Sample records for angular stable plating

  1. Mechanical aspects of a multidirectional, angular stable osteosynthesis system and comparison with four conventional systems.

    PubMed

    Gbara, Ali; Heiland, Max; Schmelzle, Rainer; Blake, Felix

    2008-04-01

    Following open reduction, internal fixation of fractures of the mandible is predominantly achieved using plates and screws. Today, a multitude of osteosynthesis systems are available on the market. One therapy modality, primarily developed for orthopaedic surgery, is using angular stable osteosynthesis plate systems. The dominating principle of these is the bond between screw and plate following insertion. This principle of an "internal fixateur" results in a more stable fixation of the fragments associated with less compression of the bone surfaces. A new multidirectional osteosynthesis system (TiFix=Smartlock, Hamburg - Germany) was modified to fit the maxillofacial region and compared with four other well established osteosynthesis systems developed by Mondial, Medicon, Synthes, Leibinger-Stryker, one of these (Unilock by Synthes) being also angular stable. The resistance to deformation in varying directions was investigated following fixation in four different materials. The TiFix system proved more resistant to deformation even when mounted with fewer screws than the non-angular stable systems. This system results in greater stability even when fewer screws are used. For the clinician this means smaller access incisions, less soft tissue trauma, better aesthetic results, decreased duration of operation and a reduction of costs.

  2. Primary stability of an intramedullary calcaneal nail and an angular stable calcaneal plate in a biomechanical testing model of intraarticular calcaneal fracture.

    PubMed

    Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R

    2014-01-01

    Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Fixation of osteoporotic fractures in the upper limb with a locking compression plate.

    PubMed

    Neuhaus, V; King, J D; Jupiter, J B

    2012-01-01

    Locking Compression Plate (LCP) has the advantageous feature that screws can be locked in the plate leaving an angular stable construct. There is no need to have contact between the plate and the bone to achieve stability resulting from friction of the plate-bone-construct. Therefore the plate does not need to be contoured exactly to the bone and the healing bone's periosteal blood supply is not affected. The LCP is used as a bridging plate to gain relative stability in multi-fragmentary, diaphyseal or metaphyseal fractures. Depending on the fracture, the combination hole can also allow the LCP to achieve absolute stability similar to conventional fixation techniques. Osteoporotic fractures have significant impact on morbidity and mortality. Proximal humeral and distal radius fractures are typical examples. These osteoporotic and often comminuted fractures are ideal settings/indications for LCP utilization in the upper extremity. However, the data quality is due to mostly small study populations not so powerful. Unquestionably there has been a clear and fashionable trend to choose operative treatment for these fractures, because the angular stability allows stable fixation and early functional mobilization.

  4. Angular stable plates in proximal meta-epiphyseal tibial fractures: study of joint restoration and clinical and functional evaluation.

    PubMed

    Giannotti, S; Giovannelli, D; Dell'Osso, G; Bottai, V; Bugelli, G; Celli, F; Citarelli, C; Guido, G

    2016-04-01

    The tibial plateau fractures involve one of the main weight bearing joints of the human body. The goals of surgical treatment are anatomical reduction, articular surface reconstruction and high primary stability. The aim of this study was to evaluate the clinical and functional outcomes after internal plate fixation of this kind of fractures. From January 2009 to December 2012, we treated 75 cases of tibial plateau fracture with angular stable plates. We used Rasmussen Score and the Knee Society Score for the clinical and functional evaluation. Twenty-five cases that underwent hardware removal had arthroscopic and CT evaluation of the joint. No complications occurred. The clinical and functional evaluation, performed by the KSS and Rasmussen Score, highlighted the high percentage of good-to-excellent results (over 90 %). In every case, the range of motion was good with flexion >90°. Arthroscopy showed the presence of chondral damage in 100 % of patients. In all the cases, we found that X-ray images seem better than the CT images. Angular stable plates allow to obtain a good primary stability, permitting an early joint recovery with an excellent range of motion. Avoiding to perform a knee arthrotomy at the time of fracture reduction could prove to be an advantage in terms of functional recovery. The meniscus on the injured bone should be preserved in order to maintain good function of the joint. X-ray images remain the gold standard in checking the progression of post-traumatic osteoarthritis.

  5. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  6. Biomechanical Assessment of Locked Plating for the Fixation of Patella Fractures.

    PubMed

    Wurm, Simone; Augat, Peter; Bühren, Volker

    2015-09-01

    To analyze the mechanical stability of locked plating in comparison with tension-band wiring for the fixation of fractures of the patella. Biomechanical tests were performed on artificial foam patella specimens comparing an angular stable plate and monocortical screws with tension-band wiring. Tests were performed under combined tension and bending until failure simulating physiological loading of the tibia during walking. Tension-band wiring failed at 66% of the failure load of plating (1052 N, P = 0.002) and had 5 times larger fracture gap displacements (P = 0.002). Based on the biomechanical advantages, locked plating of the patella may constitute a reasonable alternative in the treatment of patella fractures.

  7. Angular shear plate

    DOEpatents

    Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  8. Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking

    NASA Technical Reports Server (NTRS)

    Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph

    2008-01-01

    The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the effective bending point of the flex-joint. The second plate is pressed against two screw actuators by the weight of the IP. The screw actuators are orthogonal to each other and are used to adjust the inclination of the second plate. The actuators are driven by stepper motors. The whole IP system is housed in a box made of Lexan plastic plates to provide isolation from air currents and temperature variations. The signals from the sensors are processed and recorded with a PC using the xPC Target realtime environment of Math- Works. The control algorithms are written using the Simulink package from The MathWorks.

  9. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015.

    PubMed

    Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh

    2017-09-12

    We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

  10. Angular deformity correction by guided growth in growing children: Eight-plate versus 3.5-mm reconstruction plate.

    PubMed

    Park, Kyeong-Hyeon; Oh, Chang-Wug; Kim, Joon-Woo; Park, Il-Hyung; Kim, Hee-June; Choi, Young-Seo

    2017-09-01

    Guided growth using the eight-plate (8-plate) is the most commonly used method to correct angular deformities in children; however, implant failure has been reported. Recently, the 3.5-mm reconstruction plate (R-plate) has been used as an alternative option for guided growth; however, hardware prominence has been problematic. This study aimed to compare the coronal angular deformity correction results of guided growth between relatively thin 8-plates with cannulated screws and thick R-plates with solid screws. Thirty-nine physes (24 distal femoral, 15 proximal tibial) in 20 patients underwent hemiepiphysiodesis using 8-plates, and 61 physes (40 distal femoral, 21 proximal tibial) in 35 patients underwent hemiepiphysiodesis using R-plates. Coronal angular corrections were measured and compared preoperatively, and after the completion of corrections. Amounts and rates of correction and complications were compared between the groups. Mean body mass index was 18.7 kg/m2 in the 8-plate group, and 22.7 kg/m2 in the R-plate group. Angular correction was achieved in all deformities at a mean of 13.7 months and 19.7 months in the 8-plate and the R-plate group, respectively. The mean corrected mechanical lateral distal femoral angle was 9.0° in the 8-plate group, and 9.9° in the R-plate group (P = 0.55). The mean corrected medial proximal tibial angle was 7.1° in the 8-plate group, and 9.0° in the R-plate group (P = 0.07). The mean rates of angular correction were also not significantly different in the distal femur (1.03°/month vs. 0.77°/month, P = 0.2) and the proximal tibia (0.66°/month vs. 0.63°/month, P = 0.77). There was one superficial infection in each group, and one case of implant failure in the R-plate group. Two rebound deformities were observed and needed repeat hemiepiphysiodesis. Permanent physeal arrest was not observed in this series. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  11. Biomechanical investigation of an alternative concept to angular stable plating using conventional fixation hardware.

    PubMed

    Windolf, Markus; Klos, Kajetan; Wähnert, Dirk; van der Pol, Bas; Radtke, Roman; Schwieger, Karsten; Jakob, Roland P

    2010-05-21

    Angle-stable locking plates have improved the surgical management of fractures. However, locking implants are costly and removal can be difficult. The aim of this in vitro study was to evaluate the biomechanical performance of a newly proposed crossed-screw concept ("Fence") utilizing conventional (non-locked) implants in comparison to conventional LC-DCP (limited contact dynamic compression plate) and LCP (locking compression plate) stabilization, in a human cadaveric diaphyseal gap model. In eight pairs of human cadaveric femora, one femur per pair was randomly assigned to receive a Fence construct with either elevated or non-elevated plate, while the contralateral femur received either an LCP or LC-DCP instrumentation. Fracture gap motion and fatigue performance under cyclic loading was evaluated successively in axial compression and in torsion. Results were statistically compared in a pairwise setting. The elevated Fence constructs allowed significantly higher gap motion compared to the LCP instrumentations (axial compression: p

  12. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  13. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental lithosphere (σ=14.7° ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29° ) and Eurasia (vRMS=3 mm a-1, σ=33° ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ˜5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.

  14. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  15. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS-MORVEL overlap substantially and that the two sets of angular velocities differ insignificantly. Thus we combine the two sets of angular velocities to estimate ABS-MORVEL, an optimal set of global angular velocities consistent with both hotspot tracks and seismic anisotropy. ABS-MORVEL has more compact confidence limits than either SKS-MORVEL or HS4-MORVEL.

  16. Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Zheng, L.; Kreemer, C.

    2014-12-01

    The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.

  17. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  18. Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface.

    PubMed

    Khan, M Ismail; Tahir, Farooq A

    2017-11-22

    A highly flexible single-layer metasurface manifesting quarter-wave plate as well as half-mirror (1:1 beam-splitter) operation in the microwave frequency regime is being presented in this research. The designed metasurface reflects half power of the impinging linearly polarized electromagnetic wave as circularly polarized wave while the remaining half power is transmitted as circularly polarized wave at resonance frequency. Similarly, a circularly polarized incident wave is reflected and transmitted as linearly polarized wave with equal half powers. Moreover, the response of the metasurface is quite stable against the variations in the incidence angle up to 45°. The measurements performed on the fabricated prototype exhibit a good agreement with the simulation results. The compact size, flexible structure, angular stability and two in one operation (operating as a quarter-wave plate and beam-splitter at the same time) are the main characteristics of the subject metasurface that makes it a potential candidate for numerous applications in communication and miniaturized and conformal polarization control devices.

  19. Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    PubMed

    Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K

    2014-02-01

    We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.

  20. Transition radiation on a superlattice in finite thickness plate generated by two acoustic waves

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Parazian, V. V.; Saharian, A. A.

    2018-01-01

    Forward transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate by two acoustic waves. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. Zone structures appear in the plate, which makes it possible (by an appropriate choice of the frequencies of the two acoustic waves) to control the spectral-angular distribution of the radiation through changes in the parameters of the medium. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic waves. Numerical examples are presented for a plate of fused quartz.

  1. Angular stable lateral plating is a valid alternative to conventional plate fixation in the proximal phalanx. A biomechanical study.

    PubMed

    Shanmugam, R; Ernst, M; Stoffel, K; Fischer, M F; Wahl, D; Richards, R G; Gueorguiev, B

    2015-06-01

    Dorsal plating is commonly used in proximal phalanx fractures but it bears the risk of interfering with the extensor apparatus. In this study, dorsal and lateral plating fixation methods are compared to assess biomechanical differences using conventional 1.5mm non-locking plates and novel 1.3mm lateral locking plates. Twenty-four fresh frozen human cadaveric proximal phalanges were equally divided into four groups. An osteotomy was set at the proximal metaphyseal-diaphyseal junction and fixed with either dorsal (group A) or lateral (group B) plating using a 1.5mm non-locking plate, or lateral plating with a novel 1.3mm locking plate with bicortical (group C) or unicortical (group D) screws. The specimens were loaded in axial, dorsovolar and mediolateral direction to assess fixation stiffness followed by a cyclic destructive test in dorsovolar loading direction. Axial stiffness was highest in group D (mean 321.02, SEM 21.47N/mm) with a significant difference between groups D and B (P=0.033). Locking plates (groups C and D) were stiffer than non-locking plates under mediolateral loading (P=0.007), no significant differences were noted under dorsovolar loading. Furthermore, no significant differences were observed under cyclic loading to failure between any of the study groups. No considerable biomechanical advantage of using a conventional 1.5mm dorsal non-locking plate was identified over the novel 1.3mm lateral locking plate in the treatment of proximal phalanx fractures. Since the novel low-profile plate is less disruptive to the extensor mechanism, it should be considered as a valid alternative. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.

  3. Intramedullary nailing in opening wedge high tibial osteotomy-in vitro test for validation of a method of fixation.

    PubMed

    Burchard, Rene; Katerla, Denise; Hammer, Marina; Pahlkötter, Anke; Soost, Christian; Dietrich, Gerhard; Ohrndorf, Arne; Richter, Wolfgang; Lengsfeld, Markus; Christ, Hans-Jürgen; Graw, Jan Adriaan; Fritzen, Claus-Peter

    2018-02-01

    Opening wedge high tibial osteotomy (HTO) as a treatment in unicompartimental osteoarthritis of the knee can significantly relieve pain and prevent or at least delay an early joint replacement. The fixation of the osteotomy has undergone development and refinements during the last years. The angle-stable plate fixator is currently one of the most commonly used plates in HTOs. The angular stable fixation between screws and the plate offers a high primary stability to retain the correction with early weight-bearing protocols. This surgical technique is performed as a standard of care and generally well tolerated by the patients. Nevertheless, some studies observed that many patients complained about discomfort related to the implant. Therefore, the stability of two different intramedullary nails, a short implant used in humeral fractures and a long device used in tibial fractures for stabilization in valgus HTOs, was investigated as an alternative fixation technique. The plate fixator was defined as reference standard. Nine synthetic tibia models were standardly osteotomized and stabilized by one of the fixation devices. Axial compression was realized using a special testing machine and two protocols were performed: a multi-step fatigue test and a load-to-failure test. Overall motion, medial, and lateral displacements were documented. Fractures always occurred at the lateral cortex. Axial cyclic loading up to 800 N was tolerated by all implants without failure. The tibia nail provided highest fatigue strength under the load-to-failure conditions. The results suggest that intramedullary nailing might be used as an alternative concept in HTO.

  4. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Indexing Mount For Rotation Of Optical Component

    NASA Technical Reports Server (NTRS)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  6. Possible microplate generation at RRR triple junctions due to the non-circular finite motion of plates relative to each other

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2012-12-01

    First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.

  7. Plate Motions, Regional Deformation, and Time-Variation of Plate Motions

    NASA Technical Reports Server (NTRS)

    Gordon, R. G.

    1998-01-01

    The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.

  8. Vortex Dynamics around Pitching Plates

    DTIC Science & Technology

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  9. Multiple orbital angular momentum generated by dielectric hybrid phase element

    NASA Astrophysics Data System (ADS)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  10. Determining the Best Treatment for Coronal Angular Deformity of the Knee Joint in Growing Children: A Decision Analysis

    PubMed Central

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok

    2014-01-01

    This study aimed to determine the best treatment modality for coronal angular deformity of the knee joint in growing children using decision analysis. A decision tree was created to evaluate 3 treatment modalities for coronal angular deformity in growing children: temporary hemiepiphysiodesis using staples, percutaneous screws, or a tension band plate. A decision analysis model was constructed containing the final outcome score, probability of metal failure, and incomplete correction of deformity. The final outcome was defined as health-related quality of life and was used as a utility in the decision tree. The probabilities associated with each case were obtained by literature review, and health-related quality of life was evaluated by a questionnaire completed by 25 pediatric orthopedic experts. Our decision analysis model favored temporary hemiepiphysiodesis using a tension band plate over temporary hemiepiphysiodesis using percutaneous screws or stapling, with utilities of 0.969, 0.957, and 0.962, respectively. One-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was better than temporary hemiepiphysiodesis using percutaneous screws, when the overall complication rate of hemiepiphysiodesis using a tension band plate was lower than 15.7%. Two-way sensitivity analysis showed that hemiepiphysiodesis using a tension band plate was more beneficial than temporary hemiepiphysiodesis using percutaneous screws. PMID:25276801

  11. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  12. Angular resolution of stacked resistive plate chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuel, Deepak; Onikeri, Pratibha B.; Murgod, Lakshmi P., E-mail: deepaksamuel@cuk.ac.in, E-mail: pratibhaonikeri@gmail.com, E-mail: lakshmipmurgod@gmail.com

    We present here detailed derivations of mathematical expressions for the accuracy in the arrival direction of particles estimated using a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). We also present a theoretical estimate of angular resolution of such a setup. In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  13. Composite and Component Plates, Plate Non-rigidity, and the Steadiness of Plate Motion From Marine Geophysical and Space Geodetic Data

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Argus, D. F.; DeMets, C.

    2017-12-01

    Plate tectonic theory has evolved since its birth 50 years ago. In particular, we now recognize that some of the originally proposed plates such as the Indo-Australia plate, the Africa plate, and the America plate are what we term "composite" plates—entities that contain no traditionally defined narrow plate boundaries, but are composed of multiple approximately rigid regions, which we term "component" plates, separated by diffuse plate boundaries. The best example of a composite plate is the Indo-Australia composite plate, which consists of the India, Capricorn, Australia, and Macquarie component plates and multiple intervening diffuse oceanic plate boundaries. The poles of relative rotation between component plates tend to lie in their mutual diffuse plate boundary. Outside of diffuse boundaries, plate rigidity has proven to be an excellent approximation, but the non-closure of some plate circuits indicates that stable plate interiors have a small but significant non-rigidity that may add up to 1 to 2 mm/a across any individual plate and may be partly due to horizontal thermal contraction of oceanic lithosphere. The greatest observational challenge to plate rigidity is posed by the Pacific-Cocos-Nazca plate circuit, which fails closure by 15 ±4 mm/a. The most rapid deformation of the plates observed with space geodesy is generated by solid Earth's viscous response to unloading of the late Pleistocene ice sheets. Differences between different realizations of global plate velocities from space geodesy appear in some cases to be due to differing assumptions about the motion of the geocenter, which affects estimated plate relative angular velocities and estimated vertical motion at geodetic sites. Comparison of space geodetic and marine geophysical plate motion rates and directions has demonstrated that plate motion is nearly steady, which allows plate boundary conditions to be applied to inter-seismic strain accumulation due to locking of specific faults. In detail it appears, however, that plate velocities over the past few decades have in several cases been significantly different from plate motions averaged over geologic time. Some of the largest changes have been decreases in rates across convergent plate boundaries: Nazca-South America and the velocities of Nubia, Arabia, and India relative to Eurasia.

  14. Three-dimensional scapular dyskinesis in hook-plated acromioclavicular dislocation including hook motion.

    PubMed

    Kim, Eugene; Lee, Seunghee; Jeong, Hwa-Jae; Park, Jai Hyung; Park, Se-Jin; Lee, Jaewook; Kim, Woosub; Park, Hee Jin; Lee, So Yeon; Murase, Tsuyoshi; Sugamoto, Kazuomi; Ikemoto, Sumika

    2018-06-01

    The purpose of this study is to analyze the 3-dimensional scapular dyskinesis and the kinematics of a hook plate relative to the acromion after hook-plated acromioclavicular dislocation in vivo. Reported complications of acromioclavicular reduction using a hook plate include subacromial erosion and impingement. However, there are few reports of the 3-dimensional kinematics of the hook and scapula after the aforementioned surgical procedure. We studied 15 cases of acromioclavicular dislocation treated with a hook plate and 15 contralateral normal shoulders using computed tomography in the neutral and full forward flexion positions. Three-dimensional motion of the scapula relative to the thorax during arm elevation was analyzed using a computer simulation program. We also measured the distance from the tip of the hook plate to the greater tuberosity, as well as the angular motion of the plate tip in the subacromial space. Decreased posterior tilting (22° ± 10° vs 31° ± 8°) in the sagittal plane and increased external rotation (19° ± 9° vs 7° ± 5°) in the axial plane were evident in the affected shoulders. The mean values of translation of the hook plate and angular motion against the acromion were 4.0 ± 1.6 mm and 15° ± 8°, respectively. The minimum value of the distance from the hook plate to the humeral head tuberosity was 6.9 mm during arm elevation. Acromioclavicular reduction using a hook plate may cause scapular dyskinesis. Translational and angular motion of the hook plate against the acromion could lead to subacromial erosion. However, the hook does not seem to impinge directly on the humeral head. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Simultaneous weak measurement of angular and spatial Goos-Hänchen and Imbert-Fedorov shifts

    NASA Astrophysics Data System (ADS)

    Prajapati, Chandravati; Viswanathan, Nirmal K.

    2017-10-01

    We propose and demonstrate the weak measurement scheme to simultaneously measure the amplified angular and spatial contributions to the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts, due to transmission through a glass plate. We have studied two cases of post-selection using a polarizer in the first case and a quarter-wave plate (QWP)-polarizer combination in the second case. The two cases are analyzed theoretically using Jones calculus of polarization formalism and the results are verified experimentally. In the first case of post-selection, the projection of the polarizer at +/- {{Δ }} away from the crossed position amplifies the angular GH and IF shifts, while in the second case of post-selection, the projection of QWP at +/- {{Δ }} and polarizer kept fixed measures the polarization ellipticity in the beam and thus amplifies the spatial shift along with the angular shift simultaneously, for {{Δ }}\\ll 1.

  16. An Alternative Estimate of the Motion of the Capricorn Plate

    NASA Astrophysics Data System (ADS)

    Burris, S. G.; Gordon, R. G.

    2013-12-01

    Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2] Gordon, R. G., Royer, J.-Y., and D. F. Argus, 2008. Space geodetic test of kinematic models for the Indo-Australian composite plate, Geology, 36, 827-830, doi: 10.1130/G25089A.1. [3] DeMets, C., Gordon, R. G., & Argus, D. F., 2010. Geologically current plate motions, Geophys. J. Int., 181, 1-80, doi: 10.1111/j.1365-246X.2009.04491.x.

  17. Quick-Connect, Self-Alining Latch

    NASA Technical Reports Server (NTRS)

    Burns, G. C.; Williams, E. J.

    1983-01-01

    Sturdy latch tolerates 10 degrees of angular mismatch in joining structural elements. Hexagonal passive plate nests in active plate, guided by capture plates and alinement keys and grooves. Center hole in both active and passive plates is 1 meter in diameter. Latch has possible uses a pipe joint, connector for parts of portable structures, and fitting for marine risers on offshore drilling rigs.

  18. Resilience of hybrid optical angular momentum qubits to turbulence

    PubMed Central

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P.; Sciarrino, Fabio

    2015-01-01

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667

  19. Quantum orbital angular momentum of elliptically symmetric light

    NASA Astrophysics Data System (ADS)

    Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2013-03-01

    We present a quantum-mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically symmetric stable light fields—the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity, and we discover several compelling features, including nonmonotonic behavior, stable beams with real continuous (noninteger) orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain in detail, the reasons for this behavior. These features may have applications in quantum key distribution, atom trapping, and quantum informatics in general—as the ellipticity opens up an alternative way of navigating the spatial photonic Hilbert space.

  20. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  1. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping

    2017-03-01

    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  2. The Malpelo Plate Hypothesis and Implications for Non-closure of the Cocos-Nazca-Pacific Plate Motion Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Gordon, R. G.; Mishra, J. K.; Wang, C.

    2017-12-01

    The non-closure of the Cocos-Nazca-Pacific plate motion circuit by 15.0 mm a-1± 3.8 mm a-1 (95% confidence limits throughout this abstract) [DeMets et al. 2010] represents a daunting challenge to the central tenet of plate tectonics—that the plates are rigid. This misfit is difficult to explain from known processes of intraplate deformation, such as horizontal thermal contraction [Collette, 1974; Kumar and Gordon, 2009; Kreemer and Gordon, 2014; Mishra and Gordon, 2016] or movement of plates over a non-spherical Earth [McKenzie, 1972; Turcotte and Oxburgh, 1973]. Possibly there are one or more unrecognized plate boundaries in the circuit, but no such boundary has been found to date. To make progress on this problem, we present three new Cocos-Nazca transform fault azimuths from multibeam data now available through Geomapapp's global multi-resolution topography [Ryan et al., 2009]. We determine a new Cocos-Nazca best-fitting angular velocity from the three new transform-fault azimuths combined with the spreading rates of DeMets et al. [2010]. The new direction of relative plate motion is 3.3° ±1.8° clockwise of prior estimates and is 4.9° ±2.7° clockwise of the azimuth of the Panama transform fault, demonstrating that the Panama transform fault does not parallel Nazca-Cocos plate motion. We infer that the plate east of the Panama transform fault is not the Nazca plate, but instead is a microplate that we term the Malpelo plate. We hypothesize that a diffuse plate boundary separates the Malpelo plate from the much larger Nazca plate. The Malpelo plate extends only as far north as ≈6°N where seismicity marks another boundary with a previously recognized microplate, the Coiba plate [Pennington, 1981, Adamek et al., 1988]. The Malpelo plate moves 5.9 mm a-1 relative to the Nazca plate along the Panama transform fault. When we sum the Cocos-Pacific and Pacific-Nazca best-fitting angular velocities of DeMets et al. [2010] with our new Nazca-Cocos best-fitting angular velocity, we find a new linear velocity of non-closure of 11.6 mm a-1± 3.8 mm a-1, i.e., the non-closure is reduced by 3.4 mm a-1. The non-closure still seems too large to be due entirely to intraplate deformation and suggests that one or more additional plate boundaries remain to be discovered.

  3. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  4. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  5. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  6. Numerical Solution of the Navier-Stokes Equations for Steady Magnetohydrodynamic Flow Between Two Parallel Porous Plates with an Angular Velocity

    NASA Astrophysics Data System (ADS)

    Delhi Babu, R.; Ganesh, S.

    2018-04-01

    The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.

  7. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  8. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  9. Apparatus and method for explosive bonding to edge of flyer plate

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and a process for the explosive joining of a flyer plate and a base plate. The apparatus consists of a flyer plate positioned over a base plate. The flyer plate has a notch containing a filler material in intimate contact with the flyer plate. An adhesive means holds a ribbon explosive partially overlapping the notch in the flyer plate. A detonating means initiates the ribbon explosive that drives the flyer plate to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and effacing bonding, resulting in electron sharing linkups between the plates. An unbonded tab fractures at a base of the notch leaving a bond to an edge of the attached flyer plate.

  10. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  11. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  12. The angular velocity of Nubia relative to Somalia and the location of the Nubia-Somalia-Antarctica triple junction

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, Benjamin C.; Gordon, Richard G.; Cowles, Sara M.; Argus, Donald F.

    2005-07-01

    A new analysis of geologically current plate motion across the Southwest Indian ridge (SWIR) and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. Spreading rates averaged over the past 3.2 Myr are estimated from 103 well-distributed, nearly ridge-perpendicular profiles that cross the SWIR. All available bathymetric data are evaluated to estimate the azimuths and uncertainties of transform faults; six are estimated from multibeam data and 12 from precision depth recorder (PDR) data. If both the Nubian and Somalian component plates are internally rigid near the SWIR and if the Nubia-Somalia boundary is narrow where it intersects the SWIR, that intersection lies between ~26°E and ~32°E. Thus, the boundary is either along the spreading ridge segment just west of the Andrew Bain transform fault complex (ABTFC) or along some of the transform fault complex itself. These limits are narrower than and contained within limits of ~24°E to ~33°E previously found by Lemaux et al. from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as ~700 km. The new Nubia-Somalia pole of rotation lies ~10° north of the Bouvet triple junction, which places it far to the southwest of southern Africa. The new angular velocity determined only from data along the SWIR indicates displacement rates of Somalia relative to Nubia of 3.6 +/- 0.5 mm yr-1 (95 per cent confidence limits) towards 176° (S04° E) between Somalia and Nubia near the SWIR, and of 8.3 +/- 1.9 mm yr-1 (95 per cent confidence limits) towards 121° (S59° E) near Afar. The new Nubia-Somalia angular velocity differs significantly from the Nubia-Somalia angular velocity estimated from Gulf of Aden and Red sea data. This significant difference has three main alternative explanations: (i) that the plate motion data have substantial unmodelled systematic errors, (ii) that the Nubian component plate is not a single rigid plate, or (iii) that the Somalian component plate is not a single rigid plate. We tentatively prefer the third explanation given the geographical distribution of earthquakes within the African composite plate relative to the inferred location of the Nubia-Somalia boundary along the SWIR.

  13. A rheological model for immersed corrugated elastic plates.

    PubMed

    Meier, D; Franklin, H; Predoi, M V; Rousseau, M; Izbicki, J L

    2017-03-01

    The influence of surface imperfections on the propagation of guided waves in an immersed elastic plate can be interpreted by means of a rheological model. The corrugated surface is modeled by a very thin interface, similar to a Jones spring model, which replaces the continuity boundary conditions at the liquid - corrugated solid-plate interface. As the surrounding liquid is considered to be perfect, only one complex stiffness is used for the model of Jones. The selection of the plate guided mode and the test frequency are motivated by the detectability and non-interference with other modes. The spring stiffness is obtained by a best fit procedure, between the analytical solution and the results obtained by the finite elements method (FEM). One way ensuring the agreement of the two approaches, rheological and FEM, is to consider angular resonances provided by the transmission coefficients. Small changes in the parameters of the roughness keep the positions of the angular resonances of the plate practically unchanged, while at the same time large variations of the half width of the transmission coefficient curve is observed. The effect of corrugation parameters on the guided modes in the plate can be predicted by using the rheological model with the deduced spring complex stiffness. Copyright © 2016. Published by Elsevier B.V.

  14. Silicon micromachined accelerometer/seismometer and method of making the same

    NASA Technical Reports Server (NTRS)

    Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)

    2001-01-01

    A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.

  15. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    NASA Astrophysics Data System (ADS)

    Piron, P.; Delacroix, C.; Huby, E.; Mawet, D.; Karlsson, M.; Ruane, G.; Habraken, S.; Absil, O.; Surdej, J.

    2015-09-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed.

  16. Confirmation of Arabia plate slow motion by new GPS data in Yemen

    NASA Astrophysics Data System (ADS)

    Vigny, Christophe; Huchon, Philippe; Ruegg, Jean-Claude; Khanbari, Khaled; Asfaw, Laike M.

    2006-02-01

    During the last 10 years, a network of about 30 GPS sites was measured in Djibouti, East Africa. Additional points were also measured in Yemen, Oman, Ethiopia, Iran, and on La Réunion island. Merged with data from the available International GPS Service permanent stations scattered on the different plates in the area (Eurasia, Anatolia, Africa, Arabia, Somalia), this unique data set provides new insight on the current deformation in the Africa-Somalia-Arabia triple junction area and on the Arabian plate motion. Here we show that coherent motions of points in Yemen, Bahrain, Oman, and Iran allow us to estimate a geodetically constrained angular velocity for the Arabian plate (52.59°N, 15.74°W, 0.461°/Myr in ITRF2000). This result differs significantly from earlier determinations and is based upon our vectors in Yemen. They provide new additional data and better geometry for angular velocity determination. Combined with the African and Somalian motions, this new angular velocity results in predicted spreading rates in the Red Sea and the Gulf of Aden which are 15-20% lower than those measured from oceanic magnetic anomalies and thus averaged over the last 3 Myr. With respect to Eurasia, the geodetic motion of Arabia is also about 30% slower than predicted by NUVEL-1A. On the basis of the kinematic results presented here and on other evidence for a similar slower geodetic rate of the Indian plate, we suggest that the whole collision zone between Africa, Arabia, India on one hand and Eurasia on the other hand has slowed down in the last 3 Myr.

  17. Methods and devices for measuring orbital angular momentum states of electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorran, Benjamin J.; Harvey, Tyler R.

    A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less

  18. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  19. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  20. Three-dimensional repositioning accuracy of semiadjustable articulator cast mounting systems.

    PubMed

    Tan, Ming Yi; Ung, Justina Youlin; Low, Ada Hui Yin; Tan, En En; Tan, Keson Beng Choon

    2014-10-01

    In spite of its importance in prosthesis precision and quality, the 3-dimensional repositioning accuracy of cast mounting systems has not been reported in detail. The purpose of this study was to quantify the 3-dimensional repositioning accuracy of 6 selected cast mounting systems. Five magnetic mounting systems were compared with a conventional screw-on system. Six systems on 3 semiadjustable articulators were evaluated: Denar Mark II with conventional screw-on mounting plates (DENSCR) and magnetic mounting system with converter plates (DENCON); Denar Mark 330 with in-built magnetic mounting system (DENMAG) and disposable mounting plates; and Artex CP with blue (ARTBLU), white (ARTWHI), and black (ARTBLA) magnetic mounting plates. Test casts with 3 high-precision ceramic ball bearings at the mandibular central incisor (Point I) and the right and left second molar (Point R; Point L) positions were mounted on 5 mounting plates (n=5) for all 6 systems. Each cast was repositioned 10 times by 4 operators in random order. Nine linear (Ix, Iy, Iz; Rx, Ry, Rz; Lx, Ly, Lz) and 3 angular (anteroposterior, mediolateral, twisting) displacements were measured with a coordinate measuring machine. The mean standard deviations of the linear and angular displacements defined repositioning accuracy. Anteroposterior linear repositioning accuracy ranged from 23.8 ±3.7 μm (DENCON) to 4.9 ±3.2 μm (DENSCR). Mediolateral linear repositioning accuracy ranged from 46.0 ±8.0 μm (DENCON) to 3.7 ±1.5 μm (ARTBLU), and vertical linear repositioning accuracy ranged from 7.2 ±9.6 μm (DENMAG) to 1.5 ±0.9 μm (ARTBLU). Anteroposterior angular repositioning accuracy ranged from 0.0084 ±0.0080 degrees (DENCON) to 0.0020 ±0.0006 degrees (ARTBLU), and mediolateral angular repositioning accuracy ranged from 0.0120 ±0.0111 degrees (ARTWHI) to 0.0027 ±0.0008 degrees (ARTBLU). Twisting angular repositioning accuracy ranged from 0.0419 ±0.0176 degrees (DENCON) to 0.0042 ±0.0038 degrees (ARTBLA). One-way ANOVA found significant differences (P<.05) among all systems for Iy, Ry, Lx, Ly, and twisting. Generally, vertical linear displacements were less likely to reach the threshold of clinical detectability compared with anteroposterior or mediolateral linear displacements. The overall repositioning accuracy of DENSCR was comparable with 4 magnetic mounting systems (DENMAG, ARTBLU, ARTWHI, ARTBLA). DENCON exhibited the worst repositioning accuracy for Iy, Ry, Lx, Ly, and twisting. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Improved grating angular sensor for LISA and MGRS

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Lu, Patrick; Byer, Robert L.

