Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan
2016-01-01
The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum field modes are obtained through the mere coupling and hence the transfers of photons from the remaining coupled mode.
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing
2018-02-01
The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.
Slenkamp, Karla M; Lynch, Michael S; Van Kuiken, Benjamin E; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira
2014-02-28
Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm(-1). The mixed-mode anharmonicities range from 2 to 14 cm(-1). In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm(-1). This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.
Cirtog, M; Asselin, P; Soulard, P; Madebène, B; Alikhani, M E
2010-10-14
A series of Fourier transform infrared spectra (FTIR) of the hydrogen bonded complexes (CH(2))(2)O-HF and -DF have been recorded in the 50-750 cm(-1) range up to 0.1 cm(-1) resolution in a static cell maintained at near room temperature. The direct observation of three intermolecular transitions enabled us to perform band contour analysis of congested cell spectra and to determine reliable rovibrational parameters such as intermolecular frequencies, rovibrational and anharmonic coupling constants involving two l(1) and l(2) librations and one σ stretching intermolecular motion. Inter-inter anharmonic couplings could be identified between ν(l(1)), ν(l(2)), ν(σ) and the two lowest frequency bending modes. The positive sign of coupling constants (opposite with respect to acid stretching intra-inter ones) reveals a weakening of the hydrogen bond upon intermolecular excitation. The four rovibrational parameters ν(σ) and x(σj) (j = σ, δ(1), δ(2)) derived in the present far-infrared study and also in a previous mid-infrared one [Phys. Chem. Chem. Phys. 2005, 1, 592] make deviations appear smaller than 1% for frequencies and 12% for coupling constants which gives confidence to the reliability of the data obtained. Anharmonic frequencies obtained at the MP2 level with Aug-cc-pvTZ basis set agree well with experimental values over a large set of frequencies and coupling constants. An estimated anharmonic corrected value of the dissociation energy D for both oxirane-HF (2424 cm(-1)) and -DF (2566 cm(-1)) has been derived using a level of theory as high as CCSD(T)/Aug-cc-pvQZ, refining the harmonic value previously calculated for oxirane-HF with the MP2 method and a smaller basis set. Finally, contrary to short predissociation lifetimes evidenced for acid stretching excited states, any homogeneous broadening related to vibrational dynamics of (CH(2))(2)O-HF and -DF has been observed within the three highest frequency intermolecular states, as expected with low excitation energies largely below the dissociation limit as well as a negligible IVR contribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.
2014-02-28
Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectramore » of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.« less
Lattice-dynamical model for the filled skutterudite LaFe4Sb12: Harmonic and anharmonic couplings
NASA Astrophysics Data System (ADS)
Feldman, J. L.; Singh, D. J.; Bernstein, N.
2014-06-01
The filled skutterudite LaFe4Sb12 shows greatly reduced thermal conductivity compared to that of the related unfilled compound CoSb3, although the microscopic reasons for this are unclear. We calculate harmonic and anharmonic force constants for the interaction of the La filler atom with the framework atoms. We find that force constants show a general trend of decaying rapidly with distance and are very small for the interaction of the La with its next-nearest-neighbor Sb and nearest-neighbor La. However, a few rather long-range interactions, such as with the next-nearest-neighbor La and with the third neighbor Sb, are surprisingly strong, although still small. We test the central-force approximation and find significant deviations from it. Using our force constants we calculate a bare La mode Gruneisen parameter and find a value of 3-4, substantially higher than values associated with cage atom anharmonicity, i.e., a value of about 1 for CoSb3 but much smaller than a previous estimate [Bernstein et al., Phys. Rev. B 81, 134301 (2010), 10.1103/PhysRevB.81.134301]. This latter difference is primarily due to the previously used overestimate of the La-Fe cubic force constants. We also find a substantial negative contribution to this bare La Gruneisen parameter from the aforementioned third-neighbor La-Sb interaction. Our results underscore the need for rather long-range interactions in describing the role of anharmonicity on the dynamics in this material.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Cornaton, Yann
2018-05-01
This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Anharmonicity of three minerals at high temperature: Forsterite, fayalite, and periclase
NASA Astrophysics Data System (ADS)
Anderson, O. L.; Suzuki, I.
1983-04-01
Recent data on Ks (the adiabatic bulk modulus) and α (the volume coefficient of thermal expansion) versus T (temperature) at high temperatures (500°C < T < 1000°C) have been published or are in press. These data, taken at ambient pressure, extend the measurement of single-crystal elastic constants for forsterite, fayalite and periclase to record temperatures. The high temperature anharmonic properties of forsterite and fayalite are presented for the first time in this paper, and they are compared with similar previously published data for MgO. The anharmonic properties referred to above concern the dependence of γ (the Grüneisen ratio), PTH (the thermal pressure), and Cv (the specific heat) with T. If γ (at constant V) is independent of T at high T, the anharmonicity in γ is said to be nil; similarly, for Cv. If PTH at constant V is proportional to T at high T, then the anharmonicity in PTH is said to be nil. The anharmonicity determined by these experiments indicates that the minerals are not alike with regard to their properties γ, PTH, and Cv. The γ versus T at constant V indicates that there is anharmonicity for all three minerals, but the effects are opposite in fayalite and forsterite in such a way that anharmonicity should be absent in olivine. For PTH at 1 bar, anharmonicity is detectable and positive in forsterite, absent in fayalite, and detectable and negative in periclase. It would be slight in olivine. In all three solids, anharmonicity in Cv is pronounced and positive.
The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations
NASA Technical Reports Server (NTRS)
Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; Francois, Jean-Pierre; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the C-12 isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals could be reproduced to better than 10 per centimeter, except for three cases of severe Fermi type 1 resonance. The problem with these three bands is identified as a systematic overestimate of the Kiij Fermi resonance constants by a factor of two or more; if this is corrected for, the predicted fundamentals come into excellent agreement with experiment. No such systematic overestimate is seen for Fermi type 2 resonances. Our computed harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the v8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper.
Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Li, Shasha; Chen, Yue
2017-03-01
Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Local vibrational modes of the water dimer - Comparison of theory and experiment
NASA Astrophysics Data System (ADS)
Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.
2012-12-01
Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.
Anharmonic Effect in CH3CH2C(=O)OCH2CH3 Decomposition
NASA Astrophysics Data System (ADS)
Ding, Yang; Song, Liguo; Yao, Li; Xia, Wenwen
2017-12-01
In this paper, using the B3LYP functional and CCSD(T) method with 6-311++G** basis set, the harmonic and anharmonic rate constants in the unimolecular dissociation of ethyl propanoate have been calculated using Rice-Ramsperger-Kassel-Marcus theory. The anharmonic rate constants of the title reaction have also been examined, the comparison shows that, the anharmonic effect especially in the case of high total energies and temperature for channels 3 to 6 is significant, so that the anharmonic effect cannot be neglected for unimolecular dissociation reaction of CH3CH2C(=O)OCH2CH3 both in microcanonical and canonical systems.
Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; Aguayo, Aaron
2005-03-01
We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
NASA Astrophysics Data System (ADS)
Singh, Amresh; Shivani; Misra, Alka; Tandon, Poonam
2014-03-01
The interstellar medium, filling the vast space between stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as vinylcyanide, methylcyanodiaccetylene, cyanoallene, etc. Interstellar molecular cyanoallene is one of the most stable isomers of methylcynoacetylene. An attempt has been made to explore the possibility of forming cyanoallene in interstellar space by radical-radical and radical-molecule interaction schemes in the gaseous phase. The formation of cyanoallene starting from some simple, neutral interstellar molecules and radicals has been studied using density functional theory. The reaction energies and structures of the reactants and products show that the formation of cyanoallene is possible in the gaseous phase. Both of the considered reaction paths are totally exothermic and barrierless, thus giving rise to a high probability of occurrence. Rate constants for each step in the formation process of cyanoallene in both the reaction paths are estimated. A full vibrational analysis has been attempted for cyanoallene in the harmonic and anharmonic approximations. Anharmonic spectroscopic parameters such as rotational constants, rotation-vibration coupling constants and centrifugal distortion constants have been calculated.
Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P
2011-03-31
A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-07
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto
2012-06-01
Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Tadano, Terumasa; Tsuneyuki, Shinji
2015-08-01
We present an ab initio framework to calculate anharmonic phonon frequency and phonon lifetime that is applicable to severely anharmonic systems. We employ self-consistent phonon (SCPH) theory with microscopic anharmonic force constants, which are extracted from density functional calculations using the least absolute shrinkage and selection operator technique. We apply the method to the high-temperature phase of SrTiO3 and obtain well-defined phonon quasiparticles that are free from imaginary frequencies. Here we show that the anharmonic phonon frequency of the antiferrodistortive mode depends significantly on the system size near the critical temperature of the cubic-to-tetragonal phase transition. By applying perturbation theory to the SCPH result, phonon lifetimes are calculated for cubic SrTiO3, which are then employed to predict lattice thermal conductivity using the Boltzmann transport equation within the relaxation-time approximation. The presented methodology is efficient and accurate, paving the way toward a reliable description of thermodynamic, dynamic, and transport properties of systems with severe anharmonicity, including thermoelectric, ferroelectric, and superconducting materials.
Metric for strong intrinsic fourth-order phonon anharmonicity
NASA Astrophysics Data System (ADS)
Yue, Sheng-Ying; Zhang, Xiaoliang; Qin, Guangzhao; Phillpot, Simon R.; Hu, Ming
2017-05-01
Under the framework of Taylor series expansion for potential energy, we propose a simple and robust metric, dubbed "regular residual analysis," to measure the fourth-order phonon anharmonicity in crystals. The method is verified by studying the intrinsic strong higher-order anharmonic effects in UO2 and CeO2. Comparison of the thermal conductivity results, which calculated by the anharmonic lattice dynamics method coupled with the Boltzmann transport equation and the spectral energy density method coupled with ab initio molecular dynamics simulation further validates our analysis. Analysis of the bulk Si and Ge systems confirms that the fourth-order phonon anharmonicity is enhanced and cannot be neglected at high enough temperatures, which agrees with a previous study where the four-phonon scattering was explicitly determined. This metric will facilitate evaluating and interpreting the lattice thermal conductivity of crystals with strong fourth-order phonon anharmonicity.
NASA Technical Reports Server (NTRS)
Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)
2001-01-01
The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.
Dielectric and phonon properties of the multiferroic ferrimagnet Cu{sub 2}OSeO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolova, I. N., E-mail: inaapos@abv.bg
2014-02-14
We propose a microscopic model in order to study the multiferroic properties of Cu{sub 2}OSeO{sub 3} taking into account the ferrimagnetic interaction, frustration, linear magnetoelectric (ME) coupling, and anharmonic spin-phonon interaction. We have shown that the dielectric constant and the phonon energy and damping have a kink near the magnetic phase transition T{sub C} = 58 K which disappears with increasing of an external magnetic field. This behavior is an evidence for a strong ME coupling and in qualitative agreement with the experimental data.
An accurate ab initio quartic force field for ammonia
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.
1992-01-01
The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.
Relationship between negative differential thermal resistance and asymmetry segment size
NASA Astrophysics Data System (ADS)
Kong, Peng; Hu, Tao; Hu, Ke; Jiang, Zhenhua; Tang, Yi
2018-03-01
Negative differential thermal resistance (NDTR) was investigated in a system consisting of two dissimilar anharmonic lattices exemplified by Frenkel-Kontorova (FK) lattices and Fremi-Pasta-Ulam (FPU) lattices (FK-FPU). The previous theoretical and numerical simulations show the dependence of NDTR are the coupling constant, interface and system size, but we find the segment size also to be an important element. It’s interesting that NDTR region depends on FK segment size rather than FPU segment size in this coupling FK-FPU model. Remarkably, we could observe that NDTR appears in the strong interface coupling strength case which is not NDTR in previous studies. The results are conducive to further developments in designing and fabricating thermal devices.
An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.
1995-01-01
A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.
Convergence of scaled delta expansion: Anharmonic oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, R.; Konishi, K.; Suzuki, H.
1995-07-01
We prove that the linear delta expansion for energy eigenvalues of the quantum mechanical anharmonic oscillator converges to the exact answer if the order dependent trial frequency {Omega} is chosen to scale with the order as {Omega}={ital CN}{sup {gamma}}; 1/3{lt}{gamma}{lt}1/2, {ital C}{gt}0 as {ital N} {r_arrow} {infinity}. It converges also for {gamma}=1/3, if {ital C}{ge}{alpha}{sub {ital c}} {ital g}{sup 1/3}, {alpha}{sub {ital c}}{congruent}0.570875, where {ital g} is the coupling constant in front of the operator {ital q}{sup 4}/4. The extreme case with {gamma}=1/3, {ital C}={alpha}{sub {ital c}} {ital g}{sup 1/3} corresponds to the choice discussed earlier by Seznec and Zinn-Justinmore » and, more recently, by Duncan and Jones. {copyright} 1995 Academic Press, Inc.« less
ir overtone spectrum of the vibrational soliton in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Scott, A. C.; Gratton, E.; Shyamsunder, E.; Careri, G.
1985-10-01
The self-trapping (soliton) theory which was recently developed to account for the anomalous amide-I band at 1650 cm-1 in crystalline acetanilide (a model system for protein) has been extended to predict the anharmonicity constant of the overtone spectrum. These infrared-active overtones which have been detected at 3250, 4803, and 6304 cm-1 yield an anharmonicity constant that is in good agreement with the theory.
ir overtone spectrum of the vibrational soliton in crystalline acetanilide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, A.C.; Gratton, E.; Shyamsunder, E.
1985-10-15
The self-trapping (soliton) theory which was recently developed to account for the anomalous amide-I band at 1650 cm/sup -1/ in crystalline acetanilide (a model system for protein) has been extended to predict the anharmonicity constant of the overtone spectrum. These infrared-active overtones which have been detected at 3250, 4803, and 6304 cm/sup -1/ yield an anharmonicity constant that is in good agreement with the theory.
Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2018-01-01
Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.
Studies of Phonon Anharmonicity in Solids
NASA Astrophysics Data System (ADS)
Lan, Tian
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures. To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties. These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2 g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Ahren W.; Gruey, Zackery B.; Harding, Lawrence B.
Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities atmore » elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.« less
NASA Astrophysics Data System (ADS)
Madison, Lindsey R.; Mosley, Jonathan; Mauney, Daniel; Duncan, Michael A.; McCoy, Anne B.
2016-06-01
Formaldehyde is the smallest organic molecule and is a prime candidate for a thorough investigation regarding the anharmonic approximations made in computationally modeling its infrared spectrum. Mass-selected ion spectroscopy was used to detect mass 30 cations which include of HCOH^+ and CH_2O^+. In order to elucidate the differences between the structures of these isomers, infrared spectroscopy was performed on the mass 30 cations using Ar predissociation. Interestingly, several additional spectral features are observed that cannot be explained by the fundamental OH and CH stretch vibrations alone. By including anharmonic coupling between OH and CH stretching and various overtones and combination bands involving lower frequency vibrations, we are able to identify how specific modes couple and lead to the experimentally observed spectral features. We combine straight-forward, ab initio calculations of the anharmonic frequencies of the mass 30 cations with higher order, adiabatic approximations and Fermi resonance models. By including anharmonic effects we are able to confirm that the isomers of the CH_2O^+\\cdotAr system have substantially different, and thus distinguishable, IR spectra and that many of the features can only be explained with anharmonic treatments.
Anharmonic, dynamic and functional level effects in far-infrared spectroscopy: Phenol derivatives
NASA Astrophysics Data System (ADS)
Bakker, Daniël J.; Ong, Qin; Dey, Arghya; Mahé, Jérôme; Gaigeot, Marie-Pierre; Rijs, Anouk M.
2017-12-01
The far-infrared (far-IR) spectra of phenol and four ortho-substituted phenol derivatives, including three deuterated analogs, are presented. These spectra, measured using the free electron laser FELIX, are used to compare the performance of Born-Oppenheimer Molecular Dynamics (BOMD) with several commonly used levels of static density functional theory in the far-IR region. The molecules studied here form intramolecular hydrogen bonds of different strengths (except phenol), display diverse degrees of flexibility, and the OH moieties of the molecules provide large amplitude, anharmonic OH torsional modes. Since several of the molecules contain two OH groups, strong anharmonic couplings can also be present. Moreover, the experimental far-IR spectra of phenol and saligenin show overtones and combination bands as proven by the measurements of their deuterated analogs. All these characteristics of the molecules enable us to test the performance of the applied levels of theory on different complicating factors. Briefly summarized, both the strength of the hydrogen bond and molecular rigidity do not significantly influence the agreement between theory and experiment. All applied theoretical methods have difficulties to consistently predict modes that include the anharmonic OH torsional motion, resulting in overestimated intensities and frequencies. Coupling between two OH functional groups provides an additional challenge for theories, as seen for catechol. The various employed theoretical methods are found to complement each other, showing good results for complex harmonic modes in the case of static B3LYP-D3, while improved results are observed for anharmonic modes, including the OH torsional modes and their couplings, in the case of BOMD. Additionally, BOMD calculates the relative intensities better than the other theories. VPT2 reproduces weak anharmonic modes well, but it overestimates shifts and intensities for strong anharmonic modes.
Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO3
Oh, Joosung; Le, Manh Duc; Nahm, Ho-Hyun; Sim, Hasung; Jeong, Jaehong; Perring, T. G.; Woo, Hyungje; Nakajima, Kenji; Ohira-Kawamura, Seiko; Yamani, Zahra; Yoshida, Y.; Eisaki, H.; Cheong, S. -W.; Chernyshev, A. L.; Park, Je-Geun
2016-01-01
Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon–phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon–phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it. PMID:27759004
Classical heat transport in anharmonic molecular junctions: exact solutions.
Liu, Sha; Agarwalla, Bijay Kumar; Wang, Jian-Sheng; Li, Baowen
2013-02-01
We study full counting statistics for classical heat transport through anharmonic or nonlinear molecular junctions formed by interacting oscillators. An analytical result of the steady-state heat flux for an overdamped anharmonic junction with arbitrary temperature bias is obtained. It is found that the thermal conductance can be expressed in terms of a temperature-dependent effective force constant. The role of anharmonicity is identified. We also give the general formula for the second cumulant of heat in steady state, as well as the average geometric heat flux when two system parameters are modulated adiabatically. We present an anharmonic example for which all cumulants for heat can be obtained exactly. For a bounded single oscillator model with mass we found that the cumulants are independent of the nonlinear potential.
Krasnoshchekov, Sergey V; Isayeva, Elena V; Stepanov, Nikolay F
2012-04-12
Anharmonic vibrational states of semirigid polyatomic molecules are often studied using the second-order vibrational perturbation theory (VPT2). For efficient higher-order analysis, an approach based on the canonical Van Vleck perturbation theory (CVPT), the Watson Hamiltonian and operators of creation and annihilation of vibrational quanta is employed. This method allows analysis of the convergence of perturbation theory and solves a number of theoretical problems of VPT2, e.g., yields anharmonic constants y(ijk), z(ijkl), and allows the reliable evaluation of vibrational IR and Raman anharmonic intensities in the presence of resonances. Darling-Dennison and higher-order resonance coupling coefficients can be reliably evaluated as well. The method is illustrated on classic molecules: water and formaldehyde. A number of theoretical conclusions results, including the necessity of using sextic force field in the fourth order (CVPT4) and the nearly vanishing CVPT4 contributions for bending and wagging modes. The coefficients of perturbative Dunham-type Hamiltonians in high-orders of CVPT are found to conform to the rules of equality at different orders as earlier proven analytically for diatomic molecules. The method can serve as a good substitution of the more traditional VPT2.
On the influence of anharmonicity on the isotope effect
NASA Astrophysics Data System (ADS)
Galbaatar, T.; Drechsler, S. L.; Plakida, N. M.; Vujicic, G. M.
1991-12-01
The effect of double-well type lattice anharmonicity on the superconducting temperature and its isotope effect is investigated beyond the two-level approximation (TLA) within the Eliashberg theory. It is shown that anharmonicity can greatly modify the isotope effect; In particular anomalously large as well as negative values of the isotope effect exponent α are obtained in the strong and weak coupling limits, respectively.
Approximate analytical solutions of a pair of coupled anharmonic oscillators
NASA Astrophysics Data System (ADS)
Alam, Nasir; Mandal, Swapan; Öhberg, Patrik
2015-02-01
The Hamiltonian and the corresponding equations of motion involving the field operators of two quartic anharmonic oscillators indirectly coupled via a linear oscillator are constructed. The approximate analytical solutions of the coupled differential equations involving the non-commuting field operators are solved up to the second order in the anharmonic coupling. In the absence of nonlinearity these solutions are used to calculate the second order variances and hence the squeezing in pure and in mixed modes. The higher order quadrature squeezing and the amplitude squared squeezing of various field modes are also investigated where the squeezing in pure and in mixed modes are found to be suppressed. Moreover, the absence of a nonlinearity prohibits the higher order quadrature and higher ordered amplitude squeezing of the input coherent states. It is established that the mere coupling of two oscillators through a third one is unable to produce any squeezing effects of input coherent light, but the presence of a nonlinear interaction may provide squeezed states and other nonclassical phenomena.
Rasheed, Tabish; Ahmad, Shabbir
2010-10-01
Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.
Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect
NASA Astrophysics Data System (ADS)
He, Dahai; Thingna, Juzar; Cao, Jianshu
2018-05-01
We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains by using a quantum self-consistent phonon approach. The approach inherently assumes that the two segments (anharmonic molecular chains) are approximately in local thermal equilibrium with respect to the baths that they are connected to and transforms the strongly anharmonic system into an effective harmonic one with a temperature-dependent transmission. Despite the approximations, the approach is ideal for our setup, wherein the weak interfacial coupling guarantees an approximate local thermal equilibrium of each segment and short chain length (less than the phonon mean-free path) ensues from the effective harmonic approximation. Remarkably, the heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be nonmonotonically tuned not only with the intrinsic system parameters but also with the external temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less
NASA Astrophysics Data System (ADS)
Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.
2018-01-01
Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.
Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal
NASA Astrophysics Data System (ADS)
Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.
2010-01-01
An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.
Spin-lattice relaxation-rate anomaly at structural phase transitions
NASA Astrophysics Data System (ADS)
Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.
1997-12-01
The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.
Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO 3
Oh, Joosung; Le, Manh Duc; Nahm, Ho -Hyun; ...
2016-10-19
Here, magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon–phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zonemore » and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon–phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO 3 and quantified its decay rate and the exchange-striction coupling term required to produce it.« less
First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals
NASA Astrophysics Data System (ADS)
Tadano, Terumasa; Tsuneyuki, Shinji
2018-04-01
We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.
Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2
NASA Astrophysics Data System (ADS)
Changala, Bryan; Baraban, Joshua H.
2017-06-01
Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Anharmonicity and Octahedral Tilting in Hybrid Vacancy-Ordered Double Perovskites
Maughan, Annalise E.; Ganose, Alex M.; Candia, Andrew M.; ...
2017-11-30
The advantageous performance of hybrid organic-inorganic perovskite halide semiconduc- tors in optoelectronic applications motivates studies of their fundamental crystal-chemistry. In particular, recent studies have sought to understand how dipolar, dynamic, and organic cations, such as methylammonium (CH 3 NH 3 + ) and formamidinium (CH(NH 2 ) 2 + ) affect physical properties such as light absorption and charge transport. Here, to probe the influence of organic- inorganic coupling on charge transport, we have prepared the series of vacancy-ordered double perovskite derivatives, A 2SnI 6, where A = Cs +, CH 3NH 3 +, and CH(NH 2) 2 +. Despitemore » nearly identical cubic structures by powder X-ray diffraction, replacement of Cs + with CH 3NH 3 + or CH(NH 2) 2 + reduces conductivity through a reduction in both carrier concentration and carrier mobility. We attribute the trends in electronic behavior to anharmonic lattice dynamics from the formation of hydrogen bonds that yield coupled organic-inorganic dynamics. This anharmonicity manifests as asymmetry of the inter-octahedral I-I pair correlations in the X-ray pair distribution function of the hybrid compounds, which can be modeled by large atomistic ensembles with random rotations of rigid [SnI 6] octahedral units. The presence of soft, anharmonic lattice dynamics holds implications for electron-phonon interactions, as supported by calculation of electron-phonon coupling strength that indicates the formation of more tightly-bound polarons and reduced electron mobilities with increasing cation size. Finally, by exploiting the relatively decoupled nature of the octahedral units in these defect-ordered perovskite variants, we can interrogate the impact of organic-inorganic coupling and lattice anharmonicity on the charge transport behavior of hybrid perovskite halide semiconductors.« less
NASA Astrophysics Data System (ADS)
Lee, Ching Hua; Gan, Chee Kwan
2017-07-01
Phonon-mediated thermal conductivity, which is of great technological relevance, arises due fundamentally to anharmonic scattering from interatomic potentials. Despite its prevalence, accurate first-principles calculations of thermal conductivity remain challenging, primarily due to the high computational cost of anharmonic interatomic force constant (IFC) calculations. Meanwhile, the related anharmonic phenomenon of thermal expansion is much more tractable, being computable from the Grüneisen parameters associated with phonon frequency shifts due to crystal deformations. In this work, we propose an approach for computing the largest cubic IFCs from the Grüneisen parameter data. This allows an approximate determination of the thermal conductivity via a much less expensive route. The key insight is that although the Grüneisen parameters cannot possibly contain all the information on the cubic IFCs, being derivable from spatially uniform deformations, they can still unambiguously and accurately determine the largest and most physically relevant ones. By fitting the anisotropic Grüneisen parameter data along judiciously designed deformations, we can deduce (i.e., reverse-engineer) the dominant cubic IFCs and estimate three-phonon scattering amplitudes. We illustrate our approach by explicitly computing the largest cubic IFCs and thermal conductivity of graphene, especially for its out-of-plane (flexural) modes that exhibit anomalously large anharmonic shifts and thermal conductivity contributions. Our calculations on graphene not only exhibit reasonable agreement with established density-functional theory results, but they also present a pedagogical opportunity for introducing an elegant analytic treatment of the Grüneisen parameters of generic two-band models. Our approach can be readily extended to more complicated crystalline materials with nontrivial anharmonic lattice effects.
Computational Prediction of Kinetic Rate Constants
2006-11-30
without requiring additional data. Zero-point energy ( ZPE ) anharmonicity has a large effect on the accuracy of approximate partition function estimates. If...the accurate ZPE is taken into account, separable approximation partition functions using the most accurate torsion treatment and harmonic treatments...for the remaining degrees of freedom agree with accurate QM partition functions to within a mean accuracy of 9%. If no ZPE anharmonicity correction
Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems
NASA Astrophysics Data System (ADS)
Kakofengitis, Dimitris; Steuernagel, Ole
2017-09-01
There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.
NASA Astrophysics Data System (ADS)
Malpathak, Shreyas; Ma, Xinyou; Hase, William L.
2018-04-01
In a previous UB3LYP/6-31G* direct dynamics simulation, non-Rice-Ramsperger-Kassel-Marcus (RRKM) unimolecular dynamics was found for vibrationally excited 1,2-dioxetane (DO); [R. Sun et al., J. Chem. Phys. 137, 044305 (2012)]. In the work reported here, these dynamics are studied in more detail using the same direct dynamics method. Vibrational modes of DO were divided into 4 groups, based on their characteristic motions, and each group excited with the same energy. To compare with the dynamics of these groups, an additional group of trajectories comprising a microcanonical ensemble was also simulated. The results of these simulations are consistent with the previous study. The dissociation probability, N(t)/N(0), for these excitation groups were all different. Groups A, B, and C, without initial excitation in the O-O stretch reaction coordinate, had a time lag to of 0.25-1.0 ps for the first dissociation to occur. Somewhat surprisingly, the C-H stretch Group A and out-of-plane motion Group C excitations had exponential dissociation probabilities after to, with a rate constant ˜2 times smaller than the anharmonic RRKM value. Groups B and D, with excitation of the H-C-H bend and wag, and ring bend and stretch modes, respectively, had bi-exponential dissociation probabilities. For Group D, with excitation localized in the reaction coordinate, the initial rate constant is ˜7 times larger than the anharmonic RRKM value, substantial apparent non-RRKM dynamics. N(t)/N(0) for the random excitation trajectories was non-exponential, indicating intrinsic non-RRKM dynamics. For the trajectory integration time of 13.5 ps, 9% of these trajectories did not dissociate in comparison to the RRKM prediction of 0.3%. Classical power spectra for these trajectories indicate they have regular intramolecular dynamics. The N(t)/N(0) for the excitation groups are well described by a two-state coupled phase space model. From the intercept of N(t)/N(0) with random excitation, the anharmonic correction to the RRKM rate constant is approximately a factor of 1.5.
NASA Astrophysics Data System (ADS)
Tadano, Terumasa; Tsuneyuki, Shinji
2015-12-01
We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi2Te3 based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO3 can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.
Torsional Rigidity of Positively and Negatively Supercoiled DNA
NASA Astrophysics Data System (ADS)
Selvin, Paul R.; Cook, David N.; Pon, Ning G.; Bauer, William R.; Klein, Melvin P.; Hearst, John E.
1992-01-01
Time-correlated single-photon counting of intercalated ethidium bromide was used to measure the torsion constants of positively supercoiled, relaxed, and negatively supercoiled pBR322 DNA, which range in superhelix density from +0.042 to -0.123. DNA behaves as coupled, nonlinear torsional pendulums under superhelical stress, and the anharmonic term in the Hamiltonian is approximately 15 percent for root-mean-square fluctuations in twist at room temperature. At the level of secondary structure, positively supercoiled DNA is significantly more flexible than negatively supercoiled DNA. These results exclude certain models that account for differential binding affinity of proteins to positively and negatively supercoiled DNA.
Thermal conductivity of an imperfect anharmonic crystal
NASA Astrophysics Data System (ADS)
Sahu, D. N.; Sharma, P. K.
1983-09-01
The thermal conductivity of an anharmonic crystal containing randomly distributed substitutional defects due to impurity-phonon scattering is theoretically investigated with the use of the method of double-time thermal Green's functions and the Kubo formalism considering all the terms, i.e., diagonal, nondiagonal, cubic anharmonic, and imperfection terms in the energy-flux operator as propounded by Hardy. The study uses cubic, quartic anharmonic, and defect terms in the Hamiltonian. Mass changes as well as force-constant changes between impurity and host-lattice atoms are taken into account explicitly. It is shown that the total conductivity can be written as a sum of contributions, namely diagonal, nondiagonal, anharmonic, and imperfection contributions. For phonons of small halfwidth, the diagonal contribution has precisely the same form which is obtained from Boltzmann's transport equation for impurity scattering in the relaxation-time approximation. The present study shows that there is a finite contribution of the nondiagonal term, cubic anharmonic term, and the term due to lattice imperfections in the energy-flux operator to the thermal conductivity although the contribution is small compared with that from the diagonal part. We have also discussed the feasibility of numerical evaluation of the various contributions to the thermal conductivity.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny
2002-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2014-01-01
The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.
NASA Astrophysics Data System (ADS)
Delaire, Olivier
Modern neutron and x-ray spectrometers can map phonon dispersions and scattering rates throughout reciprocal space, providing unique insights into microscopic scattering mechanisms, including anharmonicity, electron-phonon coupling, or scattering by defects and nanostructures. In addition, first-principles simulations enable the rationalization of extensive experimental datasets. In particular, ab-initio molecular dynamics simulations can capture striking effects of anharmonicity near lattice instabilities. A number of high-performance thermoelectric materials are found in the vicinity of lattice instabilities, including Pb chalcogenides PbX, SnSe, Cu2Se, among others. The large phonon anharmonicity found in such compounds suppresses the lattice thermal conductivity, enhancing their thermoelectric efficiency. In this presentation, I will present results from our investigations of phonons in these materials using neutron and x-ray scattering combined with first-principles simulations, focusing on anharmonic effects near lattice instabilities. I will show how strong anharmonicity can lead to emergent quasiparticles qualitatively different from harmonic phonons, which we probe in our measurements and simulations of the phonon self-energy. Commonalities between systems will be highlighted, including connections between strong anharmonicity and the electronic structure. Funding from US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division, Office of Science Early Career program (DE-SC0016166), and as part of the S3TEC EFRC (DE-SC0001299).
Heat transport in an anharmonic crystal
NASA Astrophysics Data System (ADS)
Acharya, Shiladitya; Mukherjee, Krishnendu
2018-04-01
We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.
Rotational spectra in the ν2 vibrationally excited states of MgNC
NASA Astrophysics Data System (ADS)
Kagi, E.; Kawaguchi, K.; Takano, S.; Hirano, T.
1996-01-01
The pure rotational spectra of MgNC in the ν2 (bending) vibrationally excited states were observed in the 310-380 GHz region to study the linearity of the molecule. The observed 90 spectral lines were assigned to the transitions in the v2=1-5 states and analyzed to determine a set of molecular constants in each state. The bending vibrational frequency was estimated to be 86 cm-1 from the l-type doubling constant of the v2=1 state. The interval of the Φ and Π states in v2=3 was determined to be 29.2280(24) cm-1, giving the anharmonicity constant xll=3.8611(9) cm-1 with one standard deviation in parentheses, which indicates that the molecule has a linear form. However, somewhat peculiar properties were recognized in dependence of the observed l-type resonance and vibration-rotation constants on the v2 vibrational quantum number, suggesting an effect of anharmonicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, So; Yanai, Takeshi; De Jong, Wibe A.
Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano
2017-10-01
One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.
Revisiting PbTe to identify how thermal conductivity is really limited
NASA Astrophysics Data System (ADS)
Ju, Shenghong; Shiga, Takuma; Feng, Lei; Shiomi, Junichiro
2018-05-01
Due to the long range interaction in lead telluride (PbTe), the transverse optical (TO) phonon becomes soft around the Brillouin zone center. Previous studies have postulated that this zone-center softening causes the low thermal conductivity of PbTe through either enlarged phonon scattering phase space and/or strengthened lattice anharmonicity. In this paper, we reported an extensive sensitivity analysis of the PbTe thermal conductivity to various factors: range and magnitude of harmonic and anharmonic interatomic force constants and phonon wave vectors in the three-phonon scattering processes. The analysis reveals that the softening by long range harmonic interaction itself does not reduce thermal conductivity, and it is the large magnitude of the anharmonic (cubic) force constants that realizes low thermal conductivity, however, not through the TO phonons around the zone center but dominantly through the ones with larger wave vectors in the middle of Brillion zone. The paper clarifies that local band softening cannot be a direct finger print for low thermal conductivity and that the entire Brillion zone needs to be characterized on exploring low thermal conductivity materials.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas
2017-09-01
Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maughan, Annalise E.; Ganose, Alex M.; Candia, Andrew M.
