braig, Christoph; Predehl, Peter

    2004-10-01

    We present new schemes for a next-generation X-ray telescope for the energy range between approximately 1 and 10 keV providing an angular resolution of at least 1 milli-arcsec. Its technology will be based on diffractive transmission optics, e.g. Fresnel zone plates and their derivatives. Beside near-diffraction limited imaging, these devices hold the potential of a large collecting area well beyond 10 square meters at a simple and lightweight construction, compared to conventional mirror telescopes. However, there are drawbacks. Firstly the intrinsically long focal lengths do require separation and precise formation flight of lens and detector spacecraft. Accordingly, techniques will be discussed for relative stabilization on the one hand and possibilities to reduce focal length and thus lever arm on the other hand. For this purpose, large arrays of small, independent lenses might offer a notable perspective. Secondly, diffractive optics feature severe focal length dispersion which has to be accepted using narrow-band spectral selection or-better-should be corrected over a practicable wide energy range. In the hard X-ray regime, hybrid lens devices made of beryllium, lithium or plastics like polycarbonate will be an appropriate solution for a fixed energy, while tunable systems with variable correction lenses possess-in principle-the capability for dispersion compensation in the soft X-ray region, too. An overview on the science case of milli-arcsec X-ray imaging will conclude the contribution. We show that significant new insights in astrophysical processes are expected just at and beyond this angular scale and give examples from X-ray binaries over AGN's up to gamma-ray bursts.

  9. High angular resolution millimeter observations of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Testi, Leonard; Leurini, Silvia

    2008-06-01

    In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects. We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects. We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.

  10. Higher signal harmonics, LISA's angular resolution, and dark energy

    SciTech Connect

    Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Broeck, Chris van den; Sinha, Siddhartha

    2007-11-15

    It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.

  11. PAVO@CHARA High Angular Resolution Observations of Rapid Rotators

    NASA Astrophysics Data System (ADS)

    Maestro, V.; Huber, D.; Ireland, M.; Tuthill, P.

    2012-12-01

    Stellar rotation distorts the stellar spherical shape assumed in simplistic stellar models. We present first results of a study of a small sample of bright (V < 4), compact (size < 0.8 mas), fast rotators (V sin i > 150 km s-1). We have measured the projected oblateness of four of these stars using interferometric high angular resolution observations, deriving a lower bound for the rotational to break-up velocity ratio.

  12. ISMI: a classification index for high angular resolution diffusion imaging

    NASA Astrophysics Data System (ADS)

    Röttger, D.; Dudai, D.; Merhof, D.; Müller, S.

    2012-02-01

    Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest. However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task. In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on the fibers represented by streamtubes using a heat color map.

  13. Instrument for Achieving High Angular Resolution on the Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Hall, Donald N. B.

    1998-01-01

    Aberrations in stellar images caused by the atmosphere sets a significant limit on angular resolution in ground based astronomy. The largest of these aberrations is the image motion or wavefront tilt. Since the image motion is random it causes a blurring of the image, and this causes a blurring of the image from 0.3 arcseconds to about 0.7 arcseconds. The purpose of the tip-tilt project was to devise a system for the NASA Infrared Telescope Facility that would measure the image movement and correct it by rapidly tilting a mirror in two axes (tip and tilt). The system would involve building a CCD sensor package to measure the image motion, a new top end for the telescope to hold the tip-tilt mirror, a control system, and software. The system was designed to correct images for the facility camera, NSFCAM, and for the facility spectrometer, SPEX. Both of these instruments are equipped with a cold beamsplitter to feed the sensor package.

  14. An angular momentum approximation for molecular collisions in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    An approximation to a previously presented rigorous description of molecular (atom-atom) collisions occurring in the presence of intense radiation is investigated. This rigorous description explicitly considers the angular momentum transferred between the molecule and the radiation field in the absorption or emission of a photon, but involves a complicated system of close-coupled equations which must be solved independently for each projection M of the initial, total molecular angular momentum. (This is a direct consequence of the lack of rotational invariance in the molecule-field problem). These equations are solved for a model system which mimics the collision of a halogen with a rare gas atom. Empirical observations made in the course of performing these calculations lead to the development of an approximation which avoids the repeated calculations for each initial M. This orientational average approximation greatly reduces the effort required to describe the system, and for the model calculation, yields accurate results for field intensities as high as 10 GW/sq cm.

  15. Trade-off between angular and spatial resolutions in in vivo fiber tractography.

    PubMed

    Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland

    2016-04-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.

  16. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  17. Monte-Carlo studies of the angular resolution of a future Cherenkov gamma-ray telescope

    SciTech Connect

    Funk, S.; Hinton, J. A.

    2008-12-24

    The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of this observational technique, providing high sensitivity and an angular resolution of {approx}0.1 deg. per event above an energy threshold of {approx}100 GeV. Planned future arrays of IACTs such as AGIS or CTA are aiming at significantly improving the angular resolution. Preliminary results have shown that values down to {approx}1' might be achievable. Here we present the results of Monte-Carlo simulations that aim to exploring the limits of angular resolution for next generation IACTs and investigate how the resolution can be optimised by changes to array and telescope parameters such as the number of pixel in the camera, the field of view of the camera, the angular pixel size, the mirror size, and also the telescope separation.

  18. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Henning, Thomas; Jorgensen, Jes K.; Lee, Chin-Fei; Foster, Jonathan B.; Pineda, Jaime E. E-mail: xuepeng.chen@yale.edu

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this work and

  19. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  20. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  1. Low Power Compact Radio Galaxies at High Angular Resolution

    SciTech Connect

    Giroletti, Marcello; Giovannini, G.; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  2. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  3. HARDI: A high angular resolution deployable interferometer for space

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd

    1992-01-01

    We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.

  4. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography.

    PubMed

    Li, Lianlin; Li, Fang

    2013-09-01

    This paper reports a super-resolution imaging approach based on orbital-angular-momentum diffraction tomography (OAM-DT), which makes an important breakthrough on the Rayleigh limit associated with conventional diffraction tomography (DT) technique. It is well accepted that orbital-angular momentum (OAM) provides additional electromagnetic degrees of freedom. This concept has been widely applied in science and technology. In this paper we revisit the DT problem extended with OAM, and demonstrate theoretically and numerically that there is no physical limit on imaging resolution with OAM-DT. The physical mechanism behind it is that either the near field or superoscillation of the transmitter is employed to super-resolve probed objects. This super-resolution OAM-DT imaging paradigm does not require near-field measurement, a subtle focusing lens, or complicated postprocessing, etc., thus providing an approach to realize the wave-field imaging of universal objects with subwavelength resolution.

  5. GeV gamma-ray astronomy telescopes with high angular resolution

    NASA Technical Reports Server (NTRS)

    Mcbreen, B.

    1985-01-01

    Gamma-ray telescopes flown on satellites have poor angular resolution with typical point source error circles of a few square degrees. It is shown that a major improvement in angular resolution for the detection of gamma-rays in the GeV region can be obtained with a single crystal as converter. The electron produced by a gamma ray incident at a small angle to a major crystal axis or plane is captured into channeling and radiates gamma rays. The channeling radiation and the electron-positron pair can be detected and yield point source locations with a precision of 5 arcseconds at 10 GeV. This is an improvement of three orders of magnitude on the angular precision of telescopes sensitive to gamma-rays above 50 MeV flown on Satellites.

  6. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.

    PubMed

    Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G

    2015-11-20

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.

  7. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.

    PubMed

    Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  8. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light

    PubMed Central

    Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  9. Anatomy of a Photodissociation Region: High angular resolution images of molecular emission in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tauber, Jan A.; Tielens, A. G. G. M.; Meixner, Margaret; Foldsmith, Paul F.

    1994-01-01

    We present observations of the molecular component of the Orion Bar, a prototypical Photodissociation Region (PDR) illuminated by the Trapezium cluster. The high angular resolution (6 sec-10 sec) that we have achieved by combining single-dish and interferometric observations has allowed us to examine in detail the spatial and kinematic morphology of this region and to estimate the physical characteristics of the molecular gas it contains. Our observations indicate that this PDR can be essentially described as a homogeneously distributed slab of moderately dense material (approximately 5 x 10(exp 4)/cu cm), in which are embedded a small number of dense (greater than 10(exp 6)/cu cm) clumps. The latter play little or no role in determining the thickness and kinetic temperature structure of this PDR. This observational picture is largely supported by PDR model calculations for this region, which we describe in detail in this work. We also find our model predictions of the intensities of a variety of atomic and molecular lines to be in good general agreement with a number of previous observations.

  10. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt

    2012-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single

  11. On the Angular Resolution of the AGILE Gamma-Ray Imaging Detector

    NASA Astrophysics Data System (ADS)

    Sabatini, S.; Donnarumma, I.; Tavani, M.; Trois, A.; Bulgarelli, A.; Argan, A.; Barbiellini, G.; Cattaneo, P. W.; Chen, A.; Del Monte, E.; Fioretti, V.; Gianotti, F.; Giuliani, A.; Longo, F.; Lucarelli, F.; Morselli, A.; Pittori, C.; Verrecchia, F.; Caraveo, P.

    2015-08-01

    We present a study of the angular resolution of the AGILE gamma-ray imaging detector (GRID) that has been operational in space since 2007 April. The AGILE instrument is made of an array of 12 planes that are each equipped with a tungsten converter and silicon microstrip detectors, and is sensitive in the energy range 50 MeV-10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploit an analog readout system with dedicated electronics coupled with silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its {E}-2 energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ˜ 4^\\circ at 100 MeV; ˜ 0\\buildrel{\\circ}\\over{.} 8 at 1 GeV; ˜ 0\\buildrel{\\circ}\\over{.} 9 integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, characterized by a flat response up to 30^\\circ off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE/GRID and Fermi/LAT (Large Area Telescope), is interesting in view of future gamma-ray missions, which are currently under study. The two instruments exploit different detector configurations that affect the angular resolution: the former is optimized in the readout and track reconstruction, especially in the low-energy band, the latter is optimized in terms of converter thickness and power consumption. We show that despite these differences, the angular resolution of both instruments is very similar, between 100 MeV and a few GeV.

  12. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  13. Development of a high angular resolution diffusion imaging human brain template.

    PubMed

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

  14. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Astrophysics Data System (ADS)

    Zhang, William

    2014-08-01

    Every conceivable future x-ray astronomical mission would require x-ray optics. These optics must meet the three-fold requirements of angular resolution, effective area, and cost.In this poster we will present the rationale, technical approach, and status of an x-ray optics technology development program that has been underway at Goddard Space Flight Center and Marshall Space Flight Center.

  15. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  16. High angular resolution observations of star-forming regions with BETTII and SOFIA

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime; Rinehart, Stephen; Mundy, Lee G.; Benford, Dominic J.; Dhabal, Arnab; Fixsen, Dale J.; Leisawitz, David; Maher, Stephen F.; Mentzell, Eric; Silverberg, Robert F.; Staguhn, Johannes; Veach, Todd; Cardiff BETTII Team

    2016-01-01

    High angular resolution observations in the far-infrared are important to understand the star formation process in embedded star clusters where extinction is large and stars form in close proximity. The material taking part in the star forming process is heated by the young stars and emits primarily in the far-IR; hence observations of the far-IR dust emission yields vital information about the gravitational potential, the mass and energy distribution, and core/star formation process. Previous observatories, such as Herschel, Spitzer and WISE lack the angular resolution required to study these dense star forming cores and are further limited by saturation in bright cores.The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is pioneering the path to sub-arcsecond resolution at far-IR wavelengths. This thesis talk discusses the instrumental challenges in building BETTII, as well as results from our SOFIA survey to illustrate the potential of higher-angular resolution observations. The 8m-long two element interferometer is being tested at NASA GSFC and is scheduled for first flight in fall 2016. BETTII will provide 0.5 to 1 arcsecond spatial resolution and spectral resolving power of 10 to 100 between 30 and 90 microns, where most of the dust continuum emission peaks in local star forming regions. It will achieve spatially-resolved spectroscopy of bright, dense cores with unprecedented high definition. This talk focuses on the main challenges and solutions associated with building BETTII: thermal stability, attitude/pointing control, and path length stabilization. In each of these areas we look at the trade-off between design, control, and knowledge in order to achieve the best-possible instrumental capability and sensitivity.As a first step towards resolving cluster cores, we surveyed 10 nearby star-forming clusters with SOFIA FORCAST at 11, 19, 31 and 37 microns. The FORCAST instrument has the highest angular resolution currently available in

  17. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; McClelland, R. S.; ODell, S. L.; Saha, T. T.; Sharpe, M. V.

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  18. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Astrophysics Data System (ADS)

    Zhang, William; NGXO

    2014-01-01

    X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the dour missions currently in operations: Chandra, XMM-Newton, Suzaku, and NuSTAR. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of

  19. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  20. The Space High Angular Resolution Probe for the Infrared (SHARP-IR)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Rizzo, M. J.; Leisawitz, D. T.; Staguhn, J. G.; DiPirro, M.; Mentzell, J. E.; Juanola-Parramon, R.; Dhabal, A.; Mundy, L. G.; Moseley, S. H.; Mather, J. C.; Padgett, D. L.; Stapelfeldt, K.; Roberge, A.; Cordiner, M.; Milam, S.; Veach, T.; Fixsen, D.

    2016-07-01

    The Space High Angular Resolution Probe for the Infrared (SHARP-IR) is a new mission currently under study. As part of the preparation for the Decadal Survey, NASA is currently undertaking studies of four major missions, but interest has also been shown in determining if there are feasible sub-$1B missions that could provide significant scientific return. SHARP-IR is being designed as one such potential probe. In this talk, we will discuss some of the potential scientific questions that could be addressed with the mission, the current design, and the path forward to concept maturation.

  1. High angular resolution absolute intensity of the solar continuum from 1400 to 1790 A.

    NASA Technical Reports Server (NTRS)

    Brueckner, G. E.; Moe, O. K.

    1972-01-01

    Absolute intensities of the solar UV continuum from 1400 to 1790 A have been measured from rocket spectra taken on August 13, 1970. The spectra had an angular resolution of 2 arc sec by 1 arc min, and the pointing accuracy of the instrument was plus or minus 2 arc sec. This permits us to study the center-to-limb variation of the intensity with a spatial resolution of 2 arc sec. Four positions on the solar disk have been studied corresponding to values of cos theta = 0.12, 0.22, 0.28 and 0.72, where theta is the heliocentric position angle. The measurements give higher values for the intensity than recent photoelectric measurement, but are in good agreement with the intensities of Widing et al.

  2. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  3. Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum

    NASA Astrophysics Data System (ADS)

    Hong, Stanley S.; Horn, Berthold K. P.; Freeman, Dennis M.; Mermelstein, Michael S.

    2006-06-01

    We consider the coherent superposition of unfocused wave fronts for lensless focusing of electromagnetic waves with subwavelength resolution. Near the focal point, intensity distributions generated using the approach approximate those generated using lenses. Far from the focal point, discretization of spatial frequencies results in a trade-off between the number of wave fronts and the accuracy of the approximation. We experimentally demonstrate the feasibility of the approach by generating an approximation of an azimuthally polarized Bessel beam with a focal spot diameter (full width at half maximum intensity) of 0.37λ.

  4. Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    Angular domain imaging (ADI) generates a projection image of an attenuating target within a turbid medium by employing a silicon micro-tunnel array to reject photons that have deviated from the initial propagation direction. In this imaging method, image contrast and resolution are position dependent. The objective of this work was to first characterize the contrast and resolution of the ADI system at a multitude of locations within the imaging plane. The second objective was to compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. The ADI system consisted of a diode laser laser (808nm, CW, ThorLabs) with a beam expander for illumination of the sample cuvette. At the opposite side of the cuvette, an Angular Filter Array (AFA) of 80 μm x 80 μm square-shaped tunnels 1 cm in length was used to reject the transmitted scattered light. Image-forming light exiting the AFA was detected by a linear CCD (16-bit, Mightex). Our approach was to translate two point attenuators (0.5 mm graphite rod, 0.368 mm drill bit) submerged in a 0.6% IntralipidTM dilution using a SCARA robot (Epson E2S351S) to cover a 37x37 and 45x45 matrix of grid points in the imaging plane within the 1 cm path length sample cuvette. At each grid point, a one-dimensional point-spread distribution was collected and system contrast and resolution were measured. Then, the robot was used to rotate the target to collect projection images at several projection angles of various objects, and reconstructed with a filtered back projection and an iterative reconstruction algorithm.

  5. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.

    PubMed

    Yeh, Fang-Cheng; Verstynen, Timothy D

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

  6. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    PubMed Central

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  7. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.

    PubMed

    Yeh, Fang-Cheng; Verstynen, Timothy D

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  8. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    PubMed Central

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

  9. Quantitative assessment of motion correction for high angular resolution diffusion imaging.

    PubMed

    Sakaie, Ken E; Lowe, Mark J

    2010-02-01

    Several methods have been proposed for motion correction of high angular resolution diffusion imaging (HARDI) data. There have been few comparisons of these methods, partly due to a lack of quantitative metrics of performance. We compare two motion correction strategies using two figures of merit: displacement introduced by the motion correction and the 95% confidence interval of the cone of uncertainty of voxels with prolate tensors. What follows is a general approach for assessing motion correction of HARDI data that may have broad application for quality assurance and optimization of postprocessing protocols. Our analysis demonstrates two important issues related to motion correction of HARDI data: (1) although neither method we tested was dramatically superior in performance, both were dramatically better than performing no motion correction, and (2) iteration of motion correction can improve the final results. Based on the results demonstrated here, iterative motion correction is strongly recommended for HARDI acquisitions. PMID:19695824

  10. ATLAS CONSTRUCTION FROM HIGH ANGULAR RESOLUTION DIFFUSION IMAGING DATA REPRESENTED BY GAUSSIAN MIXTURE FIELDS

    PubMed Central

    Cheng, Guang; Hwang, Min-Sig; Howland, Dena; Forder, John R.

    2011-01-01

    Groupwise image registration is an essential part of atlas construction which is a very import and challenging task in medical image analysis. In this paper, we present a novel atlas construction technique using a groupwise registration of high angular resolution diffusion (MR) imaging datasets each of which is represented by a Gaussian Mixture field. To solve the registration problem, an L2 distance is used to measure the similarity between two Gaussian Mixtures, which leads to an energy function whose gradient can be computed in closed form. A projection method is developed to construct a “sharp” (not blurred) atlas from the result of this groupwise registration. Synthetic and real data experiments are presented to demonstrate the efficacy of the proposed method. PMID:23408346

  11. Acceptance and Angular Resolution of an Infill Array for the Pierre Auger Surface Detector

    SciTech Connect

    Medina, C.; Gomez Berisso, M.; Allekotte, I.; Etchegoyen, A.; Supanitsky, D.; Medina-Tanco, G.

    2007-02-12

    The Pierre Auger Observatory has been designed to study the highest-energy cosmic rays in nature (E {>=} 1019 eV). The determination of their arrival direction, energy and composition is performed by the analysis of the atmospheric showers they produce. The Auger Surface Array will consist of 1600 water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km. In this paper we show how adding a ''small'' area of surface detectors at half the above mentioned spacing would make it possible to lower the detection threshold by one order of magnitude, thus allowing the Observatory to reach lower energies where the cross-over from galactic to extragalactic sources is expected. We also analyze the angular resolution that can be attained with such an infill array.

  12. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    SciTech Connect

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  13. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    PubMed

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  14. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; Carlotti, Alexis; Brandt, Timothy; Janson, Markus; Guyon, Olivier; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  15. Coexistence of Near-Field and Far-Field Sources: the Angular Resolution Limit

    NASA Astrophysics Data System (ADS)

    Boyer, Rémy; El Korso, Mohammed Nabil; Renaux, Alexandre; Marcos, Sylvie

    2013-10-01

    Passive source localization is a well known inverse problem in which we convert the observed measurements into information about the direction of arrivals. In this paper we focus on the optimal resolution of such problem. More precisely, we propose in this contribution to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations. We base our analysis on the Smith's equation which involves the Cramér-Rao Bound (CRB). This equation provides the theoretical ARL which is independent of a specific estimator. Our methodology is the following: first, we derive a closed-form expression of the CRB for the considered problem. Using these expressions, we can rewrite the Smith's equation as a 4-th order polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the analytic ARL under or not the assumption of low noise variance. The obtained expression is compact and can provide useful qualitative informations on the behavior of the ARL.

  16. Importance of energy and angular resolutions in top-hat electrostatic analysers for solar wind proton measurements

    NASA Astrophysics Data System (ADS)

    De Marco, R.; Marcucci, M. F.; Bruno, R.; D'Amicis, R.; Servidio, S.; Valentini, F.; Lavraud, B.; Louarn, P.; Salatti, M.

    2016-08-01

    We use a numerical code which reproduces the angular/energy response of a typical top-hat electrostatic analyser starting from solar wind proton velocity distribution functions (VDFs) generated by numerical simulations. The simulations are based on the Hybrid Vlasov-Maxwell numerical algorithm which integrates the Vlasov equation for the ion distribution function, while the electrons are treated as a fluid. A virtual satellite launched through the simulation box measures the particle VDFs. Such VDFs are moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real sensor in the solar wind. Different energy-angular resolutions of the analyser are investigated in order to understand the influence of the phase-space resolution in existing and upcoming space missions, with regards to determining the key parameters of plasma dynamics.

  17. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  18. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer.

    PubMed

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-01

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002″. Experiment has proved its feasibility and practicability.

  19. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  20. High angular resolution measurements of K shell x-ray emission created by electron channeling in the analytical electron microscope.

    SciTech Connect

    Zaluzec, N. J.

    1999-03-10

    Since the original observations by Duncumb in 1962, a number of studies have been conducted on the effects of electron channel on characteristic x-ray emission and microanalysis. Most of the recent studies have concentrated upon using the phenomenon to perform site specific distributions of impurity elements in ordered compounds using the ALCHEMI methodology. Very few studies have attempted to accurately measure the effect as a function of orientation and compare these results to theories. In this study, two dimensional high angular resolution studies of channeling enhance x-ray emission were performed and herein the results are compared to theoretical calculations of Allen et al. All experimental measurements presented here were conducted on a Philips EM 420T analytical electron microscope. The instrument was operated in the TEM mode, at 120 kV using an LaB6 electron source. The characteristic x-ray emission was measured using an EDAX ultra thin window Si(Li) detector having a FWHM of {approximately}145 eV at Mn Km Nominal probe sizes used during the study were 200-500 nm with beam convergence half angle defined by the Condenser apertures. Control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, after the specimen was first manually oriented to an appropriate zone axis using the specimen tilt stage. Two dimensional measurements were carried out using a 128 x 100 pixel scan corresponding to an angular range of {approximately}100 by 80 mR using customized computer program running on a EDAX 9900 microanalyzer system. Careful alignment and manual optimization/adjustments of beam tilt pivot coils, minimized probe wobble during data acquisition. The effects of this were additionally mitigated due to the relative uniformity of the specimen thickness in the analyzed zone. Typical acquisition times for a complete two dimensional scan were 18-24 hours. Essential to the success of these measurements was

  1. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter "coherence étendue," additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  2. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data

    PubMed Central

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-01-01

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674

  3. Exploring AGNs in the Local Universe through High Angular Resolution Spectroscopy and Optical Variability Monitoring

    NASA Astrophysics Data System (ADS)

    Walsh, Jonelle L.

    This dissertation presents the results of several observational projects designed to explore AGNs, on scales of about 100 pc and smaller, in nearby galaxies. High angular resolution spectroscopy acquired from HST STIS and Keck LGS AO OSIRIS observations are used to study the kinematic structure of gas disks and stars on scales comparable to the gravitational sphere of influence of the supermassive black hole. Specifically, I use multi-slit STIS data of low-luminosity AGNs to map out the emission-line kinematics, and to look for regularly rotating velocity fields suitable for future gas dynamical black hole mass measurements. The HST data is further useful for searching for electron-density gradients and for examining how the emission-line velocity dispersion varies as a function of aperture size. In another project, I aim to resolve a discrepancy between two previous gas dynamical measurements of the black hole in the elliptical galaxy M84. I perform new measurements of the gas kinematics from archival multi-slit STIS data, and carry out a more comprehensive dynamical model of the emission-line disk than had been previously attempted. With the most recent project, I measure high-resolution stellar kinematics from LGS AO OSIRIS data and large-scale kinematics from long-slit LRIS data of the S0 galaxy NGC 3998. Using triaxial orbit-based stellar dynamical models, I determine the black hole mass. The stellar dynamical value is then compared to a previous gas dynamical determination in order to test the consistency between these two main mass measurement methods. In addition to using high spatial resolution spectroscopy, AGN variability can be used to probe the inner regions of AGNs. The Lick AGN Monitoring Project targeted 12 galaxies expected to harbor low-mass black holes. Through reverberation mapping, the collaboration measured the masses of nine black holes, and learned about the geometry and kinematics of the broad-line region in several of the objects. I

  4. PREFACE: The Universe under the Microscope: Astrophysics at High Angular Resolution

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer

    2009-01-01

    High angular resolution techniques at infrared and centimeter to millimeter wavelengths have become of ever increasing importance for astrophysical research in the past decade. They have led to important breakthroughs, like the direct imaging of protoplanetary discs and of the first exoplanets, the measurement of stellar orbits around the black hole at the center of the Milky Way, or the detection of sub-parsec-scale jets in low luminosity AGN. With adaptive optics in a mature state, infrared/optical astronomy is pushing toward extreme adaptive optics, extremely large telescopes, and infrared/optical interferometry with large aperture telescopes. At longer wavelengths, large arrays start to conquer the sub-millimeter window, with the mid-term goal of global VLBI at sub-millimeter wavelengths. These new techniques will have enormous impact on the field because they will enable us to address issues such as directly measuring the properties of exoplanets, imaging the surfaces of stars, examining stellar dynamics in extremely dense cluster cores, disentangling the processes at the bottom of black hole accretion flows in the jet launching region, or testing general relativity in the strong gravity regime near the event horizon of supermassive black holes. The conference The Universe under the Microscope: Astrophysics at High Angular Resolution, held at the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef, Germany, on 12-25 April 2008, aimed at an interdisciplinary approach by bringing together astrophysicists from the three great branches of the field, instrumentation, observation, and theory, to discuss the current state of research and the possibilities offered by the next-generation instruments. Editors of the proceedings Rainer Schödel Instituto de Astrofísica de Andalucía -CSIC, Granada, Spain Andreas Eckart I. Physikalisches Institut der Universität zu Köln, Köln, Germany Susanne Pfalzner I. Physikalisches Institut der Universität zu

  5. Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

    PubMed

    Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian

    2015-01-01

    High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).

  6. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  7. Determination of angular accuracy of the Maket Ani surface array

    NASA Astrophysics Data System (ADS)

    Gharagyozyan, G. V.; Chilingarian, A. A.; Hovsepyan, G. G.; Martirosyan, H. S.; Ter-Antonyan, S. V.

    The methods of EAS incident angles estimation along with the angular resolution determination are described. Based on a data sample collected by the MAKET-ANI array, the angular resolution and its dependence on the showers arrival direction is studied. We use classical methods of Moon and Sun shadow detection as well as new software methods for experimental determination of MAKET ANI angular resolution. It is shown that zenith and azimuthal angles' accuracy is approximately 1.5o and 5o respectively.

  8. Extended Eddington approximation for use in high-resolution atmospheric GCMs

    NASA Astrophysics Data System (ADS)

    Knoepfel, Rahel

    Computationally extensive parameterizations of complex physical processes restrict the spatial resolution of climate models. Corresponding mechanistic models can be run at much higher resolutions. However, the parameterizations used are often oversimplified. A prominent example is the use of temperature relaxation as a surrogate for radiative heating instead of employing a comprehensive radiative transfer scheme. In the present study we propose a radiation scheme of intermediate complexity which may be used in high-resolution simulations up to the mesopause region. Our method is based on an extended Eddington approximation for the most relevant long-wave absorber bands, as well as a simple Bouger-Beer-Lambert absorption of solar radiation. First tests and applications of this new parameterization in a mechanistic GCM are presented.