    2009-03-01

    LISA requires high precision angular beam pointing and telescope steering. In this paper, we report recent results for an improved grating angular sensor. We have achieved better than 0.2 nrad/Hz1/2 at 1 kHz with 14 mW of incident power, a factor of 5 improvement over our previously reported results. At 1 Hz we achieved 1-2 nrad/Hz1/2. We realized these improvements by enclosing the grating angular sensor assembly in a vacuum chamber and mounting the optics components on a zerodur glass plate, thereby lowering the noise floor at low frequencies. Furthermore, by upgrading the electronics and thus the detector power handing capability, we also investigated sensitivity scaling versus incident laser power. The results will benefit the design of grating angular sensors.

  2. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  3. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  4. Coding/decoding two-dimensional images with orbital angular momentum of light.

    PubMed

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  5. [Operative treatment of proximal humeral four-part fractures in elderly patients: comparison of two angular-stable implant systems].

    PubMed

    Kuhlmann, T; Hofmann, T; Seibert, O; Gundlach, G; Schmidt-Horlohé, K; Hoffmann, R

    2012-04-01

    Although being one of the most common fractures in elderly patients, there is still no standardised treatment protocol for four-part fractures of the proximal humerus. However, a wide variety of angular-stable implants is available. The present retrospective study compares the clinical and radiological outcome following operative treatment of four-part fractures of the proximal humerus with the Philos system (Philos, proximal humeral internal locking system, Synthes GmbH, Umkirch Germany) and the angular-stable Königsee plate system (Königsee Implantate GmbH, Allendorf, Germany) in patients older than 65 years. From July 2005 until December 2007 we identified 77 patients with a four-part fracture of the proximal humerus who were treated operatively with one of the two implant systems. Of the patients, 17 could not be located so that in total 60 patients (78 %) participated in this study. The mean age of the 30 patients (10 m, 20 f) in the Philos group was 69 years (65-92), whereas the mean age of the 30 patients (11 m, 19 f) in the Königsee group was 71 years (65-93). A comprehensive assessment was performed after a median of 17 months (12-24), including physical examination, radiographic examination and completion of the disabilities of the arm, shoulder and hand score (DASH) and the Constant score (CS) as patient-oriented, limb-specific questionnaires. Neither in the Philos nor in the Königsee group could excellent results be achieved. Using the CS 13 patients (43 %) of the Philos group achieved a good and 15 (50 %) a satisfactory result. Bad results were found in 2 patients (7 %). The mean CS was 61.53 points. In the Königsee group mean CS was 61.76 points. In detail, 14 patients (47 %) treated with the Königsee implant were rated as good and 15 (50 %) as satisfactory. Only 1 patient (3 %) was rated as poor. No significant statistical differences were found between the groups. Mean DASH score in the Philos group was 56.30 points and 55.37 points in the Königsee group. Again, no statistical difference was found. Partial humeral head necrosis was observed in 2 patients of the Philos and 1 of the Königsee group. In the remaining patients uneventful fracture consolidation was observed. There were no complications requiring further surgical intervention. To the date of follow-up all implants were still in situ and none of the patients reported discomfort with respect to the hardware. In this study we were able to demonstrate that good and satisfactory results can be achieved in the majority of patients, regardless of whether a Philos or a Königsee system was used. Significant differences between the two groups could not be found in any of the performed examinations. Both implants seem to be suitable in four-part fractures of the proximal humerus. However, the Königsee plate represents a more cost-effective option compared to the Philos system. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Analysis of bending wave transmission using beam tracing with advanced statistical energy analysis for periodic box-like structures affected by spatial filtering

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Hopkins, C.

    2015-04-01

    For bending wave transmission across periodic box-like arrangements of plates, the effects of spatial filtering can be significant and this needs to be considered in the choice of prediction model. This paper investigates the errors that can occur with Statistical Energy Analysis (SEA) and the potential of using Advanced SEA (ASEA) to improve predictions. The focus is on the low- and mid-frequency range where plates only support local modes with low mode counts and the in situ modal overlap is relatively high. To increase the computational efficiency when using ASEA on large systems, a beam tracing method is introduced which groups together all rays with the same heading into a single beam. Based on a diffuse field on the source plate, numerical experiments are used to determine the angular distribution of incident power on receiver plate edges on linear and cuboid box-like structures. These show that on receiver plates which do not share a boundary with the source plate, the angular distribution on the receiver plate boundaries differs significantly from a diffuse field. SEA and ASEA predictions are assessed through comparison with finite element models. With rain-on-the-roof excitation on the source plate, the results show that compared to SEA, ASEA provides significantly better estimates of the receiver plate energy, but only where there are at least one or two bending modes in each one-third octave band. Whilst ASEA provides better accuracy than SEA, discrepancies still exist which become more apparent when the direct propagation path crosses more than three nominally identical structural junctions.

  7. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  8. Angular-Shaped Naphthalene Bis(1,5-diamide-2,6-diylidene)malononitrile for High-Performance, Air-Stable N-Type Organic Field-Effect Transistors.

    PubMed

    Dhondge, Attrimuni P; Tsai, Pei-Chung; Nien, Chiao-Yun; Xu, Wei-Yu; Chen, Po-Ming; Hsu, Yu-Hung; Li, Kan-Wei; Yen, Feng-Ming; Tseng, Shin-Lun; Chang, Yu-Chang; Chen, Henry J H; Kuo, Ming-Yu

    2018-05-04

    The synthesis, characterization, and application of two angular-shaped naphthalene bis(1,5-diamide-2,6-diylidene)malononitriles (NBAMs) as high-performance air-stable n-type organic field effect transistor (OFET) materials are reported. NBAM derivatives exhibit deep lowest-unoccupied molecular orbital (LUMO) levels, suitable for air-stable n-type OFETs. The OFET device based on NBAM-EH fabricated by vapor deposition exhibits a maximum electron mobility of 0.63 cm 2 V -1 s -1 in air with an on/off current ratio ( I on / I off ) of 10 5 .

  9. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  10. Eddy-Current Measurement Of Turning Or Curvature

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.

  11. Locking design affects the jamming of screws in locking plates.

    PubMed

    Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker

    2018-06-01

    The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuritskiy, M. I., E-mail: mazurmik@gmail.com; Lerer, A. M.; Makhno, P. V.

    The angular distribution of the X-ray intensity at the exit of microchannel plates at grazing incidence of monochromatic radiation on the walls of microcapillaries has been investigated. The angles and energies of the primary radiation quanta at which the synchrotron beam excites X-ray fluorescence propagating inside polycapillary structures have been determined. The angular dependences of the intensity distribution of X-rays transmitted through the microcapillaries have been studied theoretically and experimentally for energies corresponding to the region of anomalous dispersion near the L{sub 2,3} absorption edges of silicon. The propagation of waves in hollow polycapillary waveguides, the excitation of X-ray fluorescence,more » and the X-ray diffraction at the exit of microchannel plates have been modeled mathematically. The mathematical model takes into account the presence of a transition layer on the microchannel surface.« less

  13. Inference of stress and texture from angular dependence of ultrasonic plate mode velocities

    NASA Technical Reports Server (NTRS)

    Thompson, R. B.; Smith, J. F.; Lee, S. S.

    1986-01-01

    The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.

  14. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  15. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  16. Development of Rolling Schedules for Equal Channel Angular Extrusion (ECAE)-Processed AZ31 Magnesium Alloy

    DTIC Science & Technology

    2016-04-01

    Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes, Vincent H Hammond, Michael Eichhorst, Norman Herzig, and Lothar Meyer...Angular Extrusion (ECAE)–Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes and Vincent H Hammond Weapons and Materials Research...successfully reduced into 1.5-mm-thick sheets . Two sets of plates, each with a different texture type, were evaluated. Microscopic examination of

  17. Dorsal Plating of Unstable Scaphoid Fractures and Nonunions.

    PubMed

    Bain, Gregory I; Turow, Arthur; Phadnis, Joideep

    2015-09-01

    Achieving stable fixation of displaced acute and chronic nonunited scaphoid fractures continues to be a challenge for the treating surgeon. The threaded compression screw has been the mainstay of treatment of these fractures for the last 3 decades; however, persistent nonunion after screw fixation has prompted development of new techniques. Recent results of volar buttress plating have been promising. We describe a novel technique of dorsal scaphoid plating. In contrast to volar plating, the dorsal plate is biomechanically more favorable as it utilizes the tension side of the scaphoid bone for dynamic compression. Dorsal scaphoid plating provides a more stable construct than the traditional Herbert screw and mitigates the need for vascular or corticocancellous bone grafting in most cases.

  18. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  19. Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: is there a role for bone-graft substitutes?

    PubMed

    Larsson, Sune; Procter, Philip

    2011-09-01

    When stabilising a fracture the contact between the screw and the surrounding bone is crucial for mechanical strength. Through development of screws with new thread designs, as well as optimisation of other properties, improved screw purchase has been gained. Other alternatives to improve screw fixation in osteoporotic bone, as well as normal bone if needed, includes the use of various coatings on the screw that will induce a bonding between the implant surface and the bone implant, as well as application of drugs such as bisphosphonates locally in the screw hole to induce improved screw anchorage through their anticatabolic effect on the bone tissue. As failure of internal fixation of fractures in osteoporotic bone typically occurs through breakage of the bone that surrounds the implant, rather than the implant itself, an alternative strategy in osteoporotic bone can include augmentation of the bone around the screw. This is useful when screws alone are being used for fixation, as it will increase pull-out resistance, but also when conventional plates and screws are used. In angularly stable plate-screw systems, screw back-out is not a problem if the locking mechanism between the screws and the plate works. However, augmentation that will strengthen the bone around the screws can also be useful in conjunction with angle-stable plate-screw systems, as the augmentation will provide valuable support when subjected to loading that might cause cut-out. For many years conventional bone cement, polymethylmethacrylate (PMMA), has been used for augmentation, but due to side effects--including great difficulties if removal becomes necessary--the use of PMMA has never gained wide acceptance. With the introduction of bone substitutes, such as calcium phosphate cement, it has been shown that augmentation around screws can be achieved without the drawbacks seen with PMMA. When dealing with fixation of fractures in osteoporotic bone where screw stability might be inadequate, it therefore seems an attractive option to include bone substitutes for augmentation around screws as part of the armamentarium. Clinical studies now are needed to determine the indications in which bone augmentation with bone-graft substitutes (BGSs) would merit clinical usage. Copyright © 2011. Published by Elsevier Ltd.

  20. Mapping the influence of the deep Nazca slab on the geometry of the 660-km discontinuity beneath stable South America

    NASA Astrophysics Data System (ADS)

    Bianchi, M. B. D.; Assumpcao, M.; Julià, J.

    2017-12-01

    The fate of the deep Nazca subducted plate is poorly mapped under stable South America. Transition zone thickness and position is greatly dependent on mantle temperature and so is influenced by the colder Nazca plate position. We use a database of 35,000 LQT deconvolved receiver function traces to image the mantle transition zone and other upper mantle discontinuities under different terranes of stable South American continent. Data from the entire Brazilian Seismographic Network database, consisting of more than 80 broadband stations supplemented by 35 temporary stations deployed in west Brazil, Argentina, Paraguay, Bolivia and Uruguay were processed. Our results indicates that upper mantle velocities are faster than average under stable cratons and that most of the discontinuities are positioned with small variations in respect to nominal depths, except in places were the Nazca plate interacts with the transition zone. Under the Chaco-Pantanal basin the Nazca plate appears to be trapped in the transition zone for more than 1000 km with variations of up to 30 km in 660 km discontinuity topography under this region consistent with global tomographic models. Additional results obtained from SS precursor analysis of South Sandwich Islands teleseismic events recorded at USArray stations indicates that variations of transition zones thickness occur where the Nazca plate interacts with the upper mantle discontinuities in the northern part of Stable South American continent.

  1. Preparation of corrosion-resistant and conductive trivalent Cr-C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Cheng; Sheu, Hung-Hua; Lu, Chen-En; Hou, Kung-Hsu; Ger, Ming-Der

    2015-10-01

    In this study, Cr-C-coated bipolar plates are produced by electroplating on the SS304 plates with a machined flow channel. The resulting plates were tested using potentiodynamic and potentiostatic measurements in simulated PEMFC environments, which show that the bipolar plate coated with Cr-C exhibited good anticorrosion performance. The corrosive current density of the Cr-C coating formed for a plating time of 10 min for 10 h exhibits a low stable value of 1.51 × 10-10 A/cm2 during the potentiostatic test in a 0.5 M H2SO4 + 2 ppm HF solution at 70 °C with an air purge, indicating that the Cr-C coating plated for 10 min is stable in a cathode environment. The interfacial contact resistance (ICR) of the bipolar plate with the Cr-C coating clearly improved, presenting an ICR of 19.52 mΩ cm2 at a pressure of 138 N/cm2. The results from scanning electron microscopy (SEM) and ICR before and after the corrosion tests indicate that the bipolar plate with the Cr-C coating is electrochemically stable. In this study, the maximum power density (212.41 mW/cm2) is obtained at a cell temperature of 80 °C and a gas flow rate of 300 standard cubic centimeters per minute (sccm) when Cr-C coated SS304 bipolar plates were used.

  2. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  3. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  4. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  5. Measurements and Modelling of Sputtering Rates with Low Energy Ions

    NASA Astrophysics Data System (ADS)

    Ruzic, David N.; Smith, Preston C.; Turkot, Robert B., Jr.

    1996-10-01

    The angular-resolved sputtering yield of Be by D+, and Al by Ar+ was predicted and then measured. A 50 to 1000 eV ion beam from a Colutron was focused on to commercial grade and magnetron target grade samples. The S-65 C grade beryllium samples were supplied by Brush Wellman and the Al samples from TOSOH SMD. In our vacuum chamber the samples can be exposed to a dc D or Ar plasma to remove oxide, load the surface and more-nearly simulate steady state operating conditions in the plasma device. The angular distribution of the sputtered atoms was measured by collection on a single crystal graphite witness plate. The areal density of Be or Al (and BeO2 or Al2O3, after exposure to air) was then measured using a Scanning Auger Spectrometer. Total yield was also measured by deposition onto a quartz crystal oscillator simultaneously to deposition onto the witness plate. A three dimensional version of vectorized fractal TRIM (VFTRIM3D), a Monte-Carlo computer code which includes surface roughness characterized by fractal geometry, was used to predict the angular distribution of the sputtered particles and a global sputtering coefficient. Over a million trajectories were simulated for each incident angle to determine the azimuthal and polar angle distributions of the sputtered atoms. The experimental results match closely with the simulations for total yield, while the measured angular distributions depart somewhat from the predicted cosine curve.

  6. Archaeological Investigations at Sites 45-OK-287 and 45-OK-288, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1984-01-01

    marks and evidence of burning by element ........ ........................ . 258 xviii .. . - ... ., ." xvii LIST OF PLATES Plate 1-1. 45-OK-287: view...which the site is located, and glaclotacustrlne sediments of two ages exposed In the opposite bank. The lowest major terrace the river cut In the...the site were exposed in fewer excavation units, but they have a finer grain size and greater proportion of angular cobbles, deriving from the bedrock

  7. New Geodetic Results from the Hauraki Rift: Slow Continental Rifting Oblique to Subduction, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Pickle, R. C.; Eccles, J. D.; Hreinsdottir, S.; Palmer, N.; Rowland, J. V.

    2016-12-01

    The Hauraki Rift, an active but slow-deforming narrow intra-continental rift in northern New Zealand paradoxically strikes nearly normal to the Pacific-Australian oblique subduction boundary 300+ km to the southeast. Both the driving mechanism and quantitative details of the rift's current activity are unknown. Past GPS/GNSS geodetic surveying in the area has been coarse and erratic (e.g. single 8-hour surveys in 1995). In 2015 and again in 2016 a 37 station network of existing benchmarks around the rift was measured with the aim of gaining better insight into deformation in the region. We find that it is primarily extensional ( 0.9 mm/yr) with a small portion of right-lateral shearing ( 0.1 mm/yr) relative to a fixed Australian plate in ITRF2008. Closer to the plate boundary, the oblique westward subduction of the Pacific plate generates a strong clockwise angular strain signature in the over-riding plate; this same angular stress field is the simplest explanation for the Hauraki Rift's axis-perpendicular strain and in consistent with previous geophysical observations. Additionally, several short wavelength dislocations between our velocity solutions hint at the existence of undocumented active faults which will have implications to the seismic hazard to Auckland, New Zealand's largest city, located just 50km west of the rift.

  8. Spirit Studies Rock Outcrop at Home Plate

    NASA Image and Video Library

    2006-03-06

    This image shows two flat-topped, layered rocks with angular edges almost side by side, except they are separated by a smaller rock and two thin channels of reddish-brown sand. The bare rock surfaces are a light blue-gray

  9. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    PubMed

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  10. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  11. On the rotation and pitching of flat plates

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.

    2016-11-01

    Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.

  12. REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems

    NASA Astrophysics Data System (ADS)

    Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.

    1981-12-01

    We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.

  13. Cold plate with combined inclined impingement and ribbed channels

    DOEpatents

    Parida, Pritish R.

    2015-12-22

    Heat transfer devices and methods for making the same that include a first enclosure having at least one inlet port; a second enclosure having a bottom plate and one or more dividing walls to establish channels, at least one internal surface of each channel having rib structures to create turbulence in a fluid flow; and a jet plate connecting the first enclosure and the second enclosure having impinging jets that convey fluid from the first enclosure to the channels, said impinging jets being set at an angular deviation from normal to cause local acceleration of fluid and to increase a local heat transfer rate.

  14. Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching

    2000-10-01

    We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.

  15. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study

    PubMed Central

    Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian

    2015-01-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201

  16. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study.

    PubMed

    Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian

    2016-02-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.

  17. Lithium/water battery with lithium ion conducting glass-ceramics electrolyte

    NASA Astrophysics Data System (ADS)

    Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru

    Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.

  18. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms thatmore » had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.« less

  19. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and discuss the level of interplate and intraplate deformations in Africa.

  20. Minimally Invasive Osteosynthesis with a Bridge Plate Versus a Functional Brace for Humeral Shaft Fractures: A Randomized Controlled Trial.

    PubMed

    Matsunaga, Fabio Teruo; Tamaoki, Marcel Jun Sugawara; Matsumoto, Marcelo Hide; Netto, Nicola Archetti; Faloppa, Flavio; Belloti, Joao Carlos

    2017-04-05

    Nonoperative treatment has historically been considered the standard for fractures of the shaft of the humerus. Minimally invasive bridge-plate osteosynthesis for isolated humeral shaft fractures has been proven to be a safe technique, with good and reproducible results. This study was designed to compare clinical and radiographic outcomes between patients who had been treated with bridge plate osteosynthesis and those who had been managed nonoperatively with a functional brace. A prospective randomized trial was designed and included 110 patients allocated to 1 of 2 groups: surgery with a bridge plate or nonoperative treatment with a functional brace. The primary outcome was the Disabilities of the Arm, Shoulder and Hand (DASH) score at 6 months. The score on the Short Form-36 (SF-36) life-quality questionnaire, complications of treatment, Constant-Murley score for the shoulder, pain level, and radiographic results were assessed as secondary outcomes. Participants were assessed at 2 weeks; 1, 2, and 6 months; and 1 year after the interventions. The mean DASH score of the bridge plate group was statistically superior to that of the functional brace group (mean scores, 10.9 and 16.9, respectively; p = 0.046) only at 6 months. The bridge plate group also had a significantly more favorable nonunion rate (0% versus 15%) and less mean residual angular displacement seen on the anteroposterior radiograph (2.0° versus 10.5°) (both p < 0.05). No difference between the groups was detected with regard to the SF-36 score, pain level, Constant-Murley score, or angular displacement seen on the lateral radiograph. This trial demonstrates that, compared with functional bracing, surgical treatment with a bridge plate has a statistically significant advantage, of uncertain clinical benefit, with respect to self-reported outcome (DASH score) at 6 months, nonunion rate, and residual deformity in the coronal plane as seen on radiographs. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  1. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  2. Archaeological Investigations at Sites 45-OK-287 and 45-OK-288, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1984-01-01

    Table C-1. Distribution of butchering marks and evidence of burning by element .. ....... ....... ....... .. 258 xvii9. LIST OF PLATES Plate 1-1. 45-OK...the vicinity of the Omak Trench. Till forms the terrace on which the site Is located, and glaclolacustrIne sediments of two ! -ages exposed In the...the site were exposed In fewer excavation units, but they have a finer grain size and greater proportion of angular cobbles, deriving from the bedrock

  3. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  4. Controlling neutron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.

    2015-09-01

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  5. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Modification of Impulse Generation During Pirouette Turns With Increased Rotational Demands.

    PubMed

    Zaferiou, Antonia M; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-10-01

    This study determined how dancers regulated angular and linear impulse during the initiation of pirouettes of increased rotation. Skilled dancers (n = 11) performed single and double pirouette turns with each foot supported by a force plate. Linear and angular impulses generated by each leg were quantified and compared between turn types using probability-based statistical methods. As rotational demands increased, dancers increased the net angular impulse generated. The contribution of each leg to net angular impulse in both single and double pirouettes was influenced by stance configuration strategies. Dancers who generated more angular impulse with the push leg than with the turn leg initiated the turn with the center of mass positioned closer to the turn leg than did other dancers. As rotational demands increased, dancers tended to increase the horizontal reaction force magnitude at one or both feet; however, they used subject-specific mechanisms. By coordinating the generation of reaction forces between legs, changes in net horizontal impulse remained minimal, despite impulse regulation at each leg used to achieve more rotations. Knowledge gained regarding how an individual coordinates the generation of linear and angular impulse between both legs as rotational demand increased can help design tools to improve that individual's performance.

  7. Compact OAM microscope for edge enhancement of biomedical and object samples

    NASA Astrophysics Data System (ADS)

    Gozali, Richard; Nguyen, Thien-An; Bendau, Ethan; Alfano, Robert R.

    2017-09-01

    The production of orbital angular momentum (OAM) by using a q-plate, which functions as an electrically tunable spatial frequency filter, provides a simple and efficient method of edge contrast in biological and medical sample imaging for histological evaluation of tissue, smears, and PAP smears. An instrument producing OAM, such as a q-plate, situated at the Fourier plane of a 4f lens system, similar to the use of a high-pass spatial filter, allows the passage of high spatial frequencies and enables the production of an image with highly illuminated edges contrasted against a dark background for both opaque and transparent objects. Compared with ordinary spiral phase plates and spatial light modulators, the q-plate has the added advantage of electric control and tunability.

  8. Numerical modelling of instantaneous plate tectonics

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.

    1974-01-01

    Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.

  9. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  10. Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Del Genio, Anthony D.; Zhou, Wei

    1994-01-01

    The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.

  11. On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.

    2016-12-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.

  12. On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean.

    PubMed

    Boschman, Lydian M; van Hinsbergen, Douwe J J

    2016-07-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate's birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of "Thalassa Incognita" that comprises the comprehensive Panthalassa Ocean surrounding Pangea.

  13. [Comparative study on the strength of different mechanisms of operation of multidirectionally angle-stable distal radius plates].

    PubMed

    Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T

    2011-12-01

    Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Hard X-ray focusing by stacked Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco

    2007-09-01

    Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.

  15. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  16. On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean

    PubMed Central

    Boschman, Lydian M.; van Hinsbergen, Douwe J. J.

    2016-01-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea. PMID:29713683

  17. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  18. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.

    2016-08-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  19. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lipinska, Marta; Chrominski, Witold; Olejnik, Lech; Golinski, Jacek; Rosochowski, Andrzej; Lewandowska, Malgorzata

    2017-10-01

    In this study, an Al-Mg-Si alloy was processed using via incremental equal channel angular pressing (I-ECAP) in order to obtain homogenous, ultrafine-grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90 deg rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP, and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 to 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high-angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53 to 57 pct depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminum with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength was more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications.

  20. High stability wavefront reference source

    DOEpatents

    Feldman, M.; Mockler, D.J.

    1994-05-03

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  1. High stability wavefront reference source

    DOEpatents

    Feldman, Mark; Mockler, Daniel J.

    1994-01-01

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.

  2. LASER APPLICATIONS AND OTHER ASPECTS OF QUANTUM ELECTRONICS Measurement of angular parameters of divergent optical radiation by light diffraction on sound

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.

    2010-12-01

    A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.

  3. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  4. Tilting table for ergometer and for other biomedical devices

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Spier, R. A. (Inventor)

    1973-01-01

    The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.

  5. Characterization of a novel two dimensional diode array the "magic plate" as a radiation detector for radiation therapy treatment.

    PubMed

    Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B

    2012-05-01

    Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.

  6. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  7. Plate-only open door laminoplasty maintains stable spinal canal expansion with high rates of hinge union and no plate failures.

    PubMed

    Rhee, John M; Register, Bradley; Hamasaki, Takahiko; Franklin, Betty

    2011-01-01

    Prospective clinical series. To evaluate the ability of plate-only laminoplasty to achieve stable laminar arch reconstruction and to determine the rate and time course with which bony healing occurs in such constructs. Reconstruction of a stable laminar arch with sufficient room for the decompressed spinal cord is a desired goal when performing cervical laminoplasty for myelopathy. Traditional forms of laminoplasty fixation, such as sutures, bone struts, and ceramic spacers, may be associated with complications including loss of fixation, dislodgement with neurologic compromise, and premature laminoplasty closure. Plates, in contrast, provide more rigid fixation. Plate-only laminoplasty is gaining popularity as a method of laminoplasty fixation, but there is little data on its effectiveness. Fifty-four patients who underwent open door laminoplasty for cervical myelopathy and had available postoperative computed tomography (CT) scans formed the basis of this study. In all cases, a 4-mm round burr was used to create the hinge at the junction of the lateral mass and lamina by completely removing the dorsal cortex and thinning the ventral cortex until a greenstick deformation of the hinge could be produced. Laminoplasty plates were used as the sole method of fixation. No supplemental bone graft struts were used on the plated side, and the hinge side was not bone grafted. Axial CT scans obtained at 3, 6, and 12 months postoperatively were assessed for plate complications and bony healing of the hinge. No plate failures, dislodgements, or premature closures occurred in any of the levels at any time postoperatively. Computed tomography scan review demonstrated that 55% of levels were healed at 3 months, 77% at 6 months, and 93% at 12 months. At each timepoint, C6 and C7 had the highest hinge healing rates. Laminar screw backout was seen in 5/217 (2.3%) of levels, but was not associated with plate dislodgement, laminoplasty closure, or neurologic consequences, and did not occur in any case in which 2 laminar screws had been placed. Plate-only laminoplasty provided stable reconstruction of an expanded laminar arch with no failures, dislodgements, adverse neurologic consequences, or premature closures in 217 levels. Ninety-three percent of hinges demonstrated radiographic union at 12 months, and even those that did not heal by CT scan criteria maintained patent expansion of the spinal canal without adverse neurologic consequences. Supplemental bone graft does not appear necessary when plated laminoplasty is performed.

  8. 2. Historic American Buildings Survey 'Stable and Smoke House' Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey 'Stable and Smoke House' Photocopy of Plate XXX From: Brown, Glenn, The Octagon, Washington, N.D. - Octagon House, Stable, 1799 New York Avenue Northwest, Washington, District of Columbia, DC

  9. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  10. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  11. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Wegsman, Shalma

    2018-05-01

    We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.

  12. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.

    PubMed

    Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy

    2006-11-16

    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.

  13. Angular Dispersions in Terahertz Metasurfaces: Physics and Applications

    NASA Astrophysics Data System (ADS)

    Qiu, Meng; Jia, Min; Ma, Shaojie; Sun, Shulin; He, Qiong; Zhou, Lei

    2018-05-01

    Angular dispersion—the response of a metasurface strongly depending on the impinging angle—is an intrinsic property of metasurfaces, but its physical origin remains obscure, which hinders its applications in metasurface design. We establish a theory to quantitatively describe such intriguing effects in metasurfaces, and we verify it by both experiments and numerical simulations on a typical terahertz metasurface. The physical understanding gained motivates us to propose an alternative strategy to design metadevices exhibiting impinging-angle-dependent multifunctionalities. As an illustration, we design a polarization-control metadevice that can behave as a half- or quarter-wave plate under different excitation angles. Our results not only reveal the physical origin of the angular dispersion but also point out an additional degree of freedom to manipulate light, both of which are important for designing metadevices facing versatile application requests.

  14. Extremely stable piezo mechanisms for the new gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Pijnenburg, Joep; Rijnveld, Niek; Hogenhuis, Harm

    2017-11-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are developed: 1. A piezo stack mechanism (Point Angle Ahead Mechanism) Due to time delay in the interferometer arms, the beam angle needs to be corrected. A mechanism rotating a mirror with a piezo stack performs this task. The critical requirements are the contribution to the optical path difference (less than 1.4 pm/√Hz) and the angular jitter (less than 8 nrad/√Hz). 2. A piezo sliding mechanism (Fiber Switching Unit Actuator) To switch from primary to the redundant laser source, a Fiber Switching Unit Actuator (FSUA) is developed. The critical requirements are the coalignment of outgoing beams of <+/-1 micro radian and <+/-1 micro meter. A redundant piezo sliding mechanism rotates a wave plate over 45 degrees. 3. A piezo stepping mechanism (In Field Pointing Mechanism) Due to seasonal orbit evolution effects, beams have to be corrected over a stroke of +/-2.5 degrees. The critical requirements are the contribution to the optical path difference (less than 3.0 pm/√Hz) and the angular jitter (less than 1 nrad/√Hz). Due to the large stroke, a piezo stepping concept was selected. Dedicated control algorithms have been implemented to achieve these challenging requirements. This paper gives description of the designs and the ongoing process of qualifying the mechanisms for space applications.

  15. Numerical and experimental study of bistable plates for morphing structures

    NASA Astrophysics Data System (ADS)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  16. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate

    NASA Astrophysics Data System (ADS)

    Pan, Diankun; Ma, Benbiao; Dai, Fuhong

    2017-03-01

    In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage-frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s-2).

  17. The complex phase gradient method applied to leaky Lamb waves.

    PubMed

    Lenoir, O; Conoir, J M; Izbicki, J L

    2002-10-01

    The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

  18. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  19. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  20. The general relativistic thin disc evolution equation

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  1. Biomechanical evaluation of a new MatrixMandible plating system on cadaver mandibles.

    PubMed

    Gateno, Jaime; Cookston, Christopher; Hsu, Sam Sheng-Pin; Stal, Drew N; Durrani, Salim K; Gold, Jonathan; Ismaily, Sabir; Alexander, Jerry W; Noble, Philip C; Xia, James J

    2013-11-01

    Current mandibular plating systems contain a wide range of plates and screws needed for the treatment of mandibular reconstruction and mandibular fractures. The authors' hypothesis was that a single diameter screw could be used in all applications in a plating system. Therefore, the purpose of this study was to test if the 2.0-mm locking screws could replace the 2.4-mm screws to stabilize a 2.5-mm-thick reconstruction plate in the treatment of mandibular discontinuity. Thirty-six fresh human cadaveric mandibles were used: 18 were plated using 2.0-mm locking screws (experimental) and the other 18 were plated using 2.4-mm locking screws (control). Each group was further divided into 3 subgroups based on the site of loading application: the ipsilateral (right) second premolar region, the central incisal region, and the contralateral (left) first molar region. The same ipsilateral (right) mandibular angular discontinuity was created by the same surgeon. The mandible was mounted on a material testing machine. The micromotions between the 2 segments, permanent and elastic displacements, were recorded after incremental ramping loads. The magnitude of screw back-out and the separation between plate and bone were recorded using a laser scanner (resolution, 0.12 mm) before and after the loading applications. The data were processed. Descriptive analyses and a general linear model for repeated measures analysis of variance were performed. There was no statistically significant difference in permanent displacement (mean, 1.16 and 0.82 mm, respectively) between the 2.0-mm and 2.4-mm screw groups. There also was no statistically significant difference in elastic displacement between the 2 groups (mean, 1.48 and 1.21 mm, respectively). Finally, there were no statistically significant differences in screw back-out or separation between plate and bone between the 2 groups. All means for screw back-out and separation between screw and bone for each group were judged within the error of the laser scanning system (<0.12 mm). One may anticipate that the mechanical functions of the 2.0-mm locking screws are not different from those of the 2.4-mm screws when a 2.5-mm-thick reconstruction plate is used to reconstruct mandibular angular discontinuity. However, further biomechanical studies (ie, fatigue of screws) are warranted before a randomized clinical trial can be conducted to definitively prove that the 2.4-mm screws can be replaced by 2.0-mm screws. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.

    PubMed

    Wang, Wenliang; Xiong, Shengming; Zhang, Yundong

    2007-06-01

    Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.

  3. All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Xiong, Shenming; Zhang, Yundong

    2007-12-01

    Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.

  4. Gravity-Assist Mechanical Simulator for Outreach

    NASA Technical Reports Server (NTRS)

    Doody, David F.; White, Victor E.; Schaff, Mitch D.

    2012-01-01

    There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mech - anical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives. A manually spun wheel with high angular mass and low-friction bearings supplies momentum to an attached spherical neodymium magnet that represents a planet orbiting the Sun. A steel bearing ball following a trajectory across a glass plate above the wheel and magnet undergoes an elastic collision with the revolving magnet, illustrating the gravitational elastic collision between spacecraft and planet on a gravity-assist interplanetary trajectory. Manually supplying the angular momentum for the elastic collision, rather than observing an animation, intuitively conveys the concepts, meeting nine specific educational objectives. Many NASA and JPL interplanetary missions are enabled by the gravity-assist technique.