The advantageous performance of hybrid organic-inorganic perovskite halide semiconduc- tors in optoelectronic applications motivates studies of their fundamental crystal-chemistry. In particular, recent studies have sought to understand how dipolar, dynamic, and organic cations, such as methylammonium (CH 3 NH 3 + ) and formamidinium (CH(NH 2 ) 2 + ) affect physical properties such as light absorption and charge transport. Here, to probe the influence of organic- inorganic coupling on charge transport, we have prepared the series of vacancy-ordered double perovskite derivatives, A 2SnI 6, where A = Cs +, CH 3NH 3 +, and CH(NH 2) 2 +. Despitemore » nearly identical cubic structures by powder X-ray diffraction, replacement of Cs + with CH 3NH 3 + or CH(NH 2) 2 + reduces conductivity through a reduction in both carrier concentration and carrier mobility. We attribute the trends in electronic behavior to anharmonic lattice dynamics from the formation of hydrogen bonds that yield coupled organic-inorganic dynamics. This anharmonicity manifests as asymmetry of the inter-octahedral I-I pair correlations in the X-ray pair distribution function of the hybrid compounds, which can be modeled by large atomistic ensembles with random rotations of rigid [SnI 6] octahedral units. The presence of soft, anharmonic lattice dynamics holds implications for electron-phonon interactions, as supported by calculation of electron-phonon coupling strength that indicates the formation of more tightly-bound polarons and reduced electron mobilities with increasing cation size. Finally, by exploiting the relatively decoupled nature of the octahedral units in these defect-ordered perovskite variants, we can interrogate the impact of organic-inorganic coupling and lattice anharmonicity on the charge transport behavior of hybrid perovskite halide semiconductors.« less
Liu, S; Baugh, D; Motobayashi, K; Zhao, X; Levchenko, S V; Gawinkowski, S; Waluk, J; Grill, L; Persson, M; Kumagai, T
2018-05-07
Anharmonicity plays a crucial role in hydrogen transfer reactions in hydrogen-bonding systems, which leads to a peculiar spectral line shape of the hydrogen stretching mode as well as highly complex intra/intermolecular vibrational energy relaxation. Single-molecule study with a well-defined model is necessary to elucidate a fundamental mechanism. Recent low-temperature scanning tunnelling microscopy (STM) experiments revealed that the cis↔cis tautomerization in a single porphycene molecule on Cu(110) at 5 K can be induced by vibrational excitation via an inelastic electron tunnelling process and the N-H(D) stretching mode couples with the tautomerization coordinate [Kumagai et al. Phys. Rev. Lett. 2013, 111, 246101]. Here we discuss a pronounced anharmonicity of the N-H stretching mode observed in the STM action spectra and the conductance spectra. Density functional theory calculations find a strong intermode coupling of the N-H stretching with an in-plane bending mode within porphycene on Cu(110).
Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu
This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less
NASA Astrophysics Data System (ADS)
Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2015-11-01
A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.
Infrared Analysis of the Anharmonic Resonance between ν 8+ ν 9and the Dark State ν 6+ ν 7of HNO 3
NASA Astrophysics Data System (ADS)
Wang, W. F.; Ong, P. P.; Tan, T. L.; Looi, E. C.; Teo, H. H.
1997-06-01
The high-resolution FTIR spectrum of the ν8+ ν9band of HNO3around 1205 cm-1has been measured and analyzed. The bright state was found to be strongly perturbed by its neighboring dark state ν6+ ν7at the coincident levels. Taking account of the ΔK= ±2 anharmonic resonance, a simultaneous fit of ν8+ ν9and ν6+ ν7was performed leading to a good reproduction of the ν8+ ν9band with a rms uncertainty of 0.00046 cm-1. A set of rovibrational constants for ν8+ ν9were accurately determined, while for ν6+ ν7the rotational constantBand the band origin were obtained.
Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol
NASA Astrophysics Data System (ADS)
Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.
2017-09-01
We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm-1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm-1, with J and K a ranges of 1-59 and 0-16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.
Millimeter Wave Spectroscopy and Equilibrium Structure Determination of Pyrimidine (m-C_4H_4N_2)
NASA Astrophysics Data System (ADS)
Heim, Zachary N.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.
2015-06-01
Pyrimidine, the meta substituted dinitrogen analog of benzene, has been studied in the mm-wave region from 260 - 360 GHz, expanding on previous studies up to 337 GHz. The spectra of all four of the singly-substituted 13C and 15N isotopologues were observed in natural abundance. Samples of deuterium enriched pyrimidine were synthesized, giving access to several deuterium-substituted isotopologues. The experimental rotational constants have been corrected for vibration-rotation coupling and electron mass. The vibration-rotation corrections were calculated with an anharmonic frequency calculation at the CCSD[T]/ANO1 level using CFOUR. An equilibrium structure determination has been performed using the corrected rotational constants with the xrefit module of CFOUR. Several vibrational satellites of pyrimidine have also been studied. Their rotational constants have been compared to those obtained computationally. Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 233, 231-243 (2005). G. L. Blackman, R. D. Brown, F. R. Burden, J. Mol. Spectrosc. 35, 444-454 (1970). W. Caminati, D. Damiani, Chem. Phys. Lett. 179, 460-462 (1991).
Similarity-transformed equation-of-motion vibrational coupled-cluster theory.
Faucheaux, Jacob A; Nooijen, Marcel; Hirata, So
2018-02-07
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
NASA Astrophysics Data System (ADS)
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Towards a global model of spin-orbit coupling in the halocarbenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu
We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
Madebène, B; Asselin, P; Soulard, P; Alikhani, M E
2011-08-21
The coexistence of axial and equatorial hydrogen-bonded conformers of 1 : 1 (CH(2))(3)S-HF (and -DF) has been observed in the same adiabatic expansion of a supersonic jet seeded with argon and in a static absorption cell at room temperature. High level calculations computed the axial conformer to be the most stable one with a small energy difference with respect to the equatorial one, in full agreement with previous microwave experiments. On the grounds of band contour simulations of FTIR spectra and ab initio energetic and anharmonic vibrational calculations, two pairs of ν(s) HF donor stretching bands, observed in a series of jet-FTIR spectra at 3457.9 and 3480.5 cm(-1) have been respectively assigned to the axial and equatorial forms of the 1 : 1 complex. In the jet-FTIR spectra series with HF, the assignment of an additional broad band (about 200 cm(-1) higher in frequency with respect to ν(s)) to a 1 : 2 complex has been supported by theoretical investigations. Experimental detection of both axial and equatorial forms of a cyclic trimer has been confirmed by calculated energetic and vibrational properties. The nature of hydrogen bonding has been examined within topological frameworks. The energetic partitioning within the 1 : 1 dimers has been elucidated with SAPT techniques. Interestingly, the interconversion pathway between two 1 : 1 structures has been explored and it was seen that the formation of the 1 : 1 complex affects the interconversion barrier on the ring puckering motion. The band contour analysis of gas phase FTIR experiments provided a consistent set of vibrational frequencies and anharmonic coupling constants, in good agreement with ab initio anharmonic vibrational calculations. Finally, from a series of cell-FTIR spectra recorded at different partial pressures of (CH(2))(3)S and HF monomers, the absorption signal of the 1 : 1 complex could be isolated which enabled to estimate the equilibrium constant K(p) = 0.023 at 298 K for the dimerization.
Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.
Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A
2016-06-21
We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.
Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F
2018-03-13
Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.
Infrared spectroscopy of the ν1 + ν4 and 3ν4 bands of the nitrate radical
NASA Astrophysics Data System (ADS)
Kawaguchi, Kentarou; Fujimori, Ryuji; Ishiwata, Takashi
2018-05-01
High-resolution Fourier transform infrared spectra of the ν1 + ν4 and 3ν4 bands of 14NO3 were observed in the 1414 and 1174 cm-1 regions, respectively, and the corresponding ones of 15NO3 in the 1407 and 1159 cm-1 regions, respectively, and analyzed as E‧-A2‧ bands. The rotational constants of the upper states of 14NO3 are determined to be 0.457584 and 0.46089 cm-1 for ν1 + ν4 and 3ν4, respectively, consistent with the vibrational assignment. Effective Coriolis coupling constants of the ground electronic state are partly explained by vibronic interaction from the B2E‧ state, and a large change (37% decrease) in the value of the ν1 + ν4 state compared with that of the ν4 state is attributed to a mixing with the ν3 + ν4 state (1492 cm-1) through vibrational anharmonicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
So Hirata
2012-01-03
This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less
NASA Astrophysics Data System (ADS)
McAneny, M.; Freericks, J. K.
2014-11-01
The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.
Roy, Tapta Kanchan; Sharma, Rahul; Gerber, R Benny
2016-01-21
First-principles quantum calculations for anharmonic vibrational spectroscopy of three protected dipeptides are carried out and compared with experimental data. Using hybrid HF/MP2 potentials, the Vibrational Self-Consistent Field with Second-Order Perturbation Correction (VSCF-PT2) algorithm is used to compute the spectra without any ad hoc scaling or fitting. All of the vibrational modes (135 for the largest system) are treated quantum mechanically and anharmonically using full pair-wise coupling potentials to represent the interaction between different modes. In the hybrid potential scheme the MP2 method is used for the harmonic part of the potential and a modified HF method is used for the anharmonic part. The overall agreement between computed spectra and experiment is very good and reveals different signatures for different conformers. This study shows that first-principles spectroscopic calculations of good accuracy are possible for dipeptides hence it opens possibilities for determination of dipeptide conformer structures by comparison of spectroscopic calculations with experiment.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Anharmonic phonons and magnons in BiFeO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delaire, Olivier A; Ma, Jie; Stone, Matthew B
2012-01-01
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed withmore » neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.« less
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1974-01-01
The semiclassical approximation is applied to anharmonic diatomic oscillators in excited initial states. Multistate numerical solutions giving the vibrational transition probabilities for collinear collisions with an inert atom are compared with equivalent, exact quantum-mechanical calculations. Several symmetrization methods are shown to correlate accurately the predictions of both theories for all initial states, transitions, and molecular types tested, but only if coupling of the oscillator motion and the classical trajectory of the incident particle is considered. In anharmonic heteronuclear molecules, the customary semiclassical method of computing the classical trajectory independently leads to transition probabilities with anomalous low-energy resonances. Proper accounting of the effects of oscillator compression and recoil on the incident particle trajectory removes the anomalies and restores the applicability of the semiclassical approximation.
High-Resolution Study of the C-D Stretching Bands of 12C 6D 6 and 13C 6D 6
NASA Astrophysics Data System (ADS)
Pliva, J.; Johns, J. W. C.; Goodman, L.
1994-01-01
The perpendicular C-D stretching bands ν 12 (species E1 u) were measured for two isotopomers of benzene with D6 h symmetry. 12C 6D 6 and 13C 6D 6, on a high-resolution Fourier transform spectrometer. Both bands show effects of fairly strong perturbations by states resulting from combinations of low-frequency vibrations. The ν 12 state of 12C 6D 6 is in Fermi resonance with the combination ν 2 + ν 3 whose pP lines, enhanced by the resonance, are observed just below the pP branches of ν 12. An x, y-type Coriolis interaction with an unidentified state of symmetry E2 u, and another anharmonic interaction with an unknown E1 u state, have also been detected in the spectrum. These interactions were included, along with the Fermi resonance and the rotational l-resonance and -doubling, in the Hamiltonian used in the analysis of this band. For the ν 12 band of the 13C 6D 6 isotopomer, a strong perturbation by an anharmonic resonance with the E1 u state ν 7 + ν 11 + ν 14 and a much weaker perturbation. presumably by a z-type Coriolis interaction with an unidentified perturber, have been observed and taken into account in the analysis. Spectroscopic constants are reported for the ν 12 states of the two isotopic species, and parameters obtained for the various perturbers and coupling constants are also listed. It is found that the ζ sum for the E1 u vibrations of all D6 h isotopomers of benzene differs slightly from the theoretical value of ∑ζ t = -1.
NASA Astrophysics Data System (ADS)
Wang, Wenji; Zhao, Yi
2012-12-01
Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.
Alecu, I M; Zheng, Jingjing; Papajak, Ewa; Yu, Tao; Truhlar, Donald G
2012-12-20
Multistructural canonical variational transition-state theory with small-curvature multidimensional tunneling (MS-CVT/SCT) is employed to calculate thermal rate constants for hydrogen-atom abstraction from carbon-1 of n-butanol by the hydroperoxyl radical over the temperature range 250-2000 K. The M08-SO hybrid meta-GGA density functional was validated against CCSD(T)-F12a explicitly correlated wave function calculations with the jul-cc-pVTZ basis set. It was then used to compute the properties of all stationary points and the energies and Hessians of a few nonstationary points along the reaction path, which were then used to generate a potential energy surface by the multiconfiguration Shepard interpolation (MCSI) method. The internal rotations in the transition state for this reaction (like those in the reactant alcohol) are strongly coupled to each other and generate multiple stable conformations, which make important contributions to the partition functions. It is shown that neglecting to account for the multiple-structure effects and torsional potential anharmonicity effects that arise from the torsional modes would lead to order-of-magnitude errors in the calculated rate constants at temperatures of interest in combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.
Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.
2016-02-03
Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G
2016-03-02
Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.
Greve, Christian; Preketes, Nicholas K; Costard, Rene; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T J; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas
2012-07-26
The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.
Quantum effects in amplitude death of coupled anharmonic self-oscillators
NASA Astrophysics Data System (ADS)
Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph
2018-05-01
Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.
Thermal conductivity of a single polymer chain
NASA Astrophysics Data System (ADS)
Freeman, J. J.; Morgan, G. J.; Cullen, C. A.
1987-05-01
Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.
Anharmonicity and hydrogen bonding in electrooptic sucrose crystal
NASA Astrophysics Data System (ADS)
Szostak, M. M.; Giermańska, J.
1990-03-01
The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.
Structural sensitivity of Csbnd H vibrational band in methyl benzoate
NASA Astrophysics Data System (ADS)
Roy, Susmita; Maiti, Kiran Sankar
2018-05-01
The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Hua; College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024; Kioussis, Nicholas, E-mail: nick.kioussis@csun.edu
Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that resultsmore » in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.« less
Accelerating evaluation of converged lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Qin, Guangzhao; Hu, Ming
2018-01-01
High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.
Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite
NASA Astrophysics Data System (ADS)
Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar
2017-09-01
For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite CuC{{r}1-x}M{{g}x}{{O}2-y}{{S}y} (x = 0/0.03, y = 0/0.01). For both {{E}g} and {{A}1g} phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon SO× and (MgCr\\bullet+SO×) doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to a - b plane, are estimated to increase appreciably upon codoping compared to the c -axis. We delineate the interdependence between charge-phonon coupling constant (λ ) and anharmonic phonon lifetime ({τanh} ), and deduce that excitation of delocalized holes weakly coupled with phonons of larger {τanh} is the governing feature of observed Fano asymmetry (q ) reversal.
Disentangling α and β relaxation in orientationally disordered crystals with theory and experiments
NASA Astrophysics Data System (ADS)
Cui, Bingyu; Gebbia, Jonathan F.; Tamarit, Josep-Lluis; Zaccone, Alessio
2018-05-01
We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112 and freon-113, around and just above Tg. The memory function is related to the integral of the VDOS times a spectral coupling function γ (ωp) , which tells the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance of a secondary β relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.
2016-04-21
We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less
Magnesium replacement in formaldehyde: Theoretical rovibrational analysis of X ∼ 3B1 MgCH2
NASA Astrophysics Data System (ADS)
Bassett, Matthew K.; Fortenberry, Ryan C.
2018-02-01
A full, anharmonic set of fundamental vibrational frequencies as well as spectrosocpic constants are provided at high-level for X ∼ 3B1 MgCH2 for the first time. The present data are in line with previous computational and Ar-matrix results, but the anharmonic data show that two brightest frequencies, ν4 and ν5 , are nearly coincident with one another at 560 cm-1. Hence, this area is the best spectral region to search for signatures of this molecule. The rotational constants are also provided indicating a near-prolate rotational progression which should aid in microwave/millimeter-wave analysis of this molecule. Magnesium is known to be a significant component of the Earth, and molecules containing it may be more common in the interstellar medium/circumstellar media than previously thought. More spectral characterization of such molecules like MgCH2 should be undertaken, and this work is a step in that direction.
Electron trapping and transport by supersonic solitons in one-dimensional systems
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S.
1978-01-01
A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.
Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentschura, Ulrich D.; Surzhykov, Andrey; GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt
2010-05-15
This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead tomore » subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.« less
Chemical and quantum simulation of electron transfer through a polypeptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ungar, L.W.; Voth, G.A.; Newton, M.D.