  9. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    NASA Astrophysics Data System (ADS)

    Sana, H.; Le Bouquin, J.-B.; Lacour, S.; Berger, J.-P.; Duvert, G.; Gauchet, L.; Norris, B.; Olofsson, J.; Pickel, D.; Zins, G.; Absil, O.; de Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0° H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f m = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f c = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly

  10. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    SciTech Connect

    Sana, H.; Lacour, S.; Gauchet, L.; Pickel, D.; Berger, J.-P.; Norris, B.; Olofsson, J.; Absil, O.; De Koter, A.; Kratter, K.; Schnurr, O.; Zinnecker, H.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved

  11. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  12. The 6Hankel asymptotic approximation for the uniform description of rainbows and glories in the angular scattering of state-to-state chemical reactions: derivation, properties and applications.

    PubMed

    Xiahou, Chengkui; Connor, J N L

    2014-06-01

    This paper considers the asymptotic (semiclassical) analysis of a forward glory and a rainbow in the differential cross section (DCS) of a state-to-state chemical reaction, whose scattering amplitude is given by a Legendre partial wave series (PWS). A recent paper by C. Xiahou, J. N. L. Connor and D. H. Zhang [Phys. Chem. Chem. Phys., 2011, 13, 12981] stated without proof a new asymptotic formula for the scattering amplitude, which is uniform for a glory and a rainbow in the DCS. The new formula was designated "6Hankel" because it involves six Hankel functions. This paper makes three contributions: (1) we provide a detailed derivation of the 6Hankel approximation. This is done by first generalizing a method described by G. F. Carrier [J. Fluid Mech., 1966, 24, 641] for the uniform asymptotic evaluation of an oscillating integral with two real coalescing stationary phase points, which results in the "2Hankel" approximation (it contains two Hankel functions). Application of the 2Hankel approximation to the PWS results in the 6Hankel approximation for the scattering amplitude. We also test the accuracy of the 2Hankel approximation when it is used to evaluate three oscillating integrals of the cuspoid type. (2) We investigate the properties of the 6Hankel approximation. In particular, it is shown that for angles close to the forward direction, the 6Hankel approximation reduces to the "semiclassical transitional approximation" for glory scattering derived earlier. For scattering close to the rainbow angle, the 6Hankel approximation reduces to the "transitional Airy approximation", also derived earlier. (3) Using a J-shifted Eckart parameterization for the scattering matrix, we investigate the accuracy of the 6Hankel approximation for a DCS. We also compare with angular scattering results from the "uniform Bessel", "uniform Airy" and other semiclassical approximations. PMID:24519014

  13. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    SciTech Connect

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-03-10

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.

  14. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  15. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    NASA Astrophysics Data System (ADS)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  16. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering.

    PubMed

    Huang, Xian Rong

    2011-11-01

    The development of medium-energy inelastic X-ray scattering optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution inelastic X-ray scattering spectroscopy.

  17. Slumped glass optics with interfacing ribs for high angular resolution x-ray astronomy: a progress report

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2015-09-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.

  18. Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation.

    PubMed

    Graf, Nora K; Friese, Daniel H; Winter, Nina O C; Hättig, Christof

    2015-12-28

    We report an implementation of static and frequency-dependent excited state polarizabilities for the approximate coupled cluster single and doubles model CC2 as analytic second derivatives of an excited state quasienergy Lagrangian. By including appropriate conditions for the normalization and the phase of the eigenvectors, divergent secular terms are avoided. This leads to response equations in a subspace orthogonal to the unperturbed eigenvectors. It is shown how these projected equations can be solved without storage of the double excitation part of the eigenvectors. By exploiting the resolution-of-the-identity approximation and a numerical Laplace transformation, the quadratic scaling of the main memory demands of RI-CC2 with the system size could be preserved. This enables calculations of excited state polarizabilities for large molecules, e.g., linear polyacenes up to decacene with almost 2500 basis functions on a single compute node within a few days. For a test set of molecules where measurements are available as reference data, we compare the orbital-relaxed and unrelaxed CC2 approaches with experiment to validate its accuracy. The approach can be easily extended to other response methods, in particular CIS(D∞). The latter gives results which, in the orbital-relaxed case, are within a few percent of the CC2 values, while coupled cluster singles results deviate typically by about 20% from orbital-relaxed CC2 and experimental reference data. PMID:26723652

  19. Investigation of the Chromosphere-Corona Interface with the Upgraded Very High Angular Resolution Ultraviolet Telescope (VAULT2.0)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Beltran, Samuel Tun; Chintzoglou, Georgios; Eisenhower, Kevin; Korendyke, Clarence; Feldman, Ronen; Moser, John; Shea, John; Johnson-Rambert, Mary; McMullin, Don; Stenborg, Guillermo; Shepler, Ed; Roberts, David

    2016-03-01

    Very high angular resolution ultraviolet telescope (VAULT2.0) is a Lyman-alpha (Lyα; 1216Å) spectroheliograph designed to observe the upper chromospheric region of the solar atmosphere with high spatial (<0.5‧‧) and temporal (8s) resolution. Besides being the brightest line in the solar spectrum, Lyα emission arises at the temperature interface between coronal and chromospheric plasmas and may, hence, hold important clues about the transfer of mass and energy to the solar corona. VAULT2.0 is an upgrade of the previously flown VAULT rocket and was launched successfully on September 30, 2014 from White Sands Missile Range (WSMR). The target was AR12172 midway toward the southwestern limb. We obtained 33 images at 8s cadence at arc second resolution due to hardware problems. The science campaign was a resounding success, with all space and ground-based instruments obtaining high-resolution data at the same location within the AR. We discuss the science rationale, instrument upgrades, and performance during the first flight and present some preliminary science results.

  20. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    NASA Astrophysics Data System (ADS)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than

  1. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large

  2. The role of dislocations in varied olivine deformation mechanisms investigated using high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, David; Hansen, Lars; Britton, Ben; Wilkinson, Angus

    2016-04-01

    Experimentally-derived flow laws can be used to predict the rheology of rocks deformed under natural conditions only if the same microphysical processes can be demonstrated to control the rate-limiting deformation mechanism in both cases. Olivine rheology may exert a principle control on the strength of the lithosphere, and therefore considerable research effort has been applied to assessing its rheology through experimental, geological, and geophysical approaches. Nonetheless, considerable uncertainty remains regarding the dominant deformation mechanisms in the upper mantle. This uncertainty arises in large part due to our limited understanding of the fundamental deformation processes associated with each mechanism. Future improvements to microphysical models of distinct deformation mechanisms require new insight into the contributions those fundamental processes to the macroscopic behaviour. The dynamics of dislocations is central to modelling viscous deformation of olivine, but characterisation techniques capable of constraining dislocation types, densities, and distributions over the critical grain to polycrystal length-scales have been lacking. High angular resolution electron backscatter diffraction (HR-EBSD), developed and increasingly applied in the material sciences, offers an approach capable of such analyses. HR-EBSD utilises diffraction pattern image cross-correlation to achieve dramatically improved angular resolution (~0.01°) of lattice orientation gradients compared to conventional Hough-based EBSD (~0.5°). This angular resolution allows very low densities (≥ 10^11 m^-2) of geometrically necessary dislocations (GND) to be resolved, facilitating analysis of a wide range of dislocation microstructures. We have developed the application of HR-EBSD to olivine and applied it to samples deformed both experimentally and naturally in grain-size sensitive and grain-size insensitive regimes. The results quantitatively highlight variations in the types and

  3. Angular effects and correction on medium resolution sensors for crop monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing imagery at medium spatial resolutions (20-60m) such as Landsat, the Advanced Wide Field Sensor (AWiFS) and the Disaster Monitoring Constellation (DMC) have been broadly used in mapping crop types and monitoring crop conditions. This paper examined the influence of viewing and illumina...

  4. Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C2 H2

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Embriaco, Davide; Massini, Michol; Simonucci, Stefano; Taioli, Simone

    2004-10-01

    Analytic expressions for the direct, resonant, and interference contributions to the differential cross section of a resonant Auger process, produced by the inner-shell photoionization of a linear molecule either “fixed in space” or belonging to a gas of randomly oriented molecules, have been derived following Dill’s procedures [ Dill , Phys. Rev. Lett. 45, 1393 (1980) ], but going beyond the two-step approximation. Angle-resolved Auger spectra of the C2H2 molecule measured on top of the C1s→π* resonance [ Kivimäki , J. Phys. B 30, 4279 (1997) ] have been calculated together with asymmetry parameters, analyzing also the different contributions to the electron angular distributions.

  5. Numerical study of particle-size distributions retrieved from angular light-scattering data using an evolution strategy with the Fraunhofer approximation.

    PubMed

    Vargas-Ubera, Javier; Sánchez-Escobar, Juan Jaime; Aguilar, J Félix; Gale, David Michel

    2007-06-10

    An algorithm is presented based on an evolution strategy to retrieve a particle size distribution from angular light-scattering data. The analyzed intensity patterns are generated using the Mie theory, and the algorithm retrieves a series of known normal, gamma, and lognormal distributions by using the Fraunhofer approximation. The distributions scan the interval of modal size parameters 100 < or = alpha < or = 150. The numerical results show that the evolution strategy can be successfully applied to solve this kind of inverse problem, obtaining a more accurate solution than, for example, the Chin-Shifrin inversion method, and avoiding the use of a priori information concerning the domain of the distribution, commonly necessary for reconstructing the particle size distribution when this analytical inversion method is used.

  6. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  7. Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev

    NASA Technical Reports Server (NTRS)

    Apte, A. R.; Gopalakrishnan, N. V.; Tonwar, S. C.; Uma, V.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV.

  8. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM

  9. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    PubMed

    Alomair, Othman I; Brereton, Ian M; Smith, Maree T; Galloway, Graham J; Kurniawan, Nyoman D

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM

  10. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    NASA Technical Reports Server (NTRS)

    Greenhill, L. J.; Gezari, D. Y.; Danchi, W. C.; Najita, J.; Monnier, J. D.

    2004-01-01

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 (micro)m to 22 (micro)m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L(sub (center-dot)).

  11. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    NASA Astrophysics Data System (ADS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  12. High resolution angular sensor. [reducing ring laser gyro output quantization using phase locked loops

    NASA Technical Reports Server (NTRS)

    Gneses, M. I.; Berg, D. S.

    1981-01-01

    Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.

  13. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Technical Reports Server (NTRS)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  14. The Stellar Imager (SI): An Ultra-High Angular Resolution UV/Optical Observatory

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. In this paper we will describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.

  15. High angular resolution diffusion imaging in a child with autism spectrum disorder and comparison with his unaffected identical twin

    PubMed Central

    Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-01-01

    Summary In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD. PMID:26446271

  16. High angular resolution diffusion imaging in a child with autism spectrum disorder and comparison with his unaffected identical twin.

    PubMed

    Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-01-01

    In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD. PMID:26446271

  17. High angular resolution diffusion imaging in a child with autism spectrum disorder and comparison with his unaffected identical twin.

    PubMed

    Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-01-01

    In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD.

  18. Vibrational configuration interaction using a tiered multimode scheme and tests of approximate treatments of vibrational angular momentum coupling: a case study for methane.

    PubMed

    Mielke, Steven L; Chakraborty, Arindam; Truhlar, Donald G

    2013-08-15

    We present vibrational configuration interaction calculations employing the Watson Hamiltonian and a multimode expansion. Results for the lowest 36 eigenvalues of the zero total angular momentum rovibrational spectrum of methane agree with the accurate benchmarks of Wang and Carrington to within a mean unsigned deviation of 0.68, 0.033, and 0.014 cm(-1) for 4-mode, 5-mode, and 6-mode representations, respectively. We note that in the case of the 5-mode results, this is a factor of 10 better agreement than for 5-mode calculations reported earlier by Wu, Huang, Carter, and Bowman for the same set of eigenvalues, which indicates that the multimode expansion is even more rapidly convergent than previously demonstrated. Our largest calculations employ a tiered approach with matrix elements treated using a variable-order multimode expansion with orders ranging from 4-mode to 7-mode; strategies for assigning matrix elements to particular multimode tiers are discussed. Improvements of 7-mode coupling over 6-mode coupling are small (averaging 0.002 cm(-1) for the first 36 eigenvalues) suggesting that 7-mode coupling is sufficient to fully converge the results. A number of approximate treatments of the computationally expensive vibrational angular momentum terms are explored. The use of optimized vibrational quadratures allows rapid integration of the matrix elements, especially the vibrational angular momentum terms, which require significantly fewer quadrature points than are required to integrate the potential. We assign the lowest 243 states and compare our results to those of Wang and Carrington, who provided assignments for the same set of states. Excellent agreement is observed for most states, but our results are lower for some of the higher-energy states by as much as 20 cm(-1), with the largest deviations being for the states with six quanta of excitation in the F2 bends, suggesting that the earlier results were not fully converged with respect to the basis set. We

  19. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    SciTech Connect

    greenhill, l

    2004-06-25

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 {micro}m to 22 {micro}m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L{sub {center_dot}}. Although source I is believed to be more luminous, they do not detect an infrared counterpart even at the longest wavelengths. However, they resolve the closeby infrared source, IRc2, into an arc of knots {approx} 10{sup 3} AU long at all wavelengths. Although the physical relation of source I to IRc2 remains ambiguous, they suggest these sources mark a high density core (10{sup 7}-10{sup 8} pc{sup -3} over {approx} 10{sup 3} AU) within the larger BN/KL star forming cluster. The high density may be a consequence of the core being young and heavily embedded. The authors suggest the energetics of the BN/KL region may be dominated by this cluster core rather than one or two individual sources.

  20. Development of high angular resolution x-ray telescopes based on slumped glass foils

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Basso, S.; Borsa, F.; Citterio, O.; Civitani, M.; Conconi, P.; Pagano, G.; Pareschi, G.; Proserpio, L.; Salmaso, B.; Sironi, G.; Spiga, D.; Tagliaferri, G.; Zambra, A.; Parodi, G.; Martelli, F.; Gallieni, D.; Tintori, M.; Bavdaz, M.; Wille, E.

    2012-09-01

    The mirrors of the International X-ray Observatory (IXO) were based on a large number of high quality segments, aiming at achieving a global spatial resolution better than 5” HEW while giving a large collecting area (around 3m2@ 1 keV). A study concerning the hot slumping of thin glass foils was started in Europe, funded by ESA and led by the Brera Astronomical Observatory (INAF-OAB), for the development of a replication technology based on glass material. The study is currently continuing even after the IXO program has been descoped and renamed ATHENA, in the perspective of using the technology under development for other future missions or applications. INAF-OAB efforts have been focused on the "Direct" slumping approach with convex moulds, meaning that during the thermal cycle the optical surface of the glass is in direct contact with the mould surface. The single mirror segments are made of thin glass plates (0.4 mm thick), with a reflecting area of 200 mm × 200 mm. The adopted integration process foresees the use of glass reinforcing ribs for bonding together the plates in such a way to form a rigid and stiff stack of segmented mirror shells; the stack is supported by a thick backplane. During the bonding process, the plates are constrained in close contact with the surface of a precisely figured integration master by the application of vacuum pump suction. In this way, the springback deformations and the low frequency errors still present in the plates' profile after slumping can be corrected. The status of the technology development is presented in this paper, together with the description and metrology of the prototypes already realized or under construction at the Observatory laboratories.

  1. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    NASA Astrophysics Data System (ADS)

    Adam, R.; Comis, B.; Bartalucci, I.; Adane, A.; Ade, P.; André, P.; Arnaud, M.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Hasnoun, B.; Hermelo, I.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-02-01

    The prototype of the NIKA2 camera, NIKA, is a dual-band instrument operating at the IRAM 30-m telescope, which can observe the sky simultaneously at 150 and 260 GHz. One of the main goals of NIKA (and NIKA2) is to measure the pressure distribution in galaxy clusters at high angular resolution using the thermal Sunyaev-Zel'dovich (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at intermediate and high redshifts. However, an important fraction of clusters host sub-millimeter and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on <20 arcsec angular resolution observations at 150 and 260 GHz of the cluster MACS J1423.8+2404, which hosts both radio and sub-millimeter point sources. We examine the morphological distribution of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the spectral energy distribution (SED) of the sub-millimeter point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and sub-millimeter sources on the reconstructed pressureprofile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACS J1423.8+2404 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a

  2. ESTIMATING SMALL ANGULAR SCALE COSMIC MICROWAVE BACKGROUND ANISOTROPY WITH HIGH-RESOLUTION N-BODY SIMULATIONS: WEAK LENSING

    SciTech Connect

    Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Saez, D.

    2010-03-20

    We estimate the impact of weak lensing by strongly nonlinear cosmological structures on the cosmic microwave background. Accurate calculation of large l multipoles requires N-body simulations and ray-tracing schemes with both high spatial and temporal resolution. To this end, we have developed a new code that combines a gravitational Adaptive Particle-Particle, Particle-Mesh solver with a weak-lensing evaluation routine. The lensing deviations are evaluated while structure evolves during the simulation so that all evolution steps-rather than just a few outputs-are used in the lensing computations. The new code also includes a ray-tracing procedure that avoids periodicity effects in a universe that is modeled as a three-dimensional torus in the standard way. Results from our new simulations are compared with previous ones based on Particle-Mesh simulations. We also systematically investigate the impact of box volume, resolution, and ray-tracing directions on the variance of the computed power spectra. We find that a box size of 512 h {sup -1} Mpc is sufficient to provide a robust estimate of the weak-lensing angular power spectrum in the l-interval (2000-7000). For a reaslistic cosmological model, the power [l(l + 1)C{sub l}/2pi]{sup 1/2} takes on values of a few muK in this interval, which suggests that a future detection is feasible and may explain the excess power at high l in the Berkeley-Illinois-Maryland Association and Cosmic Background Imager observations.

  3. The Milli-Arc-Second Structure Imager, MASSIM: A New Concept for a High Angular Resolution X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.; Reynolds, C.; Sambruna, R.; Streitmatter, R.; Windt, D.

    2008-01-01

    MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.

  4. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Poulton, R.; Roche, P. F.; Hernán-Caballero, A.; Aretxaga, I.; Martínez-Paredes, M.; Ramos Almeida, C.; Pereira-Santaella, M.; Díaz-Santos, T.; Levenson, N. A.; Packham, C.; Colina, L.; Esquej, P.; González-Martín, O.; Ichikawa, K.; Imanishi, M.; Rodríguez Espinosa, J. M.; Telesco, C.

    2016-08-01

    We investigate the evolutionary connection between local IR-bright galaxies (log LIR ≥ 11.4 L⊙) and quasars. We use high angular resolution (˜ 0.3-0.4 arcsec˜ few hundred parsecs) 8 - 13 μm ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear 11.3 μm PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or projected nuclear separation. This suggests that the changes in the distribution of the nuclear obscuring material may be taking place rapidly and at different interaction stages washing out the evidence of an evolutionary path. When compared to normal AGN, the nuclear star formation activity of quasars appears to be dimming whereas it is enhanced in some IR-bright nuclei, suggesting that the latter are in an earlier star-formation dominated phase.

  5. Polarimetric imaging of NGC 1068 at high angular resolution in the near infrared. Direct evidence of an extended nuclear torus

    NASA Astrophysics Data System (ADS)

    Gratadour, D.; Rouan, D.; Grosset, L.; Boccaletti, A.; Clénet, Y.

    2015-09-01

    Aims: One of the main observational challenges for investigating the central regions of active galactic nuclei (AGN) at short wavelengths, using high angular resolution, and high contrast observations, is to directly detect the circumnuclear optically thick material hiding the central core emission when viewed edge-on. The lack of direct evidence is limiting our understanding of AGN, and several scenarios have been proposed to cope for the diverse observed aspects of activity in a unified approach. Methods: Observations in the near-infrared spectral range have shown themselves to be powerful for providing essential hints to the characterisation of the unified model ingredients because of the reduced optical depth of the obscuring material. Moreover, it is possible to trace this material through light scattered from the central engine's closest environment, so that polarimetric observations are the ideal tool for distinguishing it from purely thermal and stellar emissions. Results: Here we show strong evidence that there is an extended nuclear torus at the center of NGC 1068 thanks to new adaptive-optics-assisted polarimetric observations in the near-infrared. The orientation of the polarization vectors proves that there is a structured hourglass-shaped bicone and a compact elongated (20 × 60 pc) nuclear structure perpendicular to the bicone axis. The linearly polarized emission in the bicone is dominated by a centro-symmetric pattern, but the central compact region shows a clear deviation from the latter with linear polarization aligned perpendicular to the bicone axis. Figure 2 is available in electronic form at http://www.aanda.orgData obtained with the SPHERE an instrument designed and built by a consortium consisting of IPAG (France), MPIA (Germany), LAM (France), LESIA (France), Laboratoire Lagrange (France), INAF - Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France), and ASTRON

  6. Thin monolithic glass shells for future high angular resolution and large collecting area x-ray telescope

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Citterio, O.; Ghigo, M.; Mattaini, E.; Pareschi, G.; Parodi, G.

    2013-09-01

    One of the most difficult requests to be accomplished from the technological point of view for next generation x-ray telescopes is to combine high angular resolution and effective area. A significant increase of effective area can be reached with high precision but at the same time thin (2-3 mm thickness for mirror diameters of 30-110 cm) glass mirror shells. In the last few years the Brera Observatory has lead a development program for realizing this kind of monolithic thin glass shell. The fused silica has been chosen as shell substrate due to its thermal and mechanical properties. To bring the mirror shells to the needed accuracy, we have adopted a deterministic direct polishing method (already used for past missions as Einstein, Rosat, Chandra) to ten time thinner shells. The technological challenge has been solved using a temporary stiffening structure that allows the handling and the machining of so thin glass shells. The results obtained with a prototype shell at an intermediate stage of its development (17'' HEW measured in full illumination mode with x-ray) indicate that the working concept is feasible and can be further exploited using the very large Ion Beam Facility available in our labs for the final high accuracy figuring of the thin shells. In this paper we present the required tolerances for the shell realization, the shells production chain flow and the ion beam facility up grading. Forecast on figuring time and expected performances of the figuring will also be given on the basis on the metrological data collected during past shell development.

  7. Molecular outflows and hot molecular cores in G24.78+0.08 at sub-arcsecond angular resolution

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Cesaroni, R.; Zhang, Q.; Galván-Madrid, R.; Beuther, H.; Fallscheer, C.; Neri, R.; Codella, C.

    2011-08-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims: We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods: We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of < 1″. Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results: The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into three and two cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected in the region, which suggests a preferential direction for star formation in this region. The masses of the cores range from 7 to 22 M⊙, and the rotational temperatures from 128 to 180 K. The high-density tracers have revealed the existence of two velocity components towards A1. One of them peaks close to the position of the millimeter continuum peak and of the HC Hii region and is associated with the velocity gradient seen in CH3CN towards this core, while the other one peaks southwest of core A1 and is not associated with any millimeter continuum emission peak. The position-velocity plots along outflow A and the 13CO (2-1) averaged blueshifted and redshifted emission indicate that this outflow is driven by core A2. Core A1 apparently does not drive any outflow. The knotty appearance of the highly collimated outflow C and the 12CO position-velocity plot suggest an episodic outflow, where the knots are made of swept-up ambient gas.

  8. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation

    NASA Technical Reports Server (NTRS)

    Liandrat, J.; Tchamitchian, PH.

    1990-01-01

    The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.

  9. Angular momentum and star formation

    NASA Astrophysics Data System (ADS)

    Strittmatter, P. A.

    The present investigation is mainly concerned with the importance of high angular resolution observations in studies of star formation and, in particular, with elucidating the role which angular momentum plays in the process. A brief report is included on recent high angular resolution observations made with the Steward Observatory speckle camera system. A consideration of the angular momentum in interstellar clouds indicates that rotation precludes quasi-spherical contraction. A number of solutions to this angular momentum problem are examined, taking into account questions concerning the help provided by high angular resolution observations for an elucidation of the various possible scenarios of star formation. Technical aspects involved in obtaining suitable data are investigated. It is concluded that high angular resolution observations hold considerable promise for solving at least some of the problems associated with the role of angular momentum in star formation.

  10. Radioastron: Main results of the implementation of the early science program in studies of astronomical objects in the universe with ultra-high angular resolution

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Alakoz, A. V.; Kovalev, Y. Y.; Popov, M. V.; Sobolev, A. M.; Sokolovsky, K. V.

    2015-12-01

    The paper presents the main results of the implementation of the Radioastron Early Science Program. Interferometric responses (fringes) were obtained for all types of studied radio sources (quasars, pulsars and cosmic masers) and in all ranges of wavelengths (from meter to centimeter range) with large spaceground baselines. Such measurements have provided a record angular resolution, in some cases reaching several tens of microseconds of arc. This brings unique scientific results concerning the nature of the processes occurring in the vicinity of the supermassive black holes, the structure of the interstellar plasma inhomogeneities and dynamics of compact objects in star-forming regions.

  11. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration

    NASA Astrophysics Data System (ADS)

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-01

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  12. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  13. HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF A CORONAL MASS EJECTION SOURCE REGION AT LOW FREQUENCIES DURING A SOLAR ECLIPSE

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Rajalingam, M. E-mail: kathir@iiap.res.in E-mail: rajalingam@iiap.res.in

    2012-01-10

    We carried out radio observations of the solar corona in the frequency range 109-50 MHz during the annular eclipse of 2010 January 15 from the Gauribidanur Observatory, located about 100 km north of Bangalore in India. The radio emission in the above frequency range originates typically in the radial distance range Almost-Equal-To 1.2-1.5 R{sub Sun} in the 'undisturbed' solar atmosphere. Our analysis indicates that (1) the angular size of the smallest observable radio source (associated with a coronal mass ejection in the present case) is Almost-Equal-To 1' {+-} 0.'3, (2) the source size does not vary with radial distance, (3) the peak brightness temperature of the source corresponding to the above size at a typical frequency like 77 MHz is Almost-Equal-To 3 Multiplication-Sign 10{sup 9} K, and (4) the coronal magnetic field near the source region is Almost-Equal-To 70 mG.

  14. Implications of a High Angular Resolution Image of the Sunyaev-Zel'Dovich Effect in RXJ1347-1145

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M.; Cotton, W. D.; Koch, P. M.; Molnar, S. M.; Sievers, J.; Aguirre, J. E.; Benford, D.; Staguhn, J. G.; Moseley, H.; Irwin, K. D.; Ade, P.

    2010-01-01

    The most X-ray luminous cluster known, RXJ1347-1145 (z = 0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich effect (SZE) at 90 GHz (lambda = 33 mm) in RXJ1347-1145 at 10" resolution with the 64 pixel MUSTANG bolometer array on the Green Bank Telescope, confirming a previously reported strong, localized enhancement of the SZE 20" to the southeast of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (>20keV) gas caused by an ongoing major (low mass ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core approx. 1.6x higher than just to the west. This is the highest resolution image of the SZE made to date.

  15. Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C{sub 2}H{sub 2}

    SciTech Connect

    Colle, Renato; Embriaco, Davide; Massini, Michol; Simonucci, Stefano; Taioli, Simone

    2004-10-01

    Analytic expressions for the direct, resonant, and interference contributions to the differential cross section of a resonant Auger process, produced by the inner-shell photoionization of a linear molecule either 'fixed in space' or belonging to a gas of randomly oriented molecules, have been derived following Dill's procedures [Dill et al., Phys. Rev. Lett. 45, 1393 (1980)], but going beyond the two-step approximation. Angle-resolved Auger spectra of the C{sub 2}H{sub 2} molecule measured on top of the C 1s{yields}{pi}* resonance [Kivimaeki et al., J. Phys. B 30, 4279 (1997)] have been calculated together with asymmetry parameters, analyzing also the different contributions to the electron angular distributions.

  16. Providing Stringent Star Formation Rate Limits of z ˜ 2 QSO Host Galaxies at High Angular Resolution

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley A.; Do, Tuan; Larkin, James E.; Armus, Lee; Gallagher, S. C.

    2016-04-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ˜ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ˜0.″2 (˜1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (zHα = 2.182) and SDSS J0925+0655 (zHα = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M⊙ yr-1 originating from a compact region that is kinematically offset by 290-350 km s-1. For SDSS J0925+0655 we infer a SFR of 29 M⊙ yr-1 distributed over three clumps that are spatially offset by ˜7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M⊙ yr-1 kpc-2. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M⊙ yr-1 kpc-2. These IFS observations indicate that while the central black hole is accreting mass at 10%-40% of the Eddington rate, if star formation is present in the host (1.4-20 kpc) it would have to occur diffusely with significant

  17. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    NASA Technical Reports Server (NTRS)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  18. A high angular resolution survey of massive stars in Cygnus OB2: Results from the Hubble space telescope fine guidance sensors

    SciTech Connect

    Caballero-Nieves, S. M.; Gies, D. R.; Jao, W.-C. E-mail: gies@chara.gsu.edu; and others

    2014-02-01

    We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the fine guidance sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitude difference ΔV < 4 down to separations as small as 0.''01. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 to 20,000 yr. When combined with the known short-period spectroscopic binaries, the results support the hypothesis that the binary fraction among massive stars is >60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.