  5. Stability of Rigidly Rotating Relativistic Stars with Soft Equations of State against Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2004-04-01

    We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.

  6. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  7. Salvage of tibial pilon fractures using fusion of the ankle with a 90 degrees cannulated blade-plate: a preliminary report.

    PubMed

    Morgan, S J; Thordarson, D B; Shepherd, L E

    1999-06-01

    Six patients with ankle joint destruction and delayed metaphyseal union after tibial plafond fracture were surgically treated with tibiotalar arthrodesis and metaphyseal reconstruction, using a fixed-angle cannulated blade-plate. The procedure was performed through a posterior approach in five cases and a lateral approach in one case. The subtalar joint was preserved in all cases. Metaphyseal union and a stable arthrodesis were obtained in all cases without loss of fixation and with no mechanical failure of the blade-plate. Union was obtained in an average of 26 weeks. No secondary procedures were required to obtain union. All six patients were ambulatory at last follow-up. Stable internal fixation for simultaneous tibiotalar fusion and metaphyseal reconstruction can be achieved with a cannulated blade-plate while preserving the subtalar joint in complex plafond fractures.

  8. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    PubMed

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  9. Rigidity of Major Plates and Microplates Estimated From GPS Solution GPS2006.0

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.

    2006-05-01

    Here we analyze the rigidity of eight major lithospheric plates using our global GPS solution GPS2006.0. We included all daily observations in interval 1995.0 to 2006.0 collected at IGS stations, as well as observations at many important stations not included in IGS. Loose multiyear solution GPS2006.0 is based on daily solutions by GAMIT software, performed at SOPAC and at Columbia University; those daily solutions were combined by Kalman filter (GLOBK software) into a loose multiyear solution. The constrained solution for station positions and velocities was obtained without a conventional reference frame; instead, we applied translation and rotation in order to best fit the zero velocities of 76 stations in stable plate cores excluding the regions of postglacial rebound. Simultaneously, we estimated relative plate rotation vectors (RV) and the origin translation rate (OTR), and then corrected station velocities for it. Therefore, the velocities in GPS2006.0 are unaffected by the OTR error of ITRF2000 conventionally used to constrain a loose solution. The 1-sigma plate-residual velocity in a stable plate core is less than 1 mm/yr for the plates: Eurasia, Pacific, North and South Americas, Nubia, Australia, and Antarctica; it is 1.4 mm/yr for the Indian plate, most probably because of poorer data quality. Plate-residuals at other established plates (Arabia, Nazca, Caribbean, Philippine) were not assessed for lack of observations. From our analysis, an upper bound for the mobility of the plate inner area is 1 mm/yr. Plate- residual GPS velocities for several hypothesized microplates in east Asia, such as Okhotsk, Amuria, South China, are 3-4 times higher; corresponding strain rates for these microplates are an order of magnitude higher than for Eurasia, North America, and other large plates.

  10. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  11. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    NASA Astrophysics Data System (ADS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-03-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability.

  12. Counter-Rotating Magellan and Trinidad Microplates at the Mesozoic Pacific-Phoenix-Farallon Triple Junction

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.

    2005-12-01

    Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the counterclockwise motion of the Magellan microplate by Pacific-Farallon motion. Thus the Magellan trough opened between the counter-rotating Trinidad and Magellan microplates, similar to the opening of Hess Deep between two counter-rotating Galapagos microplates at the present Galapagos triple junction [Klein et al., 2005]. When the northeastward propagating rift between the Trindad microplate and the Phoenix plate and the southward propagating rift between the Magellan microplate and the Farallon plate broke through to the Phoenix-Farallon spreading center, a new ridge-ridge-ridge triple junction was established between the Pacific, Phoenix and Farallon plates and the Trinidad and Magellan microplates ceased rotating and were abandoned on the Pacific plate.

  13. Area-angular-momentum inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  14. Scattering of hydrogen, nitrogen and water ions from micro pore optic plates for application in spaceborne plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Stude, Joan; Wieser, Martin; Barabash, Stas

    2016-10-01

    Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.

  15. Effective Elastic Modulus as a Function of Angular Leaf Span for Curved Leaves of Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    A theoretical equation was derived to predict the spring constant (load/deflection) for a simply supported cylindrical section with a line force applied at the center. Curved leaves of PBN were mechanically deformed and the force versus deflection data was recorded and compared to the derived theoretical equation to yield an effective modulus for each leaf. The effective modulus was found to vary from the pure shear modulus for a flat plate to a mixed mode for a half cylinder as a function of the sine of one half the angular leaf span. The spring constants of individual PBN leaves were usually predicted to within 30%.

  16. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  17. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  18. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  19. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    NASA Astrophysics Data System (ADS)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  20. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  1. Astrometric and Photometric Analysis of the September 2008 ATV-1 Re-Entry Event

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Barker, Edwin S.; Maley, Paul D.; Beaulieu, Kevin R.; Stokely, Christopher L.

    2008-01-01

    NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming.

  2. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    NASA Astrophysics Data System (ADS)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  3. Biomechanical comparison of anterior cervical plating and combined anterior/lateral mass plating.

    PubMed

    Adams, M S; Crawford, N R; Chamberlain, R H; Bse; Sonntag, V K; Dickman, C A

    2001-01-01

    Previous studies showed anterior plates of older design to be inadequate for stabilizing the cervical spine in all loading directions. No studies have investigated enhancement in stability obtained by combining anterior and posterior plates. To determine which modes of loading are stabilized by anterior plating after a cervical burst fracture and to determine whether adding posterior plating further significantly stabilizes the construct. A repeated-measures in vitro biomechanical flexibility experiment was performed to investigate how surgical destabilization and subsequent addition of hardware components alter spinal stability. Six human cadaveric specimens were studied. Angular range of motion (ROM) and neutral zone (NZ) were quantified during flexion, extension, lateral bending, and axial rotation. Nonconstraining, nondestructive torques were applied while recording three-dimensional motion optoelectronically. Specimens were tested intact, destabilized by simulated burst fracture with posterior distraction, plated anteriorly with a unicortical locking system, and plated with a combined anterior/posterior construct. The anterior plate significantly (p<.05) reduced the ROM relative to normal in all modes of loading and significantly reduced the NZ in flexion and extension. Addition of the posterior plates further significantly reduced the ROM in all modes of loading and reduced the NZ in lateral bending. Anterior plating systems are capable of substantially stabilizing the cervical spine in all modes of loading after a burst fracture. The combined approach adds significant stability over anterior plating alone in treating this injury but may be unnecessary clinically. Further study is needed to assess the added clinical benefits of the combined approach and associated risks.

  4. Postnatal treatment factors affecting craniofacial morphology of unilateral cleft lip and palate (UCLP) patients in a Japanese population.

    PubMed

    Alam, M K; Iida, J; Sato, Y; Kajii, Takashi S

    2013-12-01

    We have evaluated the craniofacial morphology of Japanese patients with unilateral cleft lip and palate (UCLP) and assessed the various postnatal factors that affect it. Lateral cephalograms of 140 subjects (mean (SD) aged 7 (2) years) with UCLP were taken before orthodontic treatment. Surgeons from Hokkaido University Hospital had done the primary operations. The craniofacial morphology was assessed by angular and linear cephalometric measurements. Cheiloplasty, palatoplasty, and preoperative orthopaedic treatment were chosen as postnatal factors. To compare the assessments of the postnatal factors, we made angular and linear cephalometric measurements for each subject and converted them into Z scores in relation to the mean (SD) of the two variables. Subjects treated by the modified Millard cheiloplasty had larger sella-nasion-point A (SNA) and nasion-point A-pogonion (NA-POG) measurements than subjects treated by the modified Millard with a vomer flap cheiloplasty. Two-stage palatoplasty showed consistently better craniofacial morphology than the other palatoplasty. Subjects who had preoperative orthopaedic treatment with a Hotz plate had significantly larger upper incisor/sella-nasion (U1-SN) measurements than who had no preoperative orthopaedic treatment or an active plate. We conclude that in subjects treated by a modified Millard type of cheiloplasty, a two-stage palatoplasty, and a Hotz plate there were fewer adverse effects on craniofacial morphology. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  6. Earthquakes in Stable Continental Crust.

    ERIC Educational Resources Information Center

    Johnston, Arch C.; Kanter, Lisa R.

    1990-01-01

    Discussed are some of the reasons for earthquakes which occur in stable crust away from familiar zones at the ends of tectonic plates. Crust stability and the reactivation of old faults are described using examples from India and Australia. (CW)

  7. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  8. Study of the Performance of Stainless Steel A-TIG Welds

    NASA Astrophysics Data System (ADS)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  9. Growth plate closure: Apex view on bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, P.H.; Trochei, M.; Yeates, K.

    1984-01-01

    Angular deformities of the extremities in children following premature closure of the growth plate are well known. The deformities depend on the position of an osseus bridge which forms between the epiphysis and metaphysis. Several surgical procedures including resection of the osseus bridge have been described, however, delineation of the site of fusion is difficult to define. The commonest site of growth plate arrest is the distal femoral or proximal tibial growth plate. A new technique using the bone scan has been developed which accurately defines the area and position of these osseus bridges. Two hours after injection of technetiummore » 99m methylene diphosphonate apex views of the affected distal femoral growth plate were performed. The knee was flexed into its smallest angle. Using a pinhole collimator the gamma camera was angled to face the affected growth plate end on. The image was collected onto computer and analysed by: (I) regions of interest over segments of the growth plate to calculate the relative area of total growth plate affected: (II) generating histograms: (III) thresholding or performing isocontours to accentuate abnormal areas. The growth plate is normally uniformly increased when compared to the normal shaft of the bone. Fusion across the plate appears as an area of diminished uptake. The apex view gives a unique functional map of the growth plate such that abnormal areas are displayed, and the site, size and position of osseus fusion obtained. The technique has the potential for determining the metabolic activity of the growth plate before and after surgery. Serial studies will allow assessment of regneration of the plate and reformation of new osseus bridges.« less

  10. Prophylactic Ankle Braces and the Kinematics and Kinetics of Half-Squat Parachute Landing.

    PubMed

    Wu, Di; Zheng, Chao; Wu, Ji; Hu, Tan; Huang, Rongrong; Wang, Lizhen; Fan, Yubo

    2018-02-01

    The objective of the study was to investigate the effects of dropping heights and prophylactic ankle braces on ankle joint biomechanics during half-squat parachute landing from two different heights. There were 30 male elite paratroopers with formal parachute landing training and more than 2 yr of parachute jumping experience who were recruited for this study. The subjects tested three different ankle brace conditions (no-brace, elastic brace, semirigid brace). Each subject was instructed to jump off a platform from two different heights of 0.4 m and 0.8 m, and land on a force plate in a half-squat posture. The Vicon 3D motion capture system and force plate were used to record and calculate kinematic and kinetic data. Dropping height had a significant effect on peak vertical ground reaction force (vGRF), maximum ankle angular displacement, and time to vGRF. As compared with the no-brace group, use of an elastic ankle brace significantly reduced peak vGRF by 18.57% and both braces significantly reduced the maximal angular displacements of dorsiflexion. The semirigid brace provided greater restriction against maximal angular displacement of inversion. The elastic and semirigid ankle braces both effectively restricted motion stability of the ankle joint in the sagittal plane, and the semirigid ankle brace prevented excessive inversion, although the comfort of this device should be improved overall.Wu D, Zheng C, Wu J, Hu T, Huang R, Wang L, Fan Y. Prophylactic ankle braces and the kinematics and kinetics of half-squat parachute landing. Aerosp Med Hum Perform. 2018; 89(2):141-146.

  11. [Arthrodesis of the shoulder. A new and soft-tissue-sparing technique with a deep locking plate in the supraspinatus fossa].

    PubMed

    Klonz, A; Habermeyer, P

    2007-10-01

    Arthrodesis of the glenohumeral joint is a difficult intervention that involves a relatively high probability of complications. A stable internal fixation and secure consolidation is required. The operation needs to achieve several conditions: thorough denudation of the cartilage and partial decortication of the subchondral bone; good congruence of the corresponding surfaces; compression of the gap by tension screws and lasting stability. For increased primary stability a neutralizing plate is generally used as well as a compression screw. Up to now, the plate has usually been applied starting from the scapular spine and extending across the acromial corner to the humeral shaft. A wide exposure is needed for this procedure; the plate is difficult to shape during the operation and often causes some discomfort because it protrudes at the acromial corner. We present an alternative position of the plate in the supraspinatus fossa, where we have sited a 4.5 mm LCP locking plate (Synthes). The implant is inserted under the acromion, does not cause any discomfort at the acromial corner, and is far easier to shape. When it is used in association with a transarticular compressive screw, the technique results in a very stable situation, which allows physiotherapy from the first day after surgery onward.

  12. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  13. A new model-independent approach for finding the arrival direction of an extensive air shower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedayati, H. Kh., E-mail: hedayati@kntu.ac.ir

    2016-11-01

    A new accurate method for reconstructing the arrival direction of an extensive air shower (EAS) is described. Compared to existing methods, it is not subject to minimization of a function and, therefore, is fast and stable. This method also does not need to know detailed curvature or thickness structure of an EAS. It can have angular resolution of about 1 degree for a typical surface array in central regions. Also, it has better angular resolution than other methods in the marginal area of arrays.

  14. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  15. VA-LCP anterior clavicle plate: the anatomically precontoured fixation system with angular stability for clavicle shaft.

    PubMed

    van Olden, G D J

    2014-12-01

    The aim of this investigation was to evaluate the introduction of the VA-LCP anterior clavicle plate in the treatment of clavicle fractures. From March 2011 to March 2013, 42 clavicle fractures were treated; 40 were middle-third and 2 lateral-third, and 13/42 (31 %) patients were treated due to painful nonunion. Patient age ranged from 16 to 81 years. Complications were screw placement through the AC-joint, one superficial wound infection and one neuropraxia of the nervus radialis with dropping hand. We had some difficulties prebending both lateral to low and lateral to high but without clinical consequences. In all cases, the fracture healed with full functionality. After 1 year, 4 patients underwent a removal of the hardware. The VA-LCP anterior plate showed good reliability and sufficient stability with both middle-third, lateral and nonunion fractures of the clavicle.

  16. Coherent radiation characteristics of modulated electron bunch formed in stack of two plates

    NASA Astrophysics Data System (ADS)

    Gevorgyan, H. L.; Gevorgian, L. A.

    2017-07-01

    The present article is devoted to the radiation from the electron bunch with modulated density passes through the stack consisting of two plates with different thicknesses and electrodynamic properties. The new elegant expression for the frequency-angular distribution of transition radiation is obtained. Using the existence of resonant frequency at which the longitudinal form-factor of bunch not suppresses radiation coherence and choosing parameters for the stack of plates, one can also avoid suppression of the radiation coherence by transverse form-factor of bunch. The radiation from a bunch with modulated density in the process SASE (self-amplified spontaneous emission) FEL can be partially coherent at a resonant frequency. Then the intense sub monochromatic beam of X-ray photons is formed. On the other hand one can define an important parameter of the bunch density modulation depth which is unknown to this day.

  17. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.

  18. Nuclear Resonance Scattering of Circularly Polarized SR

    NASA Astrophysics Data System (ADS)

    Szymanski, K.; Satula, D.; Dobrzynski, L.; Kalska, B.

    2004-09-01

    Results of the experiments with nuclear resonance scattering of synchrotron radiation aiming at construction of the circularly polarized beam suitable for nuclear hyperfine studies are reported. Si(4 0 0) single crystal slab, 100 μ m thick, was used as a quarter wave plate. Observed twofold reduction of the intensity in proposed geometry is due to the Si crystal itself. Hyperfine interactions are used to probe polarization state of the synchrotron beam. Too large angular beam divergence did not allow for achieving full circular polarization of photons. Consequently, further experiments are proposed to overcame beam divergence problems. A number of calculations presented in the paper show that cheap and easily available Si plate can serve as an effective desired polarizer.

  19. Long-life 3-axis satellite attitude sensing, phase 1

    NASA Technical Reports Server (NTRS)

    Arild, Tor

    1987-01-01

    The purpose was to investigate the feasibility of new, moderate-cost, high reliability navigation sensors for high-altitude satellites, using stellar sources to obviate the use of gyroscopic devices. The primary investigation focused on the need for developing a star tracker model to replace an old star tracker which is still needed for current probe and satellite programs. One innovative element of the proposed star tracker was the design, development, and testing of technology components related to a phase scrambler plate. The purpose of the phase scrambler plate is to convert the impulse response of the optical system from a point image to a uniformly bright, square, angularly large, in-focus image of the star source. A collimated star source was built and tested. A breadboard star tracker with an 8 x 8 degree field of view was designed and built. It was tested in normal quad-cell mode (without the phase scrambler plate) and with the phase scrambler plate. Although the phase scrambler plate was crudely made, the performance of the star tracker breadboard was greatly improved using the phase scrambler plate, instead of system defocus. If further developed, the phase scrambler plate may be added as a low-cost retroconversion to any objective lens to greatly improve quad-cell or CCD array tracking; applications include star trackers, laser metrology, laser machining optics, and surveying instrumentation.

  20. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  1. Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-08-01

    This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function , that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

  2. [Finite element study of maxillary Le Fort-I osteotomy with rigid internal fixation].

    PubMed

    Zhou, Jian; Sun, Geng-Lin; Wu, Wei; Xu, Chong-Tao; Wang, Peng-Lin

    2010-05-01

    To study the biomechanical characteristic of maxillary Le fort- I osteotomy with rigid internal fixation (RIF) , so as to choose best fixation method. The 3-dimensional finite element models of maxillary Le Fort-I osteotomy with 9 kinds of RIF methods were established. Then the models were divided into three groups to calculate the stress distribution of the maxilla and the displacement of bone segment under 3 kinds of occlusion condition. The fixation stability of the different RIF methods was evaluated. Under the incisor occlusion condition, the stress of the cranio maxillary complex transmits mainly along the nasal-maxillary buttress. Under the premolar and molar occlusion condition, the stress transmits along the alveolar process first, then turns to the nasal-maxillary and zygomatic-maxillary buttress. The focused stress position of the internal fixation system is at the connection between the screws and the plate and at the plate near the osteotomy line. Under the premolar occlusion condition, the displacement of bone segment with different RIF methods was (in a decreasing order) 0.396509 mm (with bio-absorbable plate), 0.148393 mm (with micro-plate ), 0.078436 mm (with mini-plate) in group 1; 0.188791 mm (fixing at the nasal-maxillary buttress), 0.121718 mm (fixing at the zygomatic-maxillary buttress), 0.078436 mm (fixing at the both buttress) in group 2; 0.091023 mm (with straight plate), 0.078436 mm (with L shape plate), 0.072450 mm (with Y shape plate), 0.065617 mm (with T shape plate) in group 3. The fixation stability of using the bio-absorbable plate in Le Fort-I osteotomy is less stable than using the titanium plate. Fixing at the zygomatic-maxillary buttress is more stable than at the naso-maxillary buttress. The fixation stability is different by using different shapes of plates.

  3. Integrating single-point vibrometer and full-field electronic speckle pattern interferometer to evaluate a micro-speaker

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung

    2011-04-01

    A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.

  4. Groundwater quality at Alabama Plating and Vincent Spring, Vincent, Alabama, 2007–2008

    USGS Publications Warehouse

    Bradley, Michael W.; Gill, Amy C.

    2014-01-01

    The former Alabama Plating site in Vincent, Alabama, includes the location where the Alabama Plating Company operated an electroplating facility from 1956 until 1986. The operation of the facility generated waste containing cyanide, arsenic, cadmium, chromium, copper, lead, zinc, and other heavy metals. Contamination resulting from the site operations was identified in groundwater, soil, and sediment. Vincent Spring, used as a public water supply by the city of Vincent, Alabama, is located about ½ mile southwest of the site. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation at Vincent Spring and the Alabama Plating site, Vincent, Alabama, during 2007–2008 to evaluate the groundwater quality and evaluate the potential effect of contaminated groundwater on the water quality of Vincent Spring. The results of the investigation will provide scientific data and information on the occurrence, fate, and transport of contaminants in the water resources of the area and aid in the evaluation of the vulnerability of the public water supply to contamination. Samples were analyzed to evaluate the water quality at the former plating site, investigate the presence of possible contaminant indicators at Vincent Spring, and determine the usefulness of stable isotopes and geochemical properties in understanding groundwater flow and contaminant transport in the area. Samples collected from 16 monitor wells near the plating site and Vincent Spring were analyzed for major constituents, trace metals, nutrients, and the stable isotopes for hydrogen (2H/H) and oxygen (18O/16O). Groundwater collected from Vincent Spring was characterized as a calcium-magnesium-bicarbonate water type with total dissolved solids concentrations ranging from 110 to 120 milligrams per liter and pH ranging from about 7.5 to 7.9 units. Groundwater chemistry at the monitor wells at the Alabama Plating site was highly variable by location and depth. Dissolved solids concentrations ranged from 28 to 2,880 milligrams per liter, and the water types varied from calcium-magnesium-bicarbonate-chloride, to calcium-sulfate or calcium-magnesium-sulfate, to sodium-chloride water types. The stable isotope ratios for hydrogen (2H/H) and oxygen (18O/16O) for water from the monitor wells and from Vincent Spring, based on a single sampling event, can be separated into three groups: (1) Vincent Spring, (2) monitor wells MW03 and MW28, and (3) the remaining Alabama Plating monitor wells. The geochemical and stable isotope analyses indicate that water from Vincent Spring is distinct from water from the Alabama Plating monitor wells; however, this evaluation is based on a single sampling event. Although the water from Vincent Spring, for this sampling event, is different and does not seem to be affected by contaminated groundwater from the Alabama Plating site, additional hydrologic and water-quality data are needed to fully identify flow paths, the potential for contaminant transport, and water-quality changes through time.

  5. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  6. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  7. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  8. Lead-acid battery construction

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1988-01-01

    The power characteristics of a lead-acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). The avoiding of positive plate reversal to prevent reduction of the tin oxide is accomplished by (a) employing an oversized positive plate and pre-charging it; (b) by pre-discharging the negative plate; and/or (c) by placing a circuit breaker (26) in combination with the plates (16, 18) and terminals (22, 24) to remove the load when the voltage of the positive plate falls below a pre-selected level.

  9. Black chrome solar selective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettit, R.B.; Sowell, R.R.

    1980-01-01

    Electrodeposited black chrome solar selective coatings have frequently experienced thermal stability problems when heated to temperatures above 250/sup 0/C (480/sup 0/F) in air. By reducing the trivalent chromium concentration in the standard black chrome plating bath, coatings on nickel substrates are obtained which are stable for thousands of hours at 350/sup 0/C (660/sup 0/F) and for hundreds of hours at 400/sup 0/C (750/sup 0/F). These results have been obtained consistently on a laboratory scale, but difficulty in reproducing the results has been encountered in a production environment. A current study of the effects of known plating variables on the opticalmore » properties and thermal stability of coatings is aimed at establishing an acceptable range for each plating parameter. A preliminary process specification for electroplating mild steel substrates with a stable black chrome coating is presented.« less

  10. Small FDIRC designs

    DOE PAGES

    Dey, B.; Ratcliff, B.; Va’vra, J.

    2017-02-16

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  11. Small FDIRC designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, B.; Ratcliff, B.; Va’vra, J.

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  12. Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.

    PubMed

    Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S

    2015-08-01

    This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.

  13. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  14. Automated Setup Assembly Mechanisms for the Intelligent Machining Workstation

    DTIC Science & Technology

    1990-11-01

    Autoimated analysis systems such as [36,37] use the Finite Elements Method ( FEM ) to evaluate or synthesize the structures of fixtures and workpiece...the angular orientation is not altered, and vice versa. This decoupling is accomplished by elastomers that are quite stiff in compression while being...Larger pins (#14), along with elastomers (#15), and the bolt and washer assembly (#6), provide compliance between top and bottom plate (#2), and by

  15. Angular Stable Miniplate Fixation of Chronic Unstable Scaphoid Nonunion.

    PubMed

    Schormans, Philip M J; Brink, Peter R G; Poeze, Martijn; Hannemann, Pascal F W

    2018-02-01

    Background  Around 5 to 15% of all scaphoid fractures result in nonunion. Treatment of long-lasting scaphoid nonunion remains a challenge for the treating surgeon. Healing of scaphoid nonunion is essential for prevention of scaphoid nonunion advanced collapse and the subsequent predictable pattern of radiocarpal osteoarthritis. Purpose  The purpose of this study was to investigate the feasibility of fixation of the scaphoid nonunion with a volar angular stable miniplate and cancellous bone grafting. We hypothesized that this technique could be successful, even in patients with previous surgery for nonunion and in patients with a long duration of nonunion. Patients and Methods  A total of 21 patients enrolled in a single-center prospective cohort study. Healing of nonunion was assessed on multiplanar computed tomography scan of the wrist at a 3-month interval. Functional outcome was assessed by measuring grip strength, range of motion, and by means of the patient-rated wrist and hand evaluation (PRWHE) questionnaire. Results  During follow-up, 19 out of 21 patients (90%) showed radiological healing of the nonunion. The range of motion did not improve significantly. Postoperative PRWHE scores decreased by 34 points. Healing occurred regardless of the length of time of the nonunion (range: 6-183 months) and regardless of previous surgery (38% of patients). Conclusion  Volar angular stable miniplate fixation with autologous cancellous bone grafting is a successful technique for the treatment of chronic unstable scaphoid nonunion, even in patients with long-lasting nonunion and in patients who underwent previous surgery for a scaphoid fracture. Rotational interfragmentary stability might be an important determining factor for the successful treatment of unstable scaphoid nonunion. Level of Evidence  Level IV.

  16. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    NASA Astrophysics Data System (ADS)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jun, E-mail: pengjun@cimm.com.cn; Zhang, Li, E-mail: zhangli@cimm.com.cn; School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing

    The moment of inertia calibration system is developed by Changcheng Institute of Metrology and Measurement (CIMM). Rotation table - torsional spring system is used to generate angular vibration, and laser vibrometer is used to measure rotational angle and the vibration period. The object to be measured is mounted on the top of the rotation table. The air-bearing system is elaborately manufactured which reduce the friction of the angular movement and increase measurement accuracy. Heterodyne laser interferometer collaborates with column diffraction grating is used in the measurement of angular movement. Experiment shows the method of measuring oscillating angle and period introducedmore » in this paper is stable and the time resolution is high. When the air damping effect can’t be neglected in moment of inertia measurement, the periodic waveform area ratio method is introduced to calculate damping ratio and obtain the moment of inertia.« less

  18. Paleomagnetic Euler Poles and the Apparent Polar Wander and Absolute Motion of North America Since the Carboniferous

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Cox, Allan; O'Hare, Scott

    1984-10-01

    The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot spot Euler pole for 200-90 Ma lies only 15° outside the 95% confidence ellipsoid of the paleomagnetic Euler pole. The good but not perfect agreement reflects displacement between the hot spot and paleomagnetic reference frames at an average rate that is smaller by an order of magnitude than the rate at which the faster plates are moving. The angular velocity of North America about the Jurassic-Cretaceous paleomagnetic Euler pole was determined by plotting the angular positions of paleomagnetic poles along the track as a function of age. For the Cretaceous the angular velocity was too small to measure. During the Jurassic the angular velocity was high, corresponding to a root-mean-square velocity of 70 km/m.y. for the North American plate. A short time interval of even more rapid movement during the Middle and Late Jurassic, possibly corresponding to the beginning of rapid displacement between North America and Africa, is suggested by the data. The direction of absolute motion of North America during the Jurassic was toward the northwest. A Carboniferous-Permian-Triassic paleomagnetic Euler pole was determined from 26 paleomagnetic poles. The progression of poles along this track is consistent with known ages and stratigraphy, except for some systematic differences between poles from Triassic rocks on the Colorado Plateau and poles from Triassic rocks off the Colorado Plateau. These differences could be due to a small clockwise rotation of the Colorado Plateau with respect to cratonal North America, or to miscorrelations between Triassic rocks on the Colorado Plateau and off the Colorado Plateau, or to large lag times between the deposition and magnetization of some rock units, or to some combination of these possibilities. Despite these ambiguities in interpreting paleomagnetic data from Triassic rocks, the general pattern of apparent polar wander and plate motion during the Carboniferous through Triassic is clear: The root-mean-square velocity of North America was slow (about 20 km/m.y.) during the Carboniferous, probably slow (about 20 km/m.y.) during the Permian, but rapid (60-100 km/m.y.) during the Triassic. Paleomagnetic Euler pole analysis establishes that the present slow (less than 30 km/m.y.) velocity of large continental plates like North America is not an intrinsic property of the plates. Occasionally these plates have, for intervals of 50 ± 20 m.y., moved as rapidly as the oceanic plates are moving today. In our interpretation, during times of rapid motion the continents were attached along a passive margin to oceanic lithosphere that was being subducted at some distance from the continent. Rapid motion stopped when the oceanic lithosphere had been consumed by subduction. If North America, Greenland, and Eurasia were joined as a single land mass during the Jurassic, then a likely location for the subducting oceanic plate attached to this landmass is along the southern margin of the cratonal core of Asia with the oceanic plate extending into Tethys. At the cusp between the Carboniferous-Permian-Triassic track and the Jurassic-Cretaceous track, the trend of the path changes by 160°. The western point of the cusp, which is delineated by paleomagnetic poles from the Chinle, Wingate, and Kayenta formations, is 13° farther west in our analysis than it is in commonly accepted apparent polar wander paths for North America. An implication for terrane analysis is that northward displacements found by using our Late Triassic and Early Jurassic poles are up to 2000 km smaller than are those found by using previously published Late Triassic and Early Jurassic cratonal poles.

  19. On smoothness of black saturns

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Eckstein, Michał; Szybka, Sebastian J.

    2010-11-01

    We prove smoothness of the domain of outer communications (d.o.c.) of the Black Saturn solutions of Elvang and Figueras. We show that the metric on the d.o.c. extends smoothly across two disjoint event horizons with topology mathbb{R} × {S^3} and mathbb{R} × {S^1} × {S^2} . We establish stable causality of the d.o.c. when the Komar angular momentum of the spherical component of the horizon vanishes, and present numerical evidence for stable causality in general.

  20. Surface thermodynamic analysis of fluid confined in a cone and comparison with the sphere-plate and plate-plate geometries.

    PubMed

    Zargarzadeh, Leila; Elliott, Janet A W

    2013-10-22

    The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.

  1. Nanocrystalline Cobalt-Phosphorous Electroplating as an Alternative to Hard Chromium Electroplating

    DTIC Science & Technology

    2012-08-01

    Validate pulsed electrodeposition of Nanocrystalline Cobalt-Phosphorous (nCoP) alloy coatings as a Hard Chrome electroplating alternative for DoD...limits Cr+6  Cathode Efficiency Cr Plating *Co PEL is 20 µg/m3  ≈5X faster than Chrome plating  Increased throughput  One nCo-P tank can...replace several hard chrome tanks  Bath is Stable nCoP Plating Approaches 100% Efficiency  Process Comparison CoP Technical Approach

  2. Grain-damage hysteresis and plate tectonic states

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2016-04-01

    Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.

  3. Formation of vortex wakes at flow separation from plate

    NASA Astrophysics Data System (ADS)

    Gorelov, D. N.; Govorova, A. I.

    2017-05-01

    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  4. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    DOE PAGES

    He, Peng; Wei, Biao; Wang, Steve; ...

    2013-01-01

    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less

  5. Silicon pore optics for the international x-ray observatory

    NASA Astrophysics Data System (ADS)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  6. Shoulder joint abduction motion test bench: a new shoulder test bench for in vitro experiments with active muscle force simulation.

    PubMed

    Onder, Ursula; Blauth, Michael; Kralinger, Franz; Schmoelz, Werner

    2012-05-30

    In our society the average age is increasing, as are the number of proximal humeral head fractures. For fixation of these fractures, an increasing number of implants are available. New fixation devices should be compared biomechanically with established methods in a standardized fashion. The test bench that was designed was intended to simulate abduction motion of the humerus actively induced by muscle forces. We used three pneumatic muscles to apply forces to the tendons of the musculus supraspinatus and the bifid musculus deltoideus. Thus, it was possible to create an active abduction in the scapular plane. Two different fracture models (with and without medial support) were stabilised with an angular stable plate in sawbone models to reproduce a known clinical outcome with the newly designed test setup. The resultant force acting on the proximal humerus reached approximately 47% BW (per cent body weight), which amounted to 329.0 N (SD: 21.76). The supraspinatus reached maximum forces of 254.7 N (SD: 20.1) and the deltoid muscle 258.9 N (SD: 16.5). Fracture gap instrumentation with medial support resulted in a significantly reduced per-cycle fracture gap motion. The performance evaluation showed that the simulator produced predicable, reproducible movements with physiological muscle force magnitudes.

  7. The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2014-08-01

    The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.

  8. Absolute plate motions relative to deep mantle plumes

    NASA Astrophysics Data System (ADS)

    Wang, Shimin; Yu, Hongzheng; Zhang, Qiong; Zhao, Yonghong

    2018-05-01

    Advances in whole waveform seismic tomography have revealed the presence of broad mantle plumes rooted at the base of the Earth's mantle beneath major hotspots. Hotspot tracks associated with these deep mantle plumes provide ideal constraints for inverting absolute plate motions as well as testing the fixed hotspot hypothesis. In this paper, 27 observed hotspot trends associated with 24 deep mantle plumes are used together with the MORVEL model for relative plate motions to determine an absolute plate motion model, in terms of a maximum likelihood optimization for angular data fitting, combined with an outlier data detection procedure based on statistical tests. The obtained T25M model fits 25 observed trends of globally distributed hotspot tracks to the statistically required level, while the other two hotspot trend data (Comores on Somalia and Iceland on Eurasia) are identified as outliers, which are significantly incompatible with other data. For most hotspots with rate data available, T25M predicts plate velocities significantly lower than the observed rates of hotspot volcanic migration, which cannot be fully explained by biased errors in observed rate data. Instead, the apparent hotspot motions derived by subtracting the observed hotspot migration velocities from the T25M plate velocities exhibit a combined pattern of being opposite to plate velocities and moving towards mid-ocean ridges. The newly estimated net rotation of the lithosphere is statistically compatible with three recent estimates, but differs significantly from 30 of 33 prior estimates.