1999-08-26
Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less
Miller, Yifat; Chaban, Galina M; Zhou, Jia; Asmis, Knut R; Neumark, Daniel M; Gerber, R Benny
2007-09-07
The vibrational spectroscopy of (SO4(2-)).(H2O)n is studied by theoretical calculations for n=1-5, and the results are compared with experiments for n=3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850 cm(-1), is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n=2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO4(2-)).(H2O)(5): The global minimum of the potential energy corresponds to a C(s) structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-).(HSO4-).(H2O)n, for n
NASA Astrophysics Data System (ADS)
Miller, Yifat; Chaban, Galina M.; Zhou, Jia; Asmis, Knut R.; Neumark, Daniel M.; Benny Gerber, R.
2007-09-01
The vibrational spectroscopy of (SO42-)•(H2O)n is studied by theoretical calculations for n =1-5, and the results are compared with experiments for n =3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850cm-1, is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n =2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO42-)•(H2O)5: The global minimum of the potential energy corresponds to a Cs structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-)•(HSO4-)•(H2O)n, for n ⩽5.
NASA Astrophysics Data System (ADS)
Kuribayashi, T.; Motoyama, T.; Arashida, Y.; Katayama, I.; Takeda, J.
2018-05-01
We demonstrate that single-shot pump-probe imaging spectroscopy with an echelon mirror enables us to disclose the ferroelectric phonon-polariton dynamics across a wide temperature range from 10 K to 375 K while avoiding the photorefractive effects that appear prominently at low temperatures. The E-mode phonon-polaritons corresponding to the two transverse optical modes, TO1 and TO3, up to ˜7 THz were induced in LiNbO3 through an impulsive stimulated Raman scattering process. Subsequently, using single-shot pump-probe imaging spectroscopy over a minimal cumulative time, we successfully visualized the phonon-polariton dynamics in time-wavelength space even at low temperatures. We found that the phase-matching condition significantly affected the observed temperature-dependent phonon-polariton frequency shift. The anharmonicity of the TO1 and TO3 modes was then evaluated based on an anharmonic model involving higher-order interactions with acoustic phonons while eliminating the influence of the frequency shift due to the phase-matching condition. The observed wavenumber-dependent damping rate was analyzed by considering the bilinear coupling of the TO1 or TO3 modes with the thermally activated relaxation mode. We found that the phonon-polariton with a higher frequency and wavenumber had a higher damping rate at high temperatures because of its frequent interaction with the thermally activated relaxation mode and acoustic phonons. The TO3 mode displayed greater bilinear coupling than the TO1 mode, which may also have contributed to the observed high damping rate. Thus, using our unique single-shot spectroscopy technique, we could reveal the overall anharmonic characteristics of the E-mode phonon-polaritons arising from both the acoustic phonons and the relaxation mode.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, Matthew R.; Hirata, So, E-mail: sohirata@illinois.edu; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value ofmore » a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.« less
NASA Astrophysics Data System (ADS)
Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard
2017-01-01
Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.
NASA Astrophysics Data System (ADS)
Keçeli, Murat; Hirata, So
2010-09-01
The mod- n scheme is introduced to the coupled-cluster singles and doubles (CCSD) and third-order Møller-Plesset perturbation (MP3) methods for extended systems of one-dimensional periodicity. By downsampling uniformly the wave vectors in Brillouin-zone integrations, this scheme accelerates these accurate but expensive correlation-energy calculations by two to three orders of magnitude while incurring negligible errors in their total and relative energies. To maintain this accuracy, the number of the nearest-neighbor unit cells included in the lattice sums must also be reduced by the same downsampling rate (n) . The mod- n CCSD and MP3 methods are applied to the potential-energy surface of polyethylene in anharmonic frequency calculations of its infrared- and Raman-active vibrations. The calculated frequencies are found to be within 46cm-1 (CCSD) and 78cm-1 (MP3) of the observed.
Paul, Amit K; Hase, William L
2016-01-28
A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.
NASA Astrophysics Data System (ADS)
Lu, Yong; Sun, Tao; Zhang, Dong-Bo
2018-05-01
We investigated the vibrational property of lead telluride (PbTe) with a focus on lattice anharmonicity at moderate temperatures (300
Abbate, Sergio; Longhi, Giovanna; Gangemi, Fabrizio; Gangemi, Roberto; Superchi, Stefano; Caporusso, Anna Maria; Ruzziconi, Renzo
2011-10-01
The IR and Near infrared (NIR) vibrational circular dichroism (VCD) spectra of molecules endowed with noncentral chirality have been investigated. Data for fundamental, first, and second overtone regions of (S)-2,3-pentadiene, exhibiting axial chirality, and methyl-d(3) (R)- and (S)-[2.2]paracyclophane-4-carboxylate, exhibiting planar chirality have been measured and analyzed. The analysis of NIR and IR VCD spectra was based on the local-mode model and the use of density functional theory (DFT), providing mechanical and electrical anharmonic terms for all CH-bonds. The comparison of experimental and calculated spectra is satisfactory and allows one to monitor fine details in the asymmetric charge distribution in the molecules: these details consist in the harmonic frequencies, in the principal anharmonicity constants, in both the atomic polar and axial tensors and in their first and second derivatives with respect to the CH-stretching coordinates. Copyright © 2011 Wiley-Liss, Inc.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less
Orbitally driven giant phonon anharmonicity in SnSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C. W.; Hong, J.; May, A. F.
Understanding elementary excitations and their couplings in condensed matter systems is critical for developing better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The current record material for thermoelectric conversion efficiency, SnSe, has an ultralow thermal conductivity, but the mechanism behind the strong phonon scattering remains largely unknown. From inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and found the origin of the ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that themore » giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers new insights on how electron–phonon and phonon–phonon interactions may lead to the realization of ultralow thermal conductivity.« less
Keçeli, Murat; Hirata, So; Yagi, Kiyoshi
2010-07-21
The frequencies of the infrared- and/or Raman-active (k=0) vibrations of polyethylene and polyacetylene are computed by taking account of the anharmonicity in the potential energy surfaces (PESs) and the resulting phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline orbital theory at the Hartree-Fock and second-order Møller-Plesset (MP2) perturbation levels, providing one-, two-, and/or three-dimensional slices of the PES (namely, using the so-called n-mode coupling approximation with n=3), which are in turn expanded in the fourth-order Taylor series with respect to the normal coordinates. The vibrational part uses the vibrational self-consistent field, vibrational MP2, and vibrational truncated configuration-interaction (VCI) methods within the Gamma approximation, which amounts to including only k=0 phonons. It is shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum absolute deviations less than 50 and 90 cm(-1), respectively, for polyethylene and polyacetylene) between computed and observed frequencies. The corresponding values for the calculations including only one of such effects are in excess of 120 and 300 cm(-1), respectively. The VCI calculations also reproduce semiquantitatively the frequency separation and intensity ratio of the Fermi doublet involving the nu(2)(0) fundamental and nu(8)(pi) first overtone in polyethylene.
Anharmonic Potential Constants and Their Dependence Upon Bond Length
DOE R&D Accomplishments Database
Herschbach, D. R.; Laurie, V. W.
1961-01-01
Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)
Terahertz generation via laser coupling to anharmonic carbon nanotube array
NASA Astrophysics Data System (ADS)
Sharma, Soni; Vijay, A.
2018-02-01
A scheme of terahertz radiation generation employing a matrix of anharmonic carbon nanotubes (CNTs) embedded in silica is proposed. The matrix is irradiated by two collinear laser beams that induce large excursions on CNT electrons and exert a nonlinear force at the beat frequency ω = ω1-ω2. The force derives a nonlinear current producing THz radiation. The THz field is resonantly enhanced at the plasmon resource, ω = ω p ( 1 + β ) / √{ 2 } , where ωp is the plasma frequency and β is a characteristic parameter. Collisions are a limiting factor, suppressing the plasmon resonance. For typical values of plasma parameters, we obtain power conversion efficiency of the order of 10-6.
Anharmonic, dimensionality and size effects in phonon transport
NASA Astrophysics Data System (ADS)
Thomas, Iorwerth O.; Srivastava, G. P.
2017-12-01
We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.
On the statistical distribution in a deformed solid
NASA Astrophysics Data System (ADS)
Gorobei, N. N.; Luk'yanenko, A. S.
2017-09-01
A modification of the Gibbs distribution in a thermally insulated mechanically deformed solid, where its linear dimensions (shape parameters) are excluded from statistical averaging and included among the macroscopic parameters of state alongside with the temperature, is proposed. Formally, this modification is reduced to corresponding additional conditions when calculating the statistical sum. The shape parameters and the temperature themselves are found from the conditions of mechanical and thermal equilibria of a body, and their change is determined using the first law of thermodynamics. Known thermodynamic phenomena are analyzed for the simple model of a solid, i.e., an ensemble of anharmonic oscillators, within the proposed formalism with an accuracy of up to the first order by the anharmonicity constant. The distribution modification is considered for the classic and quantum temperature regions apart.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)
2001-01-01
Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com
2014-04-14
A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less
NASA Astrophysics Data System (ADS)
Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.
2018-03-01
Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.
Electronic damping of anharmonic adsorbate vibrations at metallic surfaces
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter
2010-03-01
The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.
2015-11-01
Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.
NASA Astrophysics Data System (ADS)
Rashid, Zahid; Zhu, Liyan; Li, Wu
2018-02-01
The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.
NASA Technical Reports Server (NTRS)
Isaacson, D.; Isaacson, E. L.; Paes-Leme, P. J.; Marchesin, D.
1981-01-01
Several methods for computing many eigenvalues and eigenfunctions of a single anharmonic oscillator Schroedinger operator whose potential may have one or two minima are described. One of the methods requires the solution of an ill-conditioned generalized eigenvalue problem. This method has the virtue of using a bounded amount of work to achieve a given accuracy in both the single and double well regions. Rigorous bounds are given, and it is proved that the approximations converge faster than any inverse power of the size of the matrices needed to compute them. The results of computations for the g:phi(4):1 theory are presented. These results indicate that the methods actually converge exponentially fast.
Dhatt, Sharmistha; Bhattacharyya, Kamal
2012-08-01
Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.
Shan, Xiao; Clary, David C
2018-03-13
The rate constants of the two branches of H-abstractions from CH 3 OH by the H-atom and the corresponding reactions in the reverse direction are calculated using the one-dimensional semiclassical transition state theory (1D SCTST). In this method, only the reaction mode vibration of the transition state (TS) is treated anharmonically, while the remaining internal degrees of freedom are treated as they would have been in a standard TS theory calculation. A total of eight ab initio single-point energy calculations are performed in addition to the computational cost of a standard TS theory calculation. This allows a second-order Richardson extrapolation method to be employed to improve the numerical estimation of the third- and fourth-order derivatives, which in turn are used in the calculation of the anharmonic constant. Hindered-rotor (HR) vibrations are identified in the equilibrium states of CH 3 OH and CH 2 OH, and the TSs of the reactions. The partition function of the HRs are calculated using both a simple harmonic oscillator model and a more sophisticated one-dimensional torsional eigenvalue summation (1D TES) method. The 1D TES method can be easily adapted in 1D SCTST computation. The resulting 1D SCTST with 1D TES rate constants show good agreement to previous theoretical and experimental works. The effects of the HR on rate constants for different reactions are also investigated.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
Dalbouha, S; Senent, M L; Komiha, N; Domínguez-Gómez, R
2016-09-28
Various astrophysical relevant molecules obeying the empirical formula C 2 H 3 NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH 3 NCO), methyl cyanate (CH 3 OCN), methyl fulminate (CH 3 ONC), and acetonitrile N-oxide (CH 3 CNO). A CH 3 CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH 3 CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C 3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.
NASA Astrophysics Data System (ADS)
Dalbouha, S.; Senent, M. L.; Komiha, N.; Domínguez-Gómez, R.
2016-09-01
Various astrophysical relevant molecules obeying the empirical formula C2H3NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH3NCO), methyl cyanate (CH3OCN), methyl fulminate (CH3ONC), and acetonitrile N-oxide (CH3CNO). A CH3CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH3CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.
Correlated electron-nuclear dissociation dynamics: classical versus quantum motion
NASA Astrophysics Data System (ADS)
Schaupp, Thomas; Albert, Julian; Engel, Volker
2017-01-01
We investigate the coupled electron-nuclear dynamics in a model system which undergoes dissociation. In choosing different initial conditions, the cases of adiabatic and non-adiabatic dissociation are realized. We treat the coupled electronic and nuclear motion in the complete configuration space so that classically, no surface hopping procedures have to be incorporated in the case that more than a single adiabatic electronic state is populated during the fragmentation. Due to the anharmonic interaction potential, it is expected that classical mechanics substantially deviate from quantum mechanics. However, we provide examples where the densities and fragmentation yields obtained from the two treatments are in astonishingly strong agreement in the case that one starts in the electronic ground state initially. As expected, larger deviations are found if one starts in electronically excited states where trajectories are sampled from the more spatially extended electronic wave function. In that case, higher initial energies are accessed, and the motion proceeds in regions with increasing degree of anharmonicity. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.
High-resolution vibrational spectroscopy of Pb-OH defects in KMgF3 fluoroperovskite single crystals
NASA Astrophysics Data System (ADS)
Baraldi, A.; Bertoli, P.; Capelletti, R.; Ruffini, A.; Scacco, A.
2001-04-01
High-resolution (0.04 cm-1) Fourier transform infrared spectroscopy in the temperature range 9-300 K is applied to detect and analyze the OH- stretching modes in air grown KMgF3 single crystals, doped with different Pb amounts. In addition to the 3733.7 cm-1 line attributed to the stretching mode of isolated OH-, two main lines peaking at 3550.9 and 3567.7 cm-1 are due to the OH- stretching modes perturbed by neighboring Pb defects. Suitable thermal treatments and isotopic substitutions provide models of the complexes in which OH and Pb are embedded. Lead is recognized as favoring the OH- inclusion into the lattice and causing an inhomogeneous broadening of the IR lines related to the stretching modes of OH- interacting with other cation impurities. Anharmonicity effects are monitored by the weak overtones of the OH-related lines and discussed in the framework of the Morse model for the anharmonic oscillator. The anharmonicity and the Morse parameters, which show a very weak temperature dependence in the 9-300 K range, are very close to those displayed by alkali fluorides. The temperature dependence of the line position and linewidth of the narrow (0.4-0.9 cm-1) Lorentzian-shaped IR lines and of the related overtones is successfully analyzed by means of the single phonon coupling model. The coupled phonon frequencies, evaluated from the fitting, for the Pb-perturbed OH- stretching modes fall in the frequency range of the highest phonon state density of the host matrix.
Alam, Mohammad Jane; Ahmad, Shabbir
2015-02-05
FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.
ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.
Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra
2018-05-08
Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Pfeiffer, Florian; Rauhut, Guntram
2011-10-13
Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.
NASA Astrophysics Data System (ADS)
Moradi, Christopher P.; Douberly, Gary E.; Tabor, Daniel P.; Sibert, Edwin
2016-06-01
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations employing a local mode Hamiltonian reveal the origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and the lower frequency bending/scissoring motions. The only significant local coupling is between stretches and bends on the same CH2/CH3 group.
Self-consistent-field perturbation theory for the Schröautdinger equation
NASA Astrophysics Data System (ADS)
Goodson, David Z.
1997-06-01
A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.
NASA Astrophysics Data System (ADS)
Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.
2018-02-01
Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.
Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of themore » center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.« less
Fourth-Order Vibrational Transition State Theory and Chemical Kinetics
NASA Astrophysics Data System (ADS)
Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.
2015-06-01
Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.
Alecu, I M; Truhlar, Donald G
2011-12-29
Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society
High resolution infrared spectroscopy of [1.1.1]propellane: The region of the ν 9 band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Arthur; Weber, Alfons; Nibler, Joseph W.
2010-11-01
The region of the infrared-active band of the ν 9 CH2 bending mode [1.1.1]propellane has been recorded at a resolution (0.0025 cm -1) sufficient to distinguish individual rovibrational lines. This region includes the partially overlapping bands ν 9 (e') = 1459 cm -1, 2ν 18 (l = 2, E') = 1430 cm -1, ν 6 + ν 12 (E') = 1489 cm-1, and ν 4 + ν 15 (A 2") = 1518 cm -1. In addition, the difference band ν 4 - ν 15 (A2") was observed in the far infrared near 295 cm -1 and analyzed to give goodmore » constants for the upper ν 4 levels. The close proximities of the four bands in the ν 9 region suggest that Coriolis and Fermi resonance couplings could be significant and theoretical band parameters obtained from Gaussian ab initio calculations were helpful in guiding the band analyses. The analyses of all four bands were accomplished, based on our earlier report of ground state constants determined from combination differences involving more than 4000 pairs of transitions from five fundamental and four combination bands. This paper presents the analyses and the determination of the upper state constants of all four bands in the region of the ν 9 band. Complications were most evident in the 2ν 18 (l = 2, E') band, which showed significant perturbations due to mixing with the nearby 2ν 18 (l = 0, A 1') and ν 4 + ν 12 (E') levels which are either infrared inactive as transitions from the ground state, or, in the latter case, too weak to observe. Finally, these complications are discussed and a comparison of all molecular constants with those available from the ab initio calculations at the anharmonic level is presented.« less
Terrill, Kasia; Nesbitt, David J
2010-08-01
Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.