  19. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  20. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; Simpson, A. D. (Technical Monitor)

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  1. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Martínez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; Hernán-Caballero, A.; González-Martín, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; Díaz-Santos, T.; Elitzur, M.; Esquej, P.; García-Bernete, I.; Imanishi, M.; Levenson, N. A.; Rodríguez Espinosa, J. M.

    2015-12-01

    We present an analysis of the nuclear infrared (IR, 1.6-18 μm) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3-0.5 arcsec) imaging using the Si-2 filter (λC = 8.7 μm) and 7.5-13 μm spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 μm silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol ˜ 1.9 × 1045 erg s-1 that is in good agreement with other estimates in the literature.

  2. THE 3-5 {mu}m SPECTRUM OF NGC 1068 AT HIGH ANGULAR RESOLUTION: DISTRIBUTION OF EMISSION AND ABSORPTION FEATURES ACROSS THE NUCLEAR CONTINUUM SOURCE

    SciTech Connect

    Geballe, T. R.; Mason, R. E.; Rodriguez-Ardila, A.; Axon, D. J.

    2009-08-20

    We report moderate resolution 3-5 {mu}m spectroscopy of the nucleus of NGC 1068 obtained at 0.''3 (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the active galactic nucleus. The deconvolved full width at half-maximum of the nuclear continuum source in this direction is 0.''3. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.''3 north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 {mu}m hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 {mu}m silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 {mu}m feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc to the central engine.

  3. The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Hansen, Andreas; Neese, Frank

    2012-10-01

    In the present work, the RIJCOSX approximation, developed earlier for accelerating the SCF procedure, is applied to one of the limiting factors of LPNO-CCSD calculations: the evaluation of the singles Fock term. It turns out that the introduction of RIJCOSX in the evaluation of the closed shell LPNO-CCSD singles Fock term causes errors below the microhartree limit. If the proposed procedure is also combined with RIJCOSX in SCF, then a somewhat larger error occurs, but reaction energy errors will still remain negligible. The speedup for the singles Fock term only is about 9-10 fold for the largest basis set applied. For the case of Penicillin using the def2-QZVPP basis set, a single point energy evaluation takes 2 day 16 h on a single processor leading to a total speedup of 2.6 as compared to a fully analytic calculation. Using eight processors, the same calculation takes only 14 h.

  4. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  5. Denoising of high-resolution single-particle electron-microscopy density maps by their approximation using three-dimensional Gaussian functions.

    PubMed

    Jonić, S; Vargas, J; Melero, R; Gómez-Blanco, J; Carazo, J M; Sorzano, C O S

    2016-06-01

    Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated macromolecular complexes is the method of choice to obtain the structure of complexes that cannot be easily studied by other experimental methods due to their flexibility or large size. An increasing number of macromolecular structures are currently being obtained at subnanometer resolution but the interpretation of structural details in such EM-derived maps is often difficult because of noise at these high-frequency signal components that reduces their contrast. In this paper, we show that the method for EM density-map approximation using Gaussian functions can be used for denoising of single-particle EM maps of high (typically subnanometer) resolution. We show its denoising performance using simulated and experimental EM density maps of several complexes.

  6. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  7. Efficient parallel algorithm of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation (RI-MP2)

    NASA Astrophysics Data System (ADS)

    Katouda, Michio; Nagase, Shigeru

    An efficient parallel algorithm is developed for second-order Møller-Plesset perturbation theory with the resolution-of-identity approximation of two-electron repulsion integrals (RI-MP2) to perform MP2 energy calculations of large molecules on distributed memory processors. Benchmark calculations are carried out for taxol (C47H51NO14), valinomycin (C54H90N6O18), and two-layer nanographene sheets (C96H24)2, which show the high parallel efficiency of the developed algorithm.

  8. Approximations for photoelectron scattering

    NASA Astrophysics Data System (ADS)

    Fritzsche, V.

    1989-04-01

    The errors of several approximations in the theoretical approach of photoelectron scattering are systematically studied, in tungsten, for electron energies ranging from 10 to 1000 eV. The large inaccuracies of the plane-wave approximation (PWA) are substantially reduced by means of effective scattering amplitudes in the modified small-scattering-centre approximation (MSSCA). The reduced angular momentum expansion (RAME) is so accurate that it allows reliable calculations of multiple-scattering contributions for all the energies considered.

  9. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    PubMed

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107

  10. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    PubMed

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.

  11. Exploring the Impact of Nuclear Data Uncertainties in Ultra-high Resolution Gamma Spectroscopy for Isotopic Analysis Using Approximate Bayesian Computation

    SciTech Connect

    Burr, T.; Hoover, A.; Croft, S.; Rabin, M.

    2015-01-15

    High purity germanium (HPGe) currently provides the highest readily available resolution gamma detection for a broad range of radiation measurements, but microcalorimetry is a developing option that has considerably higher resolution even than HPGe. Superior microcalorimetry resolution offers the potential to better distinguish closely spaced X-rays and gamma-rays, a common challenge for the low energy spectral region near 100 keV from special nuclear materials, and the higher signal-to-background ratio also confers an advantage in detection limit. As microcalorimetry continues to develop, it is timely to assess the impact of uncertainties in detector and item response functions and in basic nuclear data, such as branching ratios and half-lives, used to interpret spectra in terms of the contributory radioactive isotopes. We illustrate that a new inference option known as approximate Bayesian computation (ABC) is effective and convenient both for isotopic inference and for uncertainty quantification for microcalorimetry. The ABC approach opens a pathway to new and more powerful implementations for practical applications than currently available.

  12. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    SciTech Connect

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schulze, Felix; Steinborn, Lisa K.; Schmidt, Andreas S.

    2015-10-10

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo

  13. Connecting Angular Momentum and Galactic Dynamics: The Complex Interplay between Spin, Mass, and Morphology

    NASA Astrophysics Data System (ADS)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schmidt, Andreas S.; Schulze, Felix; Steinborn, Lisa K.

    2015-10-01

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo

  14. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  15. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.

    PubMed

    Yoshikawa, Takeshi; Nakai, Hiromi

    2015-01-30

    Graphical processing units (GPUs) are emerging in computational chemistry to include Hartree-Fock (HF) methods and electron-correlation theories. However, ab initio calculations of large molecules face technical difficulties such as slow memory access between central processing unit and GPU and other shortfalls of GPU memory. The divide-and-conquer (DC) method, which is a linear-scaling scheme that divides a total system into several fragments, could avoid these bottlenecks by separately solving local equations in individual fragments. In addition, the resolution-of-the-identity (RI) approximation enables an effective reduction in computational cost with respect to the GPU memory. The present study implemented the DC-RI-HF code on GPUs using math libraries, which guarantee compatibility with future development of the GPU architecture. Numerical applications confirmed that the present code using GPUs significantly accelerated the HF calculations while maintaining accuracy.

  16. Efficient Implementation of the Pair Atomic Resolution of the Identity Approximation for Exact Exchange for Hybrid and Range-Separated Density Functionals

    PubMed Central

    2015-01-01

    An efficient new molecular orbital (MO) basis algorithm is reported implementing the pair atomic resolution of the identity approximation (PARI) to evaluate the exact exchange contribution (K) to self-consistent field methods, such as hybrid and range-separated hybrid density functionals. The PARI approximation, in which atomic orbital (AO) basis function pairs are expanded using auxiliary basis functions centered only on their two respective atoms, was recently investigated by Merlot et al. [J. Comput. Chem.2013, 34, 1486]. Our algorithm is significantly faster than quartic scaling RI-K, with an asymptotic exchange speedup for hybrid functionals of (1 + X/N), where N and X are the AO and auxiliary basis dimensions. The asymptotic speedup is 2 + 2X/N for range separated hybrids such as CAM-B3LYP, ωB97X-D, and ωB97X-V which include short- and long-range exact exchange. The observed speedup for exchange in ωB97X-V for a C68 graphene fragment in the cc-pVTZ basis is 3.4 relative to RI-K. Like conventional RI-K, our method greatly outperforms conventional integral evaluation in large basis sets; a speedup of 19 is obtained in the cc-pVQZ basis on a C54 graphene fragment. Negligible loss of accuracy relative to exact integral evaluation is demonstrated on databases of bonded and nonbonded interactions. We also demonstrate both analytically and numerically that the PARI-K approximation is variationally stable. PMID:25691831

  17. Angular momentum in human walking.

    PubMed

    Herr, Hugh; Popovic, Marko

    2008-02-01

    Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

  18. Development of an angular displacement measurement technique through birefringence heterodyne interferometry.

    PubMed

    Hsieh, Hung-Lin; Lee, Ju-Yi; Chen, Lin-Yu; Yang, Yang

    2016-04-01

    An angular displacement measurement sensor with high resolution for large range measurement is presented. The design concept of the proposed method is based on the birefringence effect and phase detection of heterodyne interferometry. High system symmetry and simple operation can be easily achieved by employing an innovative sandwich optical design for the angular sensor. To evaluate the feasibility and performance of the proposed method, several experiments were performed. The experimental results demonstrate that our angular displacement measurement sensor can achieve a measurement range greater than 26°. Considering the high-frequency noise, the measurement resolution of the system is approximately 1.2° × 10-4. Because of the common-path arrangement, our proposed method can provide superior immunity against environmental disturbances. PMID:27136979

  19. The oceanic contribution to the Earth's seasonal angular momentum budget

    NASA Astrophysics Data System (ADS)

    Dickey, J. O.; Marcus, S. L.; Johns, C. M.; Hide, R.; Thompson, S. R.

    1993-12-01

    Seasonal variations in the speed of the Earth's rotation manifest themselves as fluctuations in the length of the day (LOD) with an amplitude of about 1000 microseconds. We know from previous work that at least 95% of these variations can be accounted for in terms of angular momentum exchanged between the atmosphere and the solid Earth. Here we examine the respective contributions of the Antarctic Circumpolar Current (ACC) and the global oceans to the Earth's seasonal angular momentum budget, using in situ data from the Drake Passage and results from both the oceanic regional model (Fine Resolution Antarctic Model -- FRAM) of Webb et al. (1991) and the global ocanic model of Maier-Reimer et al. (1993) as analyzed by Brosche et al. (1990). The estimated annual contribution of the ACC (2-4 microsec) is much smaller than the total variation in the oceanic models or the existing LOD-AAM residual (both approximately 15-20 microsec). The estimated semi-annual ACC contribution (3-8 microsec) is offset by counter-current further north in both oceanic models, which exhibit larger semi-annual variations in planetary angular momentum. Further refinements in the Earth's seasonal angular momentum budget, therefore, will require the full (planetary plus relative) contribution of the global oceans in addition to that of the ACC.

  20. Low Angular Momentum in Clumpy, Turbulent Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Obreschkow, Danail; Glazebrook, Karl; Bassett, Robert; Fisher, David B.; Abraham, Roberto G.; Wisnioski, Emily; Green, Andrew W.; McGregor, Peter J.; Damjanov, Ivana; Popping, Attila; Jørgensen, Inger

    2015-12-01

    We measure the stellar specific angular momentum {j}s={J}s/{M}s in four nearby (z ≈ 0.1) disk galaxies that have stellar masses {M}s near the break {M}s* of the galaxy mass function but look like typical star-forming disks at z ≈ 2 in terms of their low stability (Q ≈ 1), clumpiness, high ionized gas dispersion (40-50 {km} {{{s}}}-1), high molecular gas fraction (20%-30%), and rapid star formation (˜ 20{M}⊙ {{yr}}-1). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have ˜ 3 times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low {j}s values of our targets are similar to those expected in the {M}s* population at higher z from the approximate theoretical scaling {j}s\\propto {(1+z)}-1/2 at fixed {M}s. This suggests that a change in angular momentum, driven by cosmic expansion, is the main cause for the remarkable difference between clumpy {M}s* disks at high z (which likely evolve into early-type galaxies) and mass-matched local spirals.

  1. The oceanic contribution to the Earth's seasonal angular momentum budget

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Marcus, S. L.; Johns, C. M.; Hide, R.; Thompson, S. R.

    1993-01-01

    Seasonal variations in the speed of the Earth's rotation manifest themselves as fluctuations in the length of the day (LOD) with an amplitude of about 1000 microseconds. We know from previous work that at least 95% of these variations can be accounted for in terms of angular momentum exchanged between the atmosphere and the solid Earth. Here we examine the respective contributions of the Antarctic Circumpolar Current (ACC) and the global oceans to the Earth's seasonal angular momentum budget, using in situ data from the Drake Passage and results from both the oceanic regional model (Fine Resolution Antarctic Model -- FRAM) of Webb et al. (1991) and the global ocanic model of Maier-Reimer et al. (1993) as analyzed by Brosche et al. (1990). The estimated annual contribution of the ACC (2-4 microsec) is much smaller than the total variation in the oceanic models or the existing LOD-AAM residual (both approximately 15-20 microsec). The estimated semi-annual ACC contribution (3-8 microsec) is offset by counter-current further north in both oceanic models, which exhibit larger semi-annual variations in planetary angular momentum. Further refinements in the Earth's seasonal angular momentum budget, therefore, will require the full (planetary plus relative) contribution of the global oceans in addition to that of the ACC.

  2. High Angular Resolution Observations of Episodic Dust Emission from Long Period Variable Stars Twenty Years of Observations with the Berkeley Infrared Spatial Interferometer

    NASA Technical Reports Server (NTRS)

    Danchi, William

    2010-01-01

    Over the past twenty years the U. C. Berkeley Infrared Spatial Interferometer has observed a number of Long Period Variable stars in the mid-infrared, obtaining information on the spatial distribution of dust around these stars with resolutions of the order of a few tens of milliarcseconds. The ISI is a heterodyne interferometer operating mostly at 11.15 microns, initially with two telescopes. In the last decade, it has been taking data regularly with three telescopes, thus obtaining visibility data on three baselines and also a closure phase. Over the course of the years, the ISI has been able to measure the physical properties of the dust shells surrounding these stars, in particular the inner radii of the dust shells, as well as the temperature and density distribution. For some stars, the ISI has also made precision measurements of their diameters in the mid-infrared. Closure phase measurements have revealed asymmetries in the dust distributions around many stars. Most surprisingly the ISI data has shown evidence for substantial changes in the amount of dust on time scales of 5-10 years, rather than being directly correlated with the stellar pulsation periods, which are of the order of one year. We discuss past results and new results from the ISI that highlight the dynamic environment around these stars.

  3. High resolution Dopplerimetry of correlated angular and quantum state-resolved CO(2) scattering dynamics at the gas-liquid interface.

    PubMed

    Perkins, Bradford G; Nesbitt, David J

    2010-11-14

    Full three dimensional (3D) translational distributions for quantum state-resolved scattering dynamics at the gas-liquid interface are presented for experimental and theoretical studies of CO(2) + perfluorinated surfaces. Experimentally, high resolution absorption profiles are measured as a function of incident (θ(inc)) and scattering (θ(scat)) angles for CO(2) that has been scattered from a 300 K perfluorinated polyether surface (PFPE) with an incident energy of E(inc) = 10.6(8) kcal mol(-1). Line shape analysis of the absorption profiles reveals non-equilibrium dynamics that are characterized by trapping-desorption (TD) and impulsive scattering (IS) components, with each channel simply characterized by an effective "temperature" that compares very well with previous results from rotational state analysis [Perkins and Nesbitt, J. Phys. Chem. A, 2008, 112, 9324]. From a theoretical perspective, molecular dynamics (MD) simulations of CO(2) + fluorinated self-assembled monolayer surface (F-SAMs) yield translational probability distributions that are also compared with experimental results. Trajectories are parsed by θ(scat) and J, with the results rigorously corrected by flux-to-density transformation and providing comparisons in near quantitative agreement with experiment. 3D flux and velocity distributions obtained from MD simulations are also presented to illustrate the role of in- and out-of-plane scattering.

  4. Measurements of the Sunyaev-Zel'dovich Effect in MACS J0647.7+7015 and MACS J1206.2-0847 at High Angular Resolution with MUSTANG

    NASA Astrophysics Data System (ADS)

    Young, Alexander H.; Mroczkowski, Tony; Romero, Charles; Sayers, Jack; Balestra, Italo; Clarke, Tracy E.; Czakon, Nicole; Devlin, Mark; Dicker, Simon R.; Ferrari, Chiara; Girardi, Marisa; Golwala, Sunil; Intema, Huib; Korngut, Phillip M.; Mason, Brian S.; Mercurio, Amata; Nonino, Mario; Reese, Erik D.; Rosati, Piero; Sarazin, Craig; Umetsu, Keiichi

    2015-08-01

    We present high resolution (9″) imaging of the Sunyaev-Zel’dovich Effect (SZE) toward two massive galaxy clusters, MACS J0647.7+7015 (z = 0.591) and MACS J1206.2-0847 (z = 0.439). We compare these 90 GHz measurements, taken with the Multiplexed Squid/TES Array at Ninety Gigahertz (MUSTANG ) receiver on the Green Bank Telescope, with generalized Navarro-Frenk-White (gNFW) models derived from Bolocam 140 GHz SZE data as well as maps of the thermal gas derived from Chandra X-ray observations. We adopt a serial-fitting approach, in which gNFW models are first fit to the Bolocam data and then compared to the MUSTANG data to determine an overall best-fit model. For MACS J0647.7+7015, we find a gNFW profile with core slope parameter γ = 0.9 fits the MUSTANG image with {χ }{red}2=1.005 and probability to exceed (PTE) = 0.34. For MACS J1206.2-0847, we find γ =0.7, {χ }{red}2=0.993, and PTE = 0.70. In addition, we find a significant (>3σ) residual SZE feature in MACS J1206.2-0847 coincident with a group of galaxies identified in Very Large Telescope data and filamentary structure found in a weak-lensing mass reconstruction. We suggest the detected sub-structure may be the SZE decrement from a low mass foreground group or an infalling group. Giant Metrewave Radio Telescope measurements at 610 MHz reveal diffuse extended radio emission to the west, which we posit is either an active galactic nucleus-driven radio lobe, a bubble expanding away from disturbed gas associated with the SZE signal, or a bubble detached and perhaps re-accelerated by sloshing within the cluster. Using the spectroscopic redshifts available, we find evidence for a foreground (z = 0.423) or infalling group, coincident with the residual SZE feature.

  5. High Angular Resolution Astronomy on a Shoestring

    NASA Astrophysics Data System (ADS)

    Haniff, Chris

    Introduction; Lessons From Single-Telescope Interferometry; Interferometry with Single Telescopes; Astronomical applications; Desiderata For a Second-Generation Array; Astronomical goals; COAST - Lessons From a Prototype Array; Design elements of COAST; Suggestions For a Next-Generation Array (NGA); Collectors; Transport; Path Equalization; Optics; Operation; Summary

  6. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  7. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  8. Test-Retest Reliability of High Angular Resolution Diffusion Imaging Acquisition within Medial Temporal Lobe Connections Assessed via Tract Based Spatial Statistics, Probabilistic Tractography and a Novel Graph Theory Metric

    PubMed Central

    Kuhn, T.; Gullett, J. M.; Nguyen, P.; Boutzoukas, A. E.; Ford, A.; Colon-Perez, L. M.; Triplett, W.; Carney, P.R.; Mareci, T. H.; Price, C. C.; Bauer, R. M.

    2015-01-01

    Introduction This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. Methods HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. Results TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. Conclusions By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained. PMID:26189060

  9. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric.

    PubMed

    Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M

    2016-06-01

    This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.

  10. Galactic angular momenta and angular momentum couplings in the large-scale structure

    NASA Astrophysics Data System (ADS)

    Schäfer, Björn Malte; Merkel, Philipp M.

    2012-04-01

    In this paper, we revisit the acquisition of angular momentum of galaxies by tidal shearing and compute the angular momentum variance ? as well as the angular momentum correlation function CL(r), using tidal torquing in the Zel'dovich approximation as the model for angular momentum build-up. Under the assumption that haloes form at peaks in the density field we determine the protohalo's inertia from the peak shape and embed it in a tidal field. Inertia and shear are drawn from a random process and we compute the angular momentum variance and correlation function by sampling from a Gaussian distribution which shows the correct covariances between all relevant quantities. We describe the way in which the correlations in angular momentum result from an interplay of long-ranged correlations in the tidal shear and short-ranged correlations in the inertia field. Our description takes care of the relative orientation of the eigensystems of these two symmetric tensors. We propose a new form of the angular momentum correlation function which is able to distinguish between parallel and antiparallel alignment of angular momentum vectors, and comment on implications of intrinsic alignments for weak lensing measurements. We confirm the scaling L/M ∝ M2/3 and find the angular momentum distribution of Milky Way sized haloes to be correlated on scales of ˜1 Mpc h-1. The correlation function can be well fitted by an empirical relation of the form CL(r) ∝ exp(-[r/r0]β).

  11. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  12. Chemical ordering of Co and Ni in a W-(AlCoNi) crystalline approximant related to Al-Co-Ni decagonal quasicrystals studied by atomic resolution energy-dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Yasuhara, Akira; Hiraga, Kenji

    2015-01-01

    A W-(AlCoNi) crystalline approximant, which is closely related to Al-Co-Ni decagonal quasicrystals, in an Al72.5Co20Ni7.5 alloy has been studied by atomic resolution energy-dispersive X-ray spectroscopy (EDS), in an instrument attached to a spherical aberration (Cs)-corrected scanning transmission electron microscope. On high-resolution EDS maps of Co and Ni elements, obtained by integrating many sets of EDS data taken from undamaged areas, chemical ordering of Co and Ni is clearly detected. In the structure of the W-(AlCoNi) phase, consisting of arrangements of transition-metal (TM) atoms located at vertices of pentagonal tilings and pentagonal arrangements of mixed sites (MSs) of TM and Al atoms, Co atoms occupy the TM atom positions with the pentagonal tiling and Ni is enriched in part of the pentagonal arrangements of MSs.

  13. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  14. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  15. Approximate resolution of hard numbering problems

    SciTech Connect

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  16. Creating high-harmonic beams with controlled orbital angular momentum.

    PubMed

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  17. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz1/2 and 0.5 nrad/Hz1/2 at 1 Hz.

  18. Unveiling Angular Momentum

    NASA Astrophysics Data System (ADS)

    Robinson, Stephen

    2015-03-01

    Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.

  19. Angular shear plate

    SciTech Connect

    Ruda, Mitchell C.; Greynolds, Alan W.; Stuhlinger, Tilman W.

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  20. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  1. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  2. Semiclassical complex angular momentum theory and Pade reconstruction for resonances, rainbows, and reaction thresholds

    SciTech Connect

    Sokolovski, D.; Msezane, A.Z.

    2004-09-01

    A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.

  3. Bioacoustic spatial perception by humans: a controlled laboratory measurement of spatial resolution without distal cues.

    PubMed

    Kay, L

    2001-02-01

    The angular spatial resolution of a wide-angle air sonar using a continuous transmission frequency-modulated radiation, with the output coupled binaurally to the auditory system of a user, was measured under restrained controlled conditions. This was done to determine the effect of adding a narrow central field of view of 9 deg to a wide-angle sonar. The target objects were three equidistant vertical rods initially spaced apart by 10 deg. This was varied down to a spacing of 4 deg. Ten nonvisual subjects achieved an angular resolution of 6 deg. Four of these ten subjects continued learning to achieve an unexpected spatial resolution of 4 deg within the 9 deg central field. A mean error of approximately 1 deg in direction accuracy was achieved. It is inferred that the unique variations in the octave band ultrasonic echoes within the narrow field, and the invariance of the on-axis echo as one's head is turned, enables this angular resolution and accuracy to be achieved within the wide binaural field of view of 50 deg. This ability to resolve specula objects within a narrow angular resolution element of 9 deg is linked to the bat's ability to seemingly resolve object glints within a distal resolution element of less than 2 wavelengths.

  4. Quantum Heuristics of Angular Momentum

    ERIC Educational Resources Information Center

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  5. Improving the resolution of chopper spectrometers at pulsed neutron sources

    SciTech Connect

    Carpenter, J.M. ); Mildner, D.F.R. . Center for Analytical Chemistry)

    1990-01-01

    We examine the relationships between intensity and resolution in pulsed-source chopper spectrometers, including the effects of Soller collimation, narrower rotor slits and higher rotor speeds. The basis is a simplified description of a spectrometer, approximately optimizing the rotor pulse and lighthouse effects. the analysis includes a new treatment of the angular distribution transmitted through a system consisting of a coarse collimator and a Soller collimator. The results encourage the prospect for a reasonably easily accomplished, higher resolution, optional configuration of the pulsed source chopper spectrometers at IPNS. 6 refs., 5 figs.

  6. Comparison of Three Efficient Approximate Exact-Exchange Algorithms: The Chain-of-Spheres Algorithm, Pair-Atomic Resolution-of-the-Identity Method, and Auxiliary Density Matrix Method.

    PubMed

    Rebolini, Elisa; Izsák, Róbert; Reine, Simen Sommerfelt; Helgaker, Trygve; Pedersen, Thomas Bondo

    2016-08-01

    We compare the performance of three approximate methods for speeding up evaluation of the exchange contribution in Hartree-Fock and hybrid Kohn-Sham calculations: the chain-of-spheres algorithm (COSX; Neese , F. Chem. Phys. 2008 , 356 , 98 - 109 ), the pair-atomic resolution-of-identity method (PARI-K; Merlot , P. J. Comput. Chem. 2013 , 34 , 1486 - 1496 ), and the auxiliary density matrix method (ADMM; Guidon , M. J. Chem. Theory Comput. 2010 , 6 , 2348 - 2364 ). Both the efficiency relative to that of a conventional linear-scaling algorithm and the accuracy of total, atomization, and orbital energies are compared for a subset containing 25 of the 200 molecules in the Rx200 set using double-, triple-, and quadruple-ζ basis sets. The accuracy of relative energies is further compared for small alkane conformers (ACONF test set) and Diels-Alder reactions (DARC test set). Overall, we find that the COSX method provides good accuracy for orbital energies as well as total and relative energies, and the method delivers a satisfactory speedup. The PARI-K and in particular ADMM algorithms require further development and optimization to fully exploit their indisputable potential.

  7. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    SciTech Connect

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A.

    2013-05-20

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  8. Methods for measuring and transporting angular momentum in general relativity

    NASA Astrophysics Data System (ADS)

    Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin

    2016-03-01

    For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.

  9. Reconstruction of off-axis lensless Fourier transform digital holograms based on angular spectrum theory

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wang, Huaying; Wang, Dayong; Xie, Jianjun; Zhao, Jie

    2007-12-01

    A simple holographic high-resolution imaging system without pre-magnification, which is based on off-axis lensless Fourier transform configuration, has been developed. Experimental investigations are performed on USAF resolution test target. The method based on angular spectrum theory for reconstructing lensless Fourier hologram is given. The reconstructed results of the same hologram at different reconstructing distances are presented for what is to our knowledge the first time. Approximate diffraction limited lateral resolution is achieved. The results show that the angular spectrum method has several advantages over more commonly used Fresnel transform method. Lossless reconstruction can be achieved for any numerical aperture holograms as long as the wave field is calculated at a special reconstructing distance, which is determined by the light wavelength and the chip size and the pixel size of the CCD sensor. This is very important for reconstructing an extremely large numerical aperture hologram. Frequency-domain spectrum filtering can be applied conveniently to remove the disturbance of zero-order. The reconstructed image wave field is accurate so long as the sampling theorem is not violated. The experimental results also demonstrate that for a high quality hologram, special image processing is unnecessary to obtain a high quality image.

  10. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  11. Ultrahigh-resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, Waleed S.; Trebes, James E.; Goodman, Dennis M.; Lee, Heung-Rae; McNulty, Ian; Anderson, Erik H.; Zalensky, Andrei O.