  9. Optimized square Fresnel zone plates for microoptics applications

    NASA Astrophysics Data System (ADS)

    Rico-García, José María; Salgado-Remacha, Francisco Javier; Sanchez-Brea, Luis Miguel; Alda, Javier

    2009-06-01

    Polygonal Fresnel zone plates with a low number of sides have deserved attention in micro and nanoptics, because they can be straightforwardly integrated in photonic devices, and, at the same time, they represent a balance between the high-focusing performance of a circular zone plate and the easiness of fabrication at micro and nano-scales of polygons. Among them, the most representative family are Square Fresnel Zone Plates (SFZP). In this work, we propose two different customized designs of SFZP for optical wavelengths. Both designs are based on the optimization of a SFZP to perform as close as possible as a usual Fresnel Zone Plate. In the first case, the criterion followed to compute it is the minimization of the difference between the area covered by the angular sector of the zone of the corresponding circular plate and the one covered by the polygon traced on the former. Such a requirement leads to a customized polygon-like Fresnel zone. The simplest one is a square zone with a pattern of phases repeating each five zones. On the other hand, an alternative SFZP can be designed guided by the same criterion but with a new restriction. In this case, the distance between the borders of different zones remains unaltered. A comparison between the two lenses is carried out. The irradiance at focus is computed for both and suitable merit figures are defined to account for the difference between them.

  10. Distal radius fractures and the volar lunate facet fragment: Kirschner wire fixation in addition to volar-locked plating.

    PubMed

    Moore, Amy M; Dennison, David G

    2014-06-01

    The volar lunate facet fragment of a distal radius fracture may not be stabilized with volar-locked plating alone due to the small size and distal location of the fragment. Identification and stabilization of this small fragment is critical as unstable fixation may result in radiocarpal and radioulnar joint subluxation. The addition of spring wire fixation with volar plating can provide stable internal fixation of this critical fracture fragment. A retrospective review (2006-2011) identified nine patients with distal radius fractures with an associated volar lunate facet fragment that were treated with volar-locked plating and spring wire fixation of the volar lunate facet fragment. Radiographic indices, range of motion, grip strength, and postoperative Patient-related wrist evaluation (PRWE) scores were obtained to assess pain and function. All distal radius fractures healed, and the volar lunate facet fragment reduction was maintained. The mean follow-up was 54 weeks. Mean active range of motion was 46° wrist flexion, 51° wrist extension, 80° pronation, and 68° supination. The mean grip strength was 21 Kg, achieving 66 % of the uninjured limb. The average PRWE score was 17. No patient required removal of hardware or had evidence of tendon irritation. The addition of spring wire fixation to volar-locked plating provided stable fixation of the volar lunate facet fragment of distal radius fractures without complication. This technique addresses a limitation of volar-locked plating to control the small volar lunate facet fragment in distal radius fractures otherwise amenable to volar plating. A retrospective case series, Level IV.

  11. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Choi, Hakkyum; Kim, Seung-Sep; Dyment, Jérôme; Granot, Roi; Park, Sung-Hyun; Hong, Jong Kuk

    2017-11-01

    The tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading.

  13. Biomechanical analysis of a newly designed bioabsorbable anterior cervical plate. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005.

    PubMed

    Ames, Christopher P; Acosta, Frank L; Chamberlain, Robert H; Larios, Adolfo Espinoza; Crawford, Neil R

    2005-12-01

    The authors present a biomechanical analysis of a newly designed bioabsorbable anterior cervical plate (ACP) for the treatment of one-level cervical degenerative disc disease. They studied anterior cervical discectomy and fusion (ACDF) in a human cadaveric model, comparing the stability of the cervical spine after placement of the bioabsorbable fusion plate, a bioabsorbable mesh, and a more traditional metallic ACP. Seven human cadaveric specimens underwent a C6-7 fibular graft-assisted ACDF placement. A one-level resorbable ACP was then placed and secured with bioabsorbable screws. Flexibility testing was performed on both intact and instrumented specimens using a servohydraulic system to create flexion-extension, lateral bending, and axial rotation motions. After data analysis, three parameters were calculated: angular range of motion, lax zone, and stiff zone. The results were compared with those obtained in a previous study of a resorbable fusion mesh and with those acquired using metallic fusion ACPs. For all parameters studied, the resorbable plate consistently conferred greater stability than the resorbable mesh. Moreover, it offered comparable stability with that of metallic fusion ACPs. Bioabsorbable plates provide better stability than resorbable mesh. Although the results of this study do not necessarily indicate that a resorbable plate confers equivalent stability to a metal plate, the resorbable ACP certainly yielded better results than the resorbable mesh. Bioabsorbable fusion ACPs should therefore be considered as alternatives to metal plates when a graft containment device is required.

  14. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    NASA Technical Reports Server (NTRS)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  15. Five degrees of freedom linear state-space representation of electrodynamic thrust bearings

    NASA Astrophysics Data System (ADS)

    Van Verdeghem, J.; Kluyskens, V.; Dehez, B.

    2017-09-01

    Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.

  16. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  17. Singularities in Dromo formulation. Analysis of deep flybys

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-08-01

    The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.

  18. Tectonics of the Philippine Sea Plate as Seen From GPS Observations

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kotake, Y.

    2002-12-01

    We analyzed the Global Positioning System (GPS) data in and around the Philippine Sea plate (PHS) to provide a velocity field for discussing tectonics of the plate and the mechanism of subduction process around PHS. In the present study, first, we revised the previously determined Euler vector of PHS relative to stable Eurasia using newly obtained data. Eastern part of Europe was assumed to be in a rigid block according to Nocquet et al. (2001) and we estimated the seven parameters of Helmert Transformation of this block relative to ITRF97. Then these parameters were used to estimate the Euler vector of PHS relative to stable Eurasia. For this purpose, we re-analyzed GPS data of up until 2001 at Chichi-jima, Okino-Tori Shima, Minami-Daito, Palau, Aogashima and Hachijo islands in ITRF97 reference together with surrounding IGS sites. Results suggest that the Euler vector of PHS relative to _gstable Eurasia_h is to be (61.4N, 163.7E, 1.003deg/my). Contrary to our previous estimate, the result suggests that Palau may be considered as in the rigid part of PHS. In contrast, the northern Izu islands are suggested to be affected by local volcanic disturbances. Then, we studied tectonic motions of Mariana arc and Palau-Yap arc. The Mariana Islands have been repeatedly observed since 1992. Kotake (2000) analyzed data at Anatahan, Guguan, Pagan and Agrigan as well as Saipan and Guam sites and showed that the velocities are much slower than what we expect from rigid motion of PHS. Residual velocities at these islands clearly show eastward motion of the Mariana Islands, suggesting that the Mariana Islands are subject to the spreading of the Mariana Trough. The rotation pole of the Mariana block was re-estimated as (20.6N, 145.2E) and angular velocity to be 4.17deg/ma, according to the re-estimated PHS motion. The position of the rotation pole is a few degrees south to the geographical hinge point of the Mariana arc and west Mariana ridge at about 24N. Estimated eastward velocities at these islands are consistent with those estimated from magnetic anomaly observations. Small arc parallel extension of about 1cm/yr between Agrigan and Guam suggest that the formation of the arc is not simple fan-shape expansion, as was indicated by Karig et al. (1978). Convergence at Yap trench has also been studied using GPS. Motions of Uliti and Fais suggest slight convergence at Yap trench with about 1cm/yr, but have some northward component relative to the trench.

  19. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ying-Guey Fuh, Andy; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3-3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  20. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Fuh, Andy Ying-Guey; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3--3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  1. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  2. Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams

    NASA Astrophysics Data System (ADS)

    Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.

  3. Top squark with mass close to the top quark

    NASA Astrophysics Data System (ADS)

    Buckley, Matthew R.; Plehn, Tilman; Ramsey-Musolf, Michael J.

    2014-07-01

    The most natural supersymmetric solution to the hierarchy problem prefers the scalar top partner to be close in mass to the top quark. Experimental searches exclude top squarks across a wide range of masses, but a gap remains when the difference between the masses of the stop and the lightest supersymmetric particle is close to the top mass. We propose to search for stops in this regime by exploiting the azimuthal angular correlation of forward tagging jets in (s)top pair production. As shown in earlier work, this correlation is sensitive to the spin of the heavy states, allowing one to distinguish between top and stop pair production. Here, we demonstrate that this angular information can give a statistically significant stop pair production signal in the upcoming LHC run. While the appropriate simulation including parton showering and detector simulation requires some care, we find stable predictions for the angular correlation using multijet merging.

  4. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  5. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.

    2017-05-01

    We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.

  6. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    NASA Astrophysics Data System (ADS)

    Pethuraj, S.; Datar, V. M.; Majumder, G.; Mondal, N. K.; Ravindran, K. C.; Satyanarayana, B.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9o57'N, 77o16'E) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performance of RPCs are presented along with the angular distribution of muons at Madurai (9o56'N,78o00'E and Altitude ≈ 160 m from sea level).

  7. Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle.

    PubMed

    Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2016-03-21

    Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.

  8. Can flexibility help you float?

    NASA Astrophysics Data System (ADS)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  9. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  10. SU-F-T-322: A Comparison of Two Si Detectors for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talarico, O; Krylova, T; Lebedenko, I

    Purpose: To compare two types of semiconductor detectors for in vivo dosimetry by their dependence from various parameters in different conditions. Methods: QED yellow (Sun Nuclear) and EDP (Scanditronix) Si detectors were radiated by a Varian Clinac 2300 ix with 6 and 18 MV energies. 10 cm thickness water equivalent phantom consisted of 30×30 cm{sup 2} squared plates was used for experiments. Dose dependencies for different beam angles (0 – 180°), field size (3–40 cm), dose (50 – 300 MU), and dose rates (50 – 300 MU/min) were obtained and calibrated with Standard Farmer chamber (PTW). Results: Reproducibility, linearity, dosemore » rate, angular dependence, and field size dependence were obtained for QED and EDP. They show no dose-rate dependence in available clinical dose rate range (100–600 MU/min). Both diodes have linear dependence with increasing the dose. Therefore even in case of high radiation therapy (including total body irradiation) it is not necessary to apply an additional correction during in vivo dosimetry. The diodes have different behavior for angular and field size dependencies. QED diode showed that dose value is stable for beam angles from 0 to 60°, for 60–180° correction factor has to be applied for each beam angle during in vivo measurements. For EDP diode dose value is sensitive to beam angle in whole range of angles. Conclusion: The study shows that QED diode is more suitable for in vivo dosimetry due to dose value independence from incident beam angle in the range 0–60°. There is no need in correction factors for increasing of dose and dose rate for both diodes. The next step will be to carry out measurements in non-standard conditions of total body irradiation. After this modeling of these experiments with Monte Carlo simulation for comparison calculated and obtained data is planned.« less

  11. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.

  12. Plate-tectonic boundary formation by grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, David

    2015-04-01

    Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.

  13. The plasticity of clays

    USGS Publications Warehouse

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  14. Observing the Sun with micro-interferometric devices: a didactic experiment

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.

    2014-04-01

    Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.

  15. Systematic description of the effect of particle shape on the strength properties of granular media

    NASA Astrophysics Data System (ADS)

    Azéma, Emilien; Estrada, Nicolas; Preechawuttipong, Itthichai; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CD)Method, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.

  16. Visual ergonomic aspects of glare on computer displays: glossy screens and angular dependence

    NASA Astrophysics Data System (ADS)

    Brunnström, Kjell; Andrén, Börje; Konstantinides, Zacharias; Nordström, Lukas

    2007-02-01

    Recently flat panel computer displays and notebook computer are designed with a so called glare panel i.e. highly glossy screens, have emerged on the market. The shiny look of the display appeals to the costumers, also there are arguments that the contrast, colour saturation etc improves by using a glare panel. LCD displays suffer often from angular dependent picture quality. This has been even more pronounced by the introduction of Prism Light Guide plates into displays for notebook computers. The TCO label is the leading labelling system for computer displays. Currently about 50% of all computer displays on the market are certified according to the TCO requirements. The requirements are periodically updated to keep up with the technical development and the latest research in e.g. visual ergonomics. The gloss level of the screen and the angular dependence has recently been investigated by conducting user studies. A study of the effect of highly glossy screens compared to matt screens has been performed. The results show a slight advantage for the glossy screen when no disturbing reflexes are present, however the difference was not statistically significant. When disturbing reflexes are present the advantage is changed into a larger disadvantage and this difference is statistically significant. Another study of angular dependence has also been performed. The results indicates a linear relationship between the picture quality and the centre luminance of the screen.

  17. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).

  18. Spent fuel container alignment device and method

    DOEpatents

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  19. Global Geomorphology

    NASA Technical Reports Server (NTRS)

    Douglas, I.

    1985-01-01

    Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.

  20. Coherent Preparation of Molecular Hydrogen in (v, J,M) Eigenstates for Reaction Dynamics Studies

    DTIC Science & Technology

    2016-08-05

    are recorded using a time-of-flight mass spectrometer as the direction of the UV laser polarization is rotated using a half- wave plate. The...distributions of the angular momentum and the rotor axes for the prepared vibrationally excited superposition state. By measuring the depletion of...with alignment parameters and , calculated using the fitted values of the M-state amplitudes. (c) Bi-axial distribution of rotor axes (b) (a) (c) 7

  1. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  3. Unusual energy properties of leaky backward Lamb waves in a submerged plate.

    PubMed

    Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E

    2017-05-01

    It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  5. Sea Level Change due to Time-Dependent Long-Wavelength Dynamic Topography Inferred from Plate Tectonic Reconstructions

    NASA Astrophysics Data System (ADS)

    Conrad, Clinton P.; Steinberger, Bernhard; Torsvik, Trond H.

    2017-04-01

    Earth's surface is deflected vertically by stresses associated with convective mantle flow. Although dynamic topography is important for both sea level change and continental uplift and subsidence, the time history of dynamic topography is difficult to constrain because the time-dependence of mantle flow is not known. However, the motions of the tectonic plates contain information about the mantle flow patterns that drive them. In particular, we show that the longest wavelengths of mantle flow are tightly linked to the dipole and quadrupole moments (harmonic degrees 1 and 2) of plate motions. This coupling allows us to infer patterns of long-wavelength mantle flow, and the associated dynamic topography, from tectonic plate motions. After calibrating this linkage using models of present-day mantle flow, we can use reconstructions of global plate motions to infer the basic patterns of long-wavelength dynamic topography back to 250 Ma. We find relatively stable dynamic uplift persists above large-scale mantle upwelling beneath Africa and the Central Pacific. Regions of major downwelling encircled the periphery of these stable upwellings, alternating between primarily east-west and north-south orientations. The amplitude of long-wavelength dynamic topography was likely largest in the Cretaceous, when global plate motions were fastest. Continental motions over this time-evolving dynamic topography predict patterns of continental uplift and subsidence that are confirmed by geological observations of continental surfaces relative to sea level. Net uplift or subsidence of the global seafloor can also induce eustatic sea level changes. We infer that dispersal of the Pangean supercontinent away from stable upwelling beneath Africa may have exposed the seafloor to an increasingly larger area of growing positive dynamic topography during the Mesozoic. This net uplift of the seafloor caused 60 m of sea level rise during the Triassic and Jurassic, ceasing in the Cenozoic once continents fully override degree-2 downwellings. These sea level changes represent a significant component of the estimated 200 m of sea level variations during the Phanerozoic, which exhibit a similar temporal pattern.

  6. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  7. SU-E-T-235: Monte Carlo Analysis of the Dose Enhancement in the Scalp of Patients Due to Titanium Plate Backscatter During Post-Operative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, M; Elson, H; Lamba, M

    2014-06-01

    Purpose: To quantify the clinically observed dose enhancement adjacent to cranial titanium fixation plates during post-operative radiotherapy. Methods: Irradiation of a titanium burr hole cover was simulated using Monte Carlo code MCNPX for a 6 MV photon spectrum to investigate backscatter dose enhancement due to increased production of secondary electrons within the titanium plate. The simulated plate was placed 3 mm deep in a water phantom, and dose deposition was tallied for 0.2 mm thick cells adjacent to the entrance and exit sides of the plate. These results were compared to a simulation excluding the presence of the titanium tomore » calculate relative dose enhancement on the entrance and exit sides of the plate. To verify simulated results, two titanium burr hole covers (Synthes, Inc. and Biomet, Inc.) were irradiated with 6 MV photons in a solid water phantom containing GafChromic MD-55 film. The phantom was irradiated on a Varian 21EX linear accelerator at multiple gantry angles (0–180 degrees) to analyze the angular dependence of the backscattered radiation. Relative dose enhancement was quantified using computer software. Results: Monte Carlo simulations indicate a relative difference of 26.4% and 7.1% on the entrance and exit sides of the plate respectively. Film dosimetry results using a similar geometry indicate a relative difference of 13% and -10% on the entrance and exit sides of the plate respectively. Relative dose enhancement on the entrance side of the plate decreased with increasing gantry angle from 0 to 180 degrees. Conclusion: Film and simulation results demonstrate an increase in dose to structures immediately adjacent to cranial titanium fixation plates. Increased beam obliquity has shown to alleviate dose enhancement to some extent. These results are consistent with clinically observed effects.« less

  8. Biomechanical investigation of two plating systems for medial column fusion in foot

    PubMed Central

    Simons, Paul; Sommerer, Theresia; Zderic, Ivan; Wahl, Dieter; Lenz, Mark; Skulev, Hristo; Knobe, Matthias; Gueorguiev, Boyko; Richards, R. Geoff; Klos, Kajetan

    2017-01-01

    Background Arthrodesis of the medial column (navicular, cuneiform I and metatarsal I) is performed for reasons such as Charcot arthropathy, arthritis, posttraumatic reconstruction or severe pes planus. However, the complication rate is still high and mainly resulting from inadequate fixation. Special plates, designed for medial column arthrodesis, seem to offer potential to reduce the complication rate. The aim of this study was to investigate biomechanically plantar and dorsomedial fusion of the medial column using two new plating systems. Methods Eight matched pairs of human cadaveric lower legs were randomized in two groups and medial column fusion was performed using either plantar or dorsomedial variable-angle locking compression plates. The specimens were biomechanically tested under cyclic progressively increasing axial loading with physiological profile of each cycle. In addition to the machine data, mediolateral x-rays were taken every 250 cycles and motion tracking was performed to determine movements at the arthrodesis site. Statistical analysis of the parameters of interest was performed at a level of significance p = 0.05. Results Displacement of the talo-navicular joint after 1000, 2000 and 4000 cycles was significantly lower for plantar plating (p≤0.039) while there was significantly less movement in the naviculo-cuneiform I joint for dorsal plating post these cycle numbers (p<0.001). Displacements in all three joints of the medial column, as well as angular and torsional deformations between the navicular and metatarsal I increased significantly for each plating technique between 1000, 2000 and 4000 cycles (p≤0.021). The two plating systems did not differ significantly with regard to stiffness and cycles to failure (p≥0.171). Conclusion From biomechanical point of view, although dorsomedial plating showed less movement than plantar plating in the current setup under dynamic loading, there was no significant difference between the two plating systems with regard to stiffness and cycles to failure. Both tested techniques for dorsomedial and plantar plating appear to be applicable for arthrodesis of the medial column of the foot and other considerations, such as access morbidity, associated deformities or surgeon's preference, may also guide the choice of plating pattern. Further clinical studies are necessary before definitive recommendations can be given. PMID:28222170

  9. Biomechanical investigation of two plating systems for medial column fusion in foot.

    PubMed

    Simons, Paul; Sommerer, Theresia; Zderic, Ivan; Wahl, Dieter; Lenz, Mark; Skulev, Hristo; Knobe, Matthias; Gueorguiev, Boyko; Richards, R Geoff; Klos, Kajetan

    2017-01-01

    Arthrodesis of the medial column (navicular, cuneiform I and metatarsal I) is performed for reasons such as Charcot arthropathy, arthritis, posttraumatic reconstruction or severe pes planus. However, the complication rate is still high and mainly resulting from inadequate fixation. Special plates, designed for medial column arthrodesis, seem to offer potential to reduce the complication rate. The aim of this study was to investigate biomechanically plantar and dorsomedial fusion of the medial column using two new plating systems. Eight matched pairs of human cadaveric lower legs were randomized in two groups and medial column fusion was performed using either plantar or dorsomedial variable-angle locking compression plates. The specimens were biomechanically tested under cyclic progressively increasing axial loading with physiological profile of each cycle. In addition to the machine data, mediolateral x-rays were taken every 250 cycles and motion tracking was performed to determine movements at the arthrodesis site. Statistical analysis of the parameters of interest was performed at a level of significance p = 0.05. Displacement of the talo-navicular joint after 1000, 2000 and 4000 cycles was significantly lower for plantar plating (p≤0.039) while there was significantly less movement in the naviculo-cuneiform I joint for dorsal plating post these cycle numbers (p<0.001). Displacements in all three joints of the medial column, as well as angular and torsional deformations between the navicular and metatarsal I increased significantly for each plating technique between 1000, 2000 and 4000 cycles (p≤0.021). The two plating systems did not differ significantly with regard to stiffness and cycles to failure (p≥0.171). From biomechanical point of view, although dorsomedial plating showed less movement than plantar plating in the current setup under dynamic loading, there was no significant difference between the two plating systems with regard to stiffness and cycles to failure. Both tested techniques for dorsomedial and plantar plating appear to be applicable for arthrodesis of the medial column of the foot and other considerations, such as access morbidity, associated deformities or surgeon's preference, may also guide the choice of plating pattern. Further clinical studies are necessary before definitive recommendations can be given.

  10. Physics of debris clouds from hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Zee, Ralph

    1993-01-01

    The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a backward momentum vector was determined from the angular velocity of the plate. The forward scattered and backward scattered momentum values were then analyzed to judge the distribution of debris. Loss of momentum was attributed to the inaccuracies of the means of measurement. Assumptions of symmetrical debris for the forward and backward scattered directions also contributed to this loss.

  11. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    NASA Astrophysics Data System (ADS)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  12. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  13. Symmetric periscope for concentric beam configuration in an ultra-high precision laser interferometric beam launcher

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor)

    2006-01-01

    An optical component especially suited for common path heterodyne interferometry comprises a symmetric dual-periscope configuration. Each periscope is substantially identical to the other with regard to certain design aspects. The resulting design is an optical component that is highly stable with variations in temperature and angular deviations.

  14. ``Stable'' Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology

    NASA Astrophysics Data System (ADS)

    Wagoner, Robert V.; Silbergleit, Alexander S.; Ortega-Rodríguez, Manuel

    2001-09-01

    We compare our calculations of the frequencies of the fundamental g-, c-, and p-modes of relativistic thin accretion disks with recent observations of high-frequency quasi-periodic oscillations (QPOs) in X-ray binaries with black hole candidates. These classes of modes encompass all adiabatic perturbations of such disks. The frequencies of these modes depend mainly on the mass and angular momentum of the black hole; their weak dependence on disk luminosity is also explicitly indicated. Identifying the recently discovered, relatively stable QPO pairs with the fundamental g- and c-modes provides a determination of the mass and angular momentum of the black hole. For GRO J1655-40, M=5.9+/-1.0 Msolar and J=(0.917+/-0.024)GM2/c, in agreement with spectroscopic mass determinations. For GRS 1915+105, M=42.4+/-7.0 Msolar and J=(0.926+/-0.020)GM2/c or (less favored) M=18.2+/-3.1 Msolar and J=(0.701+/-0.043)GM2/c. We briefly address the issues of the amplitude, frequency width, and energy dependence of these QPOs.

  15. Present-day kinematics of the East African Rift

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Stamps, D. S.; Delvaux, D.; Hartnady, C. J. H.

    2014-04-01

    The East African Rift (EAR) is a type locale for investigating the processes that drive continental rifting and breakup. The current kinematics of this 5000 km long divergent plate boundary between the Nubia and Somalia plates is starting to be unraveled thanks to a recent augmentation of space geodetic data in Africa. Here we use a new data set combining episodic GPS measurements with continuous measurements on the Nubian, Somalian, and Antarctic plates, together with earthquake slip vector directions and geologic indicators along the Southwest Indian Ridge to update the present-day kinematics of the EAR. We use geological and seismological data to determine the main rift faults and solve for rigid block rotations while accounting for elastic strain accumulation on locked active faults. We find that the data are best fit with a model that includes three microplates embedded within the EAR, between Nubia and Somalia (Victoria, Rovuma, and Lwandle), consistent with previous findings but with slower extension rates. We find that earthquake slip vectors provide information that is consistent with the GPS velocities and helps to significantly reduce uncertainties of plate angular velocity estimates. We also find that 3.16 Myr MORVEL average spreading rates along the Southwest Indian Ridge are systematically faster than prediction from GPS data alone. This likely indicates that outward displacement along the SWIR is larger than the default value used in the MORVEL plate motion model.

  16. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pethuraj, S.; Datar, V.M.; Majumder, G.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9{sup o}57' N , 77{sup o}16' E ) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performancemore » of RPCs are presented along with the angular distribution of muons at Madurai (9{sup o}56' N ,78{sup o}00' E and Altitude ≈ 160 m from sea level).« less

  17. Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhasz, Z.; Sulik, B.; Racz, R.

    2010-12-15

    A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less

  18. Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. I - Design and construction

    NASA Astrophysics Data System (ADS)

    Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.

    1982-11-01

    The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.

  19. Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses.

    PubMed

    Wang, Kai; Wu, Dan; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-06-01

    We demonstrate a freeform lens to enhance the angular color uniformity (ACU) of white light-emitting diodes (LEDs) whose phosphor layers were coated by freely dispersed coating processes. Monte Carlo ray tracing simulation results indicated that the ACU of the modified LED integrated with the freeform lens significantly increased from 0.334 to 0.957, compared with the traditional LED. Enhancement of ACU reached as high as 186.5%. Moreover, the ACU of the modified LED was not only at a high level, but also stable when the shape of the phosphor layer changed. The freeform lens provided an effective way to achieve white LEDs with high ACU at low cost.

  20. How bone quality may influence intraoperative and early postoperative problems after angular stable open reduction-internal fixation of proximal humeral fractures.

    PubMed

    Spross, Christian; Zeledon, Rebeca; Zdravkovic, Vilijam; Jost, Bernhard

    2017-09-01

    With the introduction of the deltoid tuberosity index (DTI), a simple radiographic tool has become available to measure bone mineral density of the proximal humerus. The aim of this study was to assess the influence of local bone mineral density on the early failure rate after angular stable open reduction-internal fixation of proximal humeral fractures (PHFs). We retrospectively followed up all patients treated with angular stable implants for PHFs from 2007 to 2014. The fractures were classified according to Neer, and the DTI, metaphyseal head extension (MHE), medial hinge displacement, and quality of reduction were assessed. Failures were defined as head screw cutouts. The study included 146 patients (mean age, 66 years; range, 20-94 years). The mean follow-up period was 11 months (range, 3-94 months). Of the fractures, 91% were classified as 2- or 3-part fractures and 9% as 4-part fractures. The mean DTI was 1.44 (range, 1.19-2.11), and the mean MHE was 12 mm (range, 0-48 mm). The reduction result was at least acceptable in 80% of fractures. Screw cutouts were found in 23%. The DTI and MHE were the most significant preoperative predictors for the reduction result. The DTI (P = .036) and age (P = .02) were independent preoperative factors, and a good reduction (P = .001) was the only intraoperative factor influencing cutout. This study proves that good bone quality and a long MHE are helpful for the reduction. Furthermore, good bone quality, a younger age, and a good reduction prevent later cutout. We conclude that local bone quality is a relevant factor in the treatment plan for PHFs. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Comminuted supracondylar femoral fractures: a biomechanical analysis comparing the stability of medial versus lateral plating in axial loading.

    PubMed

    Briffa, Nikolai; Karthickeyan, Raju; Jacob, Joshua; Khaleel, Arshad

    2016-11-01

    The aim of this study was to compare the biomechanical properties of medial and lateral plating of a medially comminuted supracondylar femoral fracture. A supracondylar femoral fracture model comparing two fixation methods was tested cyclically in axial loading. One-centimetre supracondylar gap osteotomies were created in six synthetic femurs approximately 6 cm proximal to the knee joint. There were two constructs investigated: group 1 and group 2 were stabilized with an 8-hole LC-DCP, medially and laterally, respectively. Both construct groups were axially loaded. Global displacement (total length), wedge displacement, bending moment and strain were measured. Medial plating showed a significantly decreased displacement, bending moment and strain at the fracture site in axial loading. Medial plating of a comminuted supracondylar femur fracture is more stable than lateral plating.

  2. A rough end for smooth microstate geometries

    DOE PAGES

    Marolf, Donald; Michel, Ben; Puhm, Andrea

    2017-05-03

    Supersymmetric microstate geometries with five non-compact dimensions have recently been shown by Eperon, Reall, and Santos (ERS) to exhibit a non-linear instability featuring the growth of excitations at an “evanescent ergosurface” of infinite redshift. We argue that this growth may be treated as adiabatic evolution along a family of exactly supersymmetric solutions in the limit where the excitations are Aichelburg-Sexl-like shockwaves. In the 2-charge system such solutions may be constructed explicitly, incorpo-rating full backreaction, and are in fact special cases of known microstate geometries. In a near-horizon limit, they reduce to Aichelburg-Sexl shockwaves in AdS 3 × S 3 propagatingmore » along one of the angular directions of the sphere. Noting that the ERS analysis is valid in the limit of large microstate angular momentum j, we use the above identification to interpret their instability as a transition from rare smooth microstates with large angular momentum to more typical microstates with smaller angular momentum. This entropic driving terminates when the angular momentum decreases to j~√n 1n 5 where the density of microstates is maximal. Finally, we argue that, at this point, the large stringy corrections to such microstates will render them non-linearly stable. We identify a possible mechanism for this stabilization and detail an illustrative toy model.« less

  3. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  4. Analysis of Multiple Cracks in an Infinite Functionally Graded Plate

    NASA Technical Reports Server (NTRS)

    Shbeeb, N. I.; Binienda, W. K.; Kreider, K. L.

    1999-01-01

    A general methodology was constructed to develop the fundamental solution for a crack embedded in an infinite non-homogeneous material in which the shear modulus varies exponentially with the y coordinate. The fundamental solution was used to generate a solution to fully interactive multiple crack problems for stress intensity factors and strain energy release rates. Parametric studies were conducted for two crack configurations. The model displayed sensitivity to crack distance, relative angular orientation, and to the coefficient of nonhomogeneity.

  5. Proof of Principle for Active Detection of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission

    DTIC Science & Technology

    2014-10-07

    aligned at 45° so that the two radiation detectors view the DU plate at near normal incidence. Delayed neutrons were measured using a single He-3...bremsstrahlung converter. TLDs and an x-ray pinhole camera are used to measure the angular and radial x-ray dose distributions, 43 , 45 and He-3 detectors are...explanation is supported by x-ray pinhole images which show that the radial distribution of bremsstrahlung from the converter shifts to larger

  6. Motion planning in velocity affine mechanical systems

    NASA Astrophysics Data System (ADS)

    Jakubiak, Janusz; Tchoń, Krzysztof; Magiera, Władysław

    2010-09-01

    We address the motion planning problem in specific mechanical systems whose linear and angular velocities depend affinely on control. The configuration space of these systems encompasses the rotation group, and the motion planning involves the system orientation. Derivation of the motion planning algorithm for velocity affine systems has been inspired by the continuation method. Performance of this algorithm is illustrated with examples of the kinematics of a serial nonholonomic manipulator, the plate-ball kinematics and the attitude control of a rigid body.

  7. Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Herakovich, C. T.; Williams, J. G.

    1987-01-01

    Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.

  8. A new approach to large area microchannel plate manufacture

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Methods of manufacture of twisted single elements as the base for producing microchannel plates (MCP) are discussed. Initial evaluations validated the off-axis channel concept and no technological roadblocks were identified which would prevent fabrication of high gain, high spatial resolution, large format MCP's using this technique. The first MP's have operated at stable gains of 3 million with pulse height resolution superior to results obtained by standard chevron MCP's.

  9. Biomechanical analysis of posteromedial tibial plateau split fracture fixation.

    PubMed

    Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang

    2011-01-01

    The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Motion of Caribbean Plate during last 7 million years and implications for earlier Cenozoic movements

    NASA Astrophysics Data System (ADS)

    Sykes, Lynn R.; McCann, William R.; Kafka, Alan L.