Krasnoshchekov, Sergey V; Vogt, Natalja; Stepanov, Nikolay F
2015-06-25
The numerical-analytic implementation of the operator version of the canonical Van Vleck second-order vibrational perturbation theory (CVPT2) is employed for a purely ab initio prediction and interpretation of the infrared (IR) and Raman anharmonic spectra of a medium-size molecule of the diketo tautomer of uracil (2,4(1H,3H)-pyrimidinedione), which has high biological importance as one of the four RNA nucleobases. A nonempirical, semidiagonal quartic potential energy surface (PES) expressed in normal coordinates was evaluated at the MP2/cc-pVTZ level of theory. The quality of the PES was improved by replacing the harmonic frequencies with the "best" estimated CCSD(T)-based values taken from the literature. The theoretical method is enhanced by an accurate treatment of multiple Fermi and Darling-Dennison resonances with evaluation of the corresponding resonance constants W and K (CVPT2+WK method). A prediction of the anharmonic frequencies as well as IR and Raman intensities was used for a detailed interpretation of the experimental spectra of uracil. Very good agreement between predicted and observed vibrational frequencies has been achieved (RMSD ∼4.5 cm(-1)). The model employed gave a theoretically robust treatment of the multiple resonances in the 1680-1790 cm(-1) region. Our new analysis gives the most reliable reassignments of IR and Raman spectra of uracil available to date.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
Nonlinear electron-phonon coupling in doped manganites
Esposito, Vincent; Fechner, M.; Mankowsky, R.; ...
2017-06-15
Here, we employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr 0.5Ca 0.5MnO 3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.
Nonlinear Electron-Phonon Coupling in Doped Manganites.
Esposito, V; Fechner, M; Mankowsky, R; Lemke, H; Chollet, M; Glownia, J M; Nakamura, M; Kawasaki, M; Tokura, Y; Staub, U; Beaud, P; Först, M
2017-06-16
We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.
NASA Astrophysics Data System (ADS)
Ghatge, Mayur; Tabrizian, Roozbeh
2018-03-01
A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.
NASA Technical Reports Server (NTRS)
Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.
1999-01-01
The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Understanding the evolution of anomalous anharmonicity in Bi 2 Te 3 - x Se x
Tian, Yao; Jia, Shuang; Cava, R. J.; ...
2017-03-08
The anharmonic effect in thermoelectrics has been a central topic for decades in both condensed matter physics and material science. However, despite the long-believed strong and complex anharmonicity in the Bi 2Te 3-xSe x series, experimental verification of anharmonicity and its evolution with doping remains elusive. We fill this important gap with high-resolution, temperature-dependent Raman spectroscopy in high-quality single crystals of Bi 2Te, Bi 2Te 2Se , and Bi 2Se 3 over the temperature range from 4 to 293 K. Klemens's model was employed to explain the renormalization of their phonon linewidths. The phonon energies of Bi 2Se 3 andmore » Bi 2Te 3 are analyzed in detail from three aspects: lattice expansion, cubic anharmonicity, and quartic anharmonicity. For the first time, we explain the evolution of anharmonicity in various phonon modes and across the series. Lastly, in particular, we find that the interplay between cubic and quartic anharmonicity is governed by their distinct dependence on the phonon density of states, providing insights into anomalous anharmonicity designing of new thermoelectrics.« less
Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity
NASA Astrophysics Data System (ADS)
Li, Yurong; Du, Zhengdong
2017-02-01
In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton-Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants δ _F= 4.66920160\\cdots.
Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)
NASA Astrophysics Data System (ADS)
Novko, D.; Alducin, M.; Juaristi, J. I.
2018-04-01
We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.
NASA Astrophysics Data System (ADS)
Suparmi; Cari, C.; Wea, K. N.; Wahyulianti
2018-03-01
The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.
Tunable-cavity QED with phase qubits
NASA Astrophysics Data System (ADS)
Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.
Doubly anharmonic oscillator under the topological effects of a screw dislocation
NASA Astrophysics Data System (ADS)
Bakke, Knut
2018-05-01
We consider an elastic medium with the distortion of a circular curve into a vertical spiral, and investigate the influence of this topological defect on the doubly anharmonic oscillator. We show that the Schrödinger equation for the doubly anharmonic oscillator in the presence of this linear topological defect can be solved analytically. We also obtain the exact expressions for the permitted energies of the ground state of the doubly anharmonic oscillator, and show that the topology of the screw dislocation modifies the spectrum of energy of the doubly anharmonic oscillator.
Welsch, Ralph; Manthe, Uwe
2013-04-28
A strategy for the fast evaluation of Shepard interpolated potential energy surfaces (PESs) utilizing graphics processing units (GPUs) is presented. Speed ups of several orders of magnitude are gained for the title reaction on the ZFWCZ PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)]. Thermal rate constants are calculated employing the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach. Results for the ZFWCZ PES are compared to rate constants obtained for other ab initio PESs and problems are discussed. A revised PES is presented. Thermal rate constants obtained for the revised PES indicate that an accurate description of the anharmonicity around the transition state is crucial.
NASA Astrophysics Data System (ADS)
Tallman, Robert E.
Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure 68Zn76Se are compared. Again we use an appropriate bond-charge model to obtain the phonon DOS. It is concluded that the antecedent nucleation mechanism is much more important in ZnSe than in ZnS. In order to further investigate interactions of vibrational modes in spatially confined systems, pressure-Raman experiments are carried out on InP/CdS core/shell nanoparticles. This system differs from most other core/shell nanoparticles systems, in that the near degeneracy of the bulk InP TO(Gamma) and CdS LO(Gamma) phonons leads to possible cross-interface mode coupling. Different confined and surface (or interface) optical modes are studied as a function of pressure up 65 kbar at 373 and 230 K. The results are compared with the predictions of dielectric continuum theory using a phenomenological macroscopic approach (PMA) to include the pressure dependence. Three different pressure media are employed, and the effects on the surface modes of their different static dielectric constants are investigated. The pressure-shifts of the observed confined and surface modes are well accounted for without the need to include cross-interface coupling. We conclude that the conventional boundary condition, of vanishing phonon amplitude at the heterointerface, remains valid in the InP/CdS nanoparticle system, in spite of the near degeneracy of the bulk optical phonons. Photo-induced crystallization in amorphous selenium (a-Se) was also explored in this dissertation, as another example of a nanoscopic nucleation process influenced by strain, in this case internal strain. In order to observe photo-crystallization, the Raman spectra of commercial a-Se films used as targets in high-gain avalanche rushing photodetectors (HARP) cameras was studied at temperatures in the range 260 - 330 K. We find a rich temperature behavior that reflects the competition of changes in viscosity and strain, and defines four distinct regimes. These results are in qualitative accord with a theory by R.B.Stephens treating the effects of local strain on the secondary growth of crystalline nuclei in a-Se. We were able to conclude that the growth of trigonal selenium is driven by local strain, and that the relaxation of this strain field around the glass transition temperature suppresses crystalline growth until thermally assisted processes accelerate the photo-crystallization at higher temperatures. The observed nucleation kinetics was also found to be relevant to understanding the formation of blemishes in the output images of advanced HARP video cameras.
Analytic calculations of anharmonic infrared and Raman vibrational spectra
Louant, Orian; Ruud, Kenneth
2016-01-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; ...
2016-12-13
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less
Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G
2013-01-17
In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.
Collapsing spherical star in Scalar-Einstein-Gauss-Bonnet gravity with a quadratic coupling
NASA Astrophysics Data System (ADS)
Chakrabarti, Soumya
2018-04-01
We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.
High pressure far infrared spectroscopy of ionic solids
NASA Technical Reports Server (NTRS)
Lowndes, R. P.
1974-01-01
A high-pressure far-infrared cell operating at up to truly hydrostatic pressures of 8 kbar is described and used to determine the anharmonic self-energies associated with the transverse optic modes of ionic solids in which q approximately equals zero. The cell allows far-infrared studies in the spectral range below 120 reciprocal cm. The transverse optic modes were investigated to determine their mode Gruneisen constants and the pressure dependence of their inverse lifetimes in RbI, CsI, and TlCl.
The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne
NASA Astrophysics Data System (ADS)
Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.
2017-09-01
We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.
Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less
Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.
2017-09-22
Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less
Ruggiero, Michael T; Zeitler, J Axel
2016-11-17
Anharmonicity has been shown to be an important piece of the fundamental framework that dictates numerous observable phenomena. In particular, anharmonicity is the driving force of vibrational relaxation processes, mechanisms that are integral to the proper function of numerous chemical processes. However, elucidating its origins has proven difficult due to experimental and theoretical challenges, specifically related to separating the anharmonic contributions from other unrelated effects. While no one technique is particularly suited for providing a complete picture of anharmonicity, by combining multiple complementary methods such a characterization can be made. In this study the role of individual atomic interactions on the anharmonic properties of crystalline purine, the building block of many DNA and RNA nucleobases, is studied by experimental terahertz time-domain spectroscopy and first-principles density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD). In particular, the detailed vibrational information provided by the DFT calculations is used to interpret the atomic origins of anharmonic-related effects as determined by the AIMD calculations, which are in good agreement with the experimental data. The results highlight that anharmonicity is especially pronounced in the intermolecular interactions, particularly along the amine hydrogen bond coordinate, and yields valuable insight into what is similarly observed complex biosystems and crystalline solids.
The ν 3 and 2ν 3 bands of 32S 16O 3, 32S 18O 3, 34S 16O 3, and 34S 18O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, Steven W.; Blake, Thomas A.; Sams, Robert L.
2003-12-01
The fifth of a series of publications on the high resolution rotation-vibration spectra of sulfur trioxide reports the results of a systematic study of the v3(é) and 2v3(A1'+E') infrared bands of the four symmetric top isotopomers 32S 16O 3, 34S 16O 3, 32S 18O 3, and 34S 18O 3. An internal coupling between the l = 0 and l = +2 levels of the 2v3 (A1'+E') states was observed. This small perturbation results in a level crossing between K-l = 9 and 12, in consequence of which the band origins of the A1', l=0 “ghost” states could be determined tomore » a high degree of accuracy. Ground and upper state rotational as well as vibrational anharmonicity constants are reported. The constants for the center-of-mass substituted species 32S 16O 3 and 34S 16O 3 vary only slightly, as do the constants for the 32S 18O 3, 34S 18O 3 pair. The S-O bond lengths for the vibrational ground states of the species 32S 16O 3, 34S 16O 3, 32S 18O 3 and 34S 18O 3, are, respectively, 141.981992(6), 141.979412(20), 150.605240(73), and 150.602348(73) pm, where the uncertainties, given in parentheses, are two standard deviations and refer to the last digits of the associated quantity.« less
Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity
NASA Astrophysics Data System (ADS)
Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.
2017-12-01
Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.
Structure, vibrational spectrum, and ring puckering barrier of cyclobutane.
Blake, Thomas A; Xantheas, Sotiris S
2006-09-07
We present the results of high level ab initio calculations for the structure, harmonic and anharmonic spectroscopic constants, and ring puckering barrier of cyclobutane (C4H8) in an effort to establish the minimum theoretical requirements needed for their accurate description. We have found that accurate estimates for the barrier between the minimum (D(2d)) and transition state (D(4h)) configurations require both higher levels of electron correlation [MP4, CCSD(T)] and orbital basis sets of quadruple-zeta quality or larger. By performing CCSD(T) calculations with basis sets as large as cc-pV5Z, we were able to obtain, for the first time, a value for the puckering barrier that lies within 10 cm(-1) (or 2%) from experiment, whereas the best previously calculated values were in errors exceeding 40% of experiment. Our best estimate of 498 cm(-1) for the puckering barrier is within 10 cm(-1) of the experimental value proposed originally, but it lies approximately 50 cm(-1) higher than the revisited value, which was obtained more recently using different assumptions regarding the coupling between the various modes. It is therefore suggested that revisiting the analysis of the experimental data might be warranted. Our best computed values (at the CCSD(T)/aug-cc-pVTZ level of theory) for the equilibrium structural parameters of C4H8 are r(C-C) = 1.554 A, r(C-H(alpha)) = 1.093 A, r(C-H(beta)) = 1.091 A, phi(C-C-C) = 88.1 degrees , alpha(H(alpha)-C-H(beta)) = 109.15 degrees , and theta = 29.68 degrees for the puckering angle. We have found that the puckering angle theta is more sensitive to the level of electron correlation than to the size of the basis set for a given method. We furthermore present anharmonic calculations that are based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structure. We have found that the anharmonic calculations predict the experimentally measured fundamental band origins within 1% (< or =30 cm(-1)) for most vibrations. The results of the current study can serve as a guide for future calculations on the substituted four-member ring hydrocarbon compounds. To this end we present a method for estimating the puckering barrier height at higher levels of electron correlation [MP4, CCSD(T)] from the MP2 results that can be used in chemically similar compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Arthur G.; Price, Joseph E.; Harzan, J.
he high-resolution infrared absorption spectrum of spiropentane (C5H8) has been measured from 200 to 4000 cm 1, and a detailed analysis is presented for eight bands in the region from 700 to 2200 cm 1. Two fundamental perpendicular bands were analyzed, m22 and m24 near 1050 and 780 cm 1, respectively, along with two fundamental parallel bands, m14 and m16 near 1540 and 990 cm1, respectively. Two other fundamentals, m17 and m23, are seen as intense overlapping bands near 880 cm*1 and are Coriolis-coupled, producing a complex mixture in which only P-branch transitions could be tentatively assigned for m17. Inmore » addition, three binary combination bands were fit at about 1570, 2082, and 2098 cm*1 which are assigned as either 2m24 or m5 + m16 in the first case, m4 + m22 in the second case, and 2m22 in the latter case. The two l-type resonance constants, q+ and q*, were determined for each of the two perpendicular fundamentals m22 and m24. Those two constants were also responsible for splittings observed in the K = 3 levels of m24. For the ground state the order of the split K = 2 B1/B2 levels has been reversed from that reported previously, based on the measurements and assignments for the m24 band. Rovibrational parameters deduced from the analyses are compared with those obtained from density functional Gaussian calculations at the anharmonic level.« less
Effects of tunnelling and asymmetry for system-bath models of electron transfer
NASA Astrophysics Data System (ADS)
Mattiat, Johann; Richardson, Jeremy O.
2018-03-01
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC
NASA Astrophysics Data System (ADS)
Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua
2018-05-01
The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.
NASA Astrophysics Data System (ADS)
Chen, Chen; Arntsen, Christopher; Voth, Gregory A.
2017-10-01
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-08-01
Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.
Malishava, Merab; Khomeriki, Ramaz
2015-09-04
A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.
NASA Astrophysics Data System (ADS)
Malishava, Merab; Khomeriki, Ramaz
2015-09-01
A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.
To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.
Soulard, P; Tremblay, B
2015-12-14
The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.
Chang, Yih Chung; Luo, Zhihong; Pan, Yi; Zhang, Zheng; Song, Ying-Nan; Kuang, Sophie Yajin; Yin, Qing Zhu; Lau, Kai-Chung; Ng, C Y
2015-04-21
By employing two-color visible (VIS)-ultraviolet (UV) laser photoionization and pulsed field ionization-photoelectron (PFI-PE) techniques, we have obtained highly rotationally resolved photoelectron spectra for vanadium monocarbide cations (VC(+)). The state-to-state VIS-UV-PFI-PE spectra thus obtained allow unambiguous assignments for the photoionization rotational transitions, resulting in a highly precise value for the adiabatic ionization energy (IE) of vanadium monocarbide (VC), IE(VC) = 57512.0 ± 0.8 cm(-1) (7.13058 ± 0.00010 eV), which is defined as the energy of the VC(+)(X(3)Δ1; v(+) = 0; J(+) = 1) ← VC(X(2)Δ3/2; v'' = 0; J'' = 3/2) photoionization transition. The spectroscopic constants for VC(+)(X(3)Δ1) determined in the present study include the harmonic vibrational frequency ωe(+) = 896.4 ± 0.8 cm(-1), the anharmonicity constant ωe(+)xe(+) = 5.7 ± 0.8 cm(-1), the rotational constants Be(+) = 0.6338 ± 0.0025 cm(-1) and αe(+) = 0.0033 ± 0.0007 cm(-1), the equilibrium bond length re(+) = 1.6549 ± 0.0003 Å, and the spin-orbit coupling constant A = 75.2 ± 0.8 cm(-1) for VC(+)(X(3)Δ1,2,3). These highly precise energetic and spectroscopic data are used to benchmark state-of-the-art CCSDTQ/CBS calculations. In general, good agreement is found between the theoretical predictions and experimental results. The theoretical calculations yield the values, IE(VC) = 7.126 eV; the 0 K bond dissociation energies: D0(V-C) = 4.023 eV and D0(V(+)-C) = 3.663 eV; and heats of formation: ΔH°(f0)(VC) = 835.2, ΔH°(f298)(VC) = 840.4, ΔH°(f0)(VC(+)) = 1522.8, and ΔH°(f298)(VC(+)) = 1528.0 kJ mol(-1).
Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern
2017-08-09
The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.