    1995-09-01

    Ultra high resolution three-dimensional images of a microscopic test object were made with soft x rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by approximately 5 micrometer. A series of nine 2-D images of the object were recorded at angles between -5 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of approximately 1000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to approximately 6000 angstrom, however some features were clearly reconstructed with a depth resolution of approximately 1000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to approximately 1200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  12. Plasmons carrying orbital angular momentum in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Shabbir A.; Ali, S.; Mendonca, J. T.; Mendonca

    2013-10-01

    The existence of plasmons with orbital angular momentum due to the Laguerre-Gaussian-type density and potential perturbations is studied in an unmagnetized quantum plasma. Starting from appropriate hydrodynamic equations for the electrostatic electron dynamics, a dispersion equation is derived in paraxial approximation. The Laguerre-Gaussian beam solutions are obtained and the properties of electric field components, energy flux, and corresponding angular momentum density of plasmons are investigated. The electric field lines are found to form helical structures with a dominant axial component. The results are analyzed numerically and the influence of radial and angular mode numbers on potential and electric field components is illustrated.

  13. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-01

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  14. Angular momentum evolution for galaxies

    NASA Astrophysics Data System (ADS)

    Pedrosa, S. E.; Tissera, P. B.

    2015-08-01

    Using cosmological hydrodinamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation (Mo, Mao White model), but also the spheroidal one, with a gap due to its lost of angular momentum. We also found that the galaxy size can plot in one general relation, despite the morphological type,, in agreement with recent findings.

  15. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  16. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  17. Super-resolving angular rotation measurement using binary-outcome homodyne detection.

    PubMed

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Zhang, Jiandong; Cen, Longzhu; Wang, Feng; Zhao, Yuan

    2016-08-01

    There has been much recent interest in high precision angular rotation measurement using photon orbital angular momentum to realize super-resolving angular rotation measurement. It is well known that quantum detection strategies can obtain a quantum-enhanced performance. Here, we prove that binary-outcome homodyne detection method can obtain a narrower signal peak, showing better resolution compared with the existing data processing method. Since the photon loss is unavoidable in the actual non-ideal optical system, this paper further discusses the impact of photon loss on the resolution and sensitivity of angular rotation measurement with binary-outcome homodyne detection method. PMID:27505811

  18. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  19. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  20. Temporal resolution improvement using PICCS in MDCT cardiac imaging.

    PubMed

    Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang

    2009-06-01

    The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher

  1. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  2. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  3. Detection and recognition of angular frequency patterns.

    PubMed

    Wilson, Hugh R; Propp, Roni

    2015-05-01

    Previous research has extensively explored visual encoding of smoothly curved, closed contours described by sinusoidal variation of pattern radius as a function of polar angle (RF patterns). Although the contours of many biologically significant objects are curved, we also confront shapes with a more jagged and angular appearance. To study these, we introduce here a novel class of visual stimuli that deform smoothly from a circle to an equilateral polygon with N sides (AF patterns). Threshold measurements reveal that both AF and RF patterns can be discriminated from circles at the same deformation amplitude, approximately 18.0arcsec, which is in the hyperacuity range. Thresholds were slightly higher for patterns with 3.0 cycles than for those with 5.0 cycles. Discrimination between AF and RF patterns was 75% correct at an amplitude that was approximately 3.0 times the threshold amplitude, which implies that AF and RF patterns activate different neural populations. Experiments with jittered patterns in which the contour was broken into several pieces and shifted inward or outward had much less effect on AF patterns than on RF patterns. Similarly, thresholds for single angles of AF patterns showed no significant difference from thresholds for the entire AF pattern. Taken together, these results imply that the visual system incorporates angles explicitly in the representation of closed object contours, but it suggests that angular contours are represented more locally than are curved contours.

  4. A resolution recognizing June 2010 as National Hereditary Hemorrhagic Telangiecstasia (HHT) month established to increase awareness of HHT, which is a complex genetic blood vessel disorder that affects approximately 70,000 people in the United States.

    THOMAS, 111th Congress

    Sen. Johnson, Tim [D-SD

    2010-04-29

    05/26/2010 Resolution agreed to in Senate without amendment and with a preamble by Unanimous Consent. (consideration: CR S4469-4470; text as passed Senate: CR S4470) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  5. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  6. Estimates of mass and angular momentum in the oort cloud.

    PubMed

    Marochnik, L S; Mukhin, L M; Sagdeev, R Z

    1988-10-28

    Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles.

  7. Estimates of mass and angular momentum in the oort cloud.

    PubMed

    Marochnik, L S; Mukhin, L M; Sagdeev, R Z

    1988-10-28

    Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles. PMID:17815893

  8. Orbital angular momentum density of a general Lorentz-Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh-Sommerfeld integral formulae, the analytical expression of a general Lorentz-Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz-Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  9. Orbital angular momentum density of a general Lorentz–Gauss vortex beam

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh–Sommerfeld integral formulae, the analytical expression of a general Lorentz–Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz–Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  10. Approximation of Laws

    NASA Astrophysics Data System (ADS)

    Niiniluoto, Ilkka

    2014-03-01

    Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).

  11. A Role for Improved Angular Observations in Geosynchronous Orbit Determination

    NASA Astrophysics Data System (ADS)

    Sabol, Christopher Andrew

    1998-12-01

    The goal of this thesis is to show that improved angular observations can aid in the determination of satellite position and velocity in the geosynchronous orbit regime. Raven is a new sensor being developed by the U.S. Air Force Research Laboratory which should allow for angular observations of satellites to be made with a standard deviation of 1 arcsecond (which maps into approximately 170 meters at geosynchronous altitude); this is an order of magnitude improvement over traditional angular observation techniques and represents state of the art accuracy of angular observations for geosynchronous orbit determination work. Simulation studies are undertaken to show that these angular observations can be used in the orbit determination process both as the only cracking data source and as a supplement to other tracking data sources such as radar and radio transponder ranges. Results from the radio transponder range analysis are extended to cover Satellite Laser Ranging (SLR) and Global Positioning System (GPS) observation types as well. The studies target both space surveillance and owner/operator mission support aspects of orbit determination although the emphasis will be on mission support satellite operations. Parameters varied in the simulation studies include the number of observing stations, the density of the angular observations, and the number of nights of optical tracking. The data simulations are calibrated based on real data results from a geosynchronous satellite to ensure the integrity of the simulations and the accuracy of the results. The studies show that including the improved angular observations with traditional high accuracy range observations produces a significant improvement in orbit determination accuracy over the range observations alone. The studies also show single site geosynchronous orbit determination is an attractive alternative when combining improved angular and high accuracy range observations.

  12. Angular sensitivity of gated microchannel plate framing cameras

    SciTech Connect

    Landen, O. L.; Lobban, A.; Tutt, T.; Bell, P. M.; Costa, R.; Hargrove, D. R.; Ze, F.

    2001-01-01

    Gated, microchannel-plate-based (MCP) framing cameras have been deployed worldwide for 0.2--9 keV x-ray imaging and spectroscopy of transient plasma phenomena. For a variety of spectroscopic and imaging applications, the angular sensitivity of MCPs must be known for correctly interpreting the data. We present systematic measurements of angular sensitivity at discrete relevant photon energies and arbitrary MCP gain. The results can been accurately predicted by using a simple two-dimensional approximation to the three-dimensional MCP geometry and by averaging over all possible photon ray paths.

  13. Angular Sensitivity of Gated Micro-Channel Plate Framing Cameras

    SciTech Connect

    Landen, O L; Lobban, A; Tutt, T; Bell, P M; Costa, R; Ze, F

    2000-07-24

    Gated, microchannel-plate-based (MCP) framing cameras have been deployed worldwide for 0.2 - 9 keV x-ray imaging and spectroscopy of transient plasma phenomena. For a variety of spectroscopic and imaging applications, the angular sensitivity of MCPs must be known for correctly interpreting the data. We present systematic measurements of angular sensitivity at discrete relevant photon energies and arbitrary MCP gain. The results can been accurately predicted by using a simple 2D approximation to the 3D MCP geometry and by averaging over all possible photon ray paths.

  14. Angular Momentum of a Magnetically Trapped Atomic Condensate

    SciTech Connect

    Zhang, P.; Jen, H. H.; Sun, C. P.; You, L.

    2007-01-19

    For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this Letter we investigate the relationship between the values of the sum or difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.

  15. High-order-harmonic generation driven by pulses with angular spatial chirp

    NASA Astrophysics Data System (ADS)

    Hernández-García, Carlos; Jaron-Becker, Agnieszka; Hickstein, Daniel D.; Becker, Andreas; Durfee, Charles G.

    2016-02-01

    We present and analyze a technique to drive high-order harmonics by laser pulses with an angular spatial chirp. Results of our numerical simulations show that each harmonic is emitted with an angular chirp which scales inversely with the harmonic order and leads to additional control of the spatial and temporal resolution of the spectrum. In particular, the use of angular chirp leads to separation of the harmonics in two dimensions where (i) high spectral resolution can be achieved and (ii) the temporal periodicity of the harmonic pulse trains can be controlled. We show that this technique does not require carrier-envelope-phase stabilization when using few-cycle laser pulses.

  16. Effects of angular range on image quality of chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, Haenghwa; Kim, Ye-seul; Choi, Sunghoon; Lee, Dong-Hoon; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve clinical diagnosis over conventional chest radiography. We investigated the effect of the angular range of data acquisition on the image quality using newly developed CDT system. The four different acquisition sets were studied using +/-15°, +/-20°, +/-30°, and +/-35° angular ranges with 21 projection views (PVs). The point spread function (PSF), modulation transfer function (MTF), artifact spread function (ASF), and normalized contrast-to-noise ratio (CNR) were used to evaluate the image quality. We found that increasing angular ranges improved vertical resolution. The results indicated that there was the opposite relationship of the CNR with angular range for the two tissue types. While CNR for heart tissue increased with increasing angular range, CNR for spine bone decreased. The results showed that the angular range is an important parameter for the CDT exam.

  17. Phenomenology of preequilibrium angular distributions

    SciTech Connect

    Kalbach, C.; Mann, F.M.

    1980-05-01

    The systematics of continuum angular distributions from a wide variety of light ion nuclear reactions have been studied. To first order, the shape of the angular distributions have been found to depend only on the energy of the outgoing particle and on the division of the cross section into multi-step direct and multi-step compound parts. The angular distributions can be described in terms of Legendre polynomials with the reduced polynomial coefficients exhibiting a simple dependence on the outgoing particle energy. Two integer and four continuous parameters with universal values are needed to describe the coefficients for outgoing energies of 2 to 60 MeV in all the reaction types studied. This parameterization combined with a modified Griffin model computer code permits the calculation of double differential cross sections for light ion continuum reactions where no data is available.

  18. Interferometric measurement of angular motion

    NASA Astrophysics Data System (ADS)

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C.

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10-11 rad/sqrt{textrm {Hz}} from audioband down to 100 mHz and an angular measurement range of more than ±1°.

  19. Interferometric measurement of angular motion.

    PubMed

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10(-11) rad/Hz from audioband down to 100 mHz and an angular measurement range of more than ±1°.

  20. Nanoradian angular stabilization of x-ray optical components

    SciTech Connect

    Stoupin, Stanislav; Lenkszus, Frank; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvyd'ko, Yuri

    2010-05-15

    An x-ray free-electron laser oscillator (XFELO) has been recently proposed [K. Kim et al., Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate for the instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko, Phys. Rev. ST Accel. Beams 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high-energy-resolution x-ray monochromator ({Delta}E/E{approx_equal}4x10{sup -8}, E=23.7 keV) and a high-heat-load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.

  1. Sparse pseudospectral approximation method

    NASA Astrophysics Data System (ADS)

    Constantine, Paul G.; Eldred, Michael S.; Phipps, Eric T.

    2012-07-01

    Multivariate global polynomial approximations - such as polynomial chaos or stochastic collocation methods - are now in widespread use for sensitivity analysis and uncertainty quantification. The pseudospectral variety of these methods uses a numerical integration rule to approximate the Fourier-type coefficients of a truncated expansion in orthogonal polynomials. For problems in more than two or three dimensions, a sparse grid numerical integration rule offers accuracy with a smaller node set compared to tensor product approximation. However, when using a sparse rule to approximately integrate these coefficients, one often finds unacceptable errors in the coefficients associated with higher degree polynomials. By reexamining Smolyak's algorithm and exploiting the connections between interpolation and projection in tensor product spaces, we construct a sparse pseudospectral approximation method that accurately reproduces the coefficients of basis functions that naturally correspond to the sparse grid integration rule. The compelling numerical results show that this is the proper way to use sparse grid integration rules for pseudospectral approximation.

  2. Non-Colinearity of Angular Velocity and Angular Momentum

    ERIC Educational Resources Information Center

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  3. Solar cell angular position transducer

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Gray, D. L. (Inventor)

    1980-01-01

    An angular position transducer utilizing photocells and a light source is disclosed. The device uses a fully rotatable baffle which is connected via an actuator shaft to the body whose rotational displacement is to be measured. The baffle blocks the light path between the light source and the photocells so that a constant semicircular beam of light reaches the photocells. The current produced by the photocells is fed through a resistor, a differential amplifier measures the voltage drop across the resistor which indicates the angular position of the actuator shaft and hence of the object.

  4. Automated Angular Momentum Recoupling Algebra

    NASA Astrophysics Data System (ADS)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  5. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    SciTech Connect

    Kronenberg, S.; Brucker, G.J.

    1998-12-31

    The authors` previous research resulted in directional sensors for gamma rays and X rays that have a 4{pi} solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of {approximately}1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events` count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the

  6. Angular Momentum Transfer in Catastrophic Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Love, S. G.; Ahrens, T. J.

    1996-09-01

    Incomplete knowledge of angular momentum transfer in asteroid impacts has hampered efforts to deduce asteroid collisional histories from their rotation rates. This problem traditionally has been investigated using impact experiments on cm-scale, strength-dominated targets. Recent evidence, however, indicates that impacts on asteroids of km size and larger may be controlled by gravity rather than strength, and that the analogy to laboratory impacts may not hold. Accordingly, we have modelled catastrophic impacts on gravitating asteroids to better understand angular momentum transfer in such events. We employ a 3--D, strengthless, gravitating SPH computer code. Target bodies are 10 to 1000 km in diameter and do not initially rotate. Impact speeds are 3--7 km/s; impact angles are 15--75(deg) . Each target is composed of 1791 mass elements: spatial resolution is coarse but acceptable for large scale energy transfer. We simulate the hydrodynamic phase of each impact, after which particle motions are ballistic and treated analytically. Escaping particles have kinetic energy greater than the gravitational energy binding them to the rest of the system; the others reaccrete to form a ``rubble pile'' which is assumed spherical. The rubble pile's size, mass, and angular momentum define its rotation rate. Spin rates for ejected fragments cannot be determined. The target's final spin period depends on the impact angle and the fraction of target mass ejected, but not on impact speed or target size in the ranges tested. The lack of size dependence cannot explain the observed excess of slowly rotating asteroids of ~ 100 km diameter. The fraction of projectile angular momentum retained by the target varies dramatically with impact speed and angle and with target size and fraction of mass removed, complicating its use in models where collision geometry varies. The final spin period of an asteroid losing 50% of its mass is 6--10 hours, comparable to the asteroidal mean of 8 hours

  7. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  8. Photoelectron spectrometer for high-resolution angular resolved studies

    SciTech Connect

    Parr, Albert C.; Southworth, Stephen H.; Dehmer, Joseph L.; Holland, David M.P.

    1982-08-01

    We report on a new electron spectrometer system designed for use on storage-ring light sources. The system features a large (76 cm dia. x 92 cm long) triply magnetically shielded vacuum chamber and two 10.2 cm mean radius hemispherical electron-energy analyzers. One of the analyzers is fixed and the other is rotatable through about 150 deg. The chamber is pumped by a cryopump and a turbomolecular pump combination so as to enable experiments with a variety of gases under different conditions. The light detection includes both a direct beam monitor and polarization analyzer. The electron detection is accomplished with either a continuous-channel electron multiplier or with multichannel arrays used as area detectors.

  9. QUART: Quasar hosts Unveiled by high Angular Resolution Techniques

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley; Murray, Norman W.; Armus, Lee; Larkin, James E.

    2016-06-01

    We present results from the new QUART survey that aims to resolve high-redshift (z = 1.5 - 2.5) radio-quiet and radio-loud quasi stellar object (QSO) host galaxies using the integral field spectrograph (IFS) OSIRIS, and the Keck Adaptive Optics (AO) system. The combination of AO and IFS provides the necessary contrast to disentangle the bright-unresolved QSO from the underlying faint host galaxy with unprecedented sensitivity. We study the ionized gas in these systems to sub-kiloparsec scales, yielding essential constraints on the resolved host galaxies dynamics, morphologies, star formation rates, metallicities, and nebular emission diagnostics. We combine OSIRIS and AO observations with multi-wavelength data sets from Atacama Large Millimeter/submillimeter Array, Hubble Space Telescope, and Very Large Array to better understand the multiple phases of the ISM and stellar population properties of the hosts. Radio-quiet QSOs have shown little-to-no star formation and no evidence of extended QSO narrow line emission. In contrast, our latest OSIRIS results of radio-loud z~1.5-2 quasars have revealed evidence for both concurrent star formation and extended quasar narrow line emission with strong outflows. These outflows are co-spatial with structure observed in the radio data, typically with the path of the quasar jet and/or lobe structure. These winds are highly extended (8-12 kpc) and show broad emission line profiles (extending up to 2,500 km/s), indicating strong evidence of quasar “feedback” in their host galaxies.

  10. The Prospects and Promise of High Angular Resolution Binary Orbits

    NASA Astrophysics Data System (ADS)

    Hartkopf, W. I.

    1999-12-01

    Just how many stellar masses are actually known to 1% or 5% or even 10% accuracy? How well do they really define the Mass-Luminosity relation? Is anything known about the M-L relation for post-Main Sequence stars? What progress is being made in improving the situation? How much of an impact did Hipparcos make? What about the new interferometers? This talk will focus on the advances which are finally being made in the determination of stellar masses. I believe we are about to enter a "golden age" for stellar evolution studies, when masses can be determined to sufficient accuracy and in sufficient numbers to define the M-L relation for different luminosity classes and perhaps even discern the subtle effects of metallicity and age. I'll discuss the new observing tools (now at hand or about to come on line) which will be responsible for bringing about these advances in our knowledge of this basic, but all-important stellar property.

  11. Progress toward light weight high angular resolution multilayer coated optics

    SciTech Connect

    Ulmer, M.P.; Graham, M.E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2008-11-18

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weight Wolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality. We give a progress report on our work on all three areas. In summary, for future space missions it will be desirable for them to be affordable by reducing mass, keeping the focal length manageable, and yet having high figure quality. The avenues we have described above are straight forward paths to achieving this goal, but a great deal of work needs to be done to take us from the concept stage to a functional system.

  12. High-angular resolution observations of the Pistol star

    NASA Astrophysics Data System (ADS)

    Martayan, Christophe; Blomme, Ronny; Le Bouquin, Jean-Baptiste; Merand, Anthony; Montagnier, Guillaume; Selman, Fernando; Girard, Julien; Fox, Andrew; Baade, Dietrich; Frémat, Yves; Lobel, Alex; Martins, Fabrice; Patru, Fabien; Rivinius, Thomas; Sana, Hugues; Štefl, Stanislas; Zorec, Juan; Semaan, Thierry

    2011-07-01

    First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinforce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.

  13. High angular resolution and position determinations by infrared interferometry

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.

  14. "High Angular Resolution Observations of Protoplanetary Disks with Adaptive Optics"

    NASA Technical Reports Server (NTRS)

    Roddier, Francois

    1999-01-01

    Significant results were obtained and published in the literature. The first optical detection of a circumbinary disk was reported in the ApJ at millimetric wavelengths. The size and inclination of this disk were found to be consistent with millimetric observations. Evidence was found for a cavity inside the disk as theory predicts from dust clearing by the stellar companion.

  15. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  16. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  17. Olympic Wrestling and Angular Momentum.

    ERIC Educational Resources Information Center

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  18. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  19. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  20. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.

  1. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318

  2. Power calculation of linear and angular incremental encoders

    NASA Astrophysics Data System (ADS)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  3. Resolution-Tunable Angle-Resolved X-ray Imaging

    SciTech Connect

    Hirano, Keiichi

    2004-05-12

    A resolution-tunable double-crystal device was successfully applied to angle-resolved x-ray imaging. The angular resolution of a Si (220) double-crystal analyzer was tuned between 0.5'' and 2.3'' through the offset angle at {lambda} = 0.0733nm. The throughput of the analyzer was higher than 90%. The angle-resolved images of a spider were recorded on nuclear emulsion plates at various angular resolutions. It was clearly observed that the quality of the angle-resolved image varies with the angular resolution of the analyzer.

  4. Angular Approach Scanning Ion Conductance Microscopy.

    PubMed

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. PMID:27224490

  5. On Stochastic Approximation.

    ERIC Educational Resources Information Center

    Wolff, Hans

    This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…

  6. Optimal approximate doubles

    NASA Astrophysics Data System (ADS)

    Huang, Siendong

    2009-11-01

    The nonlocality of quantum states on a bipartite system \\mathcal {A+B} is tested by comparing probabilistic outcomes of two local observables of different subsystems. For a fixed observable A of the subsystem \\mathcal {A,} its optimal approximate double A' of the other system \\mathcal {B} is defined such that the probabilistic outcomes of A' are almost similar to those of the fixed observable A. The case of σ-finite standard von Neumann algebras is considered and the optimal approximate double A' of an observable A is explicitly determined. The connection between optimal approximate doubles and quantum correlations is explained. Inspired by quantum states with perfect correlation, like Einstein-Podolsky-Rosen states and Bohm states, the nonlocality power of an observable A for general quantum states is defined as the similarity that the outcomes of A look like the properties of the subsystem \\mathcal {B} corresponding to A'. As an application of optimal approximate doubles, maximal Bell correlation of a pure entangled state on \\mathcal {B}(\\mathbb {C}^{2})\\otimes \\mathcal {B}(\\mathbb {C}^{2}) is found explicitly.

  7. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  8. Discrete ordinates methods in xy geometry with spatially varying angular discretization

    SciTech Connect

    Bal, G.; Warin, X.

    1997-10-01

    The efficiency of a new quadrature rule adapted to the numerical resolution of a neutron transport problem in xy geometry is presented based on the use of the discrete ordinates method for the angular variable. The purpose of introducing this quadrature rule is to couple two different angular discretizations used on two nonoverlapping subdomains, which is useful for performing local refinement. This coupling and some numerical results of source problems are presented.

  9. Angular momentum projection for a Nilsson mean-field plus pairing model

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Pan, Feng; Launey, Kristina D.; Luo, Yan-An; Draayer, J. P.

    2016-06-01

    The angular momentum projection for the axially deformed Nilsson mean-field plus a modified standard pairing (MSP) or the nearest-level pairing (NLP) model is proposed. Both the exact projection, in which all intrinsic states are taken into consideration, and the approximate projection, in which only intrinsic states with K = 0 are taken in the projection, are considered. The analysis shows that the approximate projection with only K = 0 intrinsic states seems reasonable, of which the configuration subspace considered is greatly reduced. As simple examples for the model application, low-lying spectra and electromagnetic properties of 18O and 18Ne are described by using both the exact and approximate angular momentum projection of the MSP or the NLP, while those of 20Ne and 24Mg are described by using the approximate angular momentum projection of the MSP or NLP.

  10. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    SciTech Connect

    Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.

  11. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  12. Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification

    SciTech Connect

    Zhang, Yichao; Fan, Xiaolong Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2015-01-14

    We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.

  13. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  14. Longitudinal Profile Diagnostic Scheme with Subfemtosecond Resolution for High-Brightness Electron Beams

    SciTech Connect

    Andonian, G.; Hemsing, E.; Xiang, D.; Musumeci, P.; Murokh, A.; Tochitsky, S.; Rosenzweig, J.B.; /UCLA

    2012-05-03

    High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond) with exceptional temporal resolution (hundreds of attoseconds) and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution) horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow) angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  15. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  16. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  17. Angular Momentum Transport in Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Tohline, J. E.; Frank, J.

    2006-12-01

    We present numerical simulations of dynamically unstable mass transfer in a double white dwarf binary with initial mass ratio, q = 0.4. The binary components are approximated as polytropes of index n = 3/2 and the synchronously rotating, semi-detached equilibrium binary is evolved hydrodynamically with the gravitational potential being computed through the solution of Poisson's equation. Upon initiating deep contact, the mass transfer rate grows by more than an order of magnitude over approximately ten orbits, as would be expected for dynamically unstable mass transfer. However, the mass transfer rate then reaches a peak value, the binary expands and the mass transfer event subsides. The binary must therefore have crossed the critical mass ratio for stability against dynamical mass transfer. Despite the initial loss of orbital angular momentum into the spin of the accreting star, we find that the accretor's spin saturates and angular momentum is returned to the orbit more efficiently than has been previously suspected for binaries in the direct impact accretion mode. To explore this surprising result, we directly measure the critical mass ratio for stability by imposing artificial angular momentum loss at various rates to drive the binary to an equilibrium mass transfer rate. For one of these driven evolutions, we attain equilibrium mass transfer and deduce that the mass ratio for stability is approximately 2/3. This is consistent with the result for mass transferring binaries that effectively return angular momentum to the orbit through an accretion disk. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.

  18. A mechanism for precise linear and angular adjustment utilizing flexures

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.

    1986-01-01

    The design and development of a mechanism for precise linear and angular adjustment is described. This work was in support of the development of a mechanical extensometer for biaxial strain measurement. A compact mechanism was required which would allow angular adjustments about perpendicular axes with better than 0.001 degree resolution. The approach adopted was first to develop a means of precise linear adjustment. To this end, a mechanism based on the toggle principle was built with inexpensive and easily manufactured parts. A detailed evaluation showed that the resolution of the mechanism was better than 1 micron and that adjustments made by using the device were repeatable. In the second stage of this work, the linear adjustment mechanisms were used in conjunction with a simple arrangement of flexural pivots and attachment blocks to provide the required angular adjustments. Attempts to use the mechanism in conjunction with the biaxial extensometer under development proved unsuccessful. Any form of in stitu adjustment was found to cause erratic changes in instrument output. These changes were due to problems with the suspension system. However, the subject mechanism performed well in its own right and appeared to have potential for use in other applications.

  19. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  20. Haptic underestimation of angular extent.

    PubMed

    Lakatos, S; Marks, L E

    1998-01-01

    To what extent can individuals accurately estimate the angle between two surfaces through touch alone, and how does tactile judgment compare to visual judgment? Subjects' ability to estimate angle size for a variety of haptic and visual stimuli was examined in a series of nine experiments. Triangular wooden blocks and raised contour outlines comprising different angles and radii of curvature at the apex were used in experiments 1-4 and it was found that subjects consistently underestimated angular extent relative to visual baselines and that the degree of underestimation was inversely related to the actual size of the angle. Angle estimates also increased with increasing radius of curvature when actual angle size was held constant. In contrast, experiments 5-8 showed that subjects did not underestimate angular extent when asked to perform a haptic-visual match to a computerized visual image; this outcome suggests that visual input may 'recalibrate' the haptic system's internal metric for estimating angle. The basis of this cross-modal interaction was investigated in experiment 9 by varying the nature and extent of visual cues available in haptic estimation tasks. The addition of visual-spatial cues did not significantly reduce the magnitude of haptic underestimation. The experiments as a whole indicate that haptic underestimations of angle occur in a number of different stimulus contexts, but leave open the question of exactly what type of visual information may serve to recalibrate touch in this regard. PMID:10197190

  1. Is photon angular momentum important in molecular collision processes occurring in a laser field

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1978-01-01

    The importance of the rigorous treatment of photon angular momentum in molecular-collision processes occurring in the presence of intense radiation is investigated. An alternate approximate treatment, which essentially neglects the angular momentum coupling between the photon and the molecular degrees of freedom by averaging over the angular dependence of the interaction matrix elements, is presented and applied to a model calculation. The degeneracy-averaged results of this calculation compare remarkably well with the results of a rigorous calculation, from which we conclude (with reservation) that the explicit consideration of photoangular momentum coupling in molecular-collision problems is unnecessary.

  2. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  3. A high-resolution optical see-through head-mounted display with eyetracking capability.

    PubMed

    Hua, Hong; Hu, Xinda; Gao, Chunyu

    2013-12-16

    A head-mounted display system with fully-integrated eyetracking capability offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. A key limitation of the state-of-the-art eyetracked head-mounted display (ET-HMD) technology is the lack of compactness and portability. In this paper, we present an innovative design of a high resolution optical see-through ET-HMD system based on freeform optical technology. A prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view and true high-definition image resolution for the virtual display. The see-through view, via the combination of a freeform prism and corrector, achieved better than 0.5 arc minute of angular resolution for the central region of approximately 40-degrees to ensure minimal impacts on the see-through vision of an HMD user.