    1982-12-01

    The direction and rate of movement of the Caribbean plate with respect to North America are determined from the slip vectors of shallow earthquakes and from the configuration of downgoing seismic zones in the Greater and Lesser Antilles. A calibration of the relative plate motion for the northeastern Caribbean using data from other subduction zones indicates an average rate of 3.7±0.5 cm/yr for the past 7 million years (Ma). The direction of plate motion inferred from focal mechanisms (ENE) is nearly the same as that deduced from the configuration of downgoing seismic zones going around the major bend in the arc. With respect to North America, the Caribbean plate is moving at an angular velocity of 0.36°/Ma about a center of rotation near 66°N, 132°W. Vector addition using those data and that for the relative motion of North and South America indicates that the Caribbean is moving at an angular velocity of 0.47°/Ma about a center of rotation near 60°N, 88°W with respect to South America. The presence of intermediate-depth earthquakes beneath Puerto Rico and the Virgin Islands is ascribed to the curvature of the plate boundary and a component of underthrusting that has been going on for at least the past 7 Ma and is likely occurring today. The alternative hypothesis that earthquakes beneath those areas are occurring in materials that were subducted during the Eocene, the last major episode of magmatism, is not tenable from thermal considerations. The lack of recent magmatism in the eastern Greater Antilles is ascribed to the relatively small component of underthrusting. The 2 cm/yr rate of seafloor creation along the mid-Cayman spreading center for the past 2.4 Ma does not appear to reflect the total Caribbean-North American plate motion while the 4 cm/yr spreading rate from 6.0 to 2.4 Ma does. Between the mid-Cayman spreading center and eastern Guatemala, the northern boundary of the Caribbean plate is narrow and follows the southern margin of the Cayman trough. Seismic activity between the spreading center and eastern Hispaniola, however, occurs over a zone about 250 km wide that extends from Cuba to Jamaica and across the entire width of Hispaniola. Individual faults within this broad plate boundary appear to have accommodated differing amounts of motion as a function of geological time while the cumulative plate motion across the zone remained nearly constant. The percentage of total plate motion accommodated near southern Hispaniola and Jamaica is inferred to have increased about 2.4 Ma ago. That change may have been caused by the collision of parts of the Bahama bank and northern Hispaniola. This explanation for the sudden decrease in seafloor creation along the mid-Cayman spreading center is less catastrophist than the hypothesis that the entire Caribbean plate suddenly changed its velocity with respect to surrounding plates. The Caribbean plate may be regarded as a small buffer plate whose motion is now governed by the movement of the larger North and South American plates which bound it on three sides. The Caribbean plate is either at rest or moving eastward at a rate of no more than 1 cm/yr in the hot spot reference frame. Since the relative motion of the larger plates surrounding the Caribbean has been nearly constant for the last 38 Ma (anomaly 13 time) and since the forces on the Caribbean plate do not appear to have changed greatly during that interval, we extrapolate the motion of the last 7 Ma back to 38 Ma. A reconstruction for the late Eocene places the Caribbean plate about 1400 km west of its present position. The faster rate of plate motion we calculate makes it more likely that the lithosphere beneath the basins of the Caribbean originated in the Pacific. It also has implications for the seismic potential of the region, paleocirculation in the Atlantic Ocean and origin of sediments in the area. Our late Eocene reconstruction aligns the eastern continental margin of Yucatan with that along the southeast side of the Nicaragua rise. This 2500-km-long feature may have acted as an arc-arc transform fault from the late Mesozoic to the late Eocene. Arc-related rocks of those ages in the Greater Antilles and northern Lesser Antilles define a northwesterly trending subduction zone along the northeastern edge of the former East Pacific-Caribbean plate. At least three fragments of anomalous seafloor have been sutured onto Hispaniola in the past 50 Ma.

  11. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  12. Fixation of supraglenoid tubercle fractures using distal femoral locking plates in three Warmblood horses.

    PubMed

    Frei, Sina; Fürst, Anton E; Sacks, Murielle; Bischofberger, Andrea S

    2016-05-18

    Three horses that were presented with supraglenoid tubercle fractures were treated with open reduction and internal fixation using distal femoral locking plates (DFLP). Placing the DFLP caudal to the scapular spine in order to preserve the suprascapular nerve led to a stable fixation, however, it resulted in infraspinatus muscle atrophy and mild scapulohumeral joint instability (case 1). Placing the DFLP cranial to the scapular spine and under the suprascapular nerve resulted in a stable fixation, however, it resulted in severe atrophy of the supraspinatus and infraspinatus muscles and scapulohumeral joint instability (case 2). Placing the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage site resulted in the best outcome (case 3). Only a mild degree of supraspinatus and infraspinatus muscle atrophy was apparent, which resolved quickly and with no effect on scapulohumeral joint stability. In all cases, fixation of supraglenoid tubercle fractures using DFLP in slightly different techniques led to stable fixations with good long-term outcome. One case suffered from a mild incisional infection and plates were removed in two horses. Placement of the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage prevented major nerve damage. Further cases investigating the degree of muscle atrophy following the use of the DFLP placed in the above-described technique are justified to improve patient outcome.

  13. Effects of traveling waves on flow separation and turbulence

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team

    2017-11-01

    Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.

  14. The Endcap Disc DIRC of PANDA

    NASA Astrophysics Data System (ADS)

    Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2017-12-01

    The Endcap Disc DIRC (EDD) for PANDA has been designed to identify traversing pions, kaons and protons in the future PANDA experiment. Its central part is a 2 cm thick fused silica plate. Focussing optics are attached to the outer rim of the plate, outside of the acceptance of the experiment. Fast, high-resolution MCP-PMTs, designed to register single Cherenkov photons, have been tested in magnetic field. Filters limit the spectral acceptance of the sensors to reduce dispersion effects and to extend their lifetime. A compact and fast readout is realized with ASICs. Analytical reconstruction algorithms allow for fast particle identification. The angular resolution of a DIRC prototype has been simulated in Monte Carlo and confirmed in a test beam. The final detector will be able to provide a 4 σπ / K separation up to a momentum of 4 GeV / c .

  15. CHICO2, a two-dimensional pixelated parallel-plate avalanche counter

    DOE PAGES

    Wu, C. Y.; Cline, D.; Hayes, A.; ...

    2016-01-27

    CHICO 2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and Φ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO 2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm 2208Pb target at the sub-barrier energy, CHICO 2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ andmore » 2.47° in Φ. This achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm 2). The combined angular resolution of GRETINA/CHICO 2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO 2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.« less

  16. Bovine xenograft application for treatment of a metatarsal nonunion fracture in an alpaca (Vicugna pacos).

    PubMed

    Longo, F; Finotti, L; Bellini, L; Zavan, B; Busetto, R; Isola, M

    2016-05-01

    A 15-year-old female huacaya alpaca (Vicugna pacos) was referred because of a non-weight-bearing lameness (4/4) in the left pelvic limb caused by a grade three open metatarsal fracture. The referring veterinarian treated the fracture with conservative management using bandages, but it progressively evolved to a non-union. Clinical examination revealed external wounds on the medial and lateral surfaces of the metatarsus. Radiographs confirmed an open, nonarticular, displaced, diaphyseal fracture of the left metatarsus. Cancellous bone was sourced from bovine proximal and distal femur epiphyses, followed by a thermal shock procedure to achieve decellularisation, to produce a xenograft. Open reduction and internal fixation of the fracture using locking plates was performed. Alignment of the fracture fragments was corrected and the xenograft was placed at the debrided fracture site to stimulate and harness osteogenesis in situ. Clinical and radiographic follow-up was performed up to 40 weeks postoperatively. Clinical evaluations revealed that the alpaca gradually increased weight bearing following bandage removal 10 days after surgery. Serial radiographs showed correct alignment of the left metatarsus, progressive bone modelling and, complete bone union at 12 weeks. Ten months postoperatively the alpaca showed no signs of lameness and resumed normal activity. For management of a metatarsal non-union, a combination of bovine xenograft application and angular stable internal fixation progressed toward an excellent long-term recovery.

  17. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  18. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marolf, Donald; Palmer, Belkis Cabrera; Physics Department, Syracuse University, Syracuse, New York 13244

    A thermodynamic argument is presented suggesting that near-extremal spinning D1-D5-P black strings become unstable when their angular momentum exceeds J{sub crit}=3Q{sub 1}Q{sub 5}/2{radical}(2). In contrast, the dimensionally reduced black holes are thermodynamically stable. The proposed instability involves a phase in which the spin angular momentum above J{sub crit} is transferred to gyration of the string in space, i.e., to orbital angular momentum of parts of the string about the mean location in space. Thus the string becomes a rotating helical coil. We note that an instability of this form would yield a counter-example to the Gubser-Mitra conjecture, which proposes amore » particular link between dynamic black string instabilities and the thermodynamics of black strings. There may also be other instabilities associated with radiation modes of various fields. Our arguments also apply to the D-brane bound states associated with these black strings in weakly coupled string theory.« less

  20. Indirect reduction technique using a distraction support in minimally invasive percutaneous plate osteosynthesis of tibial shaft fractures.

    PubMed

    Dong, Wen-Wei; Shi, Zeng-Yuan; Liu, Zheng-Xin; Mao, Hai-Jiao

    2016-12-01

    To describe an indirect reduction technique during minimally invasive percutaneous plate osteosynthesis (MIPPO) of tibial shaft fractures with the use of a distraction support. Between March 2011 and October 2014, 52 patients with a mean age of 48 years (16-72 years) sustaining tibial shaft fractures were included. All the patients underwent MIPPO for the fractures using a distraction support prior to insertion of the plate. Fracture angular deformity was assessed by goni- ometer measurement on preoperative and postoperative images. Preoperative radiographs revealed a mean of 7.6°(1.2°-28°) angulation in coronal plane and a mean of 6.8°(0.5°-19°) angulation in sagittal plane. Postoperative anteroposterior and lateral radio- graphs showed a mean of 0.8°(0°-4.0°) and 0.6°(0°-3.6°) of varus/valgus and apex anterior/posterior angulation, respectively. No intraoperative or postoperative complications were noted. This study suggests that the distraction support during MIPPO of tibial shaft fractures is an effective and safe method with no associated complications.

  1. The influence of primary and secondary orientations on the elastic response of a nickel-base single-crystal superalloy

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.

    1993-01-01

    The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.

  2. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    PubMed Central

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-01-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595

  3. The impact of particle shape on friction angle and resulting critical shear stress: an example from a coarse-grained, steep, megatidal beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2013-12-01

    The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.

  4. Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Beavan, John; McCaffrey, Robert; Berryman, Kelvin; Denys, Paul

    2007-01-01

    The landmass of New Zealand exists as a consequence of transpressional collision between the Australian and Pacific plates, providing an excellent opportunity to quantify the kinematics of deformation at this type of tectonic boundary. We interpret GPS, geological and seismological data describing the active deformation in the South Island, New Zealand by using an elastic, rotating block approach that automatically balances the Pacific/Australia relative plate motion budget. The data in New Zealand are fit to within uncertainty when inverted simultaneously for angular velocities of rotating tectonic blocks and the degree of coupling on faults bounding the blocks. We find that most of the plate motion budget has been accounted for in previous geological studies, although we suggest that the Porter's Pass/Amberley fault zone in North Canterbury, and a zone of faults in the foothills of the Southern Alps may have slip rates about twice that of the geological estimates. Up to 5 mm yr-1 of active deformation on faults distributed within the Southern Alps <100 km to the east of the Alpine Fault is possible. The role of tectonic block rotations in partitioning plate boundary deformation is less pronounced in the South Island compared to the North Island. Vertical axis rotation rates of tectonic blocks in the South Island are similar to that of the Pacific Plate, suggesting that edge forces dominate the block kinematics there. The southward migrating Chatham Rise exerts a major influence on the evolution of the New Zealand plate boundary; we discuss a model for the development of the Marlborough fault system and Hikurangi subduction zone in the context of this migration.

  5. Treatment of proximal humerus fractures with locking plates: a systematic review.

    PubMed

    Thanasas, Christos; Kontakis, George; Angoules, Antonios; Limb, David; Giannoudis, Peter

    2009-01-01

    Locking plates with special configuration for the anatomic region of the proximal humerus have been introduced recently to address the difficulties of stabilizing proximal humeral fractures. The purpose of this study was to carry out a systematic review of the literature on the efficacy and early to medium term functional results of locking plates for stabilization of proximal humeral fractures. Using the PubMed database, a systematic review of the English and German literature was carried out in order to assess the efficacy and complications related to the use of these plates and the patients' functional outcome, using the key words "locking plates proximal humeral fractures," "angular stability plates proximal humeral fractures," "PHILOS plate," and "LPHP plate." Our criteria for eligibility were clinical studies with more than ten cases followed-up, adult patients, and adequate data provided at least in terms of implant related complications. Articles written in English and German language were included. Exclusion criteria were: studies dealing exclusively with 2-part fractures (since this category has a more favorable outcome); experimental studies; case reports; and, literature other than English or German. Each one of the articles was evaluated for quality of the study using the Structured Effectiveness Quality Evaluation Scale (SEQES). Twelve studies including 791 patients met the inclusion criteria. Patients in these studies continued to improve up to one year, achieving a mean Constant score of 74.3. The incidence of the reported complications was: avascular necrosis 7.9%, screw cut-out 11.6% and re-operation rate 13.7%. The high incidence of cut-out may be secondary to the rigidity of the implant in combination with medial inadequate support, in cases compromised by severe underlying osteoporotic bone. Definition of indications for the use of locking plates and attention on technical aspects of applying them would help optimization of the results. Systematic Review.

  6. Cosmic microwave background polarimetry with ABS and ACT: Instrumental design, characterization, and analysis

    NASA Astrophysics Data System (ADS)

    Simon, Sara Michelle

    The LCDM model of the universe is supported by an abundance of astronomical observations, but it does not confirm a period of inflation in the early universe or explain the nature of dark energy and dark matter. The polarization of the cosmic microwave background (CMB) may hold the key to addressing these profound questions. If a period of inflation occurred in the early universe, it could have left a detectable odd-parity pattern called B-modes in the polarization of the CMB on large angular scales. Additionally, the CMB can be used to probe the structure of the universe on small angular scales through lensing and the detection of galaxy clusters and their motions via the Sunyaev-Zel'dovich effect, which can improve our understanding of neutrinos, dark matter, and dark energy. The Atacama B-mode Search (ABS) instrument was a cryogenic crossed-Dragone telescope located at an elevation of 5190m in the Atacama Desert in Chile that observed from February 2012 until October 2014. ABS searched on degree-angular scales for inflationary B-modes in the CMB and pioneered the use of a rapidly-rotating half-wave plate (HWP), which modulates the polarization of incoming light to permit the measurement of celestial polarization on large angular scales that would otherwise be obscured by 1/f noise from the atmosphere. Located next to ABS in the Atacama is the Atacama Cosmology Telescope (ACT), which is an off-axis Gregorian telescope. Its large 6m primary mirror facilitates measurements of the CMB on small angular scales. HWPs are baselined for use with the upgraded polarization-sensitive camera for ACT, called Advanced ACTPol, to extend observations of the polarized CMB to larger angular scales while also retaining sensitivity to small angular scales. The B-mode signal is extremely faint, and measuring it poses an instrumental challenge that requires the development of new technologies and well-characterized instruments. I will discuss the use of novel instrumentation and methods on the ABS telescope and Advanced ACTPol, the characterization of the ABS instrument, and the first two seasons of ABS data, including an overview of the data selection process.

  7. Graphene levitation and orientation control using a magnetic field

    NASA Astrophysics Data System (ADS)

    Niu, Chao; Lin, Feng; Wang, Zhiming M.; Bao, Jiming; Hu, Jonathan

    2018-01-01

    This paper studies graphene levitation and orientation control using a magnetic field. The torques in all three spatial directions induced by diamagnetic forces are used to predict stable conditions for different shapes of millimeter-sized graphite plates. We find that graphite plates, in regular polygon shapes with an even number of sides, will be levitated in a stable manner above four interleaved permanent magnets. In addition, the orientation of micrometer-sized graphene flakes near a permanent magnet is studied in both air and liquid environments. Using these analyses, we are able to simulate optical transmission and reflection on a writing board and thereby reveal potential applications using this technology for display screens. Understanding the control of graphene flake orientation will lead to the discovery of future applications using graphene flakes.

  8. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  9. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.

  10. A crawling robot driven by multi-stable origami

    NASA Astrophysics Data System (ADS)

    Pagano, Alexander; Yan, Tongxi; Chien, Brian; Wissa, A.; Tawfick, S.

    2017-09-01

    Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.

  11. Development and Application of High Performance Quenched and Tempered Wear Resistant Steels in Material Handling and Construction Machinery

    NASA Astrophysics Data System (ADS)

    Su, Fenwei; Sidiras, Evangelos

    The demand for more sustainable development promotes the need for components and steel structures with a longer useful life and better performance. Upgrade of wear steel plate used in key industry segments such as mining, recycling and road building results in the stable growth of global market with high quality grade Q&T wear plates (Hardness HBW≥400, and Yield strength ≥690 Mpa). SSAB has now expanded its wear steel product range by both thicker and thinner Q&T plate to meet the needs of the market, and can offer wear plates from 0.7 mm to 160 mm. The continuous research and development is being done to offer even thicker plates. This article introduces the performance and advantages of high quality grade Q&T wear resistant steel products (plate, strip, tube and round bars) produced in SSAB, and also describes typical applications in some industrial segments such as material handling and construction machinery.

  12. A novel automatic full-scale inspecting system for banknote printing plates

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Feng, Li; Lu, Jibing; Qin, Qingwang; Liu, Liquan; Liu, Huina

    2018-01-01

    Quality assurance of banknote printing plates is an important issue for the corporation which produces them. Every plate must be checked carefully and entirely before it's sent to the banknote printing factory. Previously the work is done by specific workers, usually with the help of powder and magnifiers, and often lasts for 3 to 4 hours for a 5*7 plate with the size of about 650*500 square millimeters. Now we have developed an automatic inspecting system to replace human work. The system mainly includes a stable platform, an electrical subsystem and an inspecting subsystem. A microscope held by the crossbeam can move around in the x-y-z space over the platform. A digital camera combined with the microscope captures gray digital images of the plate. The size of each digital image is 2672*4008, and each pixel corresponds to about 2.9*2.9 square microns area of the plate. The plate is inspected by each unit, and corresponding images are captured at the same relative position. Thousands of images are captured for one plate (for example, 4200 (120*5*7) for a 5*7 plate). The inspecting model images are generated from images of qualified plates, and then used to inspect indeterminate plates. The system costs about 64 minutes to inspect a plate, and identifies obvious defects.

  13. Comparative evaluation of 2.3 mm locking plate system vs conventional 2.0 mm non locking plate system for mandibular condyle fracture fixation: a seven year retrospective study.

    PubMed

    Zhang, J; Wang, X; Wu, R-H; Zhuang, Q-W; Gu, Q P; Meng, J

    2015-01-01

    This retrospective study evaluated the efficacy of a 2.3 mm locking plate/screw system compared with a 2.0-mm non-locking plate/screw system in fixation of isolated non comminuted mandibular condyle fractures. Surgical records of 101 patients who received either a 2.3 mm locking plate (group A, n = 51) or 2.0 mm non locking plate (group B, n = 50) were analyzed. All patients were followed up to a minimum of 6 months postoperatively and evaluated for hardware related complications, occlusal stability, need for and duration of MMF and mandibular functional results. Four complications occurred in the locking group and eighteen in the non locking group with complication rates equalling 8% and 36% respectively. When comparing the overall results according to plates used, the χ2 test showed a statistically significant difference between the locking and non locking plates (p < 0.001). Fewer patients required postoperative MMF in group A. Mandibular condyle fractures treated with a 2.3 mm locking plate exhibited stable osteosynthesis, were associated with minimal complications and resulted in acceptable mandibular range of motion compared with a 2.0 mm non locking plate.

  14. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input.

    PubMed

    Marie, Cronskär

    2015-08-01

    In the cases, when clavicle fractures are treated with a fixation plate, opinions are divided about the best position of the plate, type of plate and type of screw units. Results from biomechanical studies of clavicle fixation devices are contradictory, probably partly because of simplified and varying load cases used in different studies. The anatomy of the shoulder region is complex, which makes it difficult and expensive to perform realistic experimental tests; hence, reliable simulation is an important complement to experimental tests. In this study, a method for finite element simulations of stresses in the clavicle plate and bone is used, in which muscle and ligament force data are imported from a multibody musculoskeletal model. The stress distribution in two different commercial plates, superior and anterior plating position and fixation including using a lag screw in the fracture gap or not, was compared. Looking at the clavicle fixation from a mechanical point of view, the results indicate that it is a major benefit to use a lag screw to fixate the fracture. The anterior plating position resulted in lower stresses in the plate, and the anatomically shaped plate is more stress resistant and stable than a regular reconstruction plate.

  15. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    PubMed

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  16. Novel Anterior Plating Technique for Patella Fracture Fixation.

    PubMed

    Siljander, Matthew P; Vara, Alexander D; Koueiter, Denise M; Wiater, Brett P; Wiater, Patrick J

    2017-07-01

    Patella fracture fixation remains a significant challenge for orthopedic surgeons. Although tension band fixation allows for reliable osseous union, especially in simple fracture patterns, it still presents several problems. Plate fixation of patella fractures is a method that allows for more rigid stabilization and earlier mobilization. At the authors' level 1 trauma center, one fellowship-trained trauma surgeon has transitioned to using a novel anterior, low-profile mesh plate construct for all types of patella fractures. This construct allows for stable fixation, osseous union, and neutralization of the inferior pole for even the most comminuted of patella fractures. [Orthopedics. 2017; 40(4):e739-e743.]. Copyright 2017, SLACK Incorporated.

  17. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  18. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    PubMed Central

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  19. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    NASA Astrophysics Data System (ADS)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-06-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel-zinc batteries with good power rate (20 mA cm-2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.

  20. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the ;west; relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  1. [Arthrodesis of the First Metatarsophalangeal Joint by Locking Plate].

    PubMed

    Kunovský, R; Pink, T; Jarošík, J

    2017-01-01

    PURPOSE OF THE STUDY The authors in their paper evaluate a group of patients who underwent arthrodesis of the first metatarsophalangeal joint using a locking plate. MATERIAL AND METHODS In the period 2010-2015, we performed surgery in 51 patients (56 forefeet), of which in 5 cases bilaterally and in 46 cases unilaterally, in 38 women and 13 men. The mean age was 57.8 years, the mean follow-up was 3.1 years. The indications for surgery were hallux rigidus in 23 patients, hallux valgus in 15 patients, hallux varus in 3 patients, and hallux erectus in 2 patients. In 4 patients the surgery was performed for valgus deformity associated with rheumatoid arthritis, 9 patients were indicated for a failure of the prior surgical intervention. In all 56 forefeet, the anatomic, low-profile titanium plate Variable Angle LCP 1st MTP Fusion Plate 2.4/2.7 was used. RESULTS According to Gainor s score the surgical outcomes were assessed as excellent in 46 patients who underwent surgery (90%), good in 4 patients (8%), fair in 1 patient (2%), and poor in 0 patient (0%). In 53 forefeet, the control radiographs showed solid bone union. In 2 patients and 3 forefeet, non-union of the arthrodesis occurred. In 2 forefeet, revision arthrodesis was performed, after which solid bone union followed. Malpositioned union was reported in 5 forefeet, of which in 4 cases into valgosity and in 1 case into dorsiflexion. DISCUSSION Numerous fixation materials can be used for arthrodesis of the first metatarsophalangeal joint. The use of the least stable Kirschner wires (cerclage) is being abandoned and substituted with a more stable fixation by screws, memory staples and locking plates. The achievement of excellent results requires proper positioning of the arthrodesis. Impingement syndrome between the big toe and the second toe can result in painful callosities formation, too large dorsiflexion can lead to a hallux hammertoe, with reduced big toe support function, to metatarsalgia. CONCLUSIONS The arthrodesis is indicated in patients with Grade III and IV hallux rigidus, with severe hallux valgus, hallux varus, and in patients in whom the previous surgeries failed. We tend to prefer stable arthrodesis. Fixation by anatomic LCP plate facilitates early rehabilitation, loading and early return to work and sports activities. Key words: arthrodesis, metatarsophalangeal joint, hallux rigidus, hallux valgus.

  2. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  3. Improved black nickel coatings for flat plate solar collectors

    NASA Technical Reports Server (NTRS)

    Lin, J. H.; Peterson, R. E.

    1977-01-01

    A new black nickel formula was developed which had a solar absorptance of 0.92 and an infrared emittance (at 100 C) of less than 0.10 after 14 days at 38 C and 95 percent relative humidity. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, optical properties and durability were investigated.

  4. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  5. FEED FORWARD EQUATIONS.

    DTIC Science & Technology

    and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo

  6. The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; van den Bosch, Frank C.

    2012-03-01

    We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.

  7. Periodic vortex shedding in the supersonic wake of a planar plate

    NASA Technical Reports Server (NTRS)

    Xing, W. F.; Marenbach, G.

    1985-01-01

    Vortex sheets in the wake have been mainly studied in incompressible flows and in the transonic region. Heinemann et al. (1976) have shown that for the subsonic region the Strouhal number is nearly independent of the Mach number. Motallebi and Norbury (1981) have observed an increase in the Strouhal number in transonic supersonic flow at Mach numbers up to 1.25. The present investigation is concerned with an extension of the studies of vortex shedding to higher supersonic Mach numbers, taking into account questions regarding the possibility of a generation of stable von Karman vortex paths in the considered Mach number range. It is found that the vortex sheet observed in a supersonic wake behind a rough plate is only stable and reproducible in cases involving a certain surface roughness and certain aspects of trailing edge geometry.

  8. Looking Backwards in Time to the Early Earth Using the Lens of Stable Isotope Geodynamic Cycles

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.

    2016-12-01

    The stable isotope ratios of hydrogen, carbon, oxygen and sulfur provide of means of tracing interactions between the major reservoirs of the Earth. The oceans and the dichotomy between continental and oceanic crust are key differences between the Earth and other terrestrial bodies. The existence of plate tectonics and the recognition that no primary crust survives at the Earth's surface sets this planet apart from the smaller terrestrial bodies. The thermostatic control of carbonate-silicate cycle works because of the hydrosphere and plate tectonics. Additionally, the contrast between the carbon isotope ratios for reduced and oxidized species appear to also be invariant over geologic time with evidence of old recycled carbon in the form of diamond inclusions in mantle-derived igneous rocks. Lessons from comparative planetology suggest that early differentiation of the Earth would have likely resulted in the rapid formation of the oceans, a water world over the primary crust. Plate tectonics provides a mechanism for buffering the oxygen isotope fractionation between the oceans and the mantle. The set point for hydrosphere's oxygen isotope composition is a result of the geometry of mid-ocean ridge accretion that is stable over an order magnitude change in spreading rates with time constants much younger shorter than the age of the Earth. The recognition that the "normal" ranges for hydrogen isotope ratios of igneous, metamorphic and sedimentary rocks of any age generally overlap with similar ranges, with the exception of rocks that have interacted with D- and 18O-depleted meteoric waters (generally at high latitudes), is an argument for a constant volume ocean over geologic time. Plate tectonics with a constant volume ocean constrains the thickness of the continental crust because of the rapidity of the mechanical weathering cycle (characteristic times of 10's of millions of years; freeboard of the continents argument). In a plate tectonic regime, chemical weathering and the subduction of abyssal plain sediments represents true continental recycling and characteristic times for the age of the continents are consistent with modern chemical weathering rates. Two records, zircon and quartz oxygen isotopes, may be recording the transition from the water-world to the modern earth.

  9. CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis.

    PubMed

    Rendenbach, Carsten; Sellenschloh, Kay; Gerbig, Lucca; Morlock, Michael M; Beck-Broichsitter, Benedicta; Smeets, Ralf; Heiland, Max; Huber, Gerd; Hanken, Henning

    2017-11-01

    CAD/CAM reconstruction plates have become a viable option for mandible reconstruction. The aim of this study was to determine whether CAD/CAM plates provide higher fatigue strength compared with conventional fixation systems. 1.0 mm miniplates, 2.0 mm conventional locking plates (DePuy Synthes, Umkirch, Germany), and 2.0 mm CAD/CAM plates (Materialise, Leuven, Belgium/DePuy Synthes) were used to reconstruct a polyurethane mandible model (Synbone, Malans, CH) with cortical and cancellous bone equivalents. Mastication was simulated via cyclic dynamic testing using a universal testing machine (MTS, Bionix, Eden Prairie, MN, USA) until material failure reached a rate of 1 Hz with increasing loads on the left side. No significant difference was found between the groups until a load of 300 N. At higher loads, vertical displacement differed increasingly, with a poorer performance of miniplates (p = 0.04). Plate breakage occurred in miniplates and conventional locking plates. Screw breakage was recorded as the primary failure mechanism in CAD/CAM plates. Stiffness was significantly higher with the CAD/CAM plates (p = 0.04). CAD/CAM plates and reconstruction plates provide higher fatigue strength than miniplates, and stiffness is highest in CAD/CAM systems. All tested fixation methods seem sufficiently stable for mandible reconstruction. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation.

    PubMed

    Morin, Paul M; Reindl, Rudolf; Harvey, Edward J; Beckman, Lorne; Steffen, Thomas

    2008-02-01

    Distal third tibia fractures have classically been treated with standard plating, but intramedullary (IM) nailing has gained popularity. Owing to the lack of interference fit of the nail in the metaphyseal bone of the distal tibia, it may be beneficial to add rigid plating of the fibula to augment the overall stability of fracture fixation in this area. This study sought to assess the biomechanical effect of adding a fibular plate to standard IM nailing in the treatment of distal third tibia and fibula fractures. Eight cadaveric tibia specimens were used. Tibial fixation consisted of a solid titanium nail locked with 3 screws distally and 2 proximally, and fibular fixation consisted of a 3.5 mm low-contact dynamic compression plate. A section of tibia and fibula was removed. Testing was accomplished with an MTS machine. Each leg was tested 3 times; with and without a fibular plate and with a repetition of the initial test condition. Vertical displacements were tested with an axial load up to 500 N, and angular rotation was tested with torques up to 5 N*m. The difference in axial rotation was the only statistically significant finding (p = 0.003), with fibular fixation resulting in 1.1 degrees less rotation through the osteotomy site (17.96 degrees v. 19.10 degrees ). Over 35% of this rotational displacement occurred at the nail-locking bolt interface with the application of small torsional forces. Fibular plating in addition to tibial IM fixation of distal third tibia and fibula fractures leads to slightly increased resistance to torsional forces. This small improvement may not be clinically relevant.

  11. In-line phase shift tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less

  12. Flow quality of NAL two-dimensional transonic wind tunnel. Part 1: Mach number distributions, flow angularities and preliminary study of side wall boundary layer suction

    NASA Technical Reports Server (NTRS)

    Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi

    1988-01-01

    Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.

  13. Silicon pore optics for future x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  14. The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers

    NASA Astrophysics Data System (ADS)

    Essinger-Hileman, T.; Appel, J. W.; Beal, J. A.; Cho, H. M.; Fowler, J.; Halpern, M.; Hasselfield, M.; Irwin, K. D.; Marriage, T. A.; Niemack, M. D.; Page, L.; Parker, L. P.; Pufu, S.; Staggs, S. T.; Stryzak, O.; Visnjic, C.; Yoon, K. W.; Zhao, Y.

    2009-12-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 μK√s in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magnetic shielding, focal plane architecture, and cryogenic electronics.

  15. The influence of distal locking on the need for fibular plating in intramedullary nailing of distal metaphyseal tibiofibular fractures.

    PubMed

    Attal, R; Maestri, V; Doshi, H K; Onder, U; Smekal, V; Blauth, M; Schmoelz, W

    2014-03-01

    Using human cadaver specimens, we investigated the role of supplementary fibular plating in the treatment of distal tibial fractures using an intramedullary nail. Fibular plating is thought to improve stability in these situations, but has been reported to have increased soft-tissue complications and to impair union of the fracture. We proposed that multidirectional locking screws provide adequate stability, making additional fibular plating unnecessary. A distal tibiofibular osteotomy model performed on matched fresh-frozen lower limb specimens was stabilised with reamed nails using conventional biplanar distal locking (CDL) or multidirectional distal locking (MDL) options with and without fibular plating. Rotational stiffness was assessed under a constant axial force of 150 N and a superimposed torque of ± 5 Nm. Total movement, and neutral zone and fracture gap movement were analysed. In the CDL group, fibular plating improved stiffness at the tibial fracture site, albeit to a small degree (p = 0.013). In the MDL group additional fibular plating did not increase the stiffness. The MDL nail without fibular plating was significantly more stable than the CDL nail with an additional fibular plate (p = 0.008). These findings suggest that additional fibular plating does not improve stability if a multidirectional distal locking intramedullary nail is used, and is therefore unnecessary if not needed to aid reduction.

  16. Reduced modeling of the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben F.

    2009-06-01

    Accretion describes the process by which matter in an astrophysical disk falls onto a central massive object. Accretion disks are present in many astrophysical situations including binary star systems, young stellar objects, and near black holes at the center of galaxies. Measurements from observations of these disks have shown that viscous processes are unable to transport the necessary levels of angular momentum needed for accretion. Therefore, accretion requires an efficient mechanism of angular momentum transport. Mixing by turbulent processes greatly enhances the level of angular momentum transport in a turbulent fluid. Thus, the generation of turbulence in these disks may provide the mechanism needed for accretion. A classical result of hydrodynamic theory is that typical accretion disks are hydrodynamically stable to shear instabilities, since the specific angular momentum increases outwards. Other processes of generating hydrodynamic turbulence (barotropic instability, baroclinic instability, sound wave, shock waves, finite amplitude instabilities) may be present in these disks, however, none of these mechanisms has been shown to produce the level of angular momentum transport needed for accretion. Hydrodynamical turbulence does not produce enough angular momentum transport to produce the level of accretion observed in astrophysical accretion disks. The leading candidate for the source of turbulence leading to the transport of angular momentum is the magnetorotational instability, a linear axisymmetric instability of electrically conducting fluid in the presence of an imposed magnetic field and shear (or differential rotation). This instability is an efficient mechanism of angular momentum transport generating the level of transport needed for accretion. The level of effective angular momentum transport is determined by the saturated state of sustained turbulence generated by the instability. The mechanism of nonlinear saturation of this instability is not well understood. Many recent numerical investigations of this problem are performed in a local domain, where the global cylindrical background state is projected onto a local Cartesian domain. The resulting system is then numerically modeled within a "shearing box" framework to obtain estimates of angular momentum transport and therefore accretion. However, the simplified geometry of the local domain, and the projection of global quantities leads to a model where the instability is able to grow unboundedly. Utilizing disparate characteristic scales, this thesis presents a reduced asymptotic model for the magnetorotational instability that allows a large scale feedback of local stresses (Reynolds, Maxwell and mixed) onto the projected background state. This system is investigated numerically to determine the impact of allowing this feedback on the saturated level of angular momentum transport.