Quantum Theories of Self-Localization
NASA Astrophysics Data System (ADS)
Bernstein, Lisa Joan
In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.
2018-01-01
A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jun; Park, G. Barratt; Field, Robert W.
A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less
Jiang, Jun; Park, G. Barratt; Field, Robert W.
2016-04-14
A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less
Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.
Brown, Paul A; Messina, Michael
2016-03-03
We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.
Theoretical Study of the IR Spectroscopy of BENZENE-(WATER)_N Clusters
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Sibert, Edwin; Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.
2015-06-01
The local mode Hamiltonian that assigns RIDIR spectra for Bz-(H_2O)_6 and Bz-(H_2O)_7 is explored in detail for Bz-(H_2O)_n with n=3-7. In addition to contributions from OH stretches, the Hamiltonian includes the anharmonic coupling of each water monomer's bend overtone and its OH stretch fundamentals, which is necessary for accurately modeling 3150-3300 cm-1 region of the spectra. The parameters of the Hamiltonian can be calculated using either MP2 or density functional theory. The relative strengths and weaknesses of these two electronic structure approaches are examined to gain further physical understanding. Initial assignments of Bz-(H_2O)_6 and Bz-(H_2O)_7 were based on a linear scaling of M06-2X harmonic frequencies. In most cases, counterpoise-corrected MP2 calculations obtain similar frequencies (across all cluster sizes) if stretch anharmonicity is taken into account. Individual ``monomer Hamiltonians'' are constructed via the application of fourth order Van Vleck perturbation theory to MP2 potential energy surfaces. These calculations elucidate the sensitivity of intra-monomer couplings to chemical environment. The presence of benzene has particularly important consequences for the spectra of the Bz-(H_2O)3-5 clusters, in which the symmetry of the water cycles is broken by π-H-bonding to benzene. The nature of these perturbations is discussed.
Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities.
Yurchenko, Stanislav O; Komarov, Kirill A; Kryuchkov, Nikita P; Zaytsev, Kirill I; Brazhkin, Vadim V
2018-04-07
The heat capacity of classical crystals is determined by the Dulong-Petit value C V ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value C V ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.
Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities
NASA Astrophysics Data System (ADS)
Yurchenko, Stanislav O.; Komarov, Kirill A.; Kryuchkov, Nikita P.; Zaytsev, Kirill I.; Brazhkin, Vadim V.
2018-04-01
The heat capacity of classical crystals is determined by the Dulong-Petit value CV ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value CV ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.
Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.
Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S
2009-05-01
We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.
NASA Astrophysics Data System (ADS)
Senent, M. L.; Puzzarini, C.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.
2014-03-01
Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH232SH, ETSH) and dimethyl sulfide (CH332SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are suggested for the methyl torsion bands of ETSH and a reassignment is proposed for the infrared bands of DMS (0 3 → 0 4 and 1 0 → 1 1). Our accurate spectroscopic data should be useful for the analysis of the microwave and far infrared spectra of ETSH and DMS recorded, at low temperatures, either in laboratory or in the interstellar medium.
A Novel Approach to Anharmonicity for a Wealth of Applications in Nonlinear Science Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanusse, Patrick
2011-04-19
We present a new theory of the anharmonicity of nonlinear oscillations that are exhibited by many physical systems. New physical quantities are introduced that describe the departure from linear or harmonic behavior and as far as extremely anharmonic situations. In order to solve the nonlinear phase equation, the key notion of our theory, which controls the anharmonic behavior, a new and fascinating nonlinear trigonometry is designed. These results provide a general and accurate yet compact description of such signals, by far better than the Fourier description, both quantitatively and qualitatively and will benefit many application fields.
Bende, Attila; Muntean, Cristina M
2014-03-01
The theoretical IR and Raman spectra of the guanine-cytosine DNA base pairs in Watson-Crick and Hoogsteen configurations were computed using DFT method with M06-2X meta-hybrid GGA exchange-correlation functional, including the anharmonic corrections and solvent effects. The results for harmonic frequencies and their anharmonic corrections were compared with our previously calculated values obtained with the B3PW91 hybrid GGA functional. Significant differences were obtained for the anharmonic corrections calculated with the two different DFT functionals, especially for the stretching modes, while the corresponding harmonic frequencies did not differ considerable. For the Hoogtseen case the H⁺ vibration between the G-C base pair can be characterized as an asymmetric Duffing oscillator and therefore unrealistic anharmonic corrections for normal modes where this proton vibration is involved have been obtained. The spectral modification due to the anharmonic corrections, solvent effects and the influence of sugar-phosphate group for the Watson-Crick and Hoogsteen base pair configurations, respectively, were also discussed. For the Watson-Crick case also the influence of the stacking interaction on the theoretical IR and Raman spectra was analyzed. Including the anharmonic correction in our normal mode analysis is essential if one wants to obtain correct assignments of the theoretical frequency values as compared with the experimental spectra.
Quantum optimal control with automatic differentiation using graphics processors
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Chakram, Srivatsan; Naik, Ravi; Groszkowski, Peter; Koch, Jens; Schuster, David
We implement quantum optimal control based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them into the optimization process with ease. We will describe efficient techniques to optimally control weakly anharmonic systems that are commonly encountered in circuit QED, including coupled superconducting transmon qubits and multi-cavity circuit QED systems. These systems allow for a rich variety of control schemes that quantum optimal control is well suited to explore.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We use Ar predissociation and vibrational autodetachment below 2100 wn to obtain vibrational spectra of the low-energy modes of nitromethane anion. We interpret the spectra using anharmonic calculations, which reveal strong mode coupling and Fermi resonances. Not surprisingly, the number of evaporated Ar atoms varies with photon energy, and we follow the propensity of evaporating two versus one Ar atoms as photon energy increases. The photodetachment spectrum is discussed in the context of threshold effects and the importance of hot bands.
Tunneling of Two Interacting Fermions
NASA Astrophysics Data System (ADS)
Ishmukhamedov, Ilyas; Ishmukhamedov, Altay
2018-04-01
We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.
Crystal structure and phase transition of thermoelectric SnSe.
Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo
2016-06-01
Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.
Properties of one-dimensional anharmonic lattice solitons
NASA Astrophysics Data System (ADS)
Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed
2000-12-01
The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.
Nondestructive ultrasonic characterization of engineering materials
NASA Technical Reports Server (NTRS)
Salama, K.
1985-01-01
The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.
NASA Technical Reports Server (NTRS)
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2016-01-01
We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke
2015-11-20
We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computationalmore » program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.« less
Investigating the ground-state rotamers of n-propylperoxy radical.
Hoobler, Preston R; Turney, Justin M; Schaefer, Henry F
2016-11-07
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol -1 above GG), trans-gauche (0.44 kcal mol -1 ), gauche'-gauche (0.47 kcal mol -1 ), and trans-trans (0.57 kcal mol -1 ). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm -1 for the GG structure) also has a significant IR intensity, 19.6 km mol -1 . The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r g,0K bond lengths, accounting for zero-point vibrations present within the molecule.
Investigating the ground-state rotamers of n-propylperoxy radical
NASA Astrophysics Data System (ADS)
Hoobler, Preston R.; Turney, Justin M.; Schaefer, Henry F.
2016-11-01
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol-1 above GG), trans-gauche (0.44 kcal mol-1), gauche'-gauche (0.47 kcal mol-1), and trans-trans (0.57 kcal mol-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm-1 for the GG structure) also has a significant IR intensity, 19.6 km mol-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged rg,0K bond lengths, accounting for zero-point vibrations present within the molecule.
NASA Astrophysics Data System (ADS)
Ceausu-Velcescu, Adina; Kwabia Tchana, Fridolin; Landsheere, Xavier
2018-06-01
The 2ν6 (A1 + E)/ν2 + ν3 (A1)/ν3 + ν5 (E) band system of CH3Br, near 2000 cm-1, has been studied, for both 79Br and 81Br isotopologues, using Fourier transform infrared spectroscopy, with a resolution of 0.003 cm-1. This band system, revealing anharmonic (Δk = Δl = 0) and Coriolis (Δk = Δl = ± 1) interactions, has been analyzed through a least-squares fit of more than 3000 transitions, for each isotopologue. More than 600 transitions belonging to the very weak ν3 + ν5 combination band were assigned for the first time, for both CH379Br and CH381Br isotopologues. Assignments of the weak 2 ν60 parallel band, which is Fermi-interacting with ν2 + ν3, were also considerably extended with respect to a previous high-resolution study (Najib et al., 1985), thanks to a more accurate knowledge of the Fermi coupling parameters and of the relative positions of the interacting levels. The least-squares fits provided quantitative reproduction of all data belonging to the four above mentioned bands. Moreover, the Coriolis coupling parameters obtained for the ν2 + ν3/ν3 + ν5 interacting bands show a remarkable consistency with those obtained for the ν2/ν5 'fundamental' system (Kwabia Tchana et al., 2004).
NASA Astrophysics Data System (ADS)
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
Defects and anharmonicity induced electron spectra of YBa2Cu3O7-δ superconductors
NASA Astrophysics Data System (ADS)
Singh, Anu; Indu, B. D.
2018-05-01
The effects of defects and anharmonicities on the electron density of states (EDOS) have been studied in high-temperature superconductors (HTS) adopting the many body quantum dynamical theory of electron Green's functions via a generalized Hamiltonian that includes the effects of electron-phonon interactions, anharmonicities and point impurities. The automatic emergence of pairons and temperature dependence of EDOS are appear as special feature of the theory. The results thus obtained and their numerical analysis for YBa2Cu3O7-δ superconductors clearly demonstrate that the presence of defects, anharmonicities and electron-phonon interactions modifies the behavior of EDOS over a wide range of temperature.
Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines
Rhile, Ian J.
2011-01-01
To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O⋯H⋯N potential energy surface and the influence of proton vibrational excited states. PMID:21919508
NASA Astrophysics Data System (ADS)
Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.
2018-03-01
We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
Genuine Quantum Signatures in Synchronization of Anharmonic Self-Oscillators.
Lörch, Niels; Amitai, Ehud; Nunnenkamp, Andreas; Bruder, Christoph
2016-08-12
We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental realizations of these genuine quantum signatures can be implemented with current technology.
Errea, Ion; Calandra, Matteo; Mauri, Francesco
2013-10-25
Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.
Chau, Foo-Tim; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2004-07-22
Restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] potential energy functions (PEFs) were calculated for the X (2)A" and A (2)A' states of HPCl employing the augmented correlation-consistent polarized-valence-quadruple-zeta (aug-cc-pVQZ) basis set. Further geometry optimization calculations were carried out on both electronic states of HPCl at the RCCSD(T) level with all electron and quasirelativistic effective core potential basis sets of better than the aug-cc-pVQZ quality, and also including some core electrons, in order to obtain more reliable geometrical parameters and relative electronic energy of the two states. Anharmonic vibrational wave functions of the two states of HPCl and DPCl, and Franck-Condon (FC) factors of the A (2)A'-X (2)A" transition were computed employing the RCCSD(T)/aug-cc-pVQZ PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the single-vibronic-level (SVL) emission spectra of HPCl and DPCl reported by Brandon et al. [J. Chem. Phys. 119, 2037 (2003)] and the chemiluminescence spectrum reported by Bramwell et al. [Chem. Phys. Lett. 331, 483 (2000)]. Comparison between simulated and observed SVL emission spectra gives the experimentally derived equilibrium geometry of the A (2)A' state of HPCl of r(e)(PCl) = 2.0035 +/- 0.0015 A, theta(e) = 116.08 +/- 0.60 degrees, and r(e)(HP) = 1.4063+/-0.0015 A via the iterative Franck-Condon analysis procedure. Comparison between simulated and observed chemiluminescence spectra confirms that the vibrational population distribution of the A (2)A' state of HPCl is non-Boltzmann, as proposed by Baraille et al. [Chem. Phys. 289, 263 (2003)].
Greene, Samuel M; Shan, Xiao; Clary, David C
2015-12-17
Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.
Calero, C.; Knorowski, C.; Travesset, A.
2016-03-22
We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
NASA Astrophysics Data System (ADS)
Momeni, F.; Naderi, M. H.
2018-05-01
In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Anharmonic Resonances among Low-Lying Vibrational Levels of Methyl Iso-Cyanide (H_3CNC)
NASA Astrophysics Data System (ADS)
Pracna, P.; Urban, J.; Urban, V. S.; Varga, J.; Horneman, V.-M.
2010-06-01
Vibrational levels up to 1000 wn of H_3C-N≡C are currently studied in FTIR spectra together with rotational transitions within these levels. This investigation comprises the low-lying excited vibrational levels of the CNC doubly degenerate bending vibration v8=1^± 1 (267.3 wn), v8=20,± 2 (524.6 wn (A), 545.3 wn (E)), and v8=3^± 1,± 3 (792.5 wn (A1+A2), 833.9 wn (E)), respectively, and the next higher fundamental level of the C-N valence vibration v4=1 (945 wn). All these vibrational levels exhibit cubic and quartic anharmonic resonances localized to moderate values of the rotational quantum number K≤10. Therefore the system of rovibrational levels has to be treated as a global polyad in order to describe all the available data quantitatively. The ground state constants have been improved considerably by extending the assignments to higher J/K rotational states both in the purely rotational spectra recorded in the ground vibrational level and in the ground state combination differences generated from the wavenumbers assigned in the fundamental ν_4 band. Similarities and differences with respect to isoelectronic molecules CH_3CN and CH_3CCH are discussed.
NASA Astrophysics Data System (ADS)
Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.
1992-09-01
The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.
Perturbation theory for arbitrary coupling strength?
NASA Astrophysics Data System (ADS)
Mahapatra, Bimal P.; Pradhan, Noubihary
2018-03-01
We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.
Multi-hump bright solitons in a Schrödinger-mKdV system
NASA Astrophysics Data System (ADS)
Cisneros-Ake, Luis A.; Parra Prado, Hugo; López Villatoro, Diego Joselito; Carretero-González, R.
2018-03-01
We consider the problem of energy transport in a Davydov model along an anharmonic crystal medium obeying quartic longitudinal interactions corresponding to rigid interacting particles. The Zabusky and Kruskal unidirectional continuum limit of the original discrete equations reduces, in the long wave approximation, to a coupled system between the linear Schrödinger (LS) equation and the modified Korteweg-de Vries (mKdV) equation. Single- and two-hump bright soliton solutions for this LS-mKdV system are predicted to exist by variational means and numerically confirmed. The one-hump bright solitons are found to be the anharmonic supersonic analogue of the Davydov's solitons while the two-hump (in both components) bright solitons are found to be a novel type of soliton consisting of a two-soliton solution of mKdV trapped by the wave function associated to the LS equation. This two-hump soliton solution, as a two component solution, represents a new class of polaron solution to be contrasted with the two-soliton interaction phenomena from soliton theory, as revealed by a variational approach and direct numerical results for the two-soliton solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Norman C.; Leyden, Matthew C.; Moore, Michael C.
Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm -1) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm-1 (v14), 900.908 cm-1 (v16), and 683.46 cm-1 (v17). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bandsmore » for the cis isomer are at 907.70 cm-1 (v33) and 587.89 cm-1 (v35). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands.« less
On the structure of the master equation for a two-level system coupled to a thermal bath
NASA Astrophysics Data System (ADS)
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
Thermal rectification in mass-graded next-nearest-neighbor Fermi-Pasta-Ulam lattices
NASA Astrophysics Data System (ADS)
Romero-Bastida, M.; Miranda-Peña, Jorge-Orlando; López, Juan M.
2017-03-01
We study the thermal rectification efficiency, i.e., quantification of asymmetric heat flow, of a one-dimensional mass-graded anharmonic oscillator Fermi-Pasta-Ulam lattice both with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. The system presents a maximum rectification efficiency for a very precise value of the parameter that controls the coupling strength of the NNN interactions, which also optimizes the rectification figure when its dependence on mass asymmetry and temperature differences is considered. The origin of the enhanced rectification is the asymmetric local heat flow response as the heat reservoirs are swapped when a finely tuned NNN contribution is taken into account. A simple theoretical analysis gives an estimate of the optimal NNN coupling in excellent agreement with our simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).
Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J
2017-06-08
Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).
Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
2017-05-17
Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).
Coriolis analysis of several high-resolution infrared bands of bicyclo[111]pentane-d0 and -d1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, A.; Martin, M. A.; Nibler, J. W.