  4. Angular Momentum Redistribution at all Scales in the Universe

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2004-11-01

    A large variety of objects and phenomena in the Universe depend on the excitation of collective modes which can redistribute angular momentum at a rate that cannot be accounted for by classical viscosity. Accretion disks formed around a massive object, star formation and relevant self-gravitating disks are significant examples. Many of the theoretical tools to study these problems have a basis related to the fundamental stability investigations initiated by Marshall Rosenbluth. The emission of jets from plasma accretion disks support the argument that magnetic fields are important and that their energy density should be significant relative to the thermal energy density. This, and the fact that disks are thin, rule out the possibility that axisymmetric modes, driven by the rotation frequency gradient and contained within the disk[1], may provide the required rate of angular momentum transport. For this, the most promising modes are tridimensional, co-rotate with the disk at a given radius, and exhibit two sets of singularities when treated by the linearized MHD approximation. The most important of these occurs at the radii where the mode Doppler shifted frequency equals the slow magnetosonic frequency and the compressibility becomes infinite[1]. The singularity cannot be removed by classical dissipation, as in the case of theories on magnetic reconnection, but by non linear effects. At the laboratory scale, the explanation for the speed up of millisecond pulsars has inspired the ``accretion theory''[2] of the spontaneous rotation phenomenon observed in well confined toroidal plasmas without an external source of angular momentum. The explanation for the relevant ``negative viscosity'' involves the ejection of angular momentum to the material wall surrounding the plasma column and the transport of opposite angular momentum toward the center related to the outward flux of thermal energy due to electrostatic modes. Thus rotation and energy confinement are

  5. Angular dependence of Wigner time delay: Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.

    2016-05-01

    Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).

  6. Measurement of polarization with the Degree Angular Scale Interferometer.

    PubMed

    Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

  7. Measurement of polarization with the Degree Angular Scale Interferometer.

    PubMed

    Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station. PMID:12490940

  8. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  9. Oral candidiasis and angular cheilitis.

    PubMed

    Sharon, Victoria; Fazel, Nasim

    2010-01-01

    Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.

  10. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  11. Hierarchical Approximate Bayesian Computation

    PubMed Central

    Turner, Brandon M.; Van Zandt, Trisha

    2013-01-01

    Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436

  12. The Angular Momentum of the Solar System

    NASA Astrophysics Data System (ADS)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  13. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Hochmuth, Kathrin A.

    2006-12-01

    Decays of radionuclides throughout the earth’s interior produce geothermal heat, but also are a source of antineutrinos; these geoneutrinos are now becoming observable in experiments such as KamLAND. The (angle-integrated) geoneutrino flux has been shown to provide a unique probe of geothermal heating due to decays, and an integral constraint on the distribution of radionuclides in the earth. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radial distribution of terrestrial radionuclides. We develop the general formalism for the neutrino angular distribution. We also present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the earth’s interior, but offer a direct measure of the radioactive earth, both revealing the earth’s inner structure as probed by radionuclides, and allowing a complete determination of the radioactive heat generation as a function of radius. Turning to specific models, we emphasize the very useful approximation in which the earth is modeled as a series of shells of uniform density. Using this multishell approximation, we present the geoneutrino angular distribution for the favored earth model which has been used to calculate the geoneutrino flux. In this model the neutrino generation is dominated by decays of potassium, uranium, and thorium in the earth’s mantle and crust; this leads to a very “peripheral” angular distribution, in which 2/3 of the neutrinos come from angles θ ≳ 60° away from the nadir. We note that a measurement of the neutrino intensity in peripheral directions leads to a strong lower limit to the central intensity. We briefly discuss the challenges facing experiments to measure the geoneutrino angular distribution. Currently available techniques using inverse beta decay of protons require a (for now

  14. Measurement of Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Direct Reactions

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert

    2015-04-01

    The surrogate method has previously been used to successfully measure (n , f) cross sections of a variety of difficult to produce actinide isotopes. These measurements are inaccurate at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239 Pu(d , pf) and 239 Pu(α ,α' f) reactions has been developed. This method consists on charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the beam. An array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments with high angular resolution. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2012-DN-130-NF0001.

  15. Angularly Adaptive P1 - Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2006-08-08

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  16. Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2005-12-13

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  17. Transverse and longitudinal angular momenta of light

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin-direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  18. Approximate Bayesian multibody tracking.

    PubMed

    Lanz, Oswald

    2006-09-01

    Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730

  19. Variations in atmospheric angular momentum and the length of day

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1982-01-01

    Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described.

  20. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    NASA Technical Reports Server (NTRS)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  1. A demonstration of the conservation of the orbital angular momentum of Earth

    NASA Astrophysics Data System (ADS)

    Pellizza, Leonardo J.; Mayochi, Mariano G.; Ciocci Brazzano, Ligia; Pedrosa, Susana E.

    2015-12-01

    We describe a simple but quantitative experiment to demonstrate the conservation of angular momentum. We measure the correlation of the apparent radius and angular velocity of the Sun with respect to the stars, due to the conservation of the angular momentum of Earth in its orbit. We also determine the direction of Earth's angular momentum vector and show that it is conserved. The experiment can be performed using a small telescope and a digital camera. It is conceptually simple, allowing students to get direct physical insight from the data. The observations are performed near the resolution limit imposed by the atmosphere, and in the presence of strong competing effects. These effects necessitate a careful experimental setup and allow students to improve their skills in experimentation.

  2. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  3. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  4. Three Approximate Entropies

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    2002-04-01

    In 1993,(E. & T. Lubkin, Int.J.Theor.Phys. 32), 993 (1993) we gave exact mean trace of squared density matrix P for 3 models of an n-dimensional part of an nK-dimensional pure state. Models named: random nK ket (Haar); pure-pure driven by random Hamiltonian (Gauss); Gauss with n,K coupling reset small (weak). Neglecting higher powers of P gives the approximation: ln(n)- defines deficit = (n - 1)/2 which yields deficits, Haar: n((n+K)/(nK+1) - 1)/2 = ( n - 1/n - 1/K + 1/nnK )/2K + Order(f[n] / KKK); Gauss: (n/2)( (n+K)/(nK+1) + 2(nK+1-n-K)/nK(nK+1)(nK+3)) - 1/2 = ( n - 1/n - 1/K + 2/nK - 1/nnK )/2K + Order( f[n]/KKK ); weak: (n/2)(2(K+n)/((K+1)(n+1))) - 1/2 = (n/(n+1))(1 + (n-1)/K - (n-1)/KK + Order(f[n]/KKK)) - 1/2 [unreliable]. These would stay poor even as Karrow∞ unless deficit << 1 bit. Haar and Gauss come out good, but weak has too large a deficit. Though many authors (beginning with Don Page(D.N.Page, PRL 71), 1291 (1993)) have found the exact for Haar, I haven't yet seen exact for Gauss or for weak.

  5. Approximation by hinge functions

    SciTech Connect

    Faber, V.

    1997-05-01

    Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.

  6. Asymptotic Diffusion-Limit Accuracy of Sn Angular Differencing Schemes

    SciTech Connect

    Bailey, T S; Morel, J E; Chang, J H

    2009-11-05

    In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define a particular weighted diamond angular discretization for S{sub n}n calculations in curvilinear geometries. The weighting factors were chosen to ensure that the Galerkin diffusion approximation was preserved, which eliminated the discrete-ordinates flux dip. It was also shown that the step and diamond angular differencing schemes, which both suffer from the flux dip, do not preserve the diffusion approximation in the Galerkin sense. In this paper we re-derive the Morel and Montry weighted diamond scheme using a formal asymptotic diffusion-limit analysis. The asymptotic analysis yields more information than the Galerkin analysis and demonstrates that the step and diamond schemes do in fact formally preserve the diffusion limit to leading order, while the Morel and Montry weighted diamond scheme preserves it to first order, which is required for full consistency in this limit. Nonetheless, the fact that the step and diamond differencing schemes preserve the diffusion limit to leading order suggests that the flux dip should disappear as the diffusion limit is approached for these schemes. Computational results are presented that confirm this conjecture. We further conjecture that preserving the Galerkin diffusion approximation is equivalent to preserving the asymptotic diffusion limit to first order.

  7. The angular momentum of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.

  8. The angular momentum of the Oort cloud

    SciTech Connect

    Weissman, P.R. )

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values. 21 refs.

  9. A Novel Single-Excitation Capacitive Angular Position Sensor Design

    PubMed Central

    Hou, Bo; Zhou, Bin; Song, Mingliang; Lin, Zhihui; Zhang, Rong

    2016-01-01

    This paper presents a high-precision capacitive angular position sensor (CAPS). The CAPS is designed to be excited by a single voltage to eliminate the matching errors of multi-excitations, and it is mainly composed of excitation electrodes, coupling electrodes, petal-form sensitive electrodes and a set of collection electrodes. A sinusoidal voltage is applied on the excitation electrodes, then the voltage couples to the coupling electrodes and sensitive electrodes without contact. The sensitive electrodes together with the set of collection electrodes encode the angular position to amplitude-modulated signals, and in order to increase the scale factor, the sensitive electrodes are patterned in the shape of petal-form sinusoidal circles. By utilizing a resolver demodulation method, the amplitude-modulated signals are digitally decoded to get the angular position. A prototype of the CAPS is fabricated and tested. The measurement results show that the accuracy of the sensor is 0.0036°, the resolution is 0.0009° and the nonlinearity over the full range is 0.008° (after compensation), indicating that the CAPS has great potential to be applied in high-precision applications with a low cost. PMID:27483278

  10. A Novel Single-Excitation Capacitive Angular Position Sensor Design.

    PubMed

    Hou, Bo; Zhou, Bin; Song, Mingliang; Lin, Zhihui; Zhang, Rong

    2016-01-01

    This paper presents a high-precision capacitive angular position sensor (CAPS). The CAPS is designed to be excited by a single voltage to eliminate the matching errors of multi-excitations, and it is mainly composed of excitation electrodes, coupling electrodes, petal-form sensitive electrodes and a set of collection electrodes. A sinusoidal voltage is applied on the excitation electrodes, then the voltage couples to the coupling electrodes and sensitive electrodes without contact. The sensitive electrodes together with the set of collection electrodes encode the angular position to amplitude-modulated signals, and in order to increase the scale factor, the sensitive electrodes are patterned in the shape of petal-form sinusoidal circles. By utilizing a resolver demodulation method, the amplitude-modulated signals are digitally decoded to get the angular position. A prototype of the CAPS is fabricated and tested. The measurement results show that the accuracy of the sensor is 0.0036°, the resolution is 0.0009° and the nonlinearity over the full range is 0.008° (after compensation), indicating that the CAPS has great potential to be applied in high-precision applications with a low cost.

  11. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  12. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    NASA Astrophysics Data System (ADS)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  13. Models of Angular Momentum Input to a Circumterrestrial Swarm from Encounters with Heliocentric Planetesimals

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Greenberg, R.; Hebert, F.

    1985-01-01

    Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.

  14. Interference in the angular distribution of photoelectrons in superimposed XUV and optical laser fields

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Rading, L.; Johnsson, P.; Rouzée, A.; Hundertmark, A.; Vrakking, M. J. J.; Radcliffe, P.; Meyer, M.; Kazansky, A. K.; Kabachnik, N. M.

    2013-08-01

    The angular distribution of photoelectrons ejected during the ionization of Ne atoms by extreme ultraviolet (XUV) free-electron laser radiation in the presence of an intense near infrared (NIR) dressing field was investigated experimentally and theoretically. A highly nonlinear process with absorption and emission of more than ten NIR photons results in the formation of numerous sidebands. The amplitude of the sidebands varies strongly with the emission angle and the angular distribution pattern reveals clear signatures of interferences between the different angular momenta for the outgoing electron in the multi-photon process. As a specific feature, the central photoelectron line is characterized at the highest NIR fields by an angular distribution, which is peaked perpendicularly to both the XUV and NIR polarization directions. Experimental results are reproduced by a theoretical model based on the strong field approximation.

  15. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  16. High Resolution Imaging of Circumstellar Disks at Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2004-01-01

    We summarize progress on our program to use high angular resolution imaging of thermal dust continuum emission at millimeter and submillimeter wavelengths to probe the structure of protoplanetary disks and debris disks around nearby stars.

  17. Monitoring Location and Angular Orientation of a Pill

    NASA Technical Reports Server (NTRS)

    Schipper, John F.

    2012-01-01

    A mobile pill transmitter system moves through, or adjacent to, one or more organs in an animal or human body, while transmitting signals from its present location and/or present angular orientation. The system also provides signals from which the present roll angle of the pill, about a selected axis, can be determined. When the location coordinates angular orientation and the roll angle of the pill are within selected ranges, an aperture on the pill container releases a selected chemical into, or onto, the body. Optionally, the pill, as it moves, provides a sequence of visually perceptible images. The times for image formation may correspond to times at which the pill transmitter system location or image satisfies one of at least four criteria. This invention provides and supplies an algorithm for exact determination of location coordinates and angular orientation coordinates for a mobile pill transmitter (PT), or other similar device that is introduced into, and moves within, a GI tract of a human or animal body. A set of as many as eight nonlinear equations has been developed and applied, relating propagation of a wireless signal between either two, three, or more transmitting antennas located on the PT, to four or more non-coplanar receiving antennas located on a signal receiver appliance worn by the user. The equations are solved exactly, without approximations or iterations, and are applied in several environments: (1) association of a visual image, transmitted by the PT at each of a second sequence of times, with a PT location and PT angular orientation at that time; (2) determination of a position within the body at which a drug or chemical substance or other treatment is to be delivered to a selected portion of the body; (3) monitoring, after delivery, of the effect(s) of administration of the treatment; and (4) determination of one or more positions within the body where provision and examination of a finer-scale image is warranted.

  18. SPIDER: a new balloon-borne experiment to measure CMB polarization on large angular scales

    NASA Astrophysics Data System (ADS)

    Montroy, T. E.; Ade, P. A. R.; Bihary, R.; Bock, J. J.; Bond, J. R.; Brevick, J.; Contaldi, C. R.; Crill, B. P.; Crites, A.; Doré, O.; Duband, L.; Golwala, S. R.; Halpern, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K.; Jones, W. C.; Kuo, C. L.; Lange, A. E.; MacTavish, C. J.; Mason, P.; Mulder, J.; Netterfield, C. B.; Pascale, E.; Ruhl, J. E.; Trangsrud, A.; Tucker, C.; Turner, A.; Viero, M.

    2006-06-01

    We describe SPIDER, a novel balloon-borne experiment designed to measure the polarization of the Cosmic Microwave Background (CMB) on large angular scales. The primary goal of SPIDER is to detect the faint signature of inflationary gravitational waves in the CMB polarization. The payload consists of six telescopes, each operating in a single frequency band and cooled to 4 K by a common LN/LHe cryostat. The primary optic for each telescope is a 25 cm diameter lens cooled to 4 K. Each telescope feeds an array of antenna coupled, polarization sensitive sub-Kelvin bolometers that covers a 20 degree diameter FOV with diffraction limited resolution. The six focal planes span 70 to 300 GHz in a manner optimized to separate polarized galactic emission from CMB polarization, and together contain over 2300 detectors. Polarization modulation is achieved by rotating a cryogenic half-wave plate in front of the primary optic of each telescope. The cryogenic system is designed for 30 days of operation. Observations will be conducted during the night portions of a mid-latitude, long duration balloon flight which will circumnavigate the globe from Australia. By spinning the payload at 1 rpm with the six telescopes fixed in elevation, SPIDER will map approximately half of the sky at each frequency on each night of the flight.

  19. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    SciTech Connect

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  20. Angular momentum in the Local Group

    SciTech Connect

    Dunn, A.; Laflamme, R.

    1994-04-01

    We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.

  1. Interpolation function for approximating knee joint behavior in human gait

    NASA Astrophysics Data System (ADS)

    Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan

    2013-10-01

    Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.

  2. Angular Distribution of Particles Emerging from a Diffusive Region and its Implications for the Fleck-Canfield Random Walk Algorithm for Implicit Monte Carlo Radiation Transport

    SciTech Connect

    Cooper, M.A.

    2000-07-03

    We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.

  3. Calculates Angular Quadrature Weights and Cosines.

    1988-02-18

    DSNQUAD calculates the angular quadrature weights and cosines for use in CCC-254/ANISN-ORNL. The subroutines in DSNQUAD were lifted from the XSDRN-PM code, which is supplied with the CCC-475/ SCALIAS-77 package.

  4. Angular velocity-based structural damage detection

    NASA Astrophysics Data System (ADS)

    Liao, Yizheng; Kiremidjian, Anne S.; Rajagopal, Ram; Loh, Chin-Hsiung

    2016-04-01

    Damage detection is an important application of structural health monitoring. With the recent development of sensing technology, additional information about structures, angular velocity, has become available. In this paper, the angular velocity signals obtained from gyroscopes are modeled as an autoregressive (AR) model. The damage sensitive features (DSFs) are defined as a function of the AR coefficients. It is found that the mean values of the DSF for the damaged and undamaged signals are different. Also, we show that the angular velocity- based AR model has a linear relationship with the acceleration-based AR model. To test the proposed damage detection method, the algorithm has been tested with the experimental data from a recent shake table test where the damage is introduced systemically. The results indicate that the change of DSF means is statistically significant, and the angular velocity-based DSFs are sensitive to damage.

  5. Angular performance measure for tighter uncertainty relations

    SciTech Connect

    Hradil, Z.; Rehacek, J.; Klimov, A. B.; Rigas, I.; Sanchez-Soto, L. L.

    2010-01-15

    The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.

  6. Novel onboard sensor systems for making angular measurements on spinning projectiles

    NASA Astrophysics Data System (ADS)

    Harkins, Thomas E.; Davis, Bradford S.; Hepner, David J.

    2001-08-01

    Novel sensor have been developed at the Army Research Laboratory (ARL) to provide continuous accurate angular measurements for spinning projectiles in free flight. These systems, which directly measure angular orientations, are distinct from angular rate sensor methodologies that require integration of these rates to estimate angular orientations. Also, many traditional rate sensors are expensive, voluminous and not well-suited to the high-g launch and high spin environment of many projectile-borne munitions. Recent advances in commercially-available magnetic sensors have yielded devices small enough, rugged enough, and/or sensitive enough to be used in body-fixed sensor constellations to make high-speed, high-resolution measurements of attitude and roll rate relative to earth's magnetic field. The addition of a complimentary sensor system measuring orientation relative to another distinct earth-fixed field of known orientation provides the information required to mathematically determine the absolute angular orientation of a spinning body within any desired navigation system, e.g., north, east, and vertical. Such a dual-field measurement system has been implemented utilizing a unique constellation of magnetoresistive sensors and ARL Solar Likeness Indicating Transducers (SLIT) to determine angular orientation with respect to the magnetic and solar fields respectively. The mathematical foundations of this dual-field sensor system will be summarized and flight experiments of the prototype systems will be discussed.

  7. THE ANGULAR DIAMETER AND EFFECTIVE TEMPERATURE OF THE LITHIUM-RICH K GIANT HD 148293 FROM THE CHARA ARRAY

    SciTech Connect

    Baines, Ellyn K.; McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D.; Ridgway, Stephen T.

    2011-04-20

    We measured the angular diameter of the lithium-rich K giant star HD 148293 using Georgia State University's Center for High Angular Resolution Astronomy Array interferometer. We used our measurement to calculate the star's effective temperature, which allowed us to place it on an H-R diagram to compare it with other Li-rich giants. Its placement supports the evidence presented by Charbonnel and Balachandran that it is undergoing a brief stage in its evolution where Li is being created.

  8. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  9. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  10. A comparison of angular difference schemes for one-dimensional spherical geometry S{sub N} equations

    SciTech Connect

    Lathrop, K.D.

    2000-03-01

    To investigate errors caused by angular differencing in approximating the streaming terms of the transport equation, five different approximations are evaluated for three test problems in one-dimensional spherical geometry. The following schemes are compared: diamond, special truncation error minimizing weighted diamond, linear continuous (the original S{sub N} scheme), linear discontinuous, and new quadratic continuous. To isolate errors caused by angular differencing, the approximations are derived from the transport equation without spatial differencing, and the resulting coupled ordinary differential equations (ODEs) are solved with an ODE solver. Results from the approximations are compared with analytic solutions derived for two-region purely absorbing spheres. Most of the approximations are derived by taking moments of the conservation form of the transport equation. The quadratic continuous approximation is derived taking the zeroth moment of both the transport equation and the first angular derivative of the transport equation. The advantages of this approach are described, In all of the approximations, the desirability is shown of using an initializing computation of the {mu} = {minus}1 angular flux to correctly compute the central flux and of having a difference approximation that ensures this central flux is the same for all directions. The behavior of the standard discrete ordinates equations in the diffusion limit is reviewed, and the linear and quadratic continuous approximations are shown to have the correct diffusion limit if an equal interval discrete quadrature is used. In all three test problems, the weighted diamond difference approximation has smaller maximum and average relative flux errors than the diamond or the linear continuous difference approximations. The quadratic continuous approximation and the linear discontinuous approximation are both more accurate than the other approximations, and the quadratic continuous approximation has a

  11. Extension of the angular spectrum method to calculate pressure from a spherically curved acoustic source.

    PubMed

    Vyas, Urvi; Christensen, Douglas A

    2011-11-01

    The angular spectrum method is an accurate and computationally efficient method for modeling acoustic wave propagation. The use of the typical 2D fast Fourier transform algorithm makes this a fast technique but it requires that the source pressure (or velocity) be specified on a plane. Here the angular spectrum method is extended to calculate pressure from a spherical transducer-as used extensively in applications such as magnetic resonance-guided focused ultrasound surgery-to a plane. The approach, called the Ring-Bessel technique, decomposes the curved source into circular rings of increasing radii, each ring a different distance from the intermediate plane, and calculates the angular spectrum of each ring using a Fourier series. Each angular spectrum is then propagated to the intermediate plane where all the propagated angular spectra are summed to obtain the pressure on the plane; subsequent plane-to-plane propagation can be achieved using the traditional angular spectrum method. Since the Ring-Bessel calculations are carried out in the frequency domain, it reduces calculation times by a factor of approximately 24 compared to the Rayleigh-Sommerfeld method and about 82 compared to the Field II technique, while maintaining accuracies of better than 96% as judged by those methods for cases of both solid and phased-array transducers.

  12. The coupled states approximation for scattering of two diatoms

    NASA Technical Reports Server (NTRS)

    Heil, T. G.; Kouri, D. J.; Green, S.

    1978-01-01

    The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.

  13. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  14. Phenomenological applications of rational approximants

    NASA Astrophysics Data System (ADS)

    Gonzàlez-Solís, Sergi; Masjuan, Pere

    2016-08-01

    We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.

  15. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    PubMed

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-01-01

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs. PMID:24614016

  16. Angular correlation between proton and neutron rotors

    NASA Astrophysics Data System (ADS)

    Tajima, N.

    2013-07-01

    A brief review is given on the controversy and its solution about the fact that the angular momentum vector of protons and that of neutrons in well-deformed nuclei at low total angular momenta have a strong correlation that they are oriented in opposite directions. In a simple two-rotor model in 2-dimensional space, this fact is explained as originating from the quantum mechanical uncertainty relation between the angle and the angular momentum for the relative rotation of the two rotors. As the second topic, a more realistic model consisting of two triaxial rotors in 3-dimensional space coupled with a QQ interaction is employed to investigate a possible shears-band-like collective rotation predicted by T. Otsuka, in which the angle at which the angular momentum of protons and that of neutrons intersect changes continuously from 180° at spin zero toward 0° at high spins within the same rotational band. The probability distributions of the angle between the two angular momenta and the angle between the longest principal axes of two rotors are calculated to examine the participation of the scissors mode in the evolution of the ground rotational band versus spin.

  17. Angular-planar CMB power spectrum

    SciTech Connect

    Pereira, Thiago S.; Abramo, L. Raul

    2009-09-15

    Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C{sub l}, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C{sub l}'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7 and l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.

  18. Angular momentum conservation for dynamical black holes

    SciTech Connect

    Hayward, Sean A.

    2006-11-15

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.

  19. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    PubMed

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-03-11

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.

  20. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  1. Efficient broadband third harmonic frequency conversion via angular dispersion

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-07-18

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3{omega}) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than {approximately}60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1{omega} input intensity of {approximately} 4 GW/cm{sup 2} for near optimal dispersion for phase matching, 5.2 {mu}rad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 {mu}rad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360{degrees} about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%.

  2. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  3. Mechanism of Angular Momentum Exchange between Molecules and Laguerre-Gaussian Beams

    SciTech Connect

    Alexandrescu, Adrian; Cojoc, Dan; Fabrizio, Enzo Di

    2006-06-23

    We derive the interaction Hamiltonian between a diatomic molecule and a Laguerre-Gaussian beam under the assumption of a small spread of the center of mass wave function of the molecule in comparison with the beam waist. Considering the dynamical variables of the center of mass, vibrational, rotational, and electronic motion, we show that, within the electronic dipole approximation, the orbital angular momentum of the field couples with the rotational and electronic motion. The changes in the transition probabilities and selection rules induced by the field orbital angular momentum and the applicability of the derived interaction mechanisms for polyatomic molecules are discussed.

  4. Temperature-controlled autocollimator with ultrahigh angular measuring precision

    SciTech Connect

    Yuan Jie; Long Xingwu; Yang Kaiyong

    2005-12-15

    A temperature-controlled autocollimator with ultrahigh angular measuring precision is proposed in this article, which is different from our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. The autocollimator consists of a zoom lens illuminating a charge-coupled device (CCD). This design provides a compact size and increased stability without compromising precision. Moreover, this design makes it possible to detect a target mirror with either plane reflectors or spherical reflectors. Devices for shock absorption and heat insulation were implemented to diminish external interferences. A special temperature-control system for the autocollimator is designed to control the temperature of the autocollimator. The temperature of the autocollimator fluctuates less than {+-}0.01 deg. C. The CCD camera's noise is a fatal obstacle that prevents us from achieving an ultrahigh angular measuring precision. In this article, the influence of the CCD camera's noise on the measuring resolution is analyzed theoretically in detail. Based on the analysis, some special noise-suppressing methods to eliminate the influence of the CCD camera's noise are proposed. Both the influence of the CCD camera's noise and the noise-suppressing methods have not been discussed in our previous publication [J. Yuan and X. W. Long, Rev. Sci. Instrum. 74, 1362 (2003)]. By using the methods mentioned above, the measuring precision of the autocollimator has been greatly improved and the requirements on the external condition have been greatly reduced. The method is proved to be reliable by a prototype experiment. Two-axis angular displacement can be measured simultaneously and a measuring precision of 0.005 arcsec has been achieved, which is currently the highest measuring precision in the world.

  5. DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS

    SciTech Connect

    Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.

    2012-03-01

    We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.

  6. The optomotor response and spatial resolution of the visual system in male Xenos vesparum (Strepsiptera).

    PubMed

    Pix, W; Zanker, J M; Zeil, J

    2000-11-01

    The Strepsiptera are an enigmatic group of parasitic insects whose phylogenetic relationships are hotly debated. Male Strepsiptera have very unusual compound eyes, in which each of a small number of ommatidia possesses a retina of at least 60 retinula cells. We analysed the optomotor response of Xenos vesparum males to determine whether spatial resolution in these eyes is limited by the interommatidial angle or by the higher resolution potentially provided by the extended array of retinula cells within each ommatidium. We find that the optomotor response in Strepsiptera has a typical bandpass characteristic in the temporal domain, with a temporal frequency optimum at 1-3 Hz. As a function of spatial wavelength, the optomotor response is zero at grating periods below 12 degrees and reaches its maximum strength at grating periods between 60 degrees and 70 degrees. To identify the combination of interommatidial angles and angular sensitivity functions that would generate such a spatial characteristic, we used motion detection theory to model the spatial tuning function of the strepsipteran optomotor response. We found the best correspondence between the measured response profile and theoretical prediction for an irregular array of sampling distances spaced around 9 degrees (half the estimated interommatidial angle) and an angular sensitivity function of approximately 50 degrees, which corresponds to the angular extent of the retina we estimated at the centre of curvature of the lens. Our behavioural data strongly suggest that, at least for the optomotor response, the resolution of the strepsipteran compound eye is limited by the ommatidial sampling array and not by the array of retinula cells within each ommatidium. We discuss the significance of these results in relation to the functional organisation of strepsipteran compound eyes, their evolution and the role of vision in these insects. PMID:11044379

  7. Approximating Functions with Exponential Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2005-01-01

    The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…

  8. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  9. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  10. Inequalities for angular derivatives and boundary interpolation

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Vladimir; Elin, Mark; Shoikhet, David

    2013-03-01

    The classical Julia-Wolff-Carathéodory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271-289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna-Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions.