  17. Erecting Gas Storage Facilities and Oil Centers

    DTIC Science & Technology

    1975-01-21

    these allow steam to flow from the steam lines into the storage tank and to hydraulic seals , then into the water via steam -jet conveyors. The...of the dry gas tank is similar to that of a steam engine. There is a special seal between the plate and the wall. The plate, by the action of gas...stable and sealed during the entire period of use. The formation of cracks and the leakage of gas through them may create danger for above-ground

  18. Device For Controlling Crystallization Of Protein

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1993-01-01

    Variable sandwich spacer enables optimization of evaporative driving force that governs crystallization of protein from solution. Mechanically more rigid than hanging-drop and sitting-drop devices. Large oscillations and dislodgment of drop of solution in response to vibrations suppressed by glass plates. Other advantages include: suitable for automated delivery, stable handling, and programmable evaporation of protein solution; controlled configuration enables simple and accurate determination of volume of solution without disrupting crystallization; pH and concentration of precipitant controlled dynamically because pH and concentration coupled to rate of evaporation, controllable via adjustment of gap between plates; and enables variation of ratio between surface area and volume of protein solution. Alternative version, plates oriented vertically instead of horizontally.

  19. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.

  20. Continental Deformation in Madagascar from GNSS Observations

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Rajaonarison, T.; Rambolamanana, G.; Herimitsinjo, N.; Carrillo, R.; Jesmok, G.

    2015-12-01

    D.S. Stamps, T. Rajaonarison, G. Rambolamanana Madagascar is the easternmost continental segment of the East African Rift System (EARS). Plate reconstructions assume the continental island behaves as a rigid block, but studies of geologically recent kinematics suggest Madagascar undergoes extension related to the broader EARS. In this work we test for rigidity of Madagascar in two steps. First, we quantify surface motions using a novel dataset of episodic and continuous GNSS observations that span Madagascar from north to south. We established a countrywide network of precision benchmarks fixed in bedrock and with open skyview in 2010 that we measured for 48-72 hours with dual frequency receivers. The benchmarks were remeasured in 2012 and 2014. We processed the episodic GNSS data with ABPO, the only continuous GNSS station in Madagascar with >2.5 years of data, for millimeter precision positions and velocities at 7 locations using GAMIT-GLOBK. Our velocity field shows 2 mm/yr of differential motion between southern and northern Madagascar. Second, we test a suite of kinematic predictions from previous studies and find residual velocities are greater than 95% uncertainties. We also calculate angular velocity vectors assuming Madagascar moves with the Lwandle plate or the Somalian plate. Our new velocity field in Madagascar is inconsistent with all models that assume plate rigidity at the 95% uncertainty level; this result indicates the continental island undergoes statistically significant internal deformation.

  1. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    PubMed

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  3. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  4. Creation and Validation of Sintered PTFE BRDF Targets & Standards

    PubMed Central

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2016-01-01

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206

  5. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    PubMed

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  6. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  7. Granular dynamics under shear with deformable boundaries

    NASA Astrophysics Data System (ADS)

    Geller, Drew; Backhaus, Scott; Ecke, Robert

    2015-03-01

    Granular materials under shear develop complex patterns of stress as the result of granular positional rearrangements under an applied load. We consider the simple planar shear of a quasi two-dimensional granular material consisting of bi-dispersed nylon cylinders confined between deformable boundaries. The aspect ratio of the gap width to total system length is 50, and the ratio of particle diameter to gap width is about 10. This system, designed to model a long earthquake fault with long range elastic coupling through the plates, is an interesting model system for understanding effective granular friction because it essentially self tunes to the jamming condition owing to the hardness of the grains relative to that of the boundary material, a ratio of more than 1000 in elastic moduli. We measure the differential strain displacements of the plates, the inhomogeneous stress distribution in the plates, the positions and angular orientations of the individual grains, and the shear force, all as functions of the applied normal stress. There is significant stick-slip motion in this system that we quantify through our quantitative measurements of both the boundary and the grain motion, resulting in a good characterization of this sheared 2D hard sphere system.

  8. Effect of starting powder morphology on film texture for bismuth layer-structured ferroelectrics prepared by aerosol deposition method

    NASA Astrophysics Data System (ADS)

    Suzuki, Muneyasu; Tsuchiya, Tetsuo; Akedo, Jun

    2017-06-01

    We report grain orientation control for bismuth layer-structured ferroelectrics (BLSFs) films deposited by aerosol deposition (AD) method at room temperature. Bi4Ti3O12 (BiT), SrBi2Ta2O9 (SBTa), and SrBi4Ti4O15 (SBTi) starting powders with particles of various shape (plate-like, spherical, and angular) were prepared by solid-state reaction and fused salt synthesis. Their AD films represented fine microstructures without pores, which agrees well with previous reports. Although the SBTa AD films deposited by using spherical particles exhibited an extremely low Lotgering factor (F), the BiT AD films deposited by using plate-like particles exhibited a marked c-axis orientation. The F of BiT and SBTi AD films decreased with increasing film thickness (t). We consider that the dispersion of agglomerated plate-like particles on the film surface and the densification of the compacted powder layer occurring while under particle impact are important in obtaining the grain-oriented AD films. These results of using the AD method with shape-controlled particles are expected to result in open up an innovative functional coating technique.

  9. Comet P/Halley 1910, 1986: An objective-prism study

    NASA Technical Reports Server (NTRS)

    Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.

    1986-01-01

    V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.

  10. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOEpatents

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  11. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT.

  12. Dynamic shape transitions in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  13. Transport in Rayleigh-stable experimental Taylor-Couette flow and granular electrification in a shaking experiment

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja

    This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of macroscopic electrification, all particle types electrified with dynamics that suggest a major role for collective interactions in electrification. Moreover, mixing two types of particles together does not lead to increased electrification except for specific combinations of particles which clump, which further points towards the importance of collective phenomena. These results help us better understand the mechanisms of electrification and lightning generation in certain atmospheric systems.

  14. High-voltage lateral double-implanted MOSFETs implemented on high-purity semi-insulating 4H-SiC substrates with gate field plates

    NASA Astrophysics Data System (ADS)

    Seok, Ogyun; Kim, Hyoung Woo; Moon, Jeong Hyun; Lee, Hyun-Su; Bahng, Wook

    2018-06-01

    Lateral double-implanted MOSFETs (LDIMOSFETs) fabricated on on-axis high-purity semi-insulating (HPSI) 4H-SiC substrates with gate field plates have been demonstrated for the enhancement of reverse blocking capability. The effects of gate field plate on LDIMOSFET were analyzed by simulation and experimental methods. The electric field concentration at the gate edge was successfully suppressed by a gate field plate. A high breakdown voltage of 934 V and a figure of merit of 14.6 MW/cm2 were achieved at L FP of 2 µm and L drift of 15 µm, while those of the conventional device without a gate field plate were 744 V and 13.3 MW/cm2, respectively. Also, the fabricated device shows stable blocking characteristics at a high temperature of 250 °C. The drain leakage was increased by only 22% at 250 °C compared with that at room temperature.

  15. Simulations of vortices in a star-shaped plate with an artificial pin

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hiroki; Ito, Atsuki; Dang, Vu The; Thanh Huy, Ho; Hayashi, Masahiko; Kato, Masaru; Ishida, Takekazu

    2017-07-01

    Although a triangular vortex lattice is stable in a bulk type-II superconductor, exotic vortex configurations are expected to appear in a small superconducting plate. Theoretical calculations on vortex structures in a star-shaped superconducting plate have been given in our preceding work. In this work, we extended our theoretical studies to the case of having an artificial pin. We performed the Ginzburg-Landau (GL) calculations systematically to compare with the pin-free case by using the finite element method. We found that a vortex tends to accommodate preferentially in an aritificial pin in the star-shaped plate. We found a systematic evolution of vortex structure with increaseing magnetic field. We compare our theoretical calculations with vortices in a star-shaped Mo80Ge20 plate with an artificial pin and without an artificial pin obtained by a scanning SQUID microscope. We reconstructed the vortex image on the sample surface by using the inverse Biot-Savart law and the Fourier transformation.

  16. Stability of low aspect ratio inverted flags and rods in a uniform flow

    NASA Astrophysics Data System (ADS)

    Huertas-Cerdeira, Cecilia; Sader, John E.; Gharib, Morteza

    2016-11-01

    Cantilevered elastic plates and rods in an inverted configuration, where the leading edge is free to move and the trailing edge is clamped, undergo complex dynamics when subjected to a uniform flow. The stability of low aspect ratio inverted plates and rods is theoretically examined, showing that it is markedly different from that of their large aspect ratio counterpart. In the limit of zero aspect ratio, the undeflected equilibrium position is found to be stable for all wind speeds. A saddle-node bifurcation emerges at finite wind speed, giving rise to a strongly deflected stable and a weakly deflected unstable equilibria. This theory is compared to experimental measurements, where good agreement is found. This research was supported by a Grant of the Gordon and Betty Moore Foundation, the Australian Research Council Grants scheme and a "la Caixa" Fellowship Grant for Post-Graduate Studies of "la Caixa" Banking Foundation.

  17. Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes

    NASA Astrophysics Data System (ADS)

    Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.

    2016-07-01

    We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.

  18. Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate

    NASA Astrophysics Data System (ADS)

    Koffi, Moise

    The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.

  19. A New Absolute Plate Motion Model for Africa

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Wessel, P.; Müller, D.; Harada, Y.

    2013-12-01

    The India-Eurasia collision, a change in relative plate motion between Australia and Antarctica, and the coeval ages of the Hawaiian Emperor Bend (HEB) and Louisville Bend of ~Chron 22-21 all provide convincing evidence of a global tectonic plate reorganization at ~50 Ma. Yet if it were a truly global event, then there should be a contemporaneous change in Africa absolute plate motion (APM) reflected by physical evidence somewhere on the Africa plate. This evidence might be visible in the Reunion-Mascarene bend, which exhibits many HEB-like features such as a large angular change close to ~50 Ma. Recently, the Reunion hotpot trail has been interpreted as a continental feature with incidental hotspot volcanism. Here we propose the alternative hypothesis that the northern portion of the chain between Saya de Malha and the Seychelles (Mascarene Plateau) formed as the Reunion hotspot was situated on the Carlsberg Ridge, contemporaneously forming the Chagos-Laccadive Ridge on the India plate. We have created a 4-stage model that explores how a simple APM model fitting the Mascarene Plateau can also satisfy the age progressions and geometry of other hotspot trails on the Africa plate. This type of model could explain the apparent bifurcation of the Tristan hotspot chain, the age reversals seen along the Walvis Ridge and the diffuse nature of the St. Helena chain. To test this hypothesis we have made a new African APM model that goes back to ~80 Ma using a modified version of the Hybrid Polygonal Finite Rotation Method. This method uses seamount chains and their associated hotspots as geometric constraints for the model, and seamount age dates to determine its motion through time. The positions of the hotspots can be moved to get the best fit for the model and to explore the possibility that the ~50 Ma bend in the Reunion-Mascarene chain reflects Africa plate motion. We will examine how well this model can predict the key features reflecting Africa plate motion and contrast its predictions with other proposed models.

  20. Surgical treatment of comminuted mandibular fractures using a low-profile locking mandibular reconstruction plate system

    PubMed Central

    Kanno, Takahiro; Sukegawa, Shintaro; Nariai, Yoshiki; Tatsumi, Hiroto; Ishibashi, Hiroaki; Furuki, Yoshihiko; Sekine, Joji

    2014-01-01

    Objective: The treatment of comminuted mandibular fractures is challenging due to the severity of associated injuries and the need for a careful diagnosis with adequate treatment planning. Recently, open reduction and stable internal fixation (OR-IF) with a load-bearing reconstruction plate have been advocated for reliable clinical outcomes with minimal complications. This clinical prospective study evaluated OR-IF in the surgical management of comminuted mandibular fractures with a new low-profile, thin, mandibular locking reconstruction plate. Materials and Methods: We prospectively assessed OR-IF of comminuted mandibular fractures with a low-profile locking mandibular reconstruction plate in 12 patients (nine men, three women; mean age 32.2 [range 16-71] years) between April 2010 and December 2011. The clinical characteristics and associated clinical parameters of patients were evaluated over a minimum follow-up period of 12 months. Results: Traffic accidents caused 50% of the fractures, followed by falls (25%). Four patients (33.3%) had associated midfacial maxillofacial fractures, while five patients had other mandibular fractures. Seven patients (58.3%) needed emergency surgery, mostly for airway management. Anatomical reduction of the comminuted segments re-established the mandibular skeleton in stable occlusion with rigid IF via extraoral (33.3%), intraoral (50%), or combined (16.7%) approaches. Immediate functional recovery was achieved. Sound bone healing was confirmed in all patients, with no complications such as malocclusion, surgical site infection, or malunion with a mean follow-up of 16.3 (range 12-24) months. Conclusions: OR-IF using a low-profile reconstruction plate system is a reliable treatment for comminuted mandibular fractures, enabling immediate functional recovery with good clinical results. PMID:25593862

  1. Current concepts review: Fractures of the patella

    PubMed Central

    Gwinner, Clemens; Märdian, Sven; Schwabe, Philipp; Schaser, Klaus-D.; Krapohl, Björn Dirk; Jung, Tobias M.

    2016-01-01

    Fractures of the patella account for about 1% of all skeletal injuries and can lead to profound impairment due to its crucial function in the extensor mechanism of the knee. Diagnosis is based on the injury mechanism, physical examination and radiological findings. While the clinical diagnosis is often distinct, there are numerous treatment options available. The type of treatment as well as the optimum timing of surgical intervention depends on the underlying fracture type, the associated soft tissue damage, patient factors (i.e. age, bone quality, activity level and compliance) and the stability of the extensor mechanism. Regardless of the treatment method an early rehabilitation is recommended in order to avoid contractures of the knee joint capsule and cartilage degeneration. For non-displaced and dislocated non-comminuted transverse patellar fractures (2-part) modified anterior tension band wiring is the treatment of choice and can be combined – due to its biomechanical superiority – with cannulated screw fixation. In severe comminuted fractures, open reduction and fixation with small fragment screws or new angular stable plates for anatomic restoration of the retropatellar surface and extension mechanism results in best outcome. Additional circular cerclage wiring using either typical metal cerclage wires or resorbable PDS/non-resorbable FiberWires increases fixation stability and decreases risk for re-dislocation. Distal avulsion fractures should be fixed with small fragment screws and should be protected by a transtibial McLaughlin cerclage. Partial or complete patellectomy should be regarded only as a very rare salvage operation due to its severe functional impairment. PMID:26816667

  2. Homogeneous dielectric barrier discharges in atmospheric air and its influencing factor

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Li, Caixia; Ma, Dong; Luo, Haiyun; Li, Xiaowei

    2018-03-01

    The stable homogeneous dielectric barrier discharge (DBD) is obtained in atmospheric 2-3 mm air gap. It is generated using center frequency 1 kHz high voltage power supply between two plane parallel electrodes with specific alumina ceramic plates as the dielectric barriers. The discharge characteristics are studied by a measurement of its electrical discharge parameters and observation of its light emission phenomena. The results show that a large single current pulse of about 200 μs duration appearing in each voltage pulse, and its light emission is radially homogeneous and covers the entire surface of the two electrodes. The homogeneous discharge generated is a Townsend discharge during discharge. The influences of applied barrier, its thickness, and surface roughness on the transition of discharge modes are studied. The results show that it is difficult to produce a homogeneous discharge using smooth plates or alumina plate surface roughness Ra < 100 nm even at a 1 mm air gap. If the alumina plate is too thin, the discharge also transits to filamentary discharge. If it is too thick, the discharge is too weak to observe. With the increase of air gap distance and applied voltage, the discharge can also transit from a homogeneous mode to a filamentary mode. In order to generate stable and homogeneous DBD at a larger air gap, proper dielectric material, dielectric thickness, and dielectric surface roughness should be used, and proper applied voltage amplitude and frequency should also be used.

  3. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

  4. Coulomb double helical structure

    NASA Astrophysics Data System (ADS)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  5. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  6. Remote defect imaging for plate-like structures based on the scanning laser source technique

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  7. Wide-angle display-type retarding field analyzer with high energy and angular resolutions

    NASA Astrophysics Data System (ADS)

    Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro

    2017-12-01

    Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.

  8. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  9. A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiko; Inoue, Katsuaki; Goto, Shunji

    2004-05-12

    A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.

  10. The Atacama B-mode Search: Status and Prospect

    NASA Astrophysics Data System (ADS)

    Kusaka, Akito

    2013-04-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at degre angular scales. In January 2012, ABS has deployed 240 polarimeters employing transition-edge sensor (TES) bolometers. ABS has unique advantages for the measurement of B modes. This includes a continuously rotating half-wave plate that provides fast and clean modulation, as well as systematically clean optics that consist of a cryogenic side-fed Dragone telescope and feedhorn coupled TES polarimeters. In this talk, we will present the status and prospect of ABS.

  11. Diffraction and Smith-Purcell radiation on the hemispherical bulges in a metal plate

    NASA Astrophysics Data System (ADS)

    Syshchenko, V. V.; Larikova, E. A.; Gladkih, Yu. P.

    2017-12-01

    The radiation resulting from the uniform motion of a charged particle near a hemispheric bulge on a metal plane is considered. The description of the radiation process based on the method of images is developed for the case of non-relativistic particle and a perfectly conducting target. The spectral-angular and spectral densities of the diffraction radiation on the single bulge (as well as the Smith-Purcell radiation on the periodic string of bulges) are computed. The possibility of application of the developed approach to the case of relativistic incident particle is discussed.

  12. Measurement of Newton's constant using a torsion balance with angular acceleration feedback.

    PubMed

    Gundlach, J H; Merkowitz, S M

    2000-10-02

    We measured Newton's gravitational constant G using a new torsion balance method. Our technique greatly reduces several sources of uncertainty compared to previous measurements: (1) It is insensitive to anelastic torsion fiber properties; (2) a flat plate pendulum minimizes the sensitivity due to the pendulum density distribution; (3) continuous attractor rotation reduces background noise. We obtain G = (6.674215+/-0.000092) x 10(-11) m3 kg(-1) s(-2); the Earth's mass is, therefore, M = (5.972245+/-0.000082) x 10(24) kg and the Sun's mass is M = (1.988435+/-0.000027) x 10(30) kg.

  13. Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump.

    PubMed

    Pirat, Christophe; Lebon, Luc; Fruleux, Antoine; Roche, Jean-Sébastien; Limat, Laurent

    2010-08-20

    A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular momentum while sliding along the jump.

  14. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  15. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    PubMed

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  16. Vector magnetic field observations with the Haleakala polarimeter

    NASA Technical Reports Server (NTRS)

    Mickey, D. L.

    1985-01-01

    Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.

  17. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  18. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    NASA Astrophysics Data System (ADS)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  19. Boundary Between Stable and Unstable Regimes of Accretion

    NASA Astrophysics Data System (ADS)

    Blinova, A. A.; Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  20. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  1. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    NASA Astrophysics Data System (ADS)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate interplate coupling along the plate interface and rigid block motion. We can evaluate to contribution of elastic deformation and rigid motion. In result, weak plate coupling was found northern part of 3 degree in latitude. Almost crustal deformation are explained by rigid block motion.

  2. Development plates for stable internal fixation: Study of mechanical resistance in simulated fractures of the mandibular condyle.

    PubMed

    Celegatti Filho, Tóride Sebastião; Rodrigues, Danillo Costa; Lauria, Andrezza; Moreira, Roger William Fernandes; Consani, Simonides

    2015-01-01

    To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Preparation and Characterization of Ni Spines Grown on the Surface of Cubic Boron Nitride Grains by Electroplating Method

    PubMed Central

    Gui, Yanghai; Zhao, Jianbo; Chen, Jingbo; Jiang, Yuanli

    2016-01-01

    Cubic boron nitride (cBN) is widely applied in cutting and grinding tools. cBN grains plated by pure Ni and Ni/SiC composite were produced under the same conditions from an additive-free nickel Watts type bath. The processed electroplating products were characterized by the techniques of scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermoanalysis (TG-DTA). Due to the presence of SiC particles, there are some additional nodules on the surface of Ni/SiC plated cBN compared with the pure Ni plated cBN. The unique morphology of Ni/SiC plated cBN should attain greater retention force in resin bond. Moreover, the coating weight of cBN grains could be controlled by regulating the plating time. cBN grains with 60% coating weight possess the optimum grinding performance due to their roughest and spiniest surface. In addition, Ni spines plated cBN grains show good thermal stability when temperature is lower than 464 °C. Therefore, the plated cBN grains are more stable and suitable for making resin bond abrasive tools below 225 °C. Finally, the formation mechanism of electroplating products is also discussed. PMID:28773283

  4. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  5. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns

    NASA Astrophysics Data System (ADS)

    Wiemer, Daniel; Schrank, Christoph E.; Murphy, David T.; Wenham, Lana; Allen, Charlotte M.

    2018-05-01

    During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh-Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U-Pb ages indicate the emplacement of 3,600-3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick ( 43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

  6. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    PubMed

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Revised age for Midway volcano, Hawaiian volcanic chain

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.; Lanphere, M.A.

    1977-01-01

    New conventional K-Ar, 40Ar/39Ar, and petrochemical data on alkalic basalt pebbles from the basalt conglomerate overlying tholeiitic flows in the Midway drill hole show that Midway evolved past the tholeiitic shield-building stage and erupted lavas of the alkalic suite 27.0 ?? 0.6 m.y. ago. The data also show that previously published conventional K-Ar ages on altered samples of tholeiite are too young by about 9 m.y. These results remove a significant anomaly in the age-distance relationships of the Hawaiian chain and obviate the need for large changes in either the rate of rotation of the Pacific plate about the Hawaiian pole or the motion of the plate relative to the Hawaiian hot spot since the time of formation of the Hawaiian-Emperor bend. All of the age data along the Hawaiian chain are now reasonably consistent with an average rate of volcanic propagation of 8.0 cm/yr and with 0.83??/m.y. of angular rotation about the Hawaiian pole. ?? 1977.

  8. Stacked Fresnel Zone Plates for High Energy X-rays

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Vaughan, Gavin; Di Michiel, Marco; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim

    2007-01-01

    A stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates (FZP) at high energies. Two identical Si chips each of which containing 9 FZPs were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips were bonded together with slow solidification speed epoxy glue. A technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were experimentally tested to focus 15 and 50 keV x rays. The gain in the efficiency by factor 2.5 was demonstrated at 15 keV. The focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing FZPs was discussed.

  9. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  10. Numerical evaluation of the radiation from unbaffled, finite plates using the FFT

    NASA Technical Reports Server (NTRS)

    Williams, E. G.

    1983-01-01

    An iteration technique is described which numerically evaluates the acoustic pressure and velocity on and near unbaffled, finite, thin plates vibrating in air. The technique is based on Rayleigh's integral formula and its inverse. These formulas are written in their angular spectrum form so that the fast Fourier transform (FFT) algorithm may be used to evaluate them. As an example of the technique the pressure on the surface of a vibrating, unbaffled disk is computed and shown to be in excellent agreement with the exact solution using oblate spheroidal functions. Furthermore, the computed velocity field outside the disk shows the well-known singularity at the rim of the disk. The radiated fields from unbaffled flat sources of any geometry with prescribed surface velocity may be evaluated using this technique. The use of the FFT to perform the integrations in Rayleigh's formulas provides a great savings in computation time compared with standard integration algorithms, especially when an array processor can be used to implement the FFT.

  11. Plate kinematics of Nubia Somalia using a combined DORIS and GPS solution

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.; Willis, P.; Garcia, S.

    2006-11-01

    We have used up to 12 years of data to assess DORIS performance for geodynamics applications. We first examine the noise characteristics of the DORIS time-series of weekly station coordinates to derive realistic estimates of velocity uncertainties. We find that a combination of white and flicker noise best explains the DORIS time-series noise characteristics. Second, weekly solutions produced by the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL) DORIS Analysis Centre are combined to derive a global velocity field. This solution is combined with two independent GPS solutions, including 11 sites on Nubia and 5 on the Somalia plate. The combination indicates that DORIS horizontal velocities have an average accuracy of 3 mm/year, with best-determined sites having velocity accuracy better than 1 mm/year (one-sigma levels). Using our combined velocity field, we derive an updated plate kinematics model with a focus on the Nubia Somalia area. Including DORIS data improves the precision of the angular velocity vector for Nubia by 15%. Our proposed model provides robust bounds on the maximum opening rates along the East African Rift (4.7 6.7 mm/year). It indicates opening rates 15 and 7% slower than values predicted by NUVEL-1A for the southern Atlantic Ocean and Indian Ocean, respectively. These differences are likely to arise from the fact that NUVEL-1A considered Africa as a single non-deforming plate, while here we use a more refined approach.

  12. Minimally invasive locked plating of distal tibia fractures is safe and effective.

    PubMed

    Ronga, Mario; Longo, Umile Giuseppe; Maffulli, Nicola

    2010-04-01

    Distal tibial fractures are difficult to manage. Limited soft tissue and poor vascularity impose limitations for traditional plating techniques that require large exposures. The nature of the limitations for traditional plating techniques is intrinsic to the large exposure required to approach distal tibia, a bone characterized by limited soft tissue coverage and poor vascularity. The locking plate (LP) is a new device for treatment of fractures. We assessed the bone union rate, deformity, leg-length discrepancy, ankle range of motion, return to preinjury activities, infection, and complication rate in 21 selected patients who underwent minimally invasive osteosynthesis of closed distal tibia fractures with an LP. According to the AO classification, there were 12 Type A, 5 Type B, and 4 Type C fractures. The minimum followup was 2 years (average, 2.8 years; range, 2-4 years). Two patients were lost to followup. Union was achieved in all but one patient by the 24th postoperative week. Four patients had angular deformity less than 7 degrees . No patient had a leg-length discrepancy more than 1.1 cm. Five patients had ankle range of motion less than 20 degrees compared with the contralateral side. Sixteen patients had not returned to their preinjury sporting or leisure activities. Three patients developed a delayed infection. We judge the LP a reasonable device for treating distal tibia fractures. The level of physical activities appears permanently reduced in most patients. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  13. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    PubMed

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

  14. A new approach to three-dimensional neutron transport solution based on the method of characteristics and linear axial approximation

    NASA Astrophysics Data System (ADS)

    Zheng, Youqi; Choi, Sooyoung; Lee, Deokjung

    2017-12-01

    A new approach based on the method of characteristics (MOC) is proposed to solve the neutron transport equation. A new three-dimensional (3D) spatial discretization is applied to avoid the instability issue of the transverse leakage iteration of the traditional 2D/1D approach. In this new approach, the axial and radial variables are discretized in two different ways: the linear expansion is performed in the axial direction, then, the 3D solution of the angular flux is transformed to be the planar solution of 2D angular expansion moments, which are solved by the planar MOC sweeping. Based on the boundary and interface continuity conditions, the 2D expansion moment solution is equivalently transformed to be the solution of the axially averaged angular flux. Using the piecewise averaged angular flux at the top and bottom surfaces of 3D meshes, the planes are coupled to give the 3D angular flux distribution. The 3D CMFD linear system is established from the surface net current of every 3D pin-mesh to accelerate the convergence of power iteration. The STREAM code is extended to be capable of handling 3D problems based on the new approach. Several benchmarks are tested to verify its feasibility and accuracy, including the 3D homogeneous benchmarks and heterogeneous benchmarks. The computational sensitivity is discussed. The results show good accuracy in all tests. With the CMFD acceleration, the convergence is stable. In addition, a pin-cell problem with void gap is calculated. This shows the advantage compared to the traditional 2D/1D MOC methods.

  15. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  16. Dynamic test results for the CASES ground experiment

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.

    1993-01-01

    The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.

  17. Is Plate Tectonics Speeding up with Time?

    NASA Astrophysics Data System (ADS)

    Condie, K. C.; Korenaga, J.; Pisarevsky, S. A.

    2014-12-01

    Cooling of the mantle is often assumed to result in a decrease in average global plate speeds with time. However, deformation in collisional orogens indicates the frequency of craton collisions increases from about 5/100 Myr 2.5 Ga to 10/100 Myr 200 Ma. Likewise, angular plate velocities weighted by craton area increase from an average of 25 deg/100Myr at 2 Ga to about 50 deg/100 Myr in the last 200 Myr. The number of cratons decreases rapidly from > 20 to ≤ 15 between 1.9 and 1.75 Ga as numerous Archean blocks were sutured together. Orogens and passive margins show the same two cycles of ocean basin closing: an early cycle from 2.5-1.9 Ga and a later cycle, which corresponds to the supercontinent cycle ≤ 1.9 Ga. Also recorded in the geologic record during the last 200 Myr is a decrease in the duration of passive continental margins from 400 Myr at 1.2 Ga to < 100 Myr during the last 200 Myr. And finally, assuming Gondwana and Pangea represent stages in the growth of a single supercontinent, the period of the supercontinent cycle has dropped from about 1000 Myr at 1.5 Ga to < 500 Myr in the last 500 Myr. All of these observations are consistent with an increase in average plate speeds with time, which is consistent with the geodynamic model of Korenaga (2006) suggesting that plate tectonics is speeding up with time. This could be due to a decrease in the magnitude of lithosphere dehydration stiffening as ambient mantle temperature falls with time. Alternatively or in addition, gradual hydration of the mantle by subduction may decrease mantle viscosity and increase convection rates.

  18. Paleo movement of continents, mantle dynamics and large wander of the rotational pole

    NASA Astrophysics Data System (ADS)

    Greff-Lefftz, M.; Besse, J.

    2010-12-01

    Polar wander is known to be mainly linked to mass distribution changes in its mantle or surface, and more particularly to subductions evolution. On one hand, the peri-pacific subductions seem to be a quite permanent feature of the earth's history at least since the Paleozoic, while the "Tethyan" subductions have a complex history with successive collisions of continental blocs (Hercynian, Kimmerian, Indian) and episodically rebirth of E-W subduction zones. We investigate plate motion during the last 350 million years in a reference frame where Africa is fixed, this last plate being a central plate from which most continents diverged since Pangea break-up. The exact amount of subduction is unknown before 120 Ma and we try to estimate it from the study of the subduction volcanism in the past and plate motion history, when available. Assuming that the subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 350 Ma. By conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis, with respect to the fixed Africa, is computed and compared to the Apparent Polar Wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of the computed APW can be described as successive oscillatory clockwise or counter-clockwise motions and that the cusps (around 230 Ma and 170 Ma), both in the observed Africa APW and in the computed pole, are essentially due to the Hercynian (340-300 Ma) and Kimmerian (270-230 Ma) continental collisions.

  19. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  20. Subcritical saturation of the magnetorotational instability through mean magnetic field generation

    NASA Astrophysics Data System (ADS)

    Xie, Jin-Han; Julien, Keith; Knobloch, Edgar

    2018-03-01

    The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.

  1. Sensitivity analysis of the GNSS derived Victoria plate motion

    NASA Astrophysics Data System (ADS)

    Apolinário, João; Fernandes, Rui; Bos, Machiel

    2014-05-01

    Fernandes et al. (2013) estimated the angular velocity of the Victoria tectonic block from geodetic data (GNSS derived velocities) only.. GNSS observations are sparse in this region and it is therefore of the utmost importance to use the available data (5 sites) in the most optimal way. Unfortunately, the existing time-series were/are affected by missing data and offsets. In addition, some time-series were close to the considered minimal threshold value to compute one reliable velocity solution: 2.5-3.0 years. In this research, we focus on the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) by extending the used data-span: Fernandes et al. (2013) used data until September 2011. We also investigate the effect of adding other stations to the solution, which is now possible since more stations became available in the region. In addition, we study if the conventional power-law plus white noise model is indeed the best stochastic model. In this respect, we apply different noise models using HECTOR (Bos et al. (2013), which can use different noise models and estimate offsets and seasonal signals simultaneously. The seasonal signal estimation is also other important parameter, since the time-series are rather short or have large data spans at some stations, which implies that the seasonal signals still can have some effect on the estimated trends as shown by Blewitt and Lavellee (2002) and Bos et al. (2010). We also quantify the magnitude of such differences in the estimation of the secular velocity and their effect in the derived angular velocity. Concerning the offsets, we investigate how they can, detected and undetected, influence the estimated plate motion. The time of offsets has been determined by visual inspection of the time-series. The influence of undetected offsets has been done by adding small synthetic random walk signals that are too small to be detected visually but might have an effect on the estimated trend (Williams 2003, Langbein 2012). Finally, our preferable angular velocity estimation is used to evaluate the consequences on the kinematics of the Victoria block, namely the magnitude and azimuth of the relative motions with respect to the Nubia and Somalia plates and their tectonic implications. References Agnew, D. C. (2013). Realistic simulations of geodetic network data: The Fakenet package, Seismol. Res. Lett., 84 , 426-432, doi:10.1785/0220120185. Blewitt, G. & Lavallee, D., (2002). Effect of annual signals on geodetic velocity, J. geophys. Res., 107(B7), doi:10.1029/2001JB000570. Bos, M.S., R.M.S. Fernandes, S. Williams, L. Bastos (2012) Fast Error Analysis of Continuous GNSS Observations with Missing Data, Journal of Geodesy, doi: 10.1007/s00190-012-0605-0. Bos, M.S., L. Bastos, R.M.S. Fernandes, (2009). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series, J. of Geodynamics, j.jog.2009.10.005. Fernandes, R.M.S., J. M. Miranda, D. Delvaux, D. S. Stamps and E. Saria (2013). Re-evaluation of the kinematics of Victoria Block using continuous GNSS data, Geophysical Journal International, doi:10.1093/gji/ggs071. Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models, Journal of Geodesy, Volume 86, Issue 9, pp 775-783, Williams, S. D. P. (2003). Offsets in Global Positioning System time series, J. Geophys. Res., 108, 2310, doi:10.1029/2002JB002156, B6.