High resolution infrared absorption spectra have been analyzed for two bicyclo[1.1.1]pentane isotopologues, C5H8 (-d0) and C5H7D (-d1), where in the latter the D-atom replaces a hydrogen on the C3 symmetry axis such that the molecular symmetry is reduced from D3h to C3v. Two (a2") parallel bands, ν17 and ν18, of bicyclopentane-d0 were studied and the former was found to be profoundly affected by Coriolis coupling with the nearby (e') perpendicular band, ν11. Weaker coupling was observed between the ν18 band and the nearby ν13(e') band, for which fewer transitions could be assigned. For bicyclopentane-d1, the ν5 parallel band was alsomore » studied along with the nearby ν15(e') band to which it is coupled through a similar type of Coriolis resonance. For both isotopologues, quantum calculations (B3LYP/cc-pVTZ) done at the anharmonic level were very helpful in unraveling the complexities caused by the Coriolis interactions, provided that care is taken in identifying the effect of any Coriolis resonances in the theoretical values of aB and q rovibrational parameters. The ground state B0 constants were found to be 0.2399412(2) and 0.2267506(11) cm-1 for the -d0 and -d1 isotopologues. The difference yields an Rs substitution value of 2.0309(2) Å for the position of the axial H atom relative to the -d0 center of mass, a result in good accord with a corresponding Ra value of 2.044(6) Å from electron diffraction data. For both isotopologues, the theoretical results from the quantum calculations are in good agreement with all corresponding values determined from the spectra.« less
Alecu, I M; Marshall, Paul
2014-12-04
The multistructural method for torsional anharmonicity (MS-T) is employed to compute anharmonic conformationally averaged partition functions which then serve as the basis for the calculation of thermochemical parameters for N2O5 over the temperature range 0-3000 K, and thermal rate constants for the hydrolysis reaction N2O5 + H2O → 2 HNO3 over the temperature range 180-1800 K. The M06-2X hybrid meta-GGA density functional paired with the MG3S basis set is used to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along the reaction path, with further energy refinement at stationary points obtained via single-point CCSD(T)-F12a/cc-pVTZ-F12 calculations including corrections for core-valence and scalar relativistic effects. The internal rotations in dinitrogen pentoxide are found to generate three structures (conformations) whose contributions are included in the partition function via the MS-T formalism, leading to a computed value for S°(298.15)(N2O5) of 353.45 J mol(-1) K(-1).This new estimate for S°(298.15)(N2O5) is used to reanalyze the equilibrium constants for the reaction NO3 + NO2 = N2O5 measured by Osthoff et al. [Phys. Chem. Chem. Phys. 2007, 9, 5785-5793] to arrive at ΔfH °(298.15) (N2O5) = 14.31 ± 0.53 kJ mol(-1)via the third law method, which compares well with our computed ab initio value of 13.53 ± 0.56 kJ mol(-1). Finally, multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is used to study the kinetics for hydrolysis of N2O5 by a single water molecule, whose rate constant can be summarized by the Arrhenius expression 9.51 × 10(-17) (T/298 K)(3.354) e(-7900K/T) cm3 molecule(-1) s(-1) over the temperature range 180-1800 K.
Anharmonic effects in the quantum cluster equilibrium method
NASA Astrophysics Data System (ADS)
von Domaros, Michael; Perlt, Eva
2017-03-01
The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.
Sakurai, Atsunori; Tanimura, Yoshitaka
2011-04-28
To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.
NASA Astrophysics Data System (ADS)
Kumar, Priyank; Bhatt, Nisarg K.; Vyas, Pulastya R.; Gohel, Vinod B.
2016-10-01
The thermophysical properties of rhodium are studied up to melting temperature by incorporating anharmonic effects due to lattice ions and thermally excited electrons. In order to account anharmonic effects due to lattice vibrations, we have employed mean field potential (MFP) approach and for thermally excited electrons Mermin functional. The local form of the pseudopotential with only one effective adjustable parameter rc is used to construct MFP and hence vibrational free energy due to ions - Fion. We have studied equation of state at 300 K and further, to access the applicability of present conjunction scheme, we have also estimated shock-Hugoniot and temperature along principle Hugoniot. We have carried out the study of temperature variation of several thermophysical properties like thermal expansion (βP), enthalpy (EH), specific heats at constant pressure and volume (CP and CV), specific heats due to lattice ions and thermally excited electrons ( and , isothermal and adiabatic bulk moduli (BT and Bs) and thermodynamic Gruneisen parameter (γth) in order to examine the inclusion of anharmonic effects in the present study. The computed results are compared with available experimental results measured by using different methods and previously obtained theoretical results using different theoretical philosophy. Our computed results are in good agreement with experimental findings and for some physical quantities better or comparable with other theoretical results. We conclude that local form of the pseudopotential used accounts s-p-d hybridization properly and found to be transferable at extreme environment without changing the values of the parameter. Thus, even the behavior of transition metals having complexity in electronic structure can be well understood with local pseudopotential without any modification in the potential at extreme environment. Looking to the success of present scheme (MFP + pseudopotential) we would like to extend it further for the study of liquid state properties as well as thermophysical properties of d and f block metals.
NASA Astrophysics Data System (ADS)
Bianco, Raffaello; Errea, Ion; Calandra, Matteo; Mauri, Francesco
2018-06-01
We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure I m 3 ¯m and R 3 m phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition I m 3 ¯m →R 3 m is expected, with hydrogen-bond desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately 10 % could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation. Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method that allows to estimate the critical pressure with much higher precision (and much lower computational cost) compared with the free-energy "finite-difference" approach previously used. Using PBE and BLYP, we find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition pressure for D3S than for H3S . Finally, within the stochastic self-consistent harmonic approximation, with PBE we calculate the anharmonic phonon spectral functions in the I m 3 ¯m phase. The strong anharmonicity of the system is confirmed by the occurrence of very large anharmonic broadenings leading to complex non-Lorentzian line shapes. Generally, for the high-energy hydrogen bond-stretching modes, the anharmonic phonon broadening is of the same magnitude of the electron-phonon one. However, for the vibrational spectra at zone center, accessible, e.g., by infrared spectroscopy, the broadenings are very small (linewidth at most around 2 meV) and anharmonic phonon quasiparticles are well defined.
Bende, Attila; Bogdan, Diana; Muntean, Cristina M; Morari, Cristian
2011-12-01
We present an ab initio study of the vibrational properties of cytosine and guanine in the Watson-Crick and Hoogsteen base pair configurations. The results are obtained by using two different implementations of the DFT method. We assign the vibrational frequencies to cytosine or to guanine using the vibrational density of states. Next, we investigate the importance of anharmonic corrections for the vibrational modes. In particular, the unusual anharmonic effect of the H(+) vibration in the case of the Hoogsteen base pair configuration is discussed.
Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.
Yakub, Lydia; Yakub, Eugene
2012-04-14
We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.
Effects of H2O Vapor on Vibrational Relaxation in Expanding and Contracting Flows
NASA Technical Reports Server (NTRS)
Meador, Willard E.; Townsend, Lawrence W.; Miner, Gilda A.
1996-01-01
As opposed to previous explanations based on the effects of anharmonicity of simple diatomic molecules, traces of water vapor are suggested to be the most likely cause of the anomalously fast vibrational relaxation of such gases observed in supersonic and hypersonic nozzles. The mechanism is the strong V-VR coupling with H2O molecules that dramatically facilitates the collisional transfer of vibrational energy. Slight moisture content is thus a real world aspect of gas dynamics that must be considered in characterizations of shock tubes, reflected shock tunnels, and expansion tubes.
Bell-state generation on remote superconducting qubits with dark photons
NASA Astrophysics Data System (ADS)
Hua, Ming; Tao, Ming-Jie; Alsaedi, Ahmed; Hayat, Tasawar; Wei, Hai-Rui; Deng, Fu-Guo
2018-06-01
We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.
The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.
Kellman, Michael E; Tyng, Vivian
2007-04-01
At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.
Turner, Walter E; Agarwal, Jay; Schaefer, Henry F
2015-12-03
The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.
Iron monocyanide (FeCN): Spin-orbit and vibronic interactions in low-lying electronic states
NASA Astrophysics Data System (ADS)
Jerosimić, Stanka V.; Milovanović, Milan Z.
2018-04-01
The spin-orbit eigenvalues of low-energy quartet and sextet spatially degenerate electronic states of FeCN are reported, together with the combined effect of vibronic and spin-orbit interaction in the lowest-lying 14Δ and 16Δ states of FeCN, by using perturbational and variational method. Spin-orbit constants (ASO) have been calculated in the basis of: (a) two components of each degenerate state, (b) four components of 14Δ and 14Π (16Δ and 16Π) states, and (c) ten components of 16Δ, 16Π, 16Σ+, 14Δ, 14Π, and 14Σ+ states. The present calculations predict the values of ASO= -77 cm-1 for 16Δ and ASO= -108 cm-1 for 14Δ state in the lowest-energy spin-orbit manifolds of each state. The major perturbing state for the 14Δ state is the 14Π state (16Π for the sextet 16Δ). As expected, based on extremely small splitting and shallowness of the bending potential energy curves for the lowest-lying 4,6Δ states, the present study indicate that the vibronic coupling does not create significant splitting of the bending levels, but the influence of anharmonicity in the bending mode is more pronounced. However, the spin-orbit fine structure dominantly influences the spectra of this species.
In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids
NASA Astrophysics Data System (ADS)
Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.
1995-03-01
We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.
2013-08-01
We present an improved version of the MSTor program package, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsions; the method is based on either a coupled torsional potential or an uncoupled torsional potential. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes seven utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files for the MSTor calculation and Voronoi calculation, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multitorsional problems for which one can afford to calculate all the conformational structures and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes, the symmetry program for determining point group symmetry of a molecule, and seven utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes of the torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 26 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 s. References: [1] MS-T(C) method: Quantum Thermochemistry: Multi-Structural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential, J. Zheng and D.G. Truhlar, Journal of Chemical Theory and Computation 9 (2013) 1356-1367, DOI: http://dx.doi.org/10.1021/ct3010722. [2] MS-T(U) method: Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations of Complex Molecules: The Internal-Coordinate Multi-Structural Approximation, J. Zheng, T. Yu, E. Papajak, I, M. Alecu, S.L. Mielke, and D.G. Truhlar, Physical Chemistry Chemical Physics 13 (2011) 10885-10907.
Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr
2007-06-14
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third and fourth energy derivatives), except for a few weak combination bands which were dominated by the anharmonic tensor contributions.
NASA Astrophysics Data System (ADS)
Daněček, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bouř, Petr
2007-06-01
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800cm-1) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third and fourth energy derivatives), except for a few weak combination bands which were dominated by the anharmonic tensor contributions.
The Study of Dynamical Potentials of Highly Excited Vibrational States of HOBr
Wang, Aixing; Sun, Lifeng; Fang, Chao; Liu, Yibao
2013-01-01
The vibrational nonlinear dynamics of HOBr in the bending and O–Br stretching coordinates with anharmonicity and Fermi 2:1 coupling are studied with dynamical potentials in this article. The result shows that the H–O stretching vibration mode has significantly different effects on the coupling between the O–Br stretching mode and the H–O–Br bending mode under different Polyad numbers. The dynamical potentials and the corresponding phase space trajectories are obtained when the Polyad number is 27, for instance, and the fixed points in the dynamical potentials of HOBr are shown to govern the various quantal environments in which the vibrational states lie. Furthermore, it is also found that the quantal environments could be identified by the numerical values of action integrals, which is consistent with former research. PMID:23462512
Sound waves and flexural mode dynamics in two-dimensional crystals
NASA Astrophysics Data System (ADS)
Michel, K. H.; Scuracchio, P.; Peeters, F. M.
2017-09-01
Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.
2017-11-01
This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.
Del Bene, Janet E; Elguero, José
2006-08-01
Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained. Copyright 2006 John Wiley & Sons, Ltd.
Energy Expansion for the Period of Anharmonic Oscillators by the Method of Lindstedt-Poincare
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2004-01-01
A simple, straightforward and efficient method is proposed for the calculation of the period of anharmonic oscillators as an energy series. The approach is based on perturbation theory and the method of Lindstedt-Poincare.
Ultrasonic control of terahertz radiation via lattice anharmonicity in LiNbO3
NASA Astrophysics Data System (ADS)
Poolman, R. H.; Ivanov, A. L.; Muljarov, E. A.
2011-06-01
We propose a tunable terahertz (THz) filter using the resonant acousto-optic (RAO) effect. We present a design based on a transverse optical (TO) phonon mediated interaction between a coherent acoustic wave and the THz field in LiNbO3. We predict a tunable range for the filter of up to 4 THz via the variation of the acoustic frequency between 0.1 and 1 GHz. The RAO effect in this case is due to cubic and quartic anharmonicities between TO phonons and the acoustic field. The effect of the interference between the anharmonicities is also discussed.
Zheng, Wenjun
2010-01-01
Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915
Control of thermal conductivity with species mass in transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Thomas, Iorwerth O.; Srivastava, G. P.
2018-04-01
In this paper, we examine how the behaviour of the thermal conductivity of bulk and monolayer transition-metal dichalcogenides XY2 in their 2-H form can be controlled with different choices of cation and anion masses. We employ a semi-ab-initio approach, which combines first-principles phonon eigensolutions, the elastic anharmonic Hamiltonian for phonon-phonon interactions, a quasi-harmonic scheme for the temperature-dependent Grüneisen's constant, and a relaxation-time solution of the Boltzmann transport equation. Our results confirm an earlier finding [Gu and Yang, Appl. Phys. Lett. 105, 131903 (2014)] that the thermal conductivity of 2-H MoS2 is lower than that of 2-H WS2 contrary to what would be expected from the relative masses of Mo and W and the relative stiffnesses of both compounds. In addition to confirming this anomaly as a result of the larger acoustic optical gap of WS2 relative to that of MoS2, it is found that where one constituent species is fixed, more profound changes on the thermal conductivity occur for different anion masses than for different cation masses. We explain how these behaviours arise from the dispersion relations of each compound and the anharmonic interactions of phonon modes, and its connection with the relative masses of the constituent species. This finding provides useful insight into which 2-H dichalcogenides might be suitable for which thermal applications.
Li, Xiangzhu; Paldus, Josef
2009-09-21
The automerization of cyclobutadiene (CBD) is employed to test the performance of the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, as well as of its perturbatively corrected version accounting for the remaining (secondary) triples [RMR CCSD(T)]. The experimental results are compared with those obtained by the standard CCSD and CCSD(T) methods, by the state universal (SU) MR CCSD and its state selective or state specific (SS) version as formulated by Mukherjee et al. (SS MRCC or MkMRCC) and, wherever available, by the Brillouin-Wigner MRCC [MR BWCCSD(T)] method. Both restricted Hartree-Fock (RHF) and multiconfigurational self-consistent field (MCSCF) molecular orbitals are employed. For a smaller STO-3G basis set we also make a comparison with the exact full configuration interaction (FCI) results. Both fundamental vibrational energies-as obtained via the integral averaging method (IAM) that can handle anomalous potentials and automatically accounts for anharmonicity- and the CBD automerization barrier for the interconversion of the two rectangular structures are considered. It is shown that the RMR CCSD(T) potential has the smallest nonparallelism error relative to the FCI potential and the corresponding fundamental vibrational frequencies compare reasonably well with the experimental ones and are very close to those recently obtained by other authors. The effect of anharmonicity is assessed using the second-order perturbation theory (MP2). Finally, the invariance of the RMR CC methods with respect to orbital rotations is also examined.
Modal Contributions to Heat Conduction across Crystalline and Amorphous Si/Ge Interfaces
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Henry, Asegun
Until now, our entire understanding of interfacial heat transfer has been based on the phonon gas model and Landauer formalism. Based on this framework, it is difficult to offer any intuition on heat transfer between two solid materials if one side of the interface is an amorphous structure. Here, using the interface conductance modal analysis (ICMA) method, we investigate the modal contributions to thermal interface conductance (TIC) through crystalline (c) and amorphous (a) Si/Ge interfaces. It is revealed that around 15% of the conductance through the cSi/cGe interface arises from less than 0.1% of the modes of vibration in the structure that exist between 12-13THz and because of their large eigenvectors around the interface are classified as interfacial modes. Correlation maps show that these interfacial modes exhibit strong correlations with all the other modes. The physics behind this strong coupling ability is studied by calculating the mode-level harmonic and anharmonic energy distribution among all the atoms in the system. It is found that these interfacial modes are enabled by the large degree of anharmonicity near the interface, which is higher than the bulk and ultimately allows this small group of modes to couple to other modes of vibration. In addition, unlike the cSi/cGe, correlation maps for aSi/cGe, cSi/aGe, and aSi/aGe interfaces show that the majority of contributions to TIC arise from auto-correlations instead of cross-correlations. The provided analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.
2015-01-01
Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.
NASA Astrophysics Data System (ADS)
Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Tuyen, Nguyen Viet; Hai, Tran Thi; Hieu, Ho Khac
2018-03-01
The thermodynamic and mechanical properties of III-V zinc-blende AlP, InP semiconductors and their alloys have been studied in detail from statistical moment method taking into account the anharmonicity effects of the lattice vibrations. The nearest neighbor distance, thermal expansion coefficient, bulk moduli, specific heats at the constant volume and constant pressure of the zincblende AlP, InP and AlyIn1-yP alloys are calculated as functions of the temperature. The statistical moment method calculations are performed by using the many-body Stillinger-Weber potential. The concentration dependences of the thermodynamic quantities of zinc-blende AlyIn1-yP crystals have also been discussed and compared with those of the experimental results. Our results are reasonable agreement with earlier density functional theory calculations and can provide useful qualitative information for future experiments. The moment method then can be developed extensively for studying the atomistic structure and thermodynamic properties of nanoscale materials as well.
Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottwald, Fabian; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver
2016-04-28
The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [F. Gottwald et al., J. Phys. Chem. Lett. 6, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particularmore » example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics [F. Gottwald et al., J. Chem. Phys. 142, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give practical empirical criteria and discuss the effect of the potential renormalization term. The obtained results provide evidence that the CL model can be used for describing a potentially broad class of systems.« less
Metallization of vanadium dioxide driven by large phonon entropy
Budai, John D.; Hong, Jiawang; Manley, Michael E.; ...