  11. Surface angular momentum of light beams.

    PubMed

    Ornigotti, Marco; Aiello, Andrea

    2014-03-24

    Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.

  12. Improved numerical projection of angular momentum

    NASA Astrophysics Data System (ADS)

    O'Mara, Kevin; Johnson, Calvin

    2015-10-01

    Nuclear many-body states have good angular momenta, but many theoretical building blocks such as deformed Slater determinants do not. Hence one must numerically project out states of good angular momenta, usually through a computationally taxing three-dimensional integral. We took an existing code for angular-momentum projected Hartree-Fock and improved its performance, partly through judicious ordering of the loops, precomputing arrays of important combinatorics, and careful application of parallelization. We also investigated a novel inversion scheme. This work is potentially applicable to multiple approaches in many-body calculations, and should also be generalizable to particle number projection. Supported by SDSU Summer Undergraduate Research Program and by DOE Award Number DE-FG02-96ER40985.

  13. ANGULAR DIAMETERS AND EFFECTIVE TEMPERATURES OF 25 K GIANT STARS FROM THE CHARA ARRAY

    SciTech Connect

    Baines, Ellyn K.; Doellinger, Michaela P.; Cusano, Felice E-mail: mdoellin@eso.or

    2010-02-20

    Using Georgia State University's Center for High Angular Resolution Astronomy Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and Hipparcos parallaxes produces physical linear radii for the sample. Except for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures.

  14. An Uncertainty Relation for the Orbital Angular Momentum Operator

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Sayyah-Fard, M.

    2016-08-01

    A common reducible representation space of the Lie algebras su(1, 1) and su(2) is equipped with two different types of scalar products. The representation bases are labeled by the azimuthal and magnetic quantum numbers. The generators of su(2) are the x-, y- and z-components of the orbital angular momentum operator. The representation of each of these Lie algebras is unitary with respect to only one of the scalar products. To each positive magnetic quantum number a family of the su(1, 1)-Barut-Girardello coherent states is associated. The normalization and resolution of the identity condition for the coherent states are realized in two different approaches, i.e. the unitary and the non-unitary approaches. For the coherent states of the non-unitary case we calculate the uncertainty relation for the Hermitian x- and y-components of the angular momentum operator. While the unitary case leads to the known uncertainty relation for the Hermitian x- and y-components of su(1, 1) Lie algebra.

  15. Digital angular position sensor using wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Fritsch, Klaus; Beheim, Glenn; Sotomayor, Jorge

    1990-01-01

    Future aircraft will use fly-by-light control systems with fiber-linked optical sensors for such measurands as temperature, pressure, and linear and angular position. A digital optical sensor is described which was developed to transmit the angular position of such slowly rotating parts as a throttle of fuel flow control valve on an aircraft. The sensor employs a reflective code plate with ten channels providing a resolution of 0.35 degrees. Two light-emitting diodes with overlapping spectra are used as light sources. A single microoptic multiplexer-demultiplexer composed of a GRIN rod lens and a miniature grating is used to disperse the spectrum and recombine the spectral components from each channel after reflection by the code plate. The results of preliminary environmental tests of this unit are discussed. The sensor has been operated for brief periods of time between -60 C and +125 without adverse effects. Preliminary vibration tests indicate that the unit will work properly at the maximum vibration levels expected in a jet-engine environment.

  16. On the vector model of angular momentum

    NASA Astrophysics Data System (ADS)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  17. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  18. Establishing an IERS Sub-Center for Ocean Angular Momentum

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.

    2001-01-01

    With the objective of establishing the Special Bureau for the Oceans (SBO), a new archival center for ocean angular momentum (OAM) products, we have computed and analyzed a number of OAM products from several ocean models, with and without data assimilation. All three components of OAM (axial term related to length of day variations and equatorial terms related to polar motion) have been examined in detail, in comparison to the respective Earth rotation parameters. An 11+ year time series of OAM given at 5-day intervals has been made publicly available. Other OAM products spanning longer periods and with higher temporal resolution, as well as products calculated from ocean model/data assimilation systems, have been prepared and should become part of the SBO archives in the near future.

  19. [Dispute Resolutions].

    ERIC Educational Resources Information Center

    Hale, Claudia L.; Cooks, Leda M.

    1994-01-01

    Focusing on the teaching of alternative dispute resolutions at universities, Claudia L. Hale and Leda M. Cooks argue that mediation should be taught primarily as a communication process that involves the joint efforts of mediator and disputants. Teachers of mediation should begin by distinguishing mediation from other forms of dispute resolution,…

  20. Cosmic microwave background bispectrum on small angular scales

    SciTech Connect

    Pitrou, Cyril; Uzan, Jean-Philippe; Bernardeau, Francis

    2008-09-15

    This article investigates the nonlinear evolution of cosmological perturbations on sub-Hubble scales in order to evaluate the unavoidable deviations from Gaussianity that arise from the nonlinear dynamics. It shows that the dominant contribution to modes coupling in the cosmic microwave background temperature anisotropies on small angular scales is driven by the sub-Hubble nonlinear evolution of the dark matter component. The perturbation equations, involving, in particular, the first moments of the Boltzmann equation for photons, are integrated up to second order in perturbations. An analytical analysis of the solutions gives a physical understanding of the result as well as an estimation of its order of magnitude. This allows one to quantify the expected deviation from Gaussianity of the cosmic microwave background temperature anisotropy and, in particular, to compute its bispectrum on small angular scales. Restricting to equilateral configurations, we show that the nonlinear evolution accounts for a contribution that would be equivalent to a constant primordial non-Gaussianity of order f{sub NL}{approx}25 on scales ranging approximately from l{approx}1000 to l{approx}3000.

  1. Angular Momentum Transport in Convectively Unstable Shear Flows

    NASA Astrophysics Data System (ADS)

    Käpylä, Petri J.; Brandenburg, Axel; Korpi, Maarit J.; Snellman, Jan E.; Narayan, Ramesh

    2010-08-01

    Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Λ-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The Λ-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.

  2. ANGULAR MOMENTUM TRANSPORT IN CONVECTIVELY UNSTABLE SHEAR FLOWS

    SciTech Connect

    Kaepylae, Petri J.; Korpi, Maarit J.; Snellman, Jan E.; Brandenburg, Axel; Narayan, Ramesh

    2010-08-10

    Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution ({Lambda}-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The {Lambda}-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.

  3. Large angular scale CMB anisotropy from an excited initial mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Yusofi, E.

    2016-07-01

    According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit ℓ < 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H << M * < M p and on the slow-roll parameter ɛ. Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

  4. Angular-momentum-dependent orbital-free density functional theory.

    PubMed

    Ke, Youqi; Libisch, Florian; Xia, Junchao; Wang, Lin-Wang; Carter, Emily A

    2013-08-01

    Orbital-free (OF) density functional theory (DFT) directly solves for the electron density rather than the wave function of many electron systems, greatly simplifying and enabling large scale first principles simulations. However, the required approximate noninteracting kinetic energy density functionals and local electron-ion pseudopotentials severely restrict the general applicability of conventional OFDFT. Here, we present a new generation of OFDFT called angular-momentum-dependent (AMD)-OFDFT to harness the accuracy of Kohn-Sham DFT and the simplicity of OFDFT. The angular momenta of electrons are explicitly introduced within atom-centered spheres so that the important ionic core region can be accurately described. In addition to conventional OF total energy functionals, we introduce a crucial nonlocal energy term with a set of AMD energies to correct errors due to the kinetic energy density functional and the local pseudopotential. We find that our AMD-OFDFT formalism offers substantial improvements over conventional OFDFT, as we show for various properties of the transition metal titanium.

  5. BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Malu, Siddarth S.

    2012-09-15

    We present a Bayesian angular power spectrum and signal map inference engine which can be adapted to interferometric observations of anisotropies in the cosmic microwave background (CMB), 21 cm emission line mapping of galactic brightness fluctuations, or 21 cm absorption line mapping of neutral hydrogen in the dark ages. The method uses Gibbs sampling to generate a sampled representation of the angular power spectrum posterior and the posterior of signal maps given a set of measured visibilities in the uv-plane. We use a mock interferometric CMB observation to demonstrate the validity of this method in the flat-sky approximation when adapted to take into account arbitrary coverage of the uv-plane, mode-mode correlations due to observations on a finite patch, and heteroschedastic visibility errors. The computational requirements scale as O(n{sub p} log n{sub p}) where n{sub p} measures the ratio of the size of the detector array to the inter-detector spacing, meaning that Gibbs sampling is a promising technique for meeting the data analysis requirements of future cosmology missions.

  6. Optimization of Angular-Momentum Biases of Reaction Wheels

    NASA Technical Reports Server (NTRS)

    Lee, Clifford; Lee, Allan

    2008-01-01

    RBOT [RWA Bias Optimization Tool (wherein RWA signifies Reaction Wheel Assembly )] is a computer program designed for computing angular momentum biases for reaction wheels used for providing spacecraft pointing in various directions as required for scientific observations. RBOT is currently deployed to support the Cassini mission to prevent operation of reaction wheels at unsafely high speeds while minimizing time in undesirable low-speed range, where elasto-hydrodynamic lubrication films in bearings become ineffective, leading to premature bearing failure. The problem is formulated as a constrained optimization problem in which maximum wheel speed limit is a hard constraint and a cost functional that increases as speed decreases below a low-speed threshold. The optimization problem is solved using a parametric search routine known as the Nelder-Mead simplex algorithm. To increase computational efficiency for extended operation involving large quantity of data, the algorithm is designed to (1) use large time increments during intervals when spacecraft attitudes or rates of rotation are nearly stationary, (2) use sinusoidal-approximation sampling to model repeated long periods of Earth-point rolling maneuvers to reduce computational loads, and (3) utilize an efficient equation to obtain wheel-rate profiles as functions of initial wheel biases based on conservation of angular momentum (in an inertial frame) using pre-computed terms.

  7. Three-dimensional angular domain optical projection tomography

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Vasefi, Fartash; Roumeliotis, Michael; Kaminska, Bozena; Carson, Jeffrey J. L.

    2011-03-01

    Angular Domain Imaging (ADI) has been previously demonstrated to generate projection images of attenuating targets embedded within a turbid medium. The imaging system employs a silicon micro-tunnel array positioned between the sample and the detection system to reject scattered photons that have deviated from the initial propagation direction and to select for ballistic and quasi-ballistic photons that have retained their forward trajectory. Two dimensional tomographic images can be reconstructed from ADI projections collected at a multitude of angles. The objective of this work was to extend the system to three dimensions by collecting several tomographic images and stacking the reconstructed slices to generate a three dimensional volume representative of the imaging target. A diode laser (808nm, CW) with a beam expander was used to illuminate the sample cuvette. An Angular Filter Array (AFA) of 80 μm × 80 μm square-shaped tunnels 2 cm in length was used to select for image forming quasi-ballistic photons. Images were detected with a linear CCD. Our approach was to use a SCARA robot to rotate and translate the sample to collect sufficient projections to reconstruct a three dimensional volume. A custom designed 3D target consisting of 4 truncated cones was imaged and reconstructed with filtered backprojection and iterative methods. A 0.5 mm graphite rod was used to collect the forward model, while a truncated pseudoinverse was used to approximate the backward model for the iterative algorithm.

  8. Unexpectedly low angular extent of journal bearing pressures: experiment and theory

    NASA Astrophysics Data System (ADS)

    Sharma, Nikhil; Vimal, T.; Chatterjee, Anindya

    2015-04-01

    Journal bearings have been studied for a long time. Pressure solutions for the same, as presented in textbooks, typically have angular extents exceeding 150°. Here, for a bearing with a relatively larger clearance ratio (0.01 as opposed to, say, 0.001), our experiments show an angular extent of about 50° only. Such small angular extents cannot be predicted, even approximately, by the existing simple theories for journal bearing pressures. However, such theories are based on assumptions whereby only the relative speed between bearing and journal surfaces enters the governing equations. We discuss how these same assumptions motivate some new combinations of boundary conditions that allow reasonably simple numerical treatment. In this paper, the resulting families of possible solutions are computed semi-numerically using a Fourier series expansion in one direction and finite differences and numerical continuation in the other. We find that one such solution family contains small-extent solutions similar to those observed experimentally.

  9. Energy spreading and angular distribution of a beam of electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Green, A. E. S.

    1975-01-01

    A Monte Carlo approach is used to obtain the energy spreading and angular distribution of initially monoenergetic and monodirectional beams of electron incident on a gas of molecular hydrogen. Several beams of primary electrons and the resultant secondaries are degraded in a step-by-step procedure which utilizes a detailed set of cross sections, together with reasonable approximations for the creation of secondary electrons. Particular attention is paid to the initial angular distribution of secondary electrons. An analytic function which characterizes current experimental differential cross-section data is used to provide realistic inputs into our calculations. The results for energy distribution as a function of distance and angular distribution at selected energies and distances are illustrated.

  10. Surrogate Reaction Measurement of Angular Dependent 239Pu (n , f) Probabilities

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Casperson, Robert; Jovanovic, Igor

    2015-10-01

    The surrogate method has previously been used to measure (n , f) cross sections of difficult to produce actinide isotopes. These measurements have inaccuracies at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239Pu (d , pf) and 239Pu (α ,α' f) reactions has been developed. This experimental apparatus consists of charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the particle beam. A segmented array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission rates matrix obtained from this analysis determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed.

  11. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping

    NASA Astrophysics Data System (ADS)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie

    2012-01-01

    Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.

  12. SUB-M-RAD ANGULAR STABILITY MEASUREMENTS BY USE OF LONG TRACE PROFILER BASED SYSTEMS.

    SciTech Connect

    QIAN,S.

    1999-07-23

    High accuracy angle measurement at the sub-{mu}rad level requires extremely high instrument stability. In order to reach sub-{mu}rad stability (0.1 arc second or less) over long time periods, it is necessary to maintain the test object and almost all of the optical components in the measuring instrument in very steady positions. However, mechanical force relaxation, thermal expansion, and asymmetric structures produce angular and linear displacements in the system resulting in angular measurement error. A Long-Trace-Profiler (LTP)-based stable equipment is used to test precision angular stability with sub-{mu}rad resolution. Long term stability over 15 hours has been measured on different kind of mechanical structures. Temperature monitoring during the tests is extremely important. Some test results showing the effects of thermal variations are presented, which indicate that temperature stability on the order of 0.1 C is absolutely necessary for repeatable sub-{mu}rad measurements. The optical method, using optics with an even number of reflecting surfaces (for example, a right angle prism, pentaprism, or rhomboid prism) to reduce the influence of existing angular displacement, is introduced and the comparison measurement is presented. An optical fiber transfer line is able to reduce the laser angular shift from about 10 {mu}rad to a level of 0.3 {mu}rad rms. Careful system configuration, design and operation are very important for the sub-{mu}rad angle stability.

  13. Angular distribution of atoms ejected by laser ablation of different metals

    SciTech Connect

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-07-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm{sup 2}) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos{sup n} theta distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  14. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    SciTech Connect

    Buchan, A.G.; Calloo, A.A.; Goffin, M.G.; Dargaville, S.; Fang, F.; Pain, C.C.; Navon, I.M.

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.

  15. Small angular displacement measurement based on an autocollimator and a common-path compensation principle.

    PubMed

    Li, Ke; Kuang, Cuifang; Liu, Xu

    2013-01-01

    A novel method for small angular displacement measurement based on an autocollimator and a common-path compensation principle by using single CCD detector was proposed. The principles of the angular displacement measurement and the common-path compensation were analyzed. The feasibility of measurement method was verified and the experimental results revealed that the linear correlativity between the relative displacement of the measuring beam spot and the angular displacement is 0.99996. And the measurement resolution is about 0.03 arcsec. To test the compensation's effect, a series of experiments introducing three different interferences from system and external environment were performed. The experimental results indicated that the standard deviations of the measuring beam spot's angular drift were improved by at least 25.0% to at most 80.0% in x direction while by at least 28.2% to at most 95.6% in y direction. Thus, the stability of the system and the measurement resolution were improved.

  16. Small angular displacement measurement based on an autocollimator and a common-path compensation principle

    SciTech Connect

    Li Ke; Kuang Cuifang; Liu Xu

    2013-01-15

    A novel method for small angular displacement measurement based on an autocollimator and a common-path compensation principle by using single CCD detector was proposed. The principles of the angular displacement measurement and the common-path compensation were analyzed. The feasibility of measurement method was verified and the experimental results revealed that the linear correlativity between the relative displacement of the measuring beam spot and the angular displacement is 0.99996. And the measurement resolution is about 0.03 arcsec. To test the compensation's effect, a series of experiments introducing three different interferences from system and external environment were performed. The experimental results indicated that the standard deviations of the measuring beam spot's angular drift were improved by at least 25.0% to at most 80.0% in x direction while by at least 28.2% to at most 95.6% in y direction. Thus, the stability of the system and the measurement resolution were improved.

  17. Mathematical algorithms for approximate reasoning

    NASA Technical Reports Server (NTRS)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away

  18. A Novel Permanent Magnetic Angular Acceleration Sensor.

    PubMed

    Zhao, Hao; Feng, Hao

    2015-07-03

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  19. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  20. Heteromodal conceptual processing in the angular gyrus

    PubMed Central

    Bonner, Michael F.; Peelle, Jonathan E.; Cook, Philip A.; Grossman, Murray

    2013-01-01

    Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. PMID:23333416

  1. Critical gravitational collapse with angular momentum

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Baumgarte, Thomas W.

    2016-10-01

    We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.

  2. Inclusion of angular momentum in FREYA

    DOE PAGESBeta

    Randrup, Jørgen; Vogt, Ramona

    2015-05-18

    The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.

  3. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  4. Studying oxygen vacancies in ceramics by perturbed angular correlation spectroscopy

    SciTech Connect

    Su, Han-Tzong; Wang, Ruiping; Fuchs, H.; Gardner, J.A. . Dept. of Physics); Evenson, W.E. . Dept. of Physics); Sommers, J.A. )

    1990-01-01

    Perturbed angular correlation measurements in tetragonal and cubic zirconia and in ceria are described. A physically reasonable and self-consistent interpretation of these data implies that oxygen vacancies are trapped at a second neighbor position by Cd in tetragonal zirconia and by In in ceria. For Cd in tetragonal zirconia, the vacancy trap energy is found to be 0.44 eV, and the energy barrier between adjacent trap sites is approximately 0.8 eV. The activation energy of an oxygen vacancy hopping between trap sites around {sup 111}Cd in ceria is found to be 0.55 eV. The activation energy for oxygen vacancy hopping in cubic zirconia, as detected by {sup 181}Ta PAC, is about 1.0 eV and independent of the Y concentration. 12 refs., 4 figs.

  5. Freehand spatial-angular compounding of photoacoustic images

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jae; Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Taylor, Russell H.; Boctor, Emad M.

    2014-03-01

    Photoacoustic (PA) imaging is an emerging medical imaging modality that relies on the absorption of optical energy and the subsequent emission of acoustic waves that are detected with a conventional ultrasound probe. PA images are susceptible to background noise artifacts that reduce the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We investigated spatial-angular compounding of PA images to enhance these image qualities. Spatial-angular compounding was implemented by averaging multiple PA images acquired as an ultrasound probe was rotated about the elevational axis with the laser beam and PA target fixed in the same location. An external tracking system was used to provide the position and orientation (i.e. pose) information of each PA image. Based on this pose information, frames in similar elevational planes were filtered from the acquired image data and compounded using one of two methods. One method registered overlapping signals between frames prior to compounding (using the pose information), while the second method omitted this spatial registration step. These two methods were applied to pre-beamformed RF, beamformed RF, and envelope-detected data, resulting in six different compounding pipelines. Compounded PA images with similar lateral resolution to a single reference image had factors of 1.1 - 1.6, 2.0 - 11.1, and 2.0 - 11.1 improvements in contrast, CNR, and SNR, respectively, when compared to the reference image. These improvements depended on the amount of relative motion between the reference image and the images that were compounded. The inclusion of spatial registration prior to compounding preserved lateral resolution and signal location when the relative rotations about the elevation axis were 3.5° or less for images that were within an elevational distance of 2.5 mm from the reference image, particularly when the method was applied to the enveloped-detected data. Results indicate that spatial-angular compounding has the

  6. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  7. Angular momentum role in the hypercritical accretion of binary-driven hypernovae

    DOE PAGESBeta

    Becerra, L.; Cipolletta, F.; Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2015-10-12

    Here, the induced gravitational collapse paradigm explains a class of energetic,more » $${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, $${L}_{{\\rm{acc}}},$$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, $${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$$, and (3) can support less angular momentum than the one transported by supernova ejecta, $${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$$ hence there is an angular momentum excess that necessarily leads to jetted emission.« less

  8. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  9. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects.

    PubMed

    Zhang, Likun; Marston, Philip L

    2011-12-01

    An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis.

  10. Angular momentum role in the hypercritical accretion of binary-driven hypernovae

    SciTech Connect

    Becerra, L.; Cipolletta, F.; Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2015-10-12

    Here, the induced gravitational collapse paradigm explains a class of energetic, ${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, ${L}_{{\\rm{acc}}},$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, ${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$, and (3) can support less angular momentum than the one transported by supernova ejecta, ${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$ hence there is an angular momentum excess that necessarily leads to jetted emission.

  11. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  12. Angular spectrum detection instrument for label-free photonic crystal sensors.

    PubMed

    Liu, Longju; Xu, Zhen; Dong, Liang; Lu, Meng

    2014-05-01

    An angular spectrum analysis system was demonstrated to monitor the optical resonant mode of a photonic crystal (PC) sensor comprised of a one-dimensional grating structure. Exposed to solutions with different refractive indices or adsorbed with biomaterials, the PC sensor exhibited changes of the optical resonant modes. The developed detection system utilized a focused laser beam to detect shifts of the resonant angle, and thereby allowed a kinetic analysis of chemical absorption. Such a detection apparatus offers an adjustable angular resolution and a tunable detection range for a wide variety of refractometric sensing applications. A limit of detection of 6.57×10(-5) refractive index unit has been observed. The instrument also offers an imaging capability of rapidly characterizing low-contrast samples deposited on the PC surface with a spatial resolution of 10 μm. PMID:24784094

  13. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  14. A new automatic system for angular measurement and calibration in radiometric instruments.

    PubMed

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  15. Adaptive approximation models in optimization

    SciTech Connect

    Voronin, A.N.

    1995-05-01

    The paper proposes a method for optimization of functions of several variables that substantially reduces the number of objective function evaluations compared to traditional methods. The method is based on the property of iterative refinement of approximation models of the optimand function in approximation domains that contract to the extremum point. It does not require subjective specification of the starting point, step length, or other parameters of the search procedure. The method is designed for efficient optimization of unimodal functions of several (not more than 10-15) variables and can be applied to find the global extremum of polymodal functions and also for optimization of scalarized forms of vector objective functions.

  16. Sensitivity in frequency dependent angular rotation of optical vortices.

    PubMed

    Rumala, Yisa S

    2016-03-10

    This paper presents robust strategies to enhance the rotation sensitivity (and resolution) of a coherent superposition of optical vortices emerging from a single spiral phase plate (SPP) device when light's optical frequency (or wavelength) going into the SPP device is varied. The paper discusses the generation and measurement of ultrasmall rotation. Factors that affect the ability to perform precision rotation measurements include the linewidth and stability of the input light source, the number of photon counts making position rotation measurements on the CCD detector, SPP reflectivity, the length of SPP device, and the angular modulation frequency of the intensity pattern due to a coherent superposition of optical vortices in a single SPP device. This paper also discusses parameters to obtain a high-sensitivity single shot measurement and multiple measurements. Furthermore, it presents what I believe is a new scaling showing the enhancement in sensitivity (and resolution) in the standard quantum limit and Heisenberg limit. With experimentally realizable parameters, there is an enhancement of rotation sensitivity by at least one order of magnitude compared to previous rotation measurements with optical vortices. Understanding robust strategies to enhance the rotation sensitivity in an SPP device is important to metrology in general and for building compact SPP sensors such as gyroscopes, molecular sensors, and thermal sensors. PMID:26974798

  17. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  18. Error Bounds for Interpolative Approximations.

    ERIC Educational Resources Information Center

    Gal-Ezer, J.; Zwas, G.

    1990-01-01

    Elementary error estimation in the approximation of functions by polynomials as a computational assignment, error-bounding functions and error bounds, and the choice of interpolation points are discussed. Precalculus and computer instruction are used on some of the calculations. (KR)

  19. Performance criteria for dosimeter angular response

    SciTech Connect

    Roberson, P.L.; Fox, R. A.; Cummings, F. M.; McDonald, J. C.; Jones, K.L.

    1988-06-01

    This report provides criteria for evaluating the response of personnel dosimeters to radiation at nonperpendicular incidence. The US Department of Energy Laboratory Accreditation Program (DOELAP) ensures that dosimetry systems at DOE facilities meet acceptable standards for precision and accuracy. In the past, these standards were limited to tests for system variability, energy dependence, and level of detection. The proposed criteria will broaden the scope of DOELAP to include the angular response of personnel dosimeters. Because occupational exposures in the workplace are rarely due to radiation from only one direction, dosimeters must accurately assign individual dose equivalent from irradiation at any forward angle of incidence. Including an angular response criterion in DOELAP would improve the quality of personnel monitoring provided that the criterion is developed from appropriate dose quantities. This report provides guidance for assigning individual dose equivalents for radiation fields at nonperpendicular incidence to the dosimeter. 21 refs., 10 figs., 10 tabs.

  20. Phenomenological Determination of the Orbital Angular Momentum

    SciTech Connect

    Ramsey, Gordon P.

    2009-08-04

    Measurements involving the gluon spin, {delta}G(x, t) and the corresponding asymmetry, A(x,t) = {delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = (1/2) sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.

  1. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  2. A quantum relaxation-time approximation for finite fermion systems

    SciTech Connect

    Reinhard, P.-G.; Suraud, E.

    2015-03-15

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  3. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  4. Angular Momentum Sharing in Dissipative Collisions

    NASA Astrophysics Data System (ADS)

    Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.

    1999-09-01

    Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.

  5. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  6. Angular quadratures for improved transport computations

    SciTech Connect

    Abu-Shumays, I.K.

    1999-07-22

    This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

  7. Angular distribution of laser ablation plasma

    SciTech Connect

    Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.

    2010-05-23

    An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.

  8. Calculated angular distributions of energetic atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Merker, M.

    1975-01-01

    Calculated angular distributions of atmospheric leakage neutron fluxes from 19 MeV to 1 GeV are presented. Comparisons with the balloon measurements of Preszler et al. and Kanbach et al. are made and show substantial agreement, strengthening the belief in the importance of the CRAND (cosmic-ray albedo-neutron decay) contribution to the high-energy protons in the earth's inner radiation belt. The calculation is presented as a means for investigating features of atmospheric flux distributions.

  9. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  10. Angular momentum dependent orbital-free density functional theory: Formulation and implementation

    NASA Astrophysics Data System (ADS)

    Ke, Youqi; Libisch, Florian; Xia, Junchao; Carter, Emily A.

    2014-04-01

    Orbital-free density functional theory (OFDFT) directly solves for the ground-state electron density. It scales linearly with respect to system size, providing a promising tool for large-scale material simulations. Removal of the orbitals requires use of approximate noninteracting kinetic energy density functionals. If replacing ionic cores with pseudopotentials, removal of the orbitals also requires these pseudopotentials to be local. These are two severe challenges to the capabilities of conventional OFDFT. While main group elements are often well described within conventional OFDFT, transition metals remain intractable due to their localized d electrons. To advance the accuracy and general applicability of OFDFT, we have recently reported a general angular momentum dependent formulation as a next-generation OFDFT. In this formalism, we incorporate the angular momenta of electrons by devising a hybrid scheme based on a muffin tin geometry: inside spheres centered at the ionic cores, the electron density is expanded in a set of atom-centered basis functions combined with an onsite density matrix. The explicit treatment of the angular momenta of electrons provides an important basis for accurately describing the important ionic core region, which is not possible in conventional OFDFT. In addition to the conventional OFDFT total energy functional, we introduce a nonlocal energy term containing a set of angular momentum dependent energies to correct the errors due to the approximate kinetic energy density functional and local pseudopotentials. Our approach greatly increases the accuracy of OFDFT while largely preserving its numerical simplicity. Here, we provide details of the theoretical formulation and practical implementation, including the hybrid scheme, the derivation of the nonlocal energy term, the choice of basis functions, the direct minimization of the total energy, the procedure to determine the angular momentum dependent energies, the force formula with

  11. Localization of angular momentum in optical waves propagating through turbulence.

    PubMed

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-01

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence. PMID:22273930

  12. Localization of angular momentum in optical waves propagating through turbulence.

    PubMed

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-01

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  13. Maximum angular accuracy of pulsed laser radar in photocounting limit.