  2. Comparative study on the microbiological features of angular cheilitis in HIV seropositive and HIV seronegative patients from South India

    PubMed Central

    Krishnan, P Anitha; Kannan, Ranganathan

    2013-01-01

    Objective: This study was designed to compare the microbiological features of angular cheilitis (AC) in human immunodeficiency virus (HIV) seropositive and HIV seronegative individuals, in a group of south Indians. Materials and Methods: Swabs from oral commissures of 46 patients were obtained and inoculated on to Sabouraud's dextrose agar (SDA) supplemented with chloramphenicol, blood agar (BA) and MacConkey's agar (MCA) plates and cultured. α-hemolytic Streptococci, Staphylococcus albus, Staphylococcus aureus, Candida species, Klebsiella species and Pseudomonas species were cultured. Candidal colonies were further speciated by the conventional biotyping technique. Results: In AC of HIV seropositive patients Candida albicans and Staphylococcus aureus were more prevalent than that in HIV seronegative patients. Incidentally in patients with CD4 cell count less than 200 there was an increase in the incidence of Candidal and Staphylococcus aureus colonization when compared to patients with CD4 cell count higher than 200. Conclusion: The present study suggests a definite difference in the microbial flora of AC in HIV seropositive patients than that of HIV seronegative population. PMID:24574650

  3. Fabrication and characterization of high-efficiency double-sided blazed x-ray optics.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2016-01-15

    The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.

  4. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    NASA Astrophysics Data System (ADS)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  5. Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae.

    PubMed

    Sturges, Beverly K; Kapatkin, Amy S; Garcia, Tanya C; Anwer, Cona; Fukuda, Shimpei; Hitchens, Peta L; Wisner, Tristan; Hayashi, Kei; Stover, Susan M

    2016-04-01

    To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens. © Copyright 2016 by The American College of Veterinary Surgeons.

  6. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  7. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    NASA Astrophysics Data System (ADS)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  8. Probing the structure of the stable Xe isotopes with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.

    2018-05-01

    The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.

  9. Optical spring stabilization

    NASA Astrophysics Data System (ADS)

    Lough, James D.

    The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.

  10. Absolute plate motion of Africa around Hawaii-Emperor bend time

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Wessel, P.; Müller, R. D.; Williams, S. E.; Harada, Y.

    2015-06-01

    Numerous regional plate reorganizations and the coeval ages of the Hawaiian Emperor bend (HEB) and Louisville bend of 50-47 Ma have been interpreted as a possible global tectonic plate reorganization at ˜chron 21 (47.9 Ma). Yet for a truly global event we would expect a contemporaneous change in Africa absolute plate motion (APM) reflected by physical evidence distributed on the Africa Plate. This evidence has been postulated to take the form of the Réunion-Mascarene bend which exhibits many HEB-like features, such as a large angular change close to ˜chron 21. However, the Réunion hotspot trail has recently been interpreted as a sequence of continental fragments with incidental hotspot volcanism. Here we show that the alternative Réunion-Mascarene Plateau trail can also satisfy the age progressions and geometry of other hotspot trails on the Africa Plate. The implied motion, suggesting a pivoting of Africa from 67 to 50 Ma, could explain the apparent bifurcation of the Tristan hotspot chain, the age reversals seen along the Walvis Ridge, the sharp curve of the Canary trail, and the diffuse nature of the St. Helena chain. To test this hypothesis further we made a new Africa APM model that extends back to ˜80 Ma using a modified version of the Hybrid Polygonal Finite Rotation Method. This method uses seamount chains and their associated hotspots as geometric constraints for the model, and seamount age dates to determine APM through time. While this model successfully explains many of the volcanic features, it implies an unrealistically fast global lithospheric net rotation, as well as improbable APM trajectories for many other plates, including the Americas, Eurasia and Australia. We contrast this speculative model with a more conventional model in which the Mascarene Plateau is excluded in favour of the Chagos-Laccadive Ridge rotated into the Africa reference frame. This second model implies more realistic net lithospheric rotation and far-field APMs, but fails to explain key details of the Atlantic Ocean volcanic chains. Both models predict a Canary plume influence beneath the Madeiras. Neither model, when projected via the global plate circuit into the Pacific, predicts any significant change in plate motion around chron 21. Consequently, Africa APM models do not appear to provide independent support for a chron 21 global reorganization.

  11. Ion assisted deposition of SiO2 film from silicon

    NASA Astrophysics Data System (ADS)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  12. Face-seal lubrication: 1: Proposed and published models

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1976-01-01

    The numerous published theories on the mechanism of hydrodynamic lubrication of face seals were reviewed. These theories employ either an inclined-slider-bearing macrogeometry or an inclined-slider-bearing microgeometry to produce hydrodynamic pressure that separates the surfaces of the primary seal. Secondary seal friction and primary ring inertia effects are not considered. Hypothetical seal operating models were devised to include secondary seal friction and primary ring inertia effects. It was hypothesized that these effects induce relative angular misalinement of the primary seal faces and that this misalinement is, in effect, an inclined slider macrogeometry. Stable running was postulated for some of these hypothetical operating models. In others, periodic loss of hydrodynamic lubrication was postulated to be possible with certain combinations of waviness and angular misalinement. Application of restrictions that apply to seal operation led to a hydrodynamic governing equation for the new model that is a two-dimensional, time-dependent Reynolds equation with the short-bearing approximation.

  13. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    PubMed

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  14. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser.

    PubMed

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-01-15

    A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.

  15. Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.

    2017-05-01

    Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.

  16. Reducing tilt-to-length coupling for the LISA test mass interferometer

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  17. The demosponge Halichondria (Halichondria) panicea (Pallas, 1766) as a novel source of biosurfactant-producing bacteria.

    PubMed

    Rizzo, Carmen; Syldatk, Christoph; Hausmann, Rudolf; Gerçe, Berna; Longo, Caterina; Papale, Maria; Conte, Antonella; De Domenico, Emilio; Michaud, Luigi; Lo Giudice, Angelina

    2018-06-01

    The Mediterranean sponge Halichondria (Halichondria) panicea was explored as a novel matrix for the isolation of biosurfactant-producing bacteria. A total of 38 (out of 56) isolates gave a good response to the employed screening tests (e.g., stable emulsion detection, surface tension measurement, hemolytic activity, and blue agar plate assay) and were selected for further analyses. The thin layer chromatography revealed a possible glucidic composition of biosurfactants. Most promising strains, i.e., those able to produce stable emulsion with percentage higher than 30% and yellow spots on TLC plates, were affiliated to the genera Pseudovibrio, Acinetobacter, and Bacillus. The biosurfactant production by two isolates (i.e., Acinetobacter sp. SpN134 and Pseudovibrio sp. SpE85) was evaluated under different culture conditions, in terms of temperature, NaCl concentration, and pH. Surface tension reduction ability was more stable than the emulsification, and resulted differently influenced by salinity, temperature, and pH. Acinetobacter sp. SpN134 resulted particularly efficient and competitive if compared with other well-known biosurfactant producers. Data suggest that sponges may represent a promising matrix for the isolation of biosurfactant-producing bacteria, reinforcing the growing interest towards filter-feeding organisms as underexplored sources of specialized bacteria. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of an Innovative Fixation System for Chevron Bunionectomy.

    PubMed

    Bennett, Gordon L; Sabetta, James A

    2016-02-01

    Distal chevron metatarsal osteotomy bunionectomy is a commonly performed procedure for the treatment of mild to moderate hallux valgus deformity. There are several different methods to stabilize this osteotomy. We evaluated a new intramedullary plate system. We prospectively evaluated 57 consecutive patients who underwent distal chevron metatarsal osteotomy bunionectomy utilizing the intramedullary plate system. All operative procedures were performed by the senior author. Patients were evaluated preoperatively, postoperatively, and at a final follow-up utilizing the American Orthopaedic Foot & Ankle Society (AOFAS) forefoot scoring system. Sixty-three surgically corrected feet went on to heal the osteotomy site. There were no hardware failures. We had one patient that expressed mild discomfort over the plate. All patients significantly improved their AOFAS scores compared with preoperative values. We concluded that the distal chevron metatarsal osteotomy bunionectomy resulted in excellent function and pain relief. The new plate system was a reliable and stable implant with a low profile, good strength, and ease of use. Level IV, retrospective case series. © The Author(s) 2015.

  19. Plantar-plate disruptions: "the severe turf-toe injury." three cases in contact athletes.

    PubMed

    Drakos, Mark C; Fiore, Russell; Murphy, Conor; DiGiovanni, Christopher W

    2015-05-01

    To present 3 cases of plantar-plate rupture and turf-toe injury in contact athletes at 1 university and to discuss appropriate diagnosis and treatment algorithms for each case. Turf toe is a common injury in athletes participating in outdoor cutting sports. However, it has been used as an umbrella term to describe many different injuries of the great toe. In some cases, the injury can be so severe that the plantar plate and sesamoid apparatus may be ruptured. These patients may be better managed with surgery than with traditional nonoperative interventions. Turf toe, plantar-plate disruption, sesamoid fracture. For stable injuries in which the plantar plate is not completely disrupted, nonoperative treatment with casting or a stiff-soled shoe, gradual weight bearing, and rehabilitation is the best practice. Unstable injuries require surgical intervention and plantar-plate repair. Turf toe and injury to the first metatarsophalangeal joint are relatively common injuries in athletes, but few researchers have detailed the operative and nonoperative treatments of plantar-plate disruption in these patients. We examine 3 cases that occurred over 4 seasons on a collegiate football team. Turf toe represents a wide array of pathologic conditions involving the first metatarsophalangeal joint. Stress and instability testing are key components to assess in determining whether surgical intervention is warranted to restore optimal function. Stiffer-soled shoes or shoes with steel-plate insertions may help to prevent these injuries and are useful tools for protection during the rehabilitation period.

  20. Titanium Elastic Nail (TEN) versus Reconstruction Plate Repair of Midshaft Clavicular Fractures: A Finite Element Study

    PubMed Central

    Liu, Yanjie; Zhang, Wen; Pan, Yao; Zhang, Wei; Zhang, Changqing; Zeng, Bingfang; Chen, Yunfeng

    2015-01-01

    Background The biomechanical characteristics of midshaft clavicular fractures treated with titanium elastic nail (TEN) is unclear. This study aimed to present a biomechanical finite element analysis of biomechanical characteristics involved in TEN fixation and reconstruction plate fixation for midshaft clavicular fractures. Methods Finite element models of the intact clavicle and of midshaft clavicular fractures fixed with TEN and with a reconstruction plate were built. The distal clavicle displacement, peak stress, and stress distribution on the 3 finite element models were calculated under the axial compression and cantilever bending. Results In both loading configurations, TEN generated the highest displacement of the distal clavicle, followed by the intact clavicle and the reconstruction plate. TEN showed higher peak bone and implant stresses, and is more likely to fail in both loading configurations compared with the reconstruction plate. TEN led to a stress distribution similar to that of the intact clavicle in both loading configurations, whereas the stress distribution with the reconstruction plate was nonphysiological in cantilever bending. Conclusions TEN is generally preferable for treating simple displaced fractures of the midshaft clavicle, because it showed a stress distribution similar to the intact clavicle. However, TEN provides less stability, and excessive exercise of and weight bearing on the ipsilateral shoulder should be avoided in the early postoperative period. Fixation with a reconstruction plate was more stable but showed obvious stress shielding. Therefore, for patients with a demand for early return to activity, reconstruction plate fixation may be preferred. PMID:25965409

  1. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    PubMed

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  2. Intercondylar humerus fracture- parallel plating and its results.

    PubMed

    Kumar, Sanjiv; Singh, Sudhir; Kumar, Dharmender; Kumar, Neeraj; Verma, Reetu

    2015-01-01

    Intercondylar fracture of humerus is one of the commonest fractures of young adult and counts for about 30% of all elbow fractures. The treatment of these fractures continues to present challenges despite advances in internal fixation. Although orthogonal plating use to provid adequate functional results in these fractures, parallel plating is said to be mechanically more stable construct thus allowing early mobilization and better range of motion. AIM of the study is to assess the clinical as well functional results of these fractures treated with parallel plating. Prospective study in a tertiary care hospital. A total of 23 fresh patients of intercondylar fracture of humerus from Jan 2013 to May 2014 were included in the study and were treated with parallel plating. These patients were followed at 3, 6, 12, 24 weeks and at 1year of follow up and assessed in terms of time for union, range of motion, MAYO score, DASH score and complication rate. At final follow up Mayo score was 96.32±04.96 from 5.00±01.26 and DASH SCORE was 31.42±2.04 which dropped from 150±05.34, Range of motion improved from 21.38±05.70 to 116.1±07.92 with 100% union rate and complications less than 19%. Parallel plating for intercondylar fracture of humerus is excellent method of fixation and results are similar to those treated with orthogonal plating.

  3. An economical method for the continuous production of iodine-123

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Smith, W. R.; Sodd, V. J.

    1968-01-01

    Simple and inexpensive method produces iodine 123, in a conventional cyclotron. Tellurium 122, a stable isotope available in enrichments exceeding 95 percent, is held on a porous metal plate by a flowing stream of helium and bombarded with either alpha particles or helium 3.

  4. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  5. A double-plating approach to distal femur fracture: A clinical study.

    PubMed

    Steinberg, Ely L; Elis, Jacov; Steinberg, Yohai; Salai, Moshe; Ben-Tov, Tomer

    2017-10-01

    Locked plating is one of the latest innovative options for treating supracondylar femur fractures with relatively low failure rates. Single lateral plating was often found to have a relative higher failure rate. No clinical studies of double-plating distal femur fixation have thus far been reported. The aim of this study is to present our clinical experience with this surgical approach. Thirty-two patients (26 females and 6 males, mean age 76 years, range 44-101) were included in the study. Eight of them patients had a periprosthetic stable implant fracture and two patients were treated for a nonunion. All fractures, excluding one that needed bone grafting and one refracture, healed within 12 weeks. One patient needed bone grafting for delayed union and one patient needed fixation exchange due to femur re-fracture at the site of the most proximal screw. Two patients developed superficial wound infection and one patient required medial plate removal after union due to deep infection. Based on these promising results, we propose that the double-plating technique should be considered in the surgeon's armamentarium for the treatment of supracondylar femur fractures, particularly in patients with poor bone quality, comminuted fractures and very low periprosthetic fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of severe plastic deformation on the structure and mechanical properties of Al-Cu-Mg alloy

    NASA Astrophysics Data System (ADS)

    Khafizova, E.; Islamgaliev, R.

    2014-08-01

    Aluminum Al-Cu-Mg alloy has been subjected to high pressure torsion (HPT) and equal-channel angular pressing (ECAP) at various temperatures. An ultrafine-grained (UFG) structure thermally stable up to a temperature of 175 °C was produced in all the investigated samples. Simultaneous increase in strength and ductility has been demonstrated in an ECAPed sample in comparison with a coarse-grained sample subjected to standard treatment.

  7. A New Global Geodetic Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, C. W.; Klein, E. C.; Blewitt, G.; Shen, Z.; Wang, M.; Chamot-Rooke, N. R.; Rabaute, A.

    2012-12-01

    As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. While v.1.2 contained ~25,000 deforming cells of 0.6° by 0.5° dimension, the new models contains >136,000 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested the presence of deforming areas where those previous studies did not. As a result, some plates/blocks identified by Bird (2003) we assumed to deform, and the total number of plates and blocks in GSRM v.2 is 38 (including the Bering block, which Bird (2003) did not consider). GSRM v.1.2 was based on ~5,200 GPS velocities, taken from 86 studies. The new model is based on ~17,000 GPS velocities, taken from 170 studies. The GPS velocity field consists of a 1) ~4900 velocities derived by us for CPS stations publicly available RINEX data and >3.5 years of data, 2) ~1200 velocities for China from a new analysis of all CMONOC data, and 3) velocities published in the literature or made otherwise available to us. All studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. Because the goal of the project is to model the interseismic strain rate field, we model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for most of the 38 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary conditions for the strain rate calculations. For the strain rate calculations we used the method of Haines and Holt. In order to equally fit the data in slowly and rapidly deforming areas, we first calculated a very smooth model by setting the a priori variances of the strain rate components very low. We then used this model as a proxy for the a priori standard deviations of the final model. To add some more constraints to the model (to make it more stable), we manipulated the a priori covariance matrix to reflect the expected style of deformation derived from (an interpolation of) shallow earthquake focal mechanisms. We will show examples of the strain rate and velocity field results. We will also highlight how and where the results can be viewed and accessed through a dedicated webportal.

  8. Tool and process for miniature explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)

    1987-01-01

    A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.

  9. Lake Pontchartrain and Vicinity Hurricane Protection Plan. Report 1. Prototype Data Acquisition and Analysis.

    DTIC Science & Technology

    1982-01-01

    Equation 1 may be rewritten as 29 Ji h(t) = 0 + Ai cos (Wit + 0i) (2) i=1 where A = fHi = amplitude of the ith constituent i, th W= angular frequency...Rigolets channel. 61 . Plots of the current calculated from harmonic analysis re- sults are shown in Plates 205-221 for the 16 analyzed current meter...61.6 2.0 262 ((otlnd) (Shret 13 of 19) i Table 11 (Co.li ...d) =dy -- tatin E Contnud) 10119178 15-00 61 .u i.0 I70 65.0 7.2 1 0119178 15.50 bl.6 1.2

  10. The astronomical data base and retrieval system at NASA

    NASA Technical Reports Server (NTRS)

    Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.

    1982-01-01

    More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.

  11. Detailed characterization of the LLNL imaging proton spectrometer

    DOE PAGES

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  12. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    PubMed

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  13. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    NASA Astrophysics Data System (ADS)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  14. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.

  15. Constant strain rate experiments and constitutive modeling for a class of bitumen

    NASA Astrophysics Data System (ADS)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  16. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  17. Stability of radial head and neck fractures: a biomechanical study of six fixation constructs with consideration of three locking plates.

    PubMed

    Burkhart, Klaus Josef; Mueller, Lars P; Krezdorn, David; Appelmann, Philipp; Prommersberger, Karl J; Sternstein, Werner; Rommens, Pol M

    2007-12-01

    Open reduction and internal fixation of radial neck fractures can lead to secondary loss of reduction and nonunion due to insufficient stability. Nevertheless, there are only a few biomechanical studies about the stability achieved by different osteosynthesis constructs. Forty-eight formalin-fixed, human proximal radii were divided into 6 groups according to their bone density (measured by dual-energy x-ray absorptiometry). A 2.7-mm gap osteotomy was performed to simulate an unstable radial neck fracture, which was fixed with 3 nonlocking implants: a 2.4-mm T plate, a 2.4-mm blade plate, and 2.0-mm crossed screws, and 3 locking plates: a 2.0-mm LCP T plate, a 2.0-mm 6x2 grid plate, and a 2.0-mm radial head plate. Implants were tested under axial (N/mm) and torsional (Ncm/ degrees ) loads with a servohydraulic materials testing machine. The radial head plate was significantly stiffer than all other implants under axial as well as under torsional loads, with values of 36 N/mm and 13 Ncm/ degrees . The second-stiffest implant was the blade plate, with values of 20 N/mm and 6 Ncm/ degrees . The weakest implants were the 2.0-mm LCP, with values of 6 N/mm and 2 Ncm/ degrees , and the 2.0-mm crossed screws, with values of 18 N/mm and 2 Ncm/ degrees . The 2.4-mm T plate, with values of 14 N/mm and 4 Ncm/ degrees , and the 2.0-mm grid plate, with values of 8 N/mm and 4 Ncm/ degrees came to lie in the midfield. The 2.0-mm angle-stable plates-depending on their design-allow fixation with comparable or even higher stability than the bulky 2.4-mm nonlocking implants and 2.0-mm crossed screws.

  18. B-dot algorithm steady-state motion performance

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.

    2018-05-01

    Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.

  19. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume andmore » uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.« less

  20. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    PubMed

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  1. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  2. Learning dynamic control of body yaw orientation.

    PubMed

    Vimal, Vivekanand Pandey; Lackner, James R; DiZio, Paul

    2018-05-01

    To investigate the role of gravitational cues in the learning of a dynamic balancing task, we placed blindfolded subjects in a device programmed with inverted pendulum dynamics about the yaw axis. Subjects used a joystick to try and maintain a stable orientation at the direction of balance during 20 100 s-long trials. They pressed a trigger button on the joystick to indicate whenever they felt at the direction of balance. Three groups of ten subjects each participated. One group balanced with their body and the yaw axis vertical, and thus did not have gravitational cues to help them to determine their angular position. They showed minimal learning, inaccurate indications of the direction of balance, and a characteristic pattern of positional drifting away from the balance point. A second group balanced with the yaw axis pitched 45° from the gravitational vertical and had gravity relevant position cues. The third group balanced with their yaw axis horizontal where they had gravity-dependent cues about body position in yaw. Groups 2 and 3 showed better initial balancing performance and more learning across trials than Group 1. These results indicate that in the absence of vision, the integration of transient semicircular canal and somatosensory signals about angular acceleration is insufficient for determining angular position during dynamic balancing; direct position-dependent gravity cues are necessary.

  3. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  4. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  5. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  6. Exploiting OSPaN (Optical Solar Patrol Network) Data to Understand Large-Scale Solar Eruptions Impacting Space Weather

    DTIC Science & Technology

    2011-12-28

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...by CMEs; (2) the angular orientation of newly emerged magnetic flux on the solar surface relative to stable filaments plays a role in how rapidly the...potential of exploiting ISOON observations to increase our understanding of solar eruptions, a requirement for improved prediction and mitigation of space

  7. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  8. Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone

    NASA Technical Reports Server (NTRS)

    Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.

    1996-01-01

    We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.

  9. Three Dimensional Structure and Time Development of Radio Emission from Solar Active Regions.

    DTIC Science & Technology

    1983-01-15

    8217 surrounded by a weaker unpolarized halo whose angular extent ranges between 5’ and 9’. The bright (106K) sunspot-associated cores, which were intepreted in...shorter intervals. Examination of the He film indicates that the dominant He emission was stable for periods of at least six hours. Figure 8 and 9 also...the cool loops and may occupy a substantial fraction of the region above sunspots. This intepretation has, in fact, been supported by the model of

  10. Production of slow protonium in vacuum

    NASA Astrophysics Data System (ADS)

    Zurlo, N.; Rizzini, E. Lodi; Venturelli, L.; Amoretti, M.; Carraro, C.; Lagomarsino, V.; Macrì, M.; Manuzio, G.; Testera, G.; Variola, A.; Amsler, C.; Pruys, H.; Regenfus, C.; Bonomi, G.; Fontana, A.; Genova, P.; Montagna, P.; Rotondi, A.; Cesar, C. L.; Charlton, M.; Mitchard, D.; Jørgensen, L. V.; Madsen, N.; Van der Werf, D. P.; Doser, M.; Kellerbauer, A.; Landua, R.; Funakoshi, R.; Hayano, R. S.; Posada, L. G.; Yamazaki, Y.

    We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H{2/+} in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around n = 70, with iow angular momenta. This work provides a new two-body system for studies using laser spectroscopic techniques.

  11. Production of slow protonium in vacuum

    NASA Astrophysics Data System (ADS)

    Zurlo, N.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Venturelli, L.; Yamazaki, Y.

    2006-09-01

    We descrbe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H_2^+ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around n = 70, with low angular momenta. This work provides a new two-body system for studies using laser spectroscopic techniques.

  12. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  13. Plantar-Plate Disruptions: “The Severe Turf-Toe Injury.” Three Cases in Contact Athletes

    PubMed Central

    Drakos, Mark C.; Fiore, Russell; Murphy, Conor; DiGiovanni, Christopher W.

    2015-01-01

    Objective: To present 3 cases of plantar-plate rupture and turf-toe injury in contact athletes at 1 university and to discuss appropriate diagnosis and treatment algorithms for each case. Background: Turf toe is a common injury in athletes participating in outdoor cutting sports. However, it has been used as an umbrella term to describe many different injuries of the great toe. In some cases, the injury can be so severe that the plantar plate and sesamoid apparatus may be ruptured. These patients may be better managed with surgery than with traditional nonoperative interventions. Differential Diagnosis: Turf toe, plantar-plate disruption, sesamoid fracture. Treatment: For stable injuries in which the plantar plate is not completely disrupted, nonoperative treatment with casting or a stiff-soled shoe, gradual weight bearing, and rehabilitation is the best practice. Unstable injuries require surgical intervention and plantar-plate repair. Uniqueness: Turf toe and injury to the first metatarsophalangeal joint are relatively common injuries in athletes, but few researchers have detailed the operative and nonoperative treatments of plantar-plate disruption in these patients. We examine 3 cases that occurred over 4 seasons on a collegiate football team. Conclusions: Turf toe represents a wide array of pathologic conditions involving the first metatarsophalangeal joint. Stress and instability testing are key components to assess in determining whether surgical intervention is warranted to restore optimal function. Stiffer-soled shoes or shoes with steel-plate insertions may help to prevent these injuries and are useful tools for protection during the rehabilitation period. PMID:25695855

  14. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling

    PubMed Central

    Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; Glišović, Petar; Moucha, Robert; Grand, Stephen P.; Simmons, Nathan A.

    2016-01-01

    Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region. PMID:28028535

  15. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.

    PubMed

    Rowley, David B; Forte, Alessandro M; Rowan, Christopher J; Glišović, Petar; Moucha, Robert; Grand, Stephen P; Simmons, Nathan A

    2016-12-01

    Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.

  16. Increased torsional stability by a novel femoral neck locking plate. The role of plate design and pin configuration in a synthetic bone block model.

    PubMed

    Brattgjerd, Jan Egil; Loferer, Martin; Niratisairak, Sanyalak; Steen, Harald; Strømsøe, Knut

    2018-06-01

    In undisplaced femoral neck fractures, internal fixation remains the main treatment, with mechanical failure as a frequent complication. As torsional stable fixation promotes femoral neck fracture healing, the Hansson Pinloc® System with a plate interlocking pins, was developed from the original hook pins. Since its effect on torsional stability is undocumented, the novel implant was compared with the original configurations. Forty-two proximal femur models custom made of two blocks of polyurethane foam were tested. The medial block simulated the cancellous head, while the lateral was laminated with a glass fiber filled epoxy sheet simulating trochanteric cortical bone. Two hollow metal cylinders with a circumferential ball bearing in between mimicked the neck, with a perpendicular fracture in the middle. Fractures were fixated by two or three independent pins or by five configurations involving the interlocking plate (two pins with an optional peg in a small plate, or three pins in a small, medium or large plate). Six torsional tests were performed on each configuration to calculate torsional stiffness, torque at failure and failure energy. The novel configurations improved parameters up to an average of 12.0 (stiffness), 19.3 (torque) and 19.9 (energy) times higher than the original two pins (P < 0.001). The plate, its size and its triangular configuration improved all parameters (P = 0.03), the plate being most effective, also preventing permanent failure (P < 0.001). The novel plate design with its pin configuration enhanced torsional stability. To reveal clinical relevance a clinical study is planned. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Biomechanical Assessment of the Dorsal Spanning Bridge Plate in Distal Radius Fracture Fixation: Implications for Immediate Weight-Bearing.

    PubMed

    Huang, Jerry I; Peterson, Bret; Bellevue, Kate; Lee, Nicolas; Smith, Sean; Herfat, Safa

    2017-04-01

    The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.

  18. Influence of the shape factor on the flow and heat transfer of a water-based nanofluid in a rotating system

    NASA Astrophysics Data System (ADS)

    Khan, Umar; Adnan; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    2017-04-01

    The flow of a nanofluid between two parallel plates (horizontally placed) has been investigated. Different shapes of nanoparticles (suspended in a base fluid) have been considered and the effect of the shape factor has been analyzed. The lower plate is being stretched in opposite directions with forces of the same magnitude. The plates and nanofluid rotate together with angular velocity Ω. The dimensionless form of the flow model, in the form of a system of ordinary differential equations, is obtained by employing some viable similarity transformations. A well-knows analytical method i.e. Variation of Parameters Method (VPM), has been used to solve the problem. Besides, the same system of equations has also been solved numerically by using the forth order Runge-Kutta method, combined with shooting technique. The graphs highlight the influence of ingrained dimensionless physical parameters on the skin friction coefficient, velocity and temperature profiles, and local rate of heat transfer. It is observed that the velocity increases by varying suction/injection parameter and the temperature seems to drop for higher values of the Reynolds number. A decrement in skin friction is observed for increasing nanoparticles volume fraction. On the other hand, the local rate of heat transfer increases for increasing suction/injection parameter, Reynolds number and nanoparticles volume fraction.

  19. Biomechanical responses due to discitis infection of a juvenile thoracolumbar spine using finite element modeling.

    PubMed

    Davidson Jebaseelan, D; Jebaraj, C; Yoganandan, N; Rajasekaran, S; Yerramshetty, J

    2014-07-01

    Growth modulation changes occur in pediatric spines and lead to kyphotic deformity during discitis infection from mechanical forces. The present study was done to understand the consequences of discitis by simulating inflammatory puss at the T12/L1 disc space using a validated eight-year-old thoracolumbar spine finite element model. Changes in the biomechanical responses of the bone, disc and ligaments were determined under physiological compression and flexion loads in the intact and discitis models. During flexion, the angular-displacement increased by 3.33 times the intact spine and localized at the infected junction (IJ). The IJ became a virtual hinge. During compression loading, higher stresses occurred in the growth plate superior to the IJ. The components of the principal stresses in the growth plates at the T12/L1 junction indicated differential stresses. The strain increased by 143% during flexion loading in the posterior ligaments. The study indicates that the flexible pediatric spine increases the motion of the infected spine during physiological loadings. Understanding intrinsic responses around growth plates is important within the context of growth modulation in children. These results are clinically relevant as it might help surgeons to come up with better decisions while developing treatment protocols or performing surgeries. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?

    PubMed

    Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M

    2010-05-01

    The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Modification of the Rappaport rapid test in large-scale testing for syphilis. Evaluation of the rapid plate and rapid card tests.

    PubMed

    Ghinsberg, R; Meir, E; Blumstein, G; Kafeman, R

    1975-11-01

    The Rappaport rapid (RR) plate and card tests were developed as modifications of the RR tube test to permit rapid and inexpensive screening of large numbers of subjects for the diagnosis of syphilis. More than 2,000 sera were examined in parallel by the Venereal Disease Research Laboratory (VDRL) slide test, the rapid plasma reagin (RPR) card test and the RR plate and card tests. There was complete agreement between the RR plate and card tests and the VDRL slide and RPR card tests in 96.6% of sera. In a selected group of 1,530 sera examined, in addition, by the fluorescent treponemal antibody absorption (FTA-ABS) test, there was agreement between the RR plate and card tests and the FTA-ABS test in 74.3% of sera and between the VDRL and RPR tests and the FTA-ABS test in 73.7% of sera. The RR plate test was found to be sufficiently sensitive and specific for the diagnosis of syphilis, although the VDRL slide test is perhaps more sensitive in primary and late latent syphilis. Since the antigen used in the RR tests is colored and stable and the sera do not require inactivation before the test, the tests are easier to perform than the VDRL slide test: the RR plate and card tests could therefore replace the VDRL test as a screening test, with hardly any loss of accuracy.

  2. Biomechanical analysis for primary stability of shoulder arthrodesis in different resection situations.

    PubMed

    Lerch, Solveig; Keller, Sebastian; Kirsch, Ludger; Berndt, Thomas; Rühmann, Oliver

    2013-07-01

    Only very few publications dealing with shoulder arthrodesis after bone resection procedures and no biomechanical studies are available. The presented biomechanical analysis should ascertain the type of arthrodesis with the highest primary stability in different bone loss situations. On 24 fresh cadaveric shoulder specimens three different bone loss situations were investigated under the stress of abduction, adduction, anteversion and retroversion without destruction by the use of a material testing machine. In each of the testings a 16-hole reconstruction plate was used and compared to arthrodesis with an additional dorsal 6-hole plate. The primary stability of shoulder arthrodesis with a 16-hole reconstruction plate after humeral head resection could be increased significantly if an additional dorsal plate was used. However, no significant improvement with the additional plate was detected after resection of the acromion. Of all investigated forms, arthrodesis after humeral head resection with additional plate showed the highest and arthrodesis after humeral head resection without additional plate showed the lowest force values. The mean values for forces achieved in abduction and adduction were considerably higher than those in anteversion and retroversion. There are no consistent specifications of arthrodesis techniques after resection situation available, thus the presented biomechanical testings give important information about the most stable form of arthrodesis in different types of bone loss. These findings provide an opportunity to minimize complications such as pseudarthrosis for a satisfying clinical outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Two new species of the genus Haplotropis Saussure, 1888 (Orthoptera, Acridoidea, Pamphagidae) from China.

    PubMed

    Ye, Bao-Hua; Yin, Zhan; Li, Xin-Jiang

    2016-06-30

    Two new species of the genus Haplotropis Saussure, 1888 from China are described in this paper. The new species Haplotropis xiai sp. nov. is similar to Haplotropis brunneriana Saussure, 1888, but differs from latter by frontal ridge of male widened at median ocellus; tegmina narrower, cover 2/5 tympanum; cercus of male apical half part gently tapering; lower margin of epiphallus with high projection in the middle; anterior margin of pronotum in female with distinct acute angular in middle; length of subgenital plate shorter than width in female. The Haplotropis zhuoluensis sp. nov. is similar to Haplotropis xiai sp. nov., but differs from latter by anterior margin of pronotum reaching hind margin of eyes; length of temina is 1.6 times in male and 1.3 times in female of width; length of interspace shorter than narrowest in mesosternum of male; ancorae of epiphallus oblique inward distinctly, lower margin with high projection in the middle; length of subgenital plate longer than width in female. Type specimens are deposited in the College of Life Sciences, Hebei University, Baoding, China.

  4. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  5. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

  6. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the samples exhibit flattening of wp at roughly the same comoving distance of 100kpc.

  7. Radar, an optimum remote-sensing tool for detailed plate tectonic analysis and its application to hydrocarbon exploration (an example in Irian Jaya Indonesia)

    NASA Technical Reports Server (NTRS)

    Froidevaux, C. M.

    1980-01-01

    Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.

  8. Slip rate and tremor genesis in Cascadia

    USGS Publications Warehouse

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  9. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    PubMed

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  10. A qualitative study of vortex trapping capability for lift enhancement on unconventional wing

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.