    PubMed

    Elbaum, M; Diament, P; King, M; Edelson, W

    1977-07-01

    To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.

  14. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  15. Angular Fock coefficients: Refinement and further development

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2015-10-01

    The angular coefficients ψk ,p(α ,θ ) of the Fock expansion characterizing the S -state wave function of the two-electron atomic system are calculated in hyperspherical angular coordinates α and θ . To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power j of the nucleus charge Z are applied. The "pure" j components of the angular Fock coefficients, orthogonal to the hyperspherical harmonics Yk l, are found for even values of k . To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ψ2 ,0, are noted and corrected. All j components of ψ4 ,1 and the majority of components and subcomponents of ψ3 ,0 are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.

  16. High Angular Momentum Rydberg Wave Packets

    NASA Astrophysics Data System (ADS)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  17. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  18. Optical angular momentum in a rotating frame.

    PubMed

    Speirits, Fiona C; Lavery, Martin P J; Padgett, Miles J; Barnett, Stephen M

    2014-05-15

    It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect. PMID:24978243

  19. Linear force and moment equations for an annular smooth shaft seal perturbed both angularly and laterally

    NASA Technical Reports Server (NTRS)

    Fenwick, J.; Dijulio, R.; Ek, M. C.; Ehrgott, R.

    1982-01-01

    Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small.

  20. High resolution study of isovector negative parity states in the {sup 16}O({sup 3}He,t){sup 16}F reaction at 140 MeV/nucleon

    SciTech Connect

    Fujita, H.; Berg, G. P. A.; Fujimura, H.; Fujita, K.; Hara, K.; Hatanaka, K.; Kamiya, J.; Nakanishi, K.; Sakamoto, N.; Sakemi, Y.; Shimizu, Y.; Wakasa, T.; Fujita, Y.; Adachi, T.; Shimbara, Y.; Yoshifuku, M.; Rapaport, J.; Botha, N. T.; Kawabata, T.; Neveling, R.

    2009-02-15

    The isovector transitions from the ground state (g.s.) of {sup 16}O to the negative parity states in {sup 16}F, i.e., the J{sup {pi}}=0{sup -} g.s., the 0.193 MeV, 1{sup -} state, the 0.424 MeV, 2{sup -} state, the 0.721 MeV, 3{sup -} state, and the 4{sup -}''stretched'' state at 6.372 MeV, were studied by using a high resolution {sup 16}O({sup 3}He,t){sup 16}F reaction at 140 MeV/nucleon. With the help of high energy resolution, these states were, for the first time, clearly resolved in a charge exchange reaction at an intermediate energy, which favorably excites spin-flip states. Angular distributions of the reaction cross sections were measured in the laboratory frame from 0 deg. to 14 deg. Parameters of phenomenological effective interactions were derived so as to reproduce these angular distributions in distorted wave Born approximation (DWBA) calculations. The angular distribution of the 0{sup -} state could be reproduced well at {theta}{sub c.m.}<10 deg. The empirical values, however, are larger by a factor of 2-2.5 in the larger angle region, where the contribution of the so-called 'condensed pion field' is expected. The high resolution also enabled the decay widths of these states to be measured.

  1. Angular momentum exchange in white dwarf binaries accreting through direct impact

    SciTech Connect

    Sepinsky, J. F.; Kalogera, V. E-mail: vicky@northwestern.edu

    2014-04-20

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, as well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers of

  2. Conflict resolution.

    PubMed

    Levin, Roger

    2006-03-01

    The sooner conflict is identified and confronted, the more quickly it can be resolved (and the sooner, the better). When this is accomplished calmly and objectively, many areas of conflict will be eliminated. Addressing conflict as it arises also sends a clear message to the team that the practice seeks resolution, not punishment or negative consequences. In addition, the dentist and the office manager need to lead by example by avoiding gossip and encouraging open communication. The goal is to go from a parent-child relationship with the dental team to an adult-adult relationship using this series of managerial conflict resolution steps.

  3. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  4. Spatio-angularly multiplexed (SAM) holographic storage in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Tao, Shiquan

    In this thesis a novel multiplexing scheme for dense holographic storage in photorefractive crystals, Spatio-Angular Multiplexing (or SAM), is described in detail. In SAM Fourier transform holograms are formed in spatially overlapping regions of a crystal and are distinguished from one another by using variously angled reference beams. SAM takes advantage of both the high storage density possible using angularly multiplexed volume holograms and also the low crosstalk possible using spatially multiplexed Fourier transform holograms. Compared to pure spatial multiplexing, SAM increases the storage capacity by fully utilising the volume of the storage medium. On the other hand, SAM reduces the number of holograms overlapping any one hologram in a given volume, and so increases the diffraction efficiency achievable as compared to pure angular multiplexing. SAM offers the possibility of incorporating the recorded crystal into a content addressable memory (CAM) system for parallel access of all stored patterns. In order to obtain the maximum diffraction efficiency and signal to noise ratio, the hologram must be replayed by a readout beam incident at the correct angle of readout beam. The optimum angle may be shifted away from the angle used in recording by a ''Bragg-shift", caused (under certain conditions) by phase coupling between the two writing beams during recording. Although this Bragg shift is small, a large diffraction efficiency enhancement is obtained when the grating is read out at the optimum angle. We have calculated the Bragg shift, using a numerical calculation based on an earlier theory, and have obtained good agreement with experiment. Using the novel SAM scheme, we have succeeded in storing 756 high resolution binary patterns in an Fe:LiNbO3 crystal of volume 1cm3, with an average diffraction efficiency of 0.5%. This large database is designed for practical use in a novel associative memory system, called a high order feedback neural network (HOFNET

  5. Approximate line shapes for hydrogen

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1978-01-01

    Two independent methods are presented for calculating radiative transport within hydrogen lines. In Method 1, a simple equation is proposed for calculating the line shape. In Method 2, the line shape is assumed to be a dispersion profile and an equation is presented for calculating the half half-width. The results obtained for the line shapes and curves of growth by the two approximate methods are compared with similar results using the detailed line shapes by Vidal et al.

  6. NCAI Resolutions

    ERIC Educational Resources Information Center

    American Indian Journal of the Institute for the Development of Indian Law, 1977

    1977-01-01

    Five Major Policy Resolutions were adopted, without objection, at the 33rd Annual Convention of the National Congress of American Indians (NCAI) held in Salt Lake City, Utah, in October 1976. The issues involved were: Treaties and Trust Responsibilities, Tribal Government, Jurisdiction, Federal Administration and Structure of Indian Affairs, and…

  7. Approximate reasoning using terminological models

    NASA Technical Reports Server (NTRS)

    Yen, John; Vaidya, Nitin

    1992-01-01

    Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.

  8. Computer Experiments for Function Approximations

    SciTech Connect

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  9. Ultrafast approximation for phylogenetic bootstrap.

    PubMed

    Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt

    2013-05-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.

  10. Approximate Counting of Graphical Realizations

    PubMed Central

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  11. Final-state angular momentum distributions in charge transfer collisions at high energies

    NASA Astrophysics Data System (ADS)

    Burgdörfer, Joachim

    1985-11-01

    We investigate the influence of different terms of the Born series on the final-state angular momentum ( l) distribution and the anisotropy of the captured electron. A variety of different l distributions depending on the projectile velocity v and the charge asymmetry {Z p}/{Z T} of the collision system can be found, revealing different underlying mechanisms for charge transfer. We compare the predictions of perturbation theories such as the first and second Born approximation, the continuum distorted wave (CDW) approximation and the post-collision interaction (PCI) model valid at high velocities with those of the "quasi-resonant over barrier" model of charge transfer valid at intermediate velocities.

  12. Pioneer 10 ultraviolet photometer observations of the Jovian hydrogen torus - The angular distribution

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Judge, D. L.

    1975-01-01

    The Pioneer 10 ultraviolet photometer observations of the Jovian hydrogen torus are analyzed to obtain the angular distribution. The cloud is asymmetric about Io, where the atoms presumably originate, with the greater density occurring in the trailing portion. A simple model which assumes Jeans escape from the atmosphere of Io is developed and compared to the observations. The results suggest that the exospheric temperature is high (approximately 3000 K) and that the ionization lifetime of the cloud atoms is approximately 100,000 sec.

  13. Angular-momentum evolution in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  14. High Resolution Imaging with AEOS

    SciTech Connect

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  15. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  16. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  17. Temporal resolution enhancement from motion

    NASA Astrophysics Data System (ADS)

    Rollason, M. P.; Watson, G. H.; Strens, M. J. A.

    2009-09-01

    We describe progress in the third year of the EMRS DTC TEP theme project entitled "Temporal Resolution Enhancement from Motion". The aim is to develop algorithms that combine evidence over time from a sequence of images in order to improve spatial resolution and reduce unwanted artefacts. Years one and two of this project developed and demonstrated an efficient algorithm that provided good resolution enhancement of a scene viewed in the far field (approximately flat) [1]. This paper reports a new algorithm which is applicable to a three dimensional scene where substantial depth variation causes parallax within the imagery. The new algorithm is demonstrated using airborne infra-red imagery.

  18. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    SciTech Connect

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow

  19. Breakdown of the few-level approximation in collective systems

    SciTech Connect

    Kiffner, M.; Evers, J.; Keitel, C. H.

    2007-07-15

    The validity of the few-level approximation in dipole-dipole interacting collective systems is discussed. As an example system, we study the archetype case of two dipole-dipole interacting atoms, each modeled by two complete sets of angular momentum multiplets. We establish the breakdown of the few-level approximation by first proving the intuitive result that the dipole-dipole induced energy shifts between collective two-atom states depend on the length of the vector connecting the atoms, but not on its orientation, if complete and degenerate multiplets are considered. A careful analysis of our findings reveals that the simplification of the atomic level scheme by artificially omitting Zeeman sublevels in a few-level approximation generally leads to incorrect predictions. We find that this breakdown can be traced back to the dipole-dipole coupling of transitions with orthogonal dipole moments. Our interpretation enables us to identify special geometries in which partial few-level approximations to two- or three-level systems are valid.

  20. Approximately Independent Features of Languages

    NASA Astrophysics Data System (ADS)

    Holman, Eric W.

    To facilitate the testing of models for the evolution of languages, the present paper offers a set of linguistic features that are approximately independent of each other. To find these features, the adjusted Rand index (R‧) is used to estimate the degree of pairwise relationship among 130 linguistic features in a large published database. Many of the R‧ values prove to be near zero, as predicted for independent features, and a subset of 47 features is found with an average R‧ of -0.0001. These 47 features are recommended for use in statistical tests that require independent units of analysis.

  1. The structural physical approximation conjecture

    NASA Astrophysics Data System (ADS)

    Shultz, Fred

    2016-01-01

    It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.

  2. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  3. Quantum tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Ranjan Majhi, Bibhas

    2008-06-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  4. Fermion tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Majhi, Bibhas Ranjan

    2009-02-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  5. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM.

  6. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM. PMID:27472113

  7. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  8. Linear and angular retroreflecting interferometric alignment target

    DOEpatents

    Maxey, L. Curtis

    2001-01-01

    The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

  9. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Astrophysics Data System (ADS)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  10. Angular momentum sensitive two-center interference.

    PubMed

    Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U

    2014-01-17

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  11. Angular Momentum Sensitive Two-Center Interference

    NASA Astrophysics Data System (ADS)

    Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.

    2014-01-01

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  12. An approximate solution to the stress and deformation states of functionally graded rotating disks

    NASA Astrophysics Data System (ADS)

    Sondhi, Lakshman; Sanyal, Shubhashis; Saha, Kashi Nath; Bhowmick, Shubhankar

    2016-07-01

    The present work employs variational principle to investigate the stress and deformation states and estimate the limit angular speed of functionally graded high-speed rotating annular disks of constant thickness. Assuming a series approximation following Galerkin's principle, the solution of the governing equation is obtained. In the present study, elasticity modulus and density of the disk material are taken as power function of radius with the gradient parameter ranging between 0.0 and 1.0. Results obtained from numerical solutions are validated with benchmark results and are found to be in good agreement. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of FGM rotating disks with constant thickness and different gradient parameter. Furthermore, the stress and deformation state of the disk at constant angular speed and limit angular speed is investigated to explain the existence of optimum gradient parameters.

  13. Angular dependence of dissociative electron attachment topolyatomic molecules: application to the 2B1 metastable state of the H2Oand H2S anions

    SciTech Connect

    Haxton, Daniel J.; McCurdy, C. William; Rescigno, Thomas N.

    2006-01-12

    The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formulated in the local complex potential model, under the assumption that the axial recoil approximation describes the dissociation dynamics. An additional approximation, which is found to be valid in the case of H2O but not in the case of H2S, makes it possible to describe the angular dependence of DEA solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynamics calculations. For H2S, the final-vibrational-state-specific angular dependence of DEA is obtained by incorporating the variation of the angular dependence of the entrance amplitude with nuclear geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and, for H2S, full quantum calculations of the nuclear dynamics using the Multi-Configuration Time-Dependent Hartree method, are performed.

  14. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  15. Plasma Physics Approximations in Ares

    SciTech Connect

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  16. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  17. Optical imaging through non-transparent small aquatic creatures with angular-domain imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rongen L. K.; Tsui, Polly B. L.; Chiang, Gary; Chapman, Glenn H.

    2011-03-01

    When imaging through small aquatic creatures, scattered photons produce problems in image quality and resolution. Angular Domain Imaging (ADI) reduces scattered photons and improves the image quality and resolution. ADI is an imaging technique which utilizes the angular spectrum of photons to filter multiple-scattered photons and accept only photons with small angular deviation from their original trajectory. Advantages of the ADI technique are that it is insensitive to wavelength and the sources are not required to be high optical quality, coherent, or pulsed, as with OCT or time domain. Our target is to image a small species called Branchiostoma lanceolatum, a lancet that is 5-8cm long and 5mm thick, by using ADI to remove the scattering in order to image internal structures. A laser illuminates the lancelet in a water-filled container and a spatiofrequency filter removes the scattered photons before the imager. Experimentally, a coherent Nd:Yag second harmonic (533nm) laser creates images but also optical interference occuring within the internal structures of the lancelet. Conversely, an incoherent broad-band white light source eliminates the structural interference effect; however, the wavelength variation of the scattering coefficient combined with the limitation of the image sensor's dynamic range limit the ability to distinguish the internal structures in many areas. Thus, an IR diode laser (780nm) is used to lower the scattering coefficient as compared to conventional visible light source and to diminish the interference effects due to its shorter coherence length.

  18. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  19. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  20. New generalized gradient approximation functionals

    NASA Astrophysics Data System (ADS)

    Boese, A. Daniel; Doltsinis, Nikos L.; Handy, Nicholas C.; Sprik, Michiel

    2000-01-01

    New generalized gradient approximation (GGA) functionals are reported, using the expansion form of A. D. Becke, J. Chem. Phys. 107, 8554 (1997), with 15 linear parameters. Our original such GGA functional, called HCTH, was determined through a least squares refinement to data of 93 systems. Here, the data are extended to 120 systems and 147 systems, introducing electron and proton affinities, and weakly bound dimers to give the new functionals HCTH/120 and HCTH/147. HCTH/120 has already been shown to give high quality predictions for weakly bound systems. The functionals are applied in a comparative study of the addition reaction of water to formaldehyde and sulfur trioxide, respectively. Furthermore, the performance of the HCTH/120 functional in Car-Parrinello molecular dynamics simulations of liquid water is encouraging.

  1. Interplay of approximate planning strategies.

    PubMed

    Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P

    2015-03-10

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options." PMID:25675480

  2. Indexing the approximate number system.

    PubMed

    Inglis, Matthew; Gilmore, Camilla

    2014-01-01

    Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test-retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test-retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects. PMID:24361686

  3. IONIS: Approximate atomic photoionization intensities

    NASA Astrophysics Data System (ADS)

    Heinäsmäki, Sami

    2012-02-01

    A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a

  4. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers. PMID:26074598

  5. A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor.

    PubMed

    Liu, Le; Ma, Suihua; Ji, Yanhong; Chong, Xinyuan; Liu, Zhiyi; He, Yonghong; Guo, Jihua

    2011-02-01

    We describe a two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance (SPR) biosensing technique. The method of line-shaped light illumination and parallel scan offers a high throughput. The simultaneous record of SPR angular spectrum enables the system to be unaffected by the time-dependent variation of the light source. The polarization interferometry technique lowers the minimum of the SPR dip and thereby reduces the noise related to the light intensity. Refractive index resolutions of 1.4 × 10(-6) refractive index unit (RIU) under normal condition and 4.6 × 10(-7) RIU under a more time-consuming condition are achieved in our angle interrogation based sensor. Meanwhile, a manually prepared DNA microarray has been detected, showing the potential applications of this technique in microarray analysis. PMID:21361575

  6. Non-contact measurement of an object's angular position by means of laser goniometer

    NASA Astrophysics Data System (ADS)

    Filatov, Yu. V.; Nikolaev, M. S.; Pavlov, P. A.; Venediktov, V. Y.

    2014-10-01

    The report presents results of analysis and experimental research of the laser goniometer in the mode of operation - noncontact measurements of an object's angular position. An important feature of this mode is an extremely large range of measurement with high accuracy. With the usual resolution of about 0,1 arcs the laser goniometer has in this mode of operation an essential advantage against photo-electric autocollimators with their rather small measuring range. Obtained results confirm that the laser dynamic goniometer using in the mode of non-contact measurement of an object's angular position can be characterized by the range of angle measurements up to 15…20 deg and accuracy of constant angles on the level 0,05…0,1 arcs. The error of angles changing in time has additional components on the level of 0,2 arcs connected with influence of optical polygon face unflatness and difficulties of use the statistical averaging of measurement results.

  7. Volume holographic printing using unconventional angular multiplexing for three-dimensional display.

    PubMed

    Cao, Liangcai; Wang, Zheng; Zhang, Hao; Jin, Guofan; Gu, Claire

    2016-08-01

    We propose and demonstrate a volume holographic printing method for dynamic three-dimensional (3D) display with an expanded space-bandwidth product (SBP) using unconventional angular multiplexing techniques. By wavefront encoding of the 3D scene, with the help of computer-generated holography, the object beam is loaded onto a 2D phase spatial light modulator (SLM) with a limited SBP. The printing method then writes a single hologram through the interference of the object beam with a reference beam as a holographic element (hogel) in the volume holographic polymer. In addition, multiple 3D scenes can be recorded and dynamically reconstructed by angular multiplexing in the same hogel location. The SBP can be increased by two orders of magnitude compared to the conventional holographic printing method, showing the potential to realize a dynamic and high-resolution 3D display. PMID:27505387

  8. Fragment angular correlation in the breakup of 16O ions at 95 MeV/A

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.; Kiener, J.; Aguer, P.; Bogaert, G.; Coc, A.; Disdier, D.; Ichihara, T.; Kraus, L.; Lefebvre, A.; Linck, I.; Mittig, W.; Motobayashi, T.; de Oliveira Santos, F.; Roussel-Chomaz, P.; Stephan, C.; Thibaud, J. P.

    1998-04-01

    Fragment angular correlations in projectile breakup reactions are very sensitive to interference between different multipolarities entering in the excitation-dissociation process of the projectile. In particular, it was proposed to disentangle L=1 and L=2 contributions in direct breakup reactions of 16O with low relative energy between the α and 12C fragment, which are of astrophysical interest. We studied the experimental aspects of extracting those angular correlations in extreme kinematical conditions usually encountered in breakup experiments of astrophysical interest. The breakup of 95 MeV/A 16O projectiles induced by a 208Pb target was measured using the high-resolution spectrometer SPEG at Ganil for the coincident detection of the fragments. Sequential breakup via the 12.53 MeV level of 16O is analyzed in this framework and it favors an one-step M2 excitation of this level.

  9. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  10. Characterization of the angular memory effect of scattered light in biological tissues

    NASA Astrophysics Data System (ADS)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  11. Angular momentum transport and flow super-rotation in Rayleigh stable Taylor-Couette

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander; van der Veen, Roeland; Sun, Chao; Lohse, Detlef; Lathrop, Daniel

    2013-11-01

    We present experimental velocimetry and torque measurements for Taylor-Couette flow in the Rayleigh stable regime. Measurements are taken on two geometrically similar experiments, both of which had axial boundaries attatched to the outer cylinder, which is known to cause Ekman pumping. The Twente experiment has a radius ratio of 0.716, an aspect ratio of 11.68, and measures azimuthal velocities by Laser Doppler Anenometry. The Maryland experiment has a radius ratio of 0.725, an aspect ratio of 11.47, and measures the torque required to rotate the inner cylinder. The torque on the inner cylinder is observed to be greater than that of the analytical Couette profile and has a complex dependence on the Reynolds number and Ωi /Ωo . The azimuthal velocity profiles also deviate from the laminar Couette profile. Signficantly, super-rotation in the angular velocity has been observed for 1 >Ωi /Ωo > 0 . In the quasi-Keplerian regime, the angular momentum profiles consist of an approximately constant inner region connected to an outer region approximately in solid-body rotation at Ωo, which suggests that angular momentum is being actively transported from the inner region to the axial boundaries.

  12. Rotational-angular-momentum relaxation mechanisms in the energy-corrected-sudden scaling theory

    NASA Astrophysics Data System (ADS)

    Bonamy, L.; Emond, F.

    1995-02-01

    In calculating the infrared (IR) band shape for bending modes, the angular-momentum coupling between vibration, rotation, and radiation must be taken into account. The accuracy of the energy-corrected-sudden (ECS) model has been proved through many recent applications in isotropic Raman Q-branch profiles. Furthermore, this model is based on the physical infinite-order-sudden (IOS) approximation, which allows inclusion of the other relaxation mechanisms required when considering other spectroscopic branches, such as IR Q-bending bands. To include, in a consistent way, the role of the vibrational angular momentum in the rovibrational relaxation matrix, the relaxation of the rotational angular momentum J and of its associated higher-order tensors [J](2),. . . (basically absent in the IOS approximation) is enforced in the present ECS model. Application to the 2076.86 cm-1 infrared rovibrational band of 12C16O2 leads to the determination of the [J](2) relaxation time in agreement with previous values obtained from different measurements. The present theory may be applied to other spectroscopic bands, such as the anisotropic Raman ones.

  13. Resonant structure of the 3d electron`s angular distribution in a free Mn{sup +}Ion

    SciTech Connect

    Amusia, M.Y.; Dolmatov, V.K.

    1995-08-01

    The 3d-electron angular anisotropy parameter of the free Mn{sup +} ion is calculated using the {open_quotes}spin-polarized{close_quotes} random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p {yields} 3d discrete excitation. The effect of the 3p {yields} 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published.

  14. Dephasing of Single-Photon Orbital Angular Momentum Qudit States in Fiber: Limits to Correction via Dynamical Decoupling

    NASA Astrophysics Data System (ADS)

    Gupta, Manish K.; Dowling, Jonathan P.

    2016-06-01

    We analytically derive a decoherence model for orbital angular momentum states of a photon in a multimode optical fiber and show that the rate of decoherence scales approximately exponentially with l2, where l is the azimuthal mode order. We also show numerically that for large values of l the orbital angular momentum photon state completely dephases. However, for lower values of l the decoherence can be minimized by using dynamical decoupling to allow for qudit high-bandwidth quantum communication and similar applications.

  15. The two-dimensional angular momentum distribution in a protostellar core L1527

    NASA Astrophysics Data System (ADS)

    Kiyokane, Kazuhiro; Saito, Masao; Saigo, Kazuya; Kurono, Yasutaka

    2013-07-01

    In star formation at the early phase, angular momentum distribution of a natal core is crucial to determine the evolution of the core such as binary formation and disk formation. We have not yet fully understood the angular momentum distribution of such dense cores. We therefore mapped a 6 arcmin x6 arcmin region (0.2 pc x 0.2 pc) of the protostellar core L1527 in C18O(1-0) with 0.1 km/s resolution with the Nobeyama 45m Telescope in order to derive rotation properties. In the C18O(1-0) integrated intensity map, the emission distribution is centered on the protostar. We introduced a new method to calculate the two-dimensional specific angular momentum distribution of a core and derived the direction of the rotation axis as a function of the core radius. We found that the direction of the angular momentum vector changes from outside to inside and thus, we have confirmed that the dense core L1527 cannot be described by a single rotation axis. Since the inner rotational axis direction is especially important with formation and evolution of the inner rotating disk (Tobin+2013), we think that analysis of the two dimensional specific angular momentum distributions is required. Our method has advantages over the previous analysis of dense cores. First the linear or planar fitting of the line of sight velocity to derive a velocity gradient cannot detect change of the rotational axis (Goodman+1993, Ohashi+1997, and Caselli+2002). Second the position-velocity diagrams can distinguish between rigid-rotation or differential rotation of the core, but only the cut direction. (Belloch+2002). Indeed our analysis results agree with Tobin+2011 who firstly showed the different directions of the velocity gradient on between large- and small-scales.

  16. A novel instrument for generating angular increments of 1 nanoradian

    NASA Astrophysics Data System (ADS)

    Alcock, Simon G.; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ˜0.3 nrad rms over ˜30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (˜57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  17. A novel instrument for generating angular increments of 1 nanoradian.

    PubMed

    Alcock, Simon G; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ∼0.3 nrad rms over ∼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (∼57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  18. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution.

  19. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution. PMID:26193484

  20. A spectral analysis of the earth's angular momentum budget

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Dickey, J. O.; Callahan, P. S.

    1985-01-01

    The exchange of angular momentum between the solid earth and the atmosphere from January 1976 through March 1982 is investigated using estimates of the earth's rotation from optical astrometry and lunar laser ranging and meteorological estimates of the atmospheric angular momentum M(atm). The physics of the earth's angular momentum budget is described, and earth rotation measurements are related to changes in the angular momentum of the fluid parts of the earth. The availability and reliability of earth rotation and M(atm) data are reported, and the possibility of estimating the exchange of angular momentum with the oceans and with the core is examined. Estimates of the power spectrum, cospectral coherence, and linear transfer functions and an analysis of the unmodeled part of the angular momentum budget are presented and discussed. The amplitude and phase of the semiannual, monthly, and fortnightly tidal variations in the length of day are estimated after removing observed atmospheric excitation.

  1. Jet-parton inelastic interaction beyond eikonal approximation

    NASA Astrophysics Data System (ADS)

    Abir, Raktim

    2013-02-01

    Most of the models of jet quenching generally assumes that a jet always travels in a straight eikonal path, which is indeed true for sufficiently hard jet but may not be a good one for moderate and low momentum jet. In this article an attempt has been made to relax part of this approximation for 2→3 processes and found a (15-20)% suppression in the differential cross section for moderately hard jets because of the noneikonal effects. In particular, for the process qq'→qq'g in the centre of momentum frame the scattering with an angle wider than ±0.52π is literally forbidden unlike the process gg→ggg that allows an angular range ±π. This may have consequence on the suppression of hadronic spectra at low transverse momenta.

  2. Multidimensional stochastic approximation Monte Carlo.

    PubMed

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  3. Interplay of approximate planning strategies

    PubMed Central

    Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.

    2015-01-01

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480

  4. Multidimensional stochastic approximation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .

  5. Semiclassics beyond the diagonal approximation

    NASA Astrophysics Data System (ADS)

    Turek, Marko

    2004-05-01

    The statistical properties of the energy spectrum of classically chaotic closed quantum systems are the central subject of this thesis. It has been conjectured by O.Bohigas, M.-J.Giannoni and C.Schmit that the spectral statistics of chaotic systems is universal and can be described by random-matrix theory. This conjecture has been confirmed in many experiments and numerical studies but a formal proof is still lacking. In this thesis we present a semiclassical evaluation of the spectral form factor which goes beyond M.V.Berry's diagonal approximation. To this end we extend a method developed by M.Sieber and K.Richter for a specific system: the motion of a particle on a two-dimensional surface of constant negative curvature. In particular we prove that these semiclassical methods reproduce the random-matrix theory predictions for the next to leading order correction also for a much wider class of systems, namely non-uniformly hyperbolic systems with f>2 degrees of freedom. We achieve this result by extending the configuration-space approach of M.Sieber and K.Richter to a canonically invariant phase-space approach.

  6. Randomized approximate nearest neighbors algorithm.

    PubMed

    Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir

    2011-09-20

    We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {x(j)} for an arbitrary point x ∈ R(d). The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme's behavior for certain types of distributions of {x(j)} and illustrate its performance via several numerical examples.

  7. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-01

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062

  8. Influence of the initial angular distribution on strong-field molecular dissociation

    NASA Astrophysics Data System (ADS)

    Yu, Youliang; Zeng, Shuo; Hernández, J. V.; Wang, Yujun; Esry, B. D.

    2016-08-01

    We study few-cycle, strong-field dissociation of aligned H2+ by solving the time-dependent Schrödinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0=90∘ can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation.

  9. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  10. Noncontacting method for measuring angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L. (Inventor)

    1980-01-01

    An apparatus is described for indicating the instantaneous angular deflection of an object about a selected axis without mechanical contact with the object. Light from a light source is transmitted through a flat refractor to a converging lens which focuses the light through another flat refractor onto a differential photocell. The first flat refractor is attached to the object such that when the object is deflected about the selected axis the refractor is also deflected about that axis. The two flat refractors are identical and they are placed an equal distance from the converging lens as are the light source and the photocell. The output of the photocell which is a function of image displacement is fed to a high gain amplifier that drives a galvanometer which rotates the second flat refractor. The second refractor is rotated so that the image displacement is very nearly zero making the galvanometer current a measure of the deflection of the object about the selected axis.

  11. Arbitrarily tunable orbital angular momentum of photons.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  12. Angular momentum effects in subbarrier fusion

    SciTech Connect

    Halbert, M.L.; Beene, J.R.; Hensley, D.C.; Honkanen, K.; Semkow, T.M.; Abenante, V.; Sarantites, D.G.; Li, Z.

    1988-01-01

    Angular-momentum distributions sigma/sub L/ for the compound nucleus /sup 164/Yb were deduced from measurements of ..gamma..-ray multiplicity for all significant evaporation residues from fusion of /sup 64/Ni and /sup 100/Mo at and below the Coulomb barrier. The excitation functions can be reproduced with coupled-channels calculations only if additional coupling beyond the known inelastic strengths is included. Even with this augmented coupling, however, at the lowest bombarding energies the experimental sigma/sub L/ extend to higher L values than the predictions. Single-barrier penetration models for a potential with an energy-dependent depth and shape fitted to the excitation function likewise underestimate the role of high-L partial waves. Somewhat better success is achieved with models in which fission is allowed to occur at distances comparable with or even larger than the Coulomb barrier radius. 24 refs., 3 figs., 2 tabs.

  13. Inhomogeneous Broadening in Perturbed Angular Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bunker, Austin; Adams, Mike; Hodges, Jeffery; Park, Tyler; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew

    2009-10-01

    Our research concerns the effect of a static distribution of defects on the net electric field gradient (EFG) within crystal structures. Defects and vacancies perturb the distribution of gamma rays emitted from radioactive probe nuclei within the crystal. These defects and vacancies produce a net EFG at the site of the probe which causes the magnetic quadrupole moment of the nucleus of the probe to precess about the EFG. The net EFG, which is strongly dependent upon the defect concentration, perturbs the angular correlation (PAC) of the gamma rays, and is seen in the damping of the perturbation function, G2(t), in time and broadening of the spectral peaks in the Fourier transform. We have used computer simulations to study the probability distribution of EFG tensor components in order to uncover the concentration dependence of G2(t). This in turn can be used to analyze experimental PAC data and quantitatively describe properties of the crystal.

  14. Angular biasing in implicit Monte-Carlo

    SciTech Connect

    Zimmerman, G.B.

    1994-10-20

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.

  15. Angular relation of axes in perceptual space

    NASA Technical Reports Server (NTRS)

    Bucher, Urs

    1992-01-01

    The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.

  16. Optical communication beyond orbital angular momentum.

    PubMed

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  17. Arbitrarily tunable orbital angular momentum of photons

    PubMed Central

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  18. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  19. Optical communication beyond orbital angular momentum

    PubMed Central

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  20. Angular Clustering of Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Garcet, O.; Disseau, L.; Pacaud, F.; Pierre, M.; Gueguen, A.; Alloin, D.; Chiappetti, L.; Gosset, E.; Maccagni, D.; Surdej, J.; Valtchanov, I.

    2006-09-01

    We describe the properties of X-ray point-like sources detected over 4.2 sq. degs. of the largest contiguous survey with XMM-Newton to date (the XMM-LSS survey) to fluxes of F2-10 keV 8x10-15 erg/s/cm2 and F0.5-2 keV 2x10-15 erg/s/cm2 respectively. For 1200 sources in the soft band, we find a two-point angular correlation function (ACF) signal similar to previous work, but no correlation for 400 sources in the hard band. A sample of 200 faint sources with hard X-ray spectra does show a 2-3 sigma positive signal with a power-law normalization theta0>40 arcsec. We discuss implications, including the fact that a large correlation length for obscured AGN is inconsistent with simple AGN Unification based on orientation only.

  1. Optical communication beyond orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  2. Optical communication beyond orbital angular momentum.

    PubMed

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  3. The angular momentum transport by unstable toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Gellert, M.; Spada, F.; Tereshin, I.

    2015-01-01

    We demonstrate with a nonlinear magnetohydrodynamic (MHD) code that angular momentum can be transported because of the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. We only consider stationary, current-free fields, and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity. We find that the dimensionless ratio of the effective over molecular viscosity, νT/ν, linearly grows with the Reynolds number of the rotating fluid multiplied by the square-root of the magnetic Prandtl number, which is approximately unity for the considered red subgiant star KIC 7341231. For the interval of magnetic Reynolds numbers considered - which is restricted by numerical constraints of the nonlinear MHD code - the magnetic Prandtl number has a remarkable influence on the relative importance of the contributions of the Reynolds stress and the Maxwell stress to the total viscosity, which is magnetically dominated only for Pm ≳ 0.5. We also find that the magnetized plasma behaves as a non-Newtonian fluid, i.e., the resulting effective viscosity depends on the shear in the rotation law. The decay time of the differential rotation thus depends on its shear and becomes longer and longer during the spin-down of a stellar core.

  4. Redshift-space distortions with wide angular separations

    SciTech Connect

    Reimberg, Paulo; Bernardeau, Francis; Pitrou, Cyril E-mail: francis.bernardeau@cea.fr

    2016-01-01

    Redshift-space distortions are generally considered in the plane parallel limit, where the angular separation between the two sources can be neglected. Given that galaxy catalogues now cover large fractions of the sky, it becomes necessary to consider them in a formalism which takes into account the wide angle separations. In this article we derive an operational formula for the matter correlators in the Newtonian limit to be used in actual data sets. In order to describe the geometrical nature of the wide angle RSD effect on Fourier space, we extend the formalism developed in configuration space to Fourier space without relying on a plane-parallel approximation, but under the extra assumption of no bias evolution. We then recover the plane-parallel limit not only in configuration space where the geometry is simpler, but also in Fourier space, and we exhibit the first corrections that should be included in large surveys as a perturbative expansion over the plane-parallel results. We finally compare our results to existing literature, and show explicitly how they are related.

  5. Angular dependence of a simple accident dosimeter

    SciTech Connect

    Devine, R. T.; Romero, L. L.; Olsher, R. H.

    2004-01-01

    A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

  6. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling. PMID:22325978

  7. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  8. Ideal linear-chain polymers with fixed angular momentum.

    PubMed

    Brunner, Matthew; Deutsch, J M

    2011-07-01

    The statistical mechanics of a linear noninteracting polymer chain with a large number of monomers is considered with fixed angular momentum. The radius of gyration for a linear polymer is derived exactly by functional integration. This result is then compared to simulations done with a large number of noninteracting rigid links at fixed angular momentum. The simulation agrees with the theory up to finite-size corrections. The simulations are also used to investigate the anisotropic nature of a spinning polymer. We find universal scaling of the polymer size along the direction of the angular momentum, as a function of rescaled angular momentum.

  9. Angular momentum transfer to the inner Jovian satellites

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.

    1975-01-01

    Transfer of angular momentum from Jupiter to the four inner satellites in the presence of the Jovian magnetic field is considered. Electron-flux measurements near Io's flux tube and theoretical estimates of the electric currents flowing through the same flux tube are used to estimate the angular-momentum transfer during the evolutionary history of the Jovian system. The results show that the electric currents are sufficient to have produced an angular-momentum transfer from Jupiter equal to the present angular momentum of the inner satellites.

  10. Acoustic orbital angular momentum transfer to matter by chiral scattering

    NASA Astrophysics Data System (ADS)

    Wunenburger, Régis; Israel Vazquez Lozano, Juan; Brasselet, Etienne

    2015-10-01

    We report on orbital angular momentum exchange between sound and matter mediated by a non-dissipative chiral scattering process. An experimental demonstration is made possible by irradiating a three-dimensional printed, spiral-shaped chiral object with an incident ultrasonic beam carrying zero orbital angular momentum. Chiral refraction is shown to impart a nonzero orbital angular momentum to the scattered field and to rotate the object. This result constitutes a proof of concept of a novel kind of acoustic angular manipulation of matter.

  11. On the convergence of difference approximations to scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Osher, S.; Tadmor, E.

    1985-01-01

    A unified treatment of explicit in time, two level, second order resolution, total variation diminishing, approximations to scalar conservation laws are presented. The schemes are assumed only to have conservation form and incremental form. A modified flux and a viscosity coefficient are introduced and results in terms of the latter are obtained. The existence of a cell entropy inequality is discussed and such an equality for all entropies is shown to imply that the scheme is an E scheme on monotone (actually more general) data, hence at most only first order accurate in general. Convergence for total variation diminishing-second order resolution schemes approximating convex or concave conservation laws is shown by enforcing a single discrete entropy inequality.

  12. A mathematical analysis of the theory of interplanetary scintillation in the weak scattering approximation

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.

    1976-01-01

    A simplified analytical technique is presented for modeling the interplanetary scintillation of radio sources of finite angular size with a power-law electron-density-fluctuation power spectrum. The simplification results from the representation of the scintillation spectrum in confluent hypergeometric functions. The approximations presented allow fast numerical evaluation of a spectrum for a weakly scattering but extended medium with less than 10% error over the entire spectrum. Parameters describing anisotropic electron irregularities as well as anisotropic source structure are included, and the dependence of the spectrum normalization on the scales of the medium is derived explicitly. The parametric description of the domains of convergence of the approximate expansions also provides a simple conceptualization of the relative contributions of the scattered radiation along the line of sight to the observed spectrum. This is particularly useful for sources of finite angular size. This technique is applied to previously published observations.

  13. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  14. Head kinematics in mini-sled tests of foam padding: relevance of linear responses from free motion headform (FMH) testing to head angular responses.

    PubMed

    Ivarsson, J; Viano, D C; Lövsund, P; Parnaik, Y

    2003-08-01

    The revised Federal Motor Vehicle Safety Standard (FMVSS) No. 201 specifies that the safety performance of vehicle upper interiors is determined from the resultant linear acceleration response of a free motion headform (FMH) impacting the interior at 6.7 m/s. This study addresses whether linear output data from the FMH test can be used to select an upper interior padding that decreases the likelihood of rotationally induced brain injuries. Using an experimental setup consisting of a Hybrid III head-neck structure mounted on a mini-sled platform, sagittal plane linear and angular head accelerations were measured in frontal head impacts into foam samples of various stiffness and density with a constant thickness (51 mm) at low (approximately 5.0 m/s), intermediate (approximately 7.0 m/s), and high (approximately 9.6 m/s) impact speeds. Provided that the foam samples did not bottom out, recorded peak values of angular acceleration and change in angular velocity increased approximately linearly with increasing peak resultant linear acceleration and value of the Head Injury Criterion (HIC36). The results indicate that the padding that produces the lowest possible peak angular acceleration and peak change in angular velocity without causing high peak forces is the one that produces the lowest possible HIC36 without bottoming out in the FMH test.

  15. The Angular Momentum of Magnetized Molecular Cloud Cores: A Two-dimensional-Three-dimensional Comparison

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Hennebelle, Patrick; Pineda, Jaime E.; Csengeri, Timea; Bontemps, Sylvain; Audit, Edouard; Goodman, Alyssa A.

    2010-11-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 40963 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH3 (J - K) = (1,1) transition and the N2H+ (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl), whereas in the mildly supercritical simulations this value goes down to ~6 per unit t ff,cl. A comparison of the intrinsic specific angular momentum (j 3D) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ~8-10. We find that the distribution of the ratio j 3D/j 2D of the cores peaks at around ~0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the discrepancy by a

  16. DIRECT MEASUREMENT OF THE ANGULAR POWER SPECTRUM OF COSMIC MICROWAVE BACKGROUND TEMPERATURE ANISOTROPIES IN THE WMAP DATA

    SciTech Connect

    Chiang, Lung-Yih; Chen, Fei-Fan

    2012-05-20

    The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.

  17. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.

  18. Noncontact measurement of angular position and angular movement by means of laser goniometer

    NASA Astrophysics Data System (ADS)

    Filatov, Yuri V.; Nikolaev, Maxim S.; Pavlov, Petr A.; Venediktov, Vladimir Yu.

    2015-05-01

    The results of analysis and experimental investigation of a laser goniometer (LG), working in the mode of the noncontact measurement of an object's angular position, are presented. The important feature of this approach is the very wide range of high-accuracy measurements. In this case, the LG, characterized by the accuracy of ˜0.1 arc sec, has big advantages in comparison to photoelectrical autocollimators which have a rather narrow range of measured angular positions. Our results indicate that the use of a laser dynamic goniometer makes it possible to measure constant angles with an accuracy of 0.05 to 0.1 arc sec in the range of possible angles of 15 to 20 deg. If the measured angle is varying, the residual measurement error contains an additional component, which is equal to ˜0.2 arc sec, induced by the nonflatness of the optical polygon's faces and by the problems with statistical averaging of the measurement results.

  19. Photoionization cross sections for atomic chlorine using an open-shell random phase approximation

    NASA Technical Reports Server (NTRS)

    Starace, A. F.; Armstrong, L., Jr.

    1975-01-01

    The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.

  20. Strong-field approximation for intense-laser-atom processes: The choice of gauge

    SciTech Connect

    Bauer, D.; Milosevic, D.B.; Becker, W.

    2005-08-15

    The strong-field approximation (SFA) can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact numerical solution of the time-dependent Schroedinger equation.

  1. Comparison of FBP and Iterative Algorithms with Non-Uniform Angular Sampling

    PubMed Central

    Zeng, Gengsheng L.

    2014-01-01

    Some people may believe that the filtered backprojection (FBP) algorithm does not work if the projection data are measured non-uniformly. Some may also believe that iterative algorithms can automatically handle the non-uniformly sampled data in the projector/backprojector. This paper claims that the FBP algorithm can effectively handle the situation where the angular sampling is not uniform. This paper compares the images that are reconstructed by both the FBP and the iterative Landweber algorithms when the angular sampling is nonuniform. When the iteration number is low, the iterative algorithms do not handle the non-uniform sampling properly. A weighting strategy is then suggested and it makes the image resolution more isotropic. In few-view tomography, the FBP and iterative algorithms both perform poorly if no other prior information is used. We have made the following observations: 1) When using an iterative algorithm, one must use early solutions due to noise amplification. 2) An early solution can have anisotropic spatial resolution if the angular sampling is not uniform. 3) The anisotropic resolution problem can be solved by introducing angle dependent weighting, which is not noise dependent. 4) The weighting is not effective when the iteration number is large. The weighting only affects the early solutions, and does not affect the converged solution. 5) When the iteration number is large, the model-mismatch errors are amplified and cause artifacts in the image. 6) The FBP algorithm is not sensitive to the model-mismatch errors, and does not have the “early solution” problems. 7) In few-view tomography, both FBP and iterative algorithms perform poorly, while the FBP algorithm gives a sharper image than the iterative algorithm does. PMID:25678716

  2. Changes in angular momentum during the tennis serve.

    PubMed

    Bahamonde, R E

    2000-08-01

    Three-dimensional cinematography and the direct linear transformation method were used to obtain the coordinates of the landmarks of five right-handed collegiate tennis players. A 15-segment model was used to calculate the total body angular momentum about three orthogonal axes (X, parallel to the baseline; Y, normal to baseline and pointing towards the net; and Z, pointing upwards) passing through the centre of mass and to obtain the segmental contribution of the trunk, arms and legs. Most of the clockwise angular momentum about the X-axis was concentrated in the trunk and the racket-arm. Between the events of maximum external rotation and ball impact, the clockwise angular momentum about the X-axis of rotation of most body segments was reduced and the racket-arm gained clockwise angular momentum. The body angular momentum about the Y-axis of rotation had two distinct patterns and was the result of the lateral rotation of the trunk as the racket shoulder was elevated in preparation for impact. This body angular momentum was clockwise from the event of maximum external rotation to impact for the players with the greatest ball speed, whereas it was counterclockwise for the other players. The angular momentum about the Z-axis of rotation was small and lacked a consistent pattern. The largest source of angular momentum in the tennis serve derives from the remote angular momentum about the X- and Y-axes of rotation, which are then transferred from the trunk to the racket-arm and finally to the racket. Near impact, most of the angular momentum (75.1%) was concentrated in the racket-arm. Of the angular momentum of the racket-arm, the largest percentages were concentrated in the racket (35.9%) and the forearm segment (25.7%).

  3. Assessing resolution in super-resolution imaging.

    PubMed

    Demmerle, Justin; Wegel, Eva; Schermelleh, Lothar; Dobbie, Ian M

    2015-10-15

    Resolution is a central concept in all imaging fields, and particularly in optical microscopy, but it can be easily misinterpreted. The mathematical definition of optical resolution was codified by Abbe, and practically defined by the Rayleigh Criterion in the late 19th century. The limit of conventional resolution was also achieved in this period, and it was thought that fundamental constraints of physics prevented further increases in resolution. With the recent development of a range of super-resolution techniques, it is necessary to revisit the concept of optical resolution. Fundamental differences in super-resolution modalities mean that resolution is not a directly transferrable metric between techniques. This article considers the issues in resolution raised by these new technologies, and presents approaches for comparing resolution between different super-resolution methods.

  4. Fluid flow vorticity measurement using laser beams with orbital angular momentum.

    PubMed

    Ryabtsev, A; Pouya, S; Safaripour, A; Koochesfahani, M; Dantus, M

    2016-05-30

    Vorticity is one of the most important dynamic flow variables and is fundamental to the basic flow physics of many areas of fluid dynamics, including aerodynamics, turbulent flows and chaotic motion. We report on the direct measurements of fluid flow vorticity using a beam with orbital angular momentum that takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Experiments are carried out on fluid flows with well-characterized vorticity and the experimental results are found to be in excellent agreement with the expected values. This method allows for localized real-time determination of vorticity in a fluid flow with three-dimensional resolution. PMID:27410101

  5. ϑ-SHAKE: An extension to SHAKE for the explicit treatment of angular constraints

    NASA Astrophysics Data System (ADS)

    Gonnet, Pedro; Walther, Jens H.; Koumoutsakos, Petros

    2009-03-01

    This paper presents ϑ-SHAKE, an extension to SHAKE, an algorithm for the resolution of holonomic constraints in molecular dynamics simulations, which allows for the explicit treatment of angular constraints. We show that this treatment is more efficient than the use of fictitious bonds, significantly reducing the overlap between the individual constraints and thus accelerating convergence. The new algorithm is compared with SHAKE, M-SHAKE, the matrix-based approach described by Ciccotti and Ryckaert and P-SHAKE for rigid water and octane.

  6. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    SciTech Connect

    Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim; Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert

    2015-06-29

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  7. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    SciTech Connect

    Zhang, Shi-Jie; Li, Yan Liu, Zhao-Pei; Ren, Jin-Li; Xiao, Yun-Feng; Yang, Hong; Gong, Qihuang

    2014-08-11

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  8. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  9. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    SciTech Connect

    Singleterry, R.C. Jr.; Wilson, J.W.

    1997-05-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He{sup 4} and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm{sup 2} of aluminum and 100 gm/cm{sup 2} of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  10. Efficiency of linear and angular momentum transfer in oblique impact

    NASA Astrophysics Data System (ADS)

    Shirono, S.; Tada, M.; Nakamura, A. M.; Kadono, T.; Rivkin, A.; Fujiwara, A.

    1993-09-01

    Linear and angular momentum transfer efficiencies for oblique impacts into spherical mortar targets at velocity up to about 4 km/s were determined. Angular momentum transfer efficiency decreases gradually while linear momentum transfer increases with increasing impact velocity. This is understood by determining the impact velocity dependence of both the total momentum carried by ejecta and its direction.

  11. Modification of the DSN radio frequency angular tropospheric refraction model

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    The previously derived DSN Radio Frequency Angular Tropospheric Refraction Model contained an assumption which was subsequently seen to be at a variance with the theoretical basis of angular refraction. The modification necessary to correct the model is minor in that the value of a constant is changed.

  12. Quark and Gluon Orbital Angular Momentum: Where Are We?

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric; Liu, Keh-Fei

    2016-06-01

    The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.

  13. Kernel polynomial approximations for densities of states and spectral functions

    SciTech Connect

    Silver, R.N.; Voter, A.F.; Kress, J.D.; Roeder, H.

    1996-03-01

    Chebyshev polynomial approximations are an efficient and numerically stable way to calculate properties of the very large Hamiltonians important in computational condensed matter physics. The present paper derives an optimal kernal polynomial which enforces positivity of density of states and spectral estimates, achieves the best energy resolution, and preserves normalization. This kernel polynomial method (KPM) is demonstrated for electronic structure and dynamic magnetic susceptibility calculations. For tight binding Hamiltonians of Si, we show how to achieve high precision and rapid convergence of the cohesive energy and vacancy formation energy by careful attention to the order of approximation. For disordered XXZ-magnets, we show that the KPM provides a simpler and more reliable procedure for calculating spectral functions than Lanczos recursion methods. Polynomial approximations to Fermi projection operators are also proposed. 26 refs., 10 figs.

  14. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity

    NASA Astrophysics Data System (ADS)

    Ahmad, Azeem; Srivastava, Vishal; Dubey, Vishesh; Mehta, D. S.

    2015-03-01

    We demonstrate ultra-high axial-resolution topography and tomography of multilayered objects using pseudo thermal light source, i.e., laser. The longitudinal spatial coherence (LSC) length of light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular, and temporal diversity. Thus, generating a low spatially coherent (i.e., broad angular frequency spectrum) light source having narrow temporal frequency spectrum. The LSC length was reduced less than 10 μm using a very low magnification lens. Experimental results of optical sectioning of multilayer objects with high axial-resolution of the order of 4 μm was achieved which is comparable to broadband light source. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  15. Ultra-short longitudinal spatial coherence length of laser light with the combined effect of spatial, angular, and temporal diversity

    SciTech Connect

    Ahmad, Azeem E-mail: mehtads@physics.iitd.ac.in; Dubey, Vishesh; Mehta, D. S. E-mail: mehtads@physics.iitd.ac.in; Srivastava, Vishal

    2015-03-02

    We demonstrate ultra-high axial-resolution topography and tomography of multilayered objects using pseudo thermal light source, i.e., laser. The longitudinal spatial coherence (LSC) length of light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular, and temporal diversity. Thus, generating a low spatially coherent (i.e., broad angular frequency spectrum) light source having narrow temporal frequency spectrum. The LSC length was reduced less than 10 μm using a very low magnification lens. Experimental results of optical sectioning of multilayer objects with high axial-resolution of the order of 4 μm was achieved which is comparable to broadband light source. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  16. High-dimensional quantum nature of ghost angular Young's diffraction

    SciTech Connect

    Chen Lixiang; Leach, Jonathan; Jack, Barry; Padgett, Miles J.; Franke-Arnold, Sonja; She Weilong

    2010-09-15

    We propose a technique to characterize the dimensionality of entangled sources affected by any environment, including phase and amplitude masks or atmospheric turbulence. We illustrate this technique on the example of angular ghost diffraction using the orbital angular momentum (OAM) spectrum generated by a nonlocal double slit. We realize a nonlocal angular double slit by placing single angular slits in the paths of the signal and idler modes of the entangled light field generated by parametric down-conversion. Based on the observed OAM spectrum and the measured Shannon dimensionality spectrum of the possible quantum channels that contribute to Young's ghost diffraction, we calculate the associated dimensionality D{sub total}. The measured D{sub total} ranges between 1 and 2.74 depending on the opening angle of the angular slits. The ability to quantify the nature of high-dimensional entanglement is vital when considering quantum information protocols.

  17. Quantum hyper-entanglement and angular spectrum decomposition applied to sensors

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2016-05-01

    Hyper-entanglement with an emphasis on mode type is used to extend a previously developed atmospheric imaging system. Angular spectrum expansions combined with second quantization formalism permits many different mode types to be considered using a common formalism. Fundamental Gaussian, standard Hermite-Gaussian, standard Laguerre- Gaussian, and Bessel modes are developed. Hyper-entanglement refers to entanglement in more than one degree of freedom, e.g. polarization, energy-time and orbital angular momentum. The system functions at optical or infrared frequencies. Only the signal photon propagates in the atmosphere, the ancilla photon is retained within the detector. This results in loss being essentially classical, giving rise to stronger forms of entanglement. A simple atomic physics based model of the scattering target is developed. This model permits the derivation in closed form of the loss coefficient for photons with a given mode type scattering from the target. Signal loss models for propagation, transmission, detection, and scattering are developed and applied. The probability of detection of photonic orbital angular momentum is considered in terms of random media theory. A model of generation and detection efficiencies for the different degrees of freedom is also considered. The implications of loss mechanisms for signal to noise ratio (SNR), and other quantum information theoretic quantities are discussed. Techniques for further enhancing the system's SNR and resolution through adaptive optics are examined. The formalism permits random noise and entangled or nonentangled sources of interference to be modeled.

  18. A space–angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement

    SciTech Connect

    Kópházi, József Lathouwers, Danny

    2015-09-15

    In this paper a new method for the discretization of the radiation transport equation is presented, based on a discontinuous Galerkin method in space and angle that allows for local refinement in angle where any spatial element can support its own angular discretization. To cope with the discontinuous spatial nature of the solution, a generalized Riemann procedure is required to distinguish between incoming and outgoing contributions of the numerical fluxes. A new consistent framework is introduced that is based on the solution of a generalized eigenvalue problem. The resulting numerical fluxes for the various possible cases where neighboring elements have an equal, higher or lower level of refinement in angle are derived based on tensor algebra and the resulting expressions have a very clear physical interpretation. The choice of discontinuous trial functions not only has the advantage of easing local refinement, it also facilitates the use of efficient sweep-based solvers due to decoupling of unknowns on a large scale thereby approaching the efficiency of discrete ordinates methods with local angular resolution. The approach is illustrated by a series of numerical experiments. Results show high orders of convergence for the scalar flux on angular refinement. The generalized Riemann upwinding procedure leads to stable and consistent solutions. Further the sweep-based solver performs well when used as a preconditioner for a Krylov method.

  19. Modelling the angular correlation function and its full covariance in photometric galaxy surveys

    NASA Astrophysics Data System (ADS)

    Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique

    2011-06-01

    Near-future cosmology will see the advent of wide-area photometric galaxy surveys, such as the Dark Energy Survey (DES), that extend to high redshifts (z˜ 1-2) but give poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function w(θ), or the Cℓ power spectrum, will become the standard approach to extracting cosmological information or to studying the nature of dark energy through the baryon acoustic oscillations (BAO) probe. In this work we present a detailed model for w(θ) at large scales as a function of redshift and binwidth, including all relevant effects, namely non-linear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix, characterizing the angular correlation measurements, that takes into account the same effects as for w(θ) and also the possibility of a shot-noise component and partial sky coverage. Provided with a large-volume N-body simulation from the MICE collaboration, we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.

  20. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.