    2018-05-01

    Lift enhancement by using passive vortex trapping technique offers great advantage in small aircraft design as it can improve aerodynamics performance and reduce weight of the wing. To achieve this aim, a qualitative study on the flow structures across wing models with cavities has been performed using smoke wire visualisation technique. An experiment has been conducted at low Reynolds number of 26,000 with angle of attack (α) = 0°, 5°, 10° and 15° to investigate the vortex trapping capability of semi-circular leading edge (SCLE) flat-plate wing model and elliptical leading edge (ELE) flat-plate wing model with cavities, respectively. Results from the qualitative study indicated unique characteristics in the flow structures between the tested wing models. The SCLE wing models were able to trap stable rotating vortices for α ≤ 10° whereas the ability of ELE wing models to suppress flow separation allowed stable clockwise vortices to be trapped inside the cavities even at α > 10°. The trapped vortices found to have the potential to increase lift on the unconventional wing models.

  11. Global Velocities from VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel

    1999-01-01

    Precise geodetic Very Long Baseline Interferometry (VLBI) measurements have been made since 1979 at about 130 points on all major tectonic plates, including stable interiors and deformation zones. From the data set of about 2900 observing sessions and about 2.3 million observations, useful three-dimensional velocities can be derived for about 80 sites using an incremental least-squares adjustment of terrestrial, celestial, Earth rotation and site/session-specific parameters. The long history and high precision of the data yield formal errors for horizontal velocity as low as 0.1 mm/yr, but the limitation on the interpretation of individual site velocities is the tie to the terrestrial reference frame. Our studies indicate that the effect of converting precise relative VLBI velocities to individual site velocities is an error floor of about 0.4 mm/yr. Most VLBI horizontal velocities in stable plate interiors agree with the NUVEL-1A model, but there are significant departures in Africa and the Pacific. Vertical precision is worse by a factor of 2-3, and there are significant non-zero values that can be interpreted as post-glacial rebound, regional effects, and local disturbances.

  12. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  13. A controller design approach for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1981-01-01

    A controller design approach for large space structures is presented, which consists of a primary attitude controller and a secondary or damping enhancement controller. The secondary controller, which uses several Annular Momentum Control Device (AMCD's), is shown to make the closed loop system asymptotically stable under relatively simple conditions. The primary controller using torque actuators (or AMCD's) and colocated attitude and rate sensors is shown to be stable. It is shown that the same AMCD's can be used for simultaneous actuation of primary and secondary controllers. Numerical results are obtained for a large, thin, completely free plate model.

  14. [Clavicular hook plate combined with suture anchor for the treatment of type Tossy III chronic acromioclavicular dislocation].

    PubMed

    Xu, Zhi-Bin; Wang, Jin

    2014-05-01

    To observe the clinical effects of clavicular hook plate combined with suture anchor in treating type Tossy III chronic acromioclavicular dislocation. From January 2008 to December 2012,18 patients with type Tossy III chronic acromioclavicular dislocation were treated with clavicular hook plate and suture anchor. There were 12 males and 6 females, aged from 20 to 56 years old with an average of 31.5 years. Ten cases were left dislocation and 8 cases were right dislocation. Operation time was 3 weeks to 4 months after injury with a mean of 1.8 months. Functional exercise was adopted 2 weeks after operation. And Karlsson standard was used to evaluate curative effect. All patients were followed up for 6 to 24 months with an average of 16 months. According to Karlsson standard, 17 cases were excellent and 1 was poor. Clavicular hook plate combined with suture anchor can repair conoid ligament and trapezoid ligament in treating type Tossy III chronic acromioclavicular dislocation, and had advantages of simple operation, less trauma, stable fixation, it can obtain satisfactory effects.

  15. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  16. Stabilization of Volar Ulnar Rim Fractures of the Distal Radius: Current Techniques and Review of the Literature

    PubMed Central

    O'Shaughnessy, Maureen A.; Shin, Alexander Y.; Kakar, Sanjeev

    2016-01-01

    Background Distal radius fractures involving the lunate facet can be challenging to manage. Reports have shown the volar carpal subluxation/dislocation that can occur if the facet is not appropriately stabilized. Literature Review Recent emphasis in the literature has underscored the difficulty in managing this fracture fragment, suggesting standard volar plates may not be able to adequately stabilize the fragment. This article reviews the current literature with a special emphasis on fixation with a specifically designed fragment-specific hook plate to secure the lunate facet. Case Description An extended flexor carpi radialis volar approach was made which allows access to the distal volar ulnar fracture fragment. Once provisionally stabilized with Kirschner wire fixation, a volar hook plate was applied to capture this fragment. Additional fracture stabilization was used as deemed necessary to stabilize the remaining distal radius fracture. Clinical Relevance The volar marginal rim fragment remains a challenge in distal radius fracture management. Use of a hook plate to address the volar ulnar corner allows for stable fixation without loss of reduction at intermediate-term follow-up. PMID:27104076

  17. Effect of Posture on Hip Angles and Moments during Gait

    PubMed Central

    Lewis, Cara L.; Sahrmann, Shirley A.

    2014-01-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565

  18. Evaluation of Eight Methods for Aligning Orientation of Two Coordinate Systems.

    PubMed

    Mecheri, Hakim; Robert-Lachaine, Xavier; Larue, Christian; Plamondon, André

    2016-08-01

    The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment.

  19. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  20. Effect of posture on hip angles and moments during gait.

    PubMed

    Lewis, Cara L; Sahrmann, Shirley A

    2015-02-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Earth Evolution and Dynamics (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.

    2016-04-01

    While physicists are fantasizing about a unified theory that can explain just about everything from subatomic particles (quantum mechanics) to the origin of the Universe (general relativity), Darwin already in 1858 elegantly unified the biological sciences with one grand vision. In the Earth Sciences, the description of the movement and deformation of the Earth's outer layer has evolved from Continental Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm of Plate Tectonics in the mid-to-late 1960s. Plate Tectonics has been extremely successful in providing a framework for understanding deformation and volcanism at plate boundaries, allowed us to understand how continent motions through time are a natural result of heat escaping from Earth's deep interior, and has granted us the means to conduct earthquake and volcanic hazard assessments and hydrocarbon exploration, which have proven indispensable for modern society. Plate Tectonics is as fundamentally unifying to the Earth Sciences as Darwin's Theory of Evolution is to the Life Sciences, but it is an incomplete theory that lacks a clear explanation of how plate tectonics, mantle convection and mantle plumes interact. Over the past decade, however, we have provided compelling evidence that plumes rise from explicit plume generation zones at the margins of two equatorial and antipodal large low shear-wave velocity provinces (Tuzo and Jason). These thermochemical provinces on the core-mantle boundary have been stable for at least the last 300 million years, possibly the last 540 million years, and their edges are the dominant sources of the plumes that generate large igneous provinces, hotspots and kimberlites. Linking surface and lithospheric processes to the mantle is extremely challenging and is only now becoming feasible due to breakthroughs in the estimation of ancient longitudes before the Cretaceous, greatly improved seismic tomography, recent advances in mineral physics, and new developments in our understanding of the dynamics of true polar wander. Dramatic improvements in computational capacity and numerical methods that efficiently model mantle flow while incorporating surface tectonics, plumes, and subduction, have emerged to facilitate further study - We are now capitalizing on these recent advances so as to generate a new Earth model that links plate tectonics with shallow and deep mantle convection through time, and which includes elements such as deeply subducted slabs and stable thermochemical piles with plumes that rise from their edges. It is still unclear, though, why lower mantle structures similar to today would have existed since the Early Phanerozoic (540 Ma), and perhaps for much longer time. Could large-scale upwellings act as an anchor for mantle structure that also controls where downward flow and subduction occurs? Or could it be that subduction keeps itself in place? These are open questions, and at the moment we do not even know with certainty whether Tuzo and Jason were spatially stable for much longer than 300 Myr; we can only state that their stability before Pangea formed is consistent with palaeomagnetic and geological data, but is not necessarily required.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; McComas, D. J.; Allegrini, F.

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinctmore » ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.« less

  3. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear from 12-6.3 Ma. Pacific-North America plate motion since 16 Myr estimated with our new rotations agrees well with structurally summed deformation along two transects of western North America between the Colorado Plateau and western California, with a difference as small as 40 km out of 760 km of margin-parallel motion. A strong resemblance between a 20-Myr-to-present flow line reconstructed with our new rotations and the traces of the 700-km-long Queen Charlotte Fault and continental slope west of Canada suggests that the plate margin geometry was influenced by the passage of the Pacific plate and Yakutat block. The new rotations also suggest that (1) oblique convergence west of Canada initiated at 12-11 Ma, 5-8 Myr earlier than previously estimated, (2) no significant margin-normal shortening has occurred in areas of Canada located east of the Haida Gwaii archipelago since 20 Ma and (3) Pacific plate underthrusting of Haida Gwaii has accommodated the margin-normal component of plate motion since 12-11 Ma. Our rotations suggest an ≈70 per cent increase in the rate that the Pacific plate has been consumed by subduction beneath the Aleutian arc since 19.7 Ma, with still-unknown consequences for the rate of arc magmatism.

  4. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation)

    PubMed Central

    Maisnier-Patin, Sophie; Roth, John R.

    2015-01-01

    Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions. PMID:26134316

  5. An immunoassay for dibutyl phthalate based on direct hapten linkage to the polystyrene surface of microtiter plates.

    PubMed

    Wei, Chenxi; Ding, Shumao; You, Huihui; Zhang, Yaran; Wang, Yao; Yang, Xu; Yuan, Junlin

    2011-01-01

    Dibutyl phthalate (DBP) is predominantly used as a plasticizer inplastics to make them flexible. Extensive use of phthalates in both industrial processes and other consumer products has resulted in the ubiquitous presence of phthalates in the environment. In order to better determine the level of pollution in the environment and evaluate the potential adverse effects of exposure to DBP, immunoassay for DBP was developed. A monoclonal antibody specific to DBP was produced from a stable hybridoma cell line generated by lymphocyte hybridoma technique. An indirect competitive enzyme-linked immunosorbent assay (icELISA) employing direct coating of hapten on polystyrene microtiter plates was established for the detection of DBP. Polystyrene surface was first oxidized by permanganate in dilute sulfuric acid to generate carboxyl groups. Then dibutyl 4-aminophthalate, which is an analogue of DBP, was covalently linked to the carboxyl groups of polystyrene surface with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Compared with conjugate coated format (IC(50)=106 ng/mL), the direct hapten coated format (IC(50)=14.6 ng/mL) improved assay sensitivity after careful optimization of assay conditions. The average recovery of DBP from spiked water sample was 104.4% and the average coefficient of variation was 9.95%. Good agreement of the results obtained by the hapten coated icELISA and gas chromatography-mass spectrometry further confirmed the reliability and accuracy of the icELISA for the detection of DBP in certain plastic and cosmetic samples. The stable and efficient hybridoma cell line obtained is an unlimited source of sensitive and specific antibody to DBP. The hapten coated format is proposed as generally applicable because the carboxyl groups on modified microtiter plate surface enables stable immobilization of aminated or hydroxylated hapten with EDC. The developed hapten coated icELISA can be used as a convenient quantitative tool for the sensitive and accurate monitoring DBP in water, plastic and cosmetic samples. © 2011 Wei et al.

  6. Analysis of a Circular Composite Disk Subjected to Edge Rotations and Hydrostatic Pressure

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2004-01-01

    The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.

  7. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.

    PubMed

    Liu, Jun; Wang, Jian

    2015-07-06

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.

  8. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation.

    PubMed

    Pesavento, Umberto; Wang, Z Jane

    2004-10-01

    We investigate the problem of falling paper by solving the two dimensional Navier-Stokes equations subject to the motion of a free-falling body at Reynolds numbers around 10(3). The aerodynamic lift on a tumbling plate is found to be dominated by the product of linear and angular velocities rather than velocity squared, as appropriate for an airfoil. This coupling between translation and rotation provides a mechanism for a brief elevation of center of mass near the cusplike turning points. The Navier-Stokes solutions further provide the missing quantity in the classical theory of lift, the instantaneous circulation, and suggest a revised model for the fluid forces.

  9. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  10. SPIDER: Listening for the echoes of inflation from above the clouds

    NASA Astrophysics Data System (ADS)

    Filippini, Jeffrey; Spider Collaboration

    2016-03-01

    We report on the status of SPIDER, a balloon-borne instrument to map the polarization of the cosmic microwave background at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves, with a focus on mapping a large sky area at multiple frequencies. SPIDER's six monochromatic refracting telescopes (three each at 95 and 150 GHz) feed a total of more than 2000 antenna-coupled superconducting transition-edge sensors. A sapphire half-wave plate at the aperture of each telescope modulates sky polarization for control of systematics. We discuss SPIDER's first long-duration balloon flight in January 2015, as well as the status of data analysis and development toward a second flight.

  11. Apparatus for adapting an end effector device remotely controlled manipulator arm

    NASA Technical Reports Server (NTRS)

    Clark, K. H. (Inventor)

    1985-01-01

    Apparatus for adapting a general purpose and effector device to a special purpose and effector is disclosed which includes an adapter bracket assembly which provides a mechanical and electrical interface between the end effector devices. The adapter bracket assembly includes an adapter connector post which interlocks with a diamond shaped gripping channel formed in closed jaws of the general purpose end effector. The angularly intersecting surfaces of the connector post and gripping channel prevent any relative movement there between. Containment webs constrain the outer finger plates of the general purpose jaws to prevent pitch motion. Electrical interface is provided by conical, self aligning electrical connector components carried by respective ones of said end effectors.

  12. Mode demultiplexer using angularly multiplexed volume holograms.

    PubMed

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  13. Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning

    NASA Astrophysics Data System (ADS)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-01-01

    This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.

  14. A high-throughput assay of membrane protein stability.

    PubMed

    Postis, Vincent L G; Deacon, Sarah E; Roach, Peter C J; Wright, Gareth S A; Xia, Xiaobing; Ingram, Jean C; Hadden, Jonathan M; Henderson, Peter J F; Phillips, Simon E V; McPherson, Michael J; Baldwin, Stephen A

    2008-12-01

    The preparation of purified, detergent-solubilized membrane proteins in a monodisperse and stable form is usually a prerequisite for investigation not only of their function but also for structural studies by X-ray crystallography and other approaches. Typically, it is necessary to explore a wide range of conditions, including detergent type, buffer pH, and the presence of additives such as glycerol, in order to identify those optimal for stability. Given the difficulty of expressing and purifying membrane proteins in large amounts, such explorations must ideally be performed on as small a scale as practicable. To achieve this objective in the UK Membrane Protein Structure Initiative, we have developed a rapid, economical, light-scattering assay of membrane protein aggregation that allows the testing of 48 buffer conditions in parallel on 6 protein targets, requiring less than 2 mg protein for each target. Testing of the assay on a number of unrelated membrane transporters has shown that it is of generic applicability. Proteins of sufficient purity for this plate-based assay are first rapidly prepared using simple affinity purification procedures performed in batch mode. Samples are then transferred by microdialysis into each of the conditions to be tested. Finally, attenuance at 340 nm is monitored in a 384-well plate using a plate reader. Optimal conditions for protein stability identified in the assay can then be exploited for the tailored purification of individual targets in as stable a form as possible.

  15. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold recognizable from the current GPS network (~3 mm/yr). The Late Miocene age of the fault indicates it may have activated during the Late Miocene to recent Hispaniola-Bahamas oblique collision event.

  16. Low work function, stable compound clusters and generation process

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William

    2000-01-01

    Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.

  17. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  18. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  19. Calibration of the head direction network: a role for symmetric angular head velocity cells.

    PubMed

    Stratton, Peter; Wyeth, Gordon; Wiles, Janet

    2010-06-01

    Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

  20. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  1. Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Poirier, Bill

    2015-11-01

    In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.

  2. Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Ellis, Joseph; Poirier, Bill

    2015-04-01

    Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".

  3. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  4. Non-topological cycloops

    NASA Astrophysics Data System (ADS)

    Lake, Matthew; Thomas, Steven; Ward, John

    2010-01-01

    We propose a mechanism for the creation of cosmic string loops with dynamically stabilised windings in the internal space. Assuming a velocity correlations regime in the post-inflationary epoch, such windings are seen to arise naturally in string networks prior to loop formation. The angular momentum of the string in the compact space may then be sufficient to ensure that the windings remain stable after the loop chops off from the network, even if the internal manifold is simply connected. For concreteness we embed our model in the Klebanov-Strassler geometry, which provides a natural mechanism for brane inflation, as well a being one of the best understood compactification schemes in type IIB string theory. We see that the interaction of angular momentum with the string tension causes the loop to oscillate between phases of expansion and contraction. This, in principle, should give rise to a distinct gravitational wave signature, the future detection of which could provide indirect evidence for the existence of extra dimensions.

  5. Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Slaný, P.; Hledík, S.

    2000-11-01

    The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.

  6. Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice

    NASA Astrophysics Data System (ADS)

    Garcia, J. C.; Justo, J. F.

    2014-11-01

    Nanowires have been considered for a number of applications in nanometrology. In such a context, we have explored the possibility of using ultrathin twisted nanowires as torsion nanobalances to probe forces and torques at molecular level with high precision, a nanoscale system analogous to the Coulomb's torsion balance electrometer. In order to achieve this goal, we performed a first-principles investigation on the structural and electronic properties of twisted silicon nanowires, in their pristine and hydrogenated forms. The results indicated that wires with pentagonal and hexagonal cross-sections are the thinnest stable silicon nanostructures. Additionally, all wires followed a Hooke's law behavior for small twisting deformations. Hydrogenation leads to spontaneous twisting, but with angular spring constants considerably smaller than the ones for the respective pristine forms. We observed considerable changes on the nanowire electronic properties upon twisting, which allows to envision the possibility of correlating the torsional angular deformation with the nanowire electronic transport. This could ultimately allow a direct access to measurements on interatomic forces at molecular level.

  7. Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.

    PubMed

    Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D

    2016-01-01

    The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Syn-extensional lithogenetic sequences of the Soledad basin, central Transverse Ranges: Implications for detachment-fault models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrix, E.D.

    1993-04-01

    The Soledad Basin (central Transverse Ranges, CA) contains the first recognized example of mid-Tertiary detachment-faulting west of the San Andreas fault. Displacements along the Pelona detachment fault and syn-extensional upper-plate sedimentation occurred between [approximately] 26--18 Ma, resulting in deposition of at least 4 separate lithogenetic sequences (LS) which record distinct phases of crustal response to extension. The 1st LS (lower Vasquez Fm.) predates syn-extensional volcanism and records initial basin subsidence along small, discontinuous faults. The 2nd LS (middle Vasquez Fm.) consists of both volcanic and sedimentary strata and signals simultaneous onset of magmatism and initial development of a well-defined networkmore » of high-angle, upper-plate normal faults, creating 2 separate sub-basins. Resulting alluvial fans were non-entrenched, implying that subsidence rates, and thus vertical displacement rates on high-angle faults, equaled or exceeded an estimated average sedimentation rate of 1.4 mm/yr. The 3rd LS (upper Vasquez Fm.) reflects transition to a single, well-integrated depositional basin characterized by streamflood sedimentation. This suggests an enlarged drainage basin and a decrease in subsidence rate relative to sedimentation rate, triggered possibly by uplift of the detachment lower-plate. The 4th LS (Tick Canyon Fm.) lies with angular unconformity above the 3rd LS and contains the 1st clasts eroded from the detachment lower plate. Detachment faulting in the Soledad basin appears to involve, in part, reactivation of structural zones of weakness along the Vincent thrust. Preliminary reconstructions of Soledad extension imply 25--30 km of displacement along the Pelona detachment fault system at an averaged slip rate of 3.6--4.3 mm/yr.« less

  9. High fill-factor micromirror array using a self-aligned vertical comb drive actuator with two rotational axes

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo; Park, Jae-Hyoung; Jeon, Jin-A.; Yoo, Byung-Wook; Park, I. H.; Kim, Yong-Kweon

    2009-03-01

    We present a two-axis micromirror array with high fill-factor, using a new fabrication procedure on the full wafer scale. The micromirror comprises a self-aligned vertical comb drive actuator with a mirror plate mounted on it and electrical lines on a bottom substrate. A high-aspect-ratio vertical comb drive was built using a bulk micromachining technique on a silicon-on-insulator (SOI) wafer. The thickness of the torsion spring was adjusted using multiple silicon etching steps to enhance the static angular deflection of the mirrors. To address the array, electrical lines were fabricated on a glass substrate and combined with the comb actuators using an anodic bonding process. The silicon mirror plate was fabricated together with the actuator using a wafer bonding process and segmented at the final release step. The actuator and addressing lines were hidden behind the mirror plate, resulting in a high fill-factor of 84% in an 8 × 8 array of micromirrors, each 340 µm × 340 µm. The fabricated mirror plate has a high-quality optical surface with an average surface roughness (Ra) of 4 nm and a curvature radius of 0.9 m. The static and dynamic responses of the micromirror were characterized by comparing the measured results with the calculated values. The maximum static optical deflection for the outer axis is 4.32° at 60 V, and the maximum inner axis tilting angle is 2.82° at 96 V bias. The torsion resonance frequencies along the outer and inner axes were 1.94 kHz and 0.95 kHz, respectively.

  10. Use of resorbable plates and screws in pediatric facial fractures.

    PubMed

    Eppley, Barry L

    2005-03-01

    The use of resorbable plates and screws for fixation of pediatric facial fractures is both well tolerated and effective. It enables realignment and stable positioning of rapidly healing fracture segments while obviating any future issues secondary to long-term metal retention. Forty-four pediatric facial fractures were treated over a 10-year period at our institution using differing techniques of polymeric bone fixation. Twenty-nine mandible fractures in patients under the age of 10 (age range, 6 months to 8 years) were treated. Displaced fractures of the symphysis, parasymphysis, body, and ramus underwent open reduction and either 1.5-mm or 2.0-mm plate and screw fixation in 14 patients. Subcondylar fractures were treated by a short period of maxillomandibular fixation (3 weeks) achieved with suture ligation between resorbable screws placed at the zygoma and symphysis or a circummandibular suture attached to a zygomatic screw. Fifteen patients (age range, 4 to 11 years) with isolated frontal, supraorbital, intraorbital, or orbitozygomatic fractures were treated by open reduction and internal fixation with 1.5-mm resorbable plates, mesh, and screws. No long-term implant-related complications were seen in any of the treated patients. Resorbable polylactic and polyglycolic acid plates and screws can be an effective fixation method for facial fractures in children in the primary and secondary dentition periods.

  11. Numerical analysis of standard and modified osteosynthesis in long bone fractures treatment.

    PubMed

    Sisljagić, Vladimir; Jovanović, Savo; Mrcela, Tomislav; Radić, Radivoje; Selthofer, Robert; Mrcela, Milanka

    2010-03-01

    The fundamental problem in osteoporotic fracture treatment is significant decrease in bone mass and bone tissue density resulting in decreased firmness and elasticity of osteoporotic bone. Application of standard implants and standard surgical techniques in osteoporotic bone fracture treatment makes it almost impossible to achieve stable osteosynthesis sufficient for early mobility, verticalization and load. Taking into account the form and the size of the contact surface as well as distribution of forces between the osteosynthetic materials and the bone tissue numerical analysis showed advantages of modified osteosynthesis with bone cement filling in the screw bed. The applied numerical model consisted of three sub-models: 3D model from solid elements, 3D cross section of the contact between the plate and the bone and the part of 3D cross section of the screw head and body. We have reached the conclusion that modified osteosynthesis with bone cement resulted in weaker strain in the part of the plate above the fracture fissure, more even strain on the screws, plate and bone, more even strain distribution along all the screws' bodies, significantly greater strain in the part of the screw head opposite to the fracture fissure, firm connection of the screw head and neck and the plate hole with the whole plate and more even bone strain around the screw.

  12. Proximal tibial fractures: early experience using polyaxial locking-plate technology.

    PubMed

    Nikolaou, Vassilios S; Tan, Hiang Boon; Haidukewych, George; Kanakaris, Nikolaos; Giannoudis, Peter V

    2011-08-01

    Between 2004 and 2009, 60 patients with proximal tibial fractures were included in this prospective study. All fractures were treated with the polyaxial locked-plate fixation system (DePuy, Warsaw, IN, USA). Clinical and radiographic data, including fracture pattern, changes in alignment, local and systemic complications, hardware failure and fracture union were analysed. The mean follow-up was 14 (12-36) months. According to the Orthopaedic Trauma Association (OTA) classification, there were five 41-A, 28 41-B and 27 41-C fractures. Fractures were treated percutaneously in 30% of cases. Double-plating was used in 11 cases. All but three fractures progressed to union at a mean of 3.2 (2.5-5) months. There was no evidence of varus collapse as a result of polyaxial screw failure. No plate fractured, and no screw cut out was noted. There was one case of lateral joint collapse (>10°) in a patient with open bicondylar plateau fracture. The mean Knee Society Score at the time of final follow-up was 91 points, and the mean functional score was 89 points. The polyaxial locking-plate system provided stable fixation of extra-articular and intra-articular proximal tibial fractures and good functional outcomes with a low complication rate.

  13. Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault: The possible role of rheology

    USGS Publications Warehouse

    ten Brink, Uri S.; Miller, Nathaniel; Andrews, Brian; Brothers, Daniel; Haeussler, Peter J.

    2018-01-01

    The Pacific/North America (PA/NA) plate boundary between Vancouver Island and Alaska is similar to the PA/NA boundary in California in its kinematic history and the rate and azimuth of current relative motion, yet their deformation styles are distinct. The California plate boundary shows a broad zone of parallel strike slip and thrust faults and folds, whereas the 49‐mm/yr PA/NA relative plate motion in Canada and Alaska is centered on a single, narrow, continuous ~900‐km‐long fault, the Queen Charlotte Fault (QCF). Using gravity analysis, we propose that this plate boundary is centered on the continent/ocean boundary (COB), an unusual location for continental transform faults because plate boundaries typically localize within the continental lithosphere, which is weaker. Because the COB is a boundary between materials of contrasting elastic properties, once a fault is established there, it will probably remain stable. We propose that deformation progressively shifted to the COB in the wake of Yakutat terrane's northward motion along the margin. Minor convergence across the plate boundary is probably accommodated by fault reactivation on Pacific crust and by an eastward dipping QCF. Underthrusting of Pacific slab under Haida Gwaii occurs at convergence angles >14°–15° and may have been responsible for the emergence of the archipelago. The calculated slab entry dip (5°–8°) suggests that the slab probably does not extend into the asthenosphere. The PA/NA plate boundary at the QCF can serve as a structurally simple site to investigate the impact of rheology and composition on crustal deformation and the initiation of slab underthrusting.

  14. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling [Kinematics and dynamics of the East Pacific Rise linked to whole mantel convective motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.

    Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less

  15. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling [Kinematics and dynamics of the East Pacific Rise linked to whole mantel convective motions

    DOE PAGES

    Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; ...

    2016-12-23

    Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less

  16. Biomechanical analysis using FEA and experiments of a standard plate method versus three cable methods for fixing acetabular fractures with simultaneous THA.

    PubMed

    Aziz, Mina S R; Dessouki, Omar; Samiezadeh, Saeid; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan

    2017-08-01

    Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Outcomes and complications of fractures of distal radius (AO type B and C): volar plating versus nonoperative treatment.

    PubMed

    Sharma, Himanshu; Khare, Ghanshyam Narayan; Singh, Saurabh; Ramaswamy, Arun Govindraj; Kumaraswamy, Vinay; Singh, Ashutosh Kumar

    2014-07-01

    Management of AO type B and C fractures of the distal radius is controversial. This study compares outcomes and complications of AO type B and C fractures of the distal radius treated with volar locked plating and nonoperative methods. Sixty-four patients with fractures of the distal radius (AO type B and C) were included in this study, according to inclusion criteria, and were allocated to the volar plating group or nonoperative group by alternate randomization: 32 patients with odd numbers went into the nonoperative group and the other 32 with even numbers went into the volar plating group. Patients in the nonoperative group were managed with closed reduction of the fracture and plaster cast application under an image intensifier. Those in the volar plating group were managed by open reduction and fixation with a volar locked plate. Preoperative and postoperative serial clinico-radiological follow-up was done. The range of movement, grip strength, functional outcome scores and radiological parameters were compared. Student's t-test was used for statistical analysis with significance at p < 0.05. Range of movement and functional scores were significantly (p < 0.001) better in the volar plating group, but the difference in ulnar variance and radial and ulnar deviation was insignificant as compared to the nonoperative group. At 24 months follow-up, the nonoperative group had significantly more cases with malunion, articular incongruity and osteoarthritis. In cases of AO type B or C fractures of the distal radius, volar locked plating provides anatomical stable fixation and early mobilization with better clinico-radiological outcome as compared to conservative treatment.

  18. Treatment of segmental tibial fractures with supercutaneous plating.

    PubMed

    He, Xianfeng; Zhang, Jingwei; Li, Ming; Yu, Yihui; Zhu, Limei

    2014-08-01

    Segmental tibial fractures usually follow a high-energy trauma and are often associated with many complications. The purpose of this report is to describe the authors' results in the treatment of segmental tibial fractures with supercutaneous locking plates used as external fixators. Between January 2009 and March 2012, a total of 20 patients underwent external plating (supercutaneous plating) of the segmental tibial fractures using a less-invasive stabilization system locking plate (Synthes, Paoli, Pennsylvania). Six fractures were closed and 14 were open (6 grade IIIa, 2 grade IIIb, 4 grade II, and 2 grade I, according to the Gustilo classification). When imaging studies confirmed bone union, the plates and screws were removed in the outpatient clinic. Average time of follow-up was 23 months (range, 12-47 months). All fractures achieved union. Median time to union was 19 weeks (range, 12-40 weeks) for the proximal fractures and 22 weeks (range, 12-42 weeks) for the distal fractures. Functional results were excellent in 17 patients and good in 3. Delayed union of the fracture occurred in 2 patients. All patients' radiographs showed normal alignment. No rotational deformities and leg shortening were seen. No incidences of deep infection or implant failures occurred. Minor screw tract infection occurred in 2 patients. A new 1-stage protocol using supercutaneous plating as a definitive fixator for segmental tibial fractures is less invasive, has a lower cost, and has a shorter hospitalization time. Surgeons can achieve good reduction, soft tissue reconstruction, stable fixation, and high union rates using supercutaneous plating. The current patients obtained excellent knee and ankle joint motion and good functional outcomes and had a comfortable clinical course. Copyright 2014, SLACK Incorporated.

  19. First metatarsal-phalangeal joint arthrodesis: a biomechanical assessment of stability.

    PubMed

    Politi, Joel; John, Hayes; Njus, Glen; Bennett, Gordon L; Kay, David B

    2003-04-01

    First metatarsal phalangeal joint (MTP) arthrodesis is a commonly performed procedure for the treatment of hallux rigidus, severe and recurrent bunion deformities, rheumatoid arthritis and other less common disorders of the joint. There are different techniques of fixation of the joint to promote arthrodesis including oblique lag screw fixation, lag screw and dorsal plate fixation, crossed Kirschner wires, dorsal plate fixation alone and various types of external fixation. Ideally the fixation method should be reproducible, lead to a high rate of fusion, and have a low incidence of complications. In the present study, we compared the strength of fixation of five commonly utilized techniques of first MTP joint arthrodesis. These were: 1. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical interfragmentary lag screw. 2. Surface excision with machined conical reaming and fixation with crossed 0.062 Kirschner wires. 3. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical lag screw and a four hole dorsal miniplate secured with 3.5 mm cortical screws. 4. Surface excision with machined conical reaming and fixation with a four hole dorsal miniplate secured with 3.5 mm cortical screws and no lag screw. 5. Planar surface excision and fixation with a single oblique 3.5 mm interfragmentary cortical lag screw. Testing was done on an Instron materials testing device loading the first MTP joint in dorsiflexion. Liquid metal strain gauges were placed over the joint and micromotion was detected with varying loads and cycles. The most stable technique was the combination of machined conical reaming and an oblique interfragmentary lag screw and dorsal plate. This was greater than two times stronger than an oblique lag screw alone. Dorsal plate alone and Kirschner wire fixation were the weakest techniques. First MTP fusion is a commonly performed procedure for the treatment of a variety of disorders of the first MTP joint. The most stable technique for obtaining fusion in this study was the combination of an oblique lag screw and a dorsal plate. This should lead to higher rates of arthrodesis.

  20. Operative treatment of 2-part surgical neck fractures of the proximal humerus (AO 11-A3) in the elderly: Cement augmented locking plate Philos™ vs. proximal humerus nail MultiLoc®.

    PubMed

    Helfen, Tobias; Siebenbürger, Georg; Mayer, Marcel; Böcker, Wolfgang; Ockert, Ben; Haasters, Florian

    2016-10-28

    Proximal humeral fractures are with an incidence of 4-5 % the third most common fractures in the elderly. In 20 % of humeral fractures there is an indication for surgical treatment according to the modified Neer-Criteria. A secondary varus dislocation of the head fragment and cutting-out are the most common complications of angle stable locking plates in AO11-A3 fractures of the elderly. One possibility to increase the stability of the screw-bone-interface is the cement augmentation of the screw tips. A second is the use of a multiplanar angle stablentramedullary nail that might provide better biomechanical properties after fixation of 2-part-fractures. A comparison of these two treatment options augmented locking plate versus multiplanar angle stable locking nail in 2-part surgical neck fractures of the proximal humerus has not been carried out up to now. Forty patients (female/male, ≥60 years or female postmenopausal) with a 2-part-fracture of the proximal humerus (AO type 11-A3) will be randomized to either to augmented plate fixation group (PhilosAugment) or to multiplanar intramedullary nail group (MultiLoc). Outcome parameters are Disabilities of the Shoulder, Arm and Hand-Score (DASH) Constant Score (CS), American Shoulder and Elbow Score (ASES), Oxford Shoulder Score (OSS), Range of motion (ROM) and Short Form 36 (SF-36) after 3 weeks, 6 weeks, 3 months, 6 months, 12 and 24 months. Because of the lack of clinical studies that compare cement augmented locking plates with multiplanar humeral nail systems after 2-part surgical neck fractures of the proximal humerus, the decision of surgical method currently depends only on surgeons preference. Because only a randomized clinical trial (RCT) can sufficiently answer the question if one treatment option provides advantages compared to the other method we are planning to perform a RCT. Clinical Trial ( NCT02609906 ), November 18, 2015, registered retrospectively.

Top