2014-11-10
Phase competition underlies many remarkable and technologically important phenomena in transition-metal oxides. Vanadium dioxide exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two classic starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics versus a Mott MIT where strong electron-electron correlations drive charge localization1-10. A key-missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of themore » transition. Our measurements establish that the entropy driving the MIT is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our calculations identify softer bonding as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. This study illustrates the critical role of anharmonic lattice dynamics in metal-oxide phase competition, and provides guidance for the predictive design of new materials.« less
Confined active Brownian particles: theoretical description of propulsion-induced accumulation
NASA Astrophysics Data System (ADS)
Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.
2018-01-01
The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.
Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Yamada, Masatoshi
2017-08-01
We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.
Pierens, Gregory K; Venkatachalam, Taracad K; Reutens, David C
2016-12-01
Two- and three-bond coupling constants ( 2 J HC and 3 J HC ) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)-single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13 C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP-HSQMBC and the direct 13 C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3 J HC . However, the DFT method under estimated the 2 J HC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dalui, Malay; Kundu, M.; Madhu Trivikram, T.; Ray, Krishanu; Krishnamurthy, M.
2016-10-01
Identification of the basic processes responsible for an efficient heating of intense laser produced plasmas is one of the important features of high intensity laser matter interaction studies. Collisionless absorption due to the anharmonicity in the self-consistent electrostatic potential of the plasma, known as anharmonic resonance (AHR), has been proposed to be a basic mechanism but a clear experimental demonstration is needed. Here, we show that microstructured targets enhance X-ray emission and the polarization dependence ascribes the enhancement to anharmonic resonance heating. It is found that p-polarized pulses of 5 ×1017 W/cm2 intensity bring in a 16-fold enhancement in the X-ray emission in the energy range 20-350 keV compared to s-polarized pulses with microstructured targets. This ratio is 2 for the case of polished targets under otherwise identical conditions. Particle-in-cell simulations clearly show that AHR is the key absorption mechanism responsible for this effect.
NASA Astrophysics Data System (ADS)
Gillet, Philippe; Guyot, Francois; Malezieux, Jean-Marie
1989-12-01
High pressure (up to 2.7 GPa) and high temperature (up to 1000 K) Raman spectra of Ca 2GeO 4 (olivine form) have been recorded. Measurements of the pressure- and temperature-induced frequency shifts of 14 modes have been performed. The classical mode Gruneisen parameter and a corresponding parameter related to temperature variation are calculated. For the high frequency modes (GeO stretching) we calculate these parameters with local tetrahedral elastic parameters. From these parameters anharmonic parameters are calculated for each Raman active mode. The effect of anharmonicity on the specific heat is calculated and compared with calorimetric data. Taking anharmonicity into account leads to a departure from the Dulong and Petit limit of the order of 2% at 1000 K and more than 6% at 2000 K, in good accord with experimental data. We propose that, eventually, such effects might be significant in the calculations of thermodynamic properties of mantle silicates like forsterite and its polymorphs.
Phonon anharmonicity and negative thermal expansion in SnSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less
Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing
2016-10-05
We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. Copyright © 2016 Elsevier B.V. All rights reserved.
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; ...
2016-08-09
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less
Nonadiabatic effect on the quantum heat flux control.
Uchiyama, Chikako
2014-05-01
We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.
Anharmonic and Quantum Fluctuations in Molecular Crystals from Ab Initio Simulations
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele
Molecular crystals often exist in multiple competing polymorphs which are challenging to be predicted computationally, but show significantly different physicochemical properties. This challenge is not due only to the combinatorial search space, but also to the complex interplay of subtle effects determine the relative stability of different structures. Here we estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects, by using a series of different flavors of thermodynamic integration. As an example, for the two most stable forms of paracetamol we find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our studies indicate that anharmonic free energies could play an important role for molecular crystals composed by large molecules and opens the way for a systematic inclusion of these effects in order to obtain a predictive screening of structures.
Scalar-tensor theory of gravitation with negative coupling constant
NASA Technical Reports Server (NTRS)
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
Mendl, Christian B.; Spohn, Herbert
2016-10-04
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, K.; Che, H.; Ge, Y. P.
2015-09-21
RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.
NASA Astrophysics Data System (ADS)
Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki
2018-07-01
The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.
Partition functions of thermally dissociating diatomic molecules and related momentum problem
NASA Astrophysics Data System (ADS)
Buchowiecki, Marcin
2017-11-01
The anharmonicity and ro-vibrational coupling in ro-vibrational partition functions of diatomic molecules are analyzed for the high temperatures of the thermal dissociation regime. The numerically exact partition functions and thermal energies are calculated. At the high temperatures the proper integration of momenta is important if the partition function of the molecule, understood as bounded system, is to be obtained. The problem of proper treatment of momentum is crucial for correctness of high temperature molecular simulations as the decomposition of simulated molecule have to be avoided; the analysis of O2, H2+, and NH3 molecules allows to show importance of βDe value.
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
NASA Astrophysics Data System (ADS)
Mauri, Francesco
Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.
NASA Astrophysics Data System (ADS)
Ng, L. L.; Tan, T. L.; Akasyah, Luqman; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don
2017-10-01
The synchrotron Fourier transform infrared (FTIR) spectrum of the ν8 band of ethylene-d3 (C2HD3) was measured at an unapodized resolution of 0.00096 cm-1 from 830 to 1010 cm-1. Rovibrational constants up to five quartic terms were derived with improved precision for the v8 = 1 state through the fitting of 1566 unperturbed infrared transitions using the Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.00044 cm-1. For the first time, 446 perturbed IR transitions of the ν8 band were fitted together with the 1566 unperturbed infrared transitions to obtain the a- and b-Coriolis resonance parameters from its interaction with the v6 = 1 state, with an rms deviation of 0.00039 cm-1. The IR lines of the ν6 band were too weak for detection. Three rotational constants, a quartic constant and band center of the v6 = 1 state were also derived for the first time in this work. Ground state rovibrational constants of C2HD3 up to five quartic constants were also derived from a fit of 906 ground state combination differences with an rms deviation of 0.00030 cm-1 from infrared transitions of the present analysis. The ground state rotational constants are in close agreement with theoretically calculated values using the cc-pVTZ basis set at CCSD(T), MP2 and B3LYP levels of theory. Alpha constants determined from the rotational constants of the v8 = 1 state derived from the perturbed IR fit compared favourably with those from anharmonic calculations.
Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard
2004-09-08
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed. Copyright 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard
2004-09-01
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.
Exploiting Non-Markovianity for Quantum Control.
Reich, Daniel M; Katz, Nadav; Koch, Christiane P
2015-07-22
Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less
Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway
1997-01-01
The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...
Proof of Nishida's Conjecture on Anharmonic Lattices
NASA Astrophysics Data System (ADS)
Rink, Bob
2006-02-01
We prove Nishida's 1971 conjecture stating that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice with fixed endpoints are quasi-periodic. The proof is based on the formal computations of Nishida, the KAM theorem, discrete symmetry considerations and an algebraic trick that considerably simplifies earlier results.
Photodissociation spectroscopy and ab initio calculations for the Sr +-N 2 complex
NASA Astrophysics Data System (ADS)
Massaouti, Maria; Fanourgakis, George S.; Velegrakis, Michalis
2010-04-01
Electronic vibrationally resolved spectra of the Sr +-N 2 complex have been recorded in two energy regions 20 284-22 988 cm -1 and 15 576-16 380 cm -1. In the high energy region, two progressions are present and they are attributed to the (2) 2Π 3/2,1/2 ← X2Σ+ transitions assuming a linear molecule. This linear configuration is supported from the observed spin-orbit splitting of these excited states as well as from electronic structure calculations. The lower energy spectrum shows a structure, which ends up to a continuum. Considering the complex as an anharmonic oscillator, the spectroscopic constants and the dissociation energies of the corresponding states are determined.
Instantaneous and dynamical decoherence
NASA Astrophysics Data System (ADS)
Polonyi, Janos
2018-04-01
Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.
On the contribution of vibrational anharmonicity to the binding energies of water clusters.
Diri, Kadir; Myshakin, Evgeniy M; Jordan, Kenneth D
2005-05-05
The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)6, the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
The Mm-Wave Rotational Spectrum of Glycolic Acid
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Pszczółkowski, Lech; Białkowska-Jaworska, Ewa; Charnley, Steven B.
2014-06-01
Glycolic acid, HOCH_2COOH is the simplest α-hydroxy acid. It is as yet undetected in the interstellar medium, but is known to be present in carbonaceous meteorites and in residues from UV-photolysed interstellar ice analogue mixtures. Prior rotational spectroscopy has been carried out up to 40 GHz for the main, SSC conformer, Presently we report the analysis of the rotational spectrum of glycolic acid on the basis of broadband measurements performed up to 318 GHz, and updated spectroscopic constants for the ground state and the first two excited states of the low-frequency ν21 torsional mode. We have used the AABS package to assign multiple further excited vibrational states of the SSC conformer. In particular, we have been able to assign the highly perturbed triad of ν14, ν20 and 3ν21 states. The triad has been fitted down to experimental accuracy with a coupled fit, which allowed us to pin down the hitherto elusive frequency of the ν21 mode. The experimental results make an interesting comparison with those of anharmonic force field calculations. We have also been able to extend the measurements for the AAT conformer. C.E.Blom, A.Bauder, Chem. Phys. Lett., 82, 492 (1981), J. Am. Chem. Soc., 104, 2993 (1982). H.Hasegawa, O.Ohashi, I.Yamaguchi, J. Mol. Spectrosc., 82, 205 (1982). P.D.Godfrey, F.M.Rodgers, R.D.Brown, J. Am. Chem. Soc., 119, 2232 (1997).
Noncanonical harmonic and anharmonic oscillator in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannussis, A.; Vavougios, D.
1986-09-01
We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.
Harmonic and Anharmonic Behaviour of a Simple Oscillator
ERIC Educational Resources Information Center
O'Shea, Michael J.
2009-01-01
We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calero, C.; Knorowski, C.; Travesset, A.
We investigate a general method to calculate the free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of this method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place constraints on its magnitude and allows approximate but fast and accurate estimates. The method is implemented into a readily available generalmore » software by combining the code HOODLT (Highly Optimized Object Oriented Dynamic Lattice Theory) for the harmonic part and the molecular dynamics (MD) simulation package HOOMD-blue for the anharmonic part. We use the method to calculate the low temperature phase diagram for Lennard-Jones particles. We demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior. Furthermore, several implications of the method are discussed.« less
NASA Astrophysics Data System (ADS)
Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush
2018-06-01
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.
NASA Astrophysics Data System (ADS)
Onoda, Masashige; Sato, Takuma
2017-12-01
The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.
NASA Astrophysics Data System (ADS)
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
NASA Astrophysics Data System (ADS)
Mahalik, S. S.; Kundu, M.
2016-12-01
Linear resonance (LR) absorption of an intense 800 nm laser light in a nano-cluster requires a long laser pulse >100 fs when Mie-plasma frequency ( ω M ) of electrons in the expanding cluster matches the laser frequency (ω). For a short duration of the pulse, the condition for LR is not satisfied. In this case, it was shown by a model and particle-in-cell (PIC) simulations [Phys. Rev. Lett. 96, 123401 (2006)] that electrons absorb laser energy by anharmonic resonance (AHR) when the position-dependent frequency Ω [ r ( t ) ] of an electron in the self-consistent anharmonic potential of the cluster satisfies Ω [ r ( t ) ] = ω . However, AHR remains to be a debate and still obscure in multi-particle plasma simulations. Here, we identify AHR mechanism in a laser driven cluster using molecular dynamics (MD) simulations. By analyzing the trajectory of each MD electron and extracting its Ω [ r ( t ) ] in the self-generated anharmonic plasma potential, it is found that electron is outer ionized only when AHR is met. An anharmonic oscillator model, introduced here, brings out most of the features of MD electrons while passing the AHR. Thus, we not only bridge the gap between PIC simulations, analytical models, and MD calculations for the first time but also unequivocally prove that AHR process is a universal dominant collisionless mechanism of absorption in the short pulse regime or in the early time of longer pulses in clusters.
Experimental determination of the effective strong coupling constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandre Deur; Volker Burkert; Jian-Ping Chen
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Vibrational Dynamics and Guest-Host Coupling in Clathrate Hydrates
NASA Astrophysics Data System (ADS)
Koza, Michael M.; Schober, Helmut
Clathrate hydrates may turn out either a blessing or a curse for mankind. On one hand, they constitute a huge reservoir of fossil fuel. On the other hand, their decomposition may liberate large amounts of green house gas and have disastrous consequences on sea floor stability. It is thus of paramount importance to understand the formation and stability of these guest-host compounds. Neutron diffraction has successfully occupied a prominent place on the stage of these scientific investigations. Complete understanding, however, is not achieved without an explanation for the thermal properties of clathrates. In particular, the thermal conductivity has a large influence on clathrate formation and conservation. Neutron spectroscopy allows probing the microscopic dynamics of clathrate hydrates. We will show how comparative studies of vibrations in clathrate hydrates give insight into the coupling of the guest to the host lattice. This coupling together with the anharmonicity of the vibrational modes is shown to lay the foundations for the peculiar thermodynamic properties of clathrate hydrates. The results obtained reach far beyond the specific clathrate system. Similar mechanisms are expected to be at work in any guest-host complex.
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2017-06-01
We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
Kny Coupling Constants and Form Factors from the Chiral Bag Model
NASA Astrophysics Data System (ADS)
Jeong, M. T.; Cheon, Il-T.
2000-09-01
The form factors and coupling constants for KNΛ and KNΣ interactions have been calculated in the framework of the Chiral Bag Model with vector mesons. Taking into account vector meson (ρ, ω, K*) field effects, we find -3.88 ≤ gKNΛ ≤ -3.67 and 1.15 ≤ gKNΣ ≤ 1.24, where the quark-meson coupling constants are determined by fitting the renormalized, πNN coupling constant, [gπNN(0)]2/4π = 14.3. It is shown that vector mesons make significant contributions to the coupling constants gKNΛ and gKNΣ. Our values are existing within the experimental limits compared to the phenomenological values extracted from the kaon photo production experiments.
Ghosh, Sourav K; Ostanin, Victor P; Johnson, Christian L; Lowe, Christopher R; Seshia, Ashwin A
2011-11-15
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less
An Anharmonic Solution to the Equation of Motion for the Simple Pendulum
ERIC Educational Resources Information Center
Johannessen, Kim
2011-01-01
An anharmonic solution to the differential equation describing the oscillations of a simple pendulum at large angles is discussed. The solution is expressed in terms of functions not involving the Jacobi elliptic functions. In the derivation, a sinusoidal expression, including a linear and a Fourier sine series in the argument, has been applied.…
Dark soliton decay due to trap anharmonicity in atomic Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, N. G.; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT
2010-03-15
A number of recent experiments with nearly pure atomic Bose-Einstein condensates have confirmed the predicted dark soliton oscillations when under harmonic trapping. However, a dark soliton propagating in an inhomogeneous condensate has also been predicted to be unstable to the emission of sound waves. Although harmonic trapping supports an equilibrium between the coexisting soliton and sound, we show that the ensuing dynamics are sensitive to trap anharmonicities. Such anharmonicities can break the soliton-sound equilibrium and lead to the net decay of the soliton on a considerably shorter time scale than other dissipation mechanisms. Thus, we propose that small realistic modificationsmore » to existing experimental setups could enable the experimental observation of this decay channel.« less
NASA Astrophysics Data System (ADS)
Baldi, G.; Giordano, V. M.; Ruta, B.; Dal Maschio, R.; Fontana, A.; Monaco, G.
2014-03-01
We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.
Role of quantum correlations in light-matter quantum heat engines
NASA Astrophysics Data System (ADS)
Barrios, G. Alvarado; Albarrán-Arriagada, F.; Cárdenas-López, F. A.; Romero, G.; Retamal, J. C.
2017-11-01
We study a quantum Otto engine embedding a working substance composed of a two-level system interacting with a harmonic mode. The physical properties of the substance are described by a generalized quantum Rabi model arising in superconducting circuit realizations. We show that light-matter quantum correlation reduction during the hot bath stage and adiabatic stages act as an indicator for enhanced work extraction and efficiency, respectively. Also, we demonstrate that the anharmonic spectrum of the working substance has a direct impact on the transition from heat engine into refrigerator as the light-matter coupling is increased. These results shed light on the search for optimal conditions in the performance of quantum heat engines.
Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C
2012-12-05
The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.
Ultrafast vibrational energy flow in water monomers in acetonitrile
NASA Astrophysics Data System (ADS)
Dahms, Fabian; Costard, Rene; Nibbering, Erik T. J.; Elsaesser, Thomas
2016-05-01
Vibrational relaxation of the OH stretching and bending modes of water monomers in acetonitrile is studied by two-color pump-probe experiments in a frequency range from 1400 to 3800 cm-1. Measurements with resonant infrared excitation reveal vibrational lifetimes of 6.4 ± 1.0 ps of the OH stretching modes and 4.0 ± 0.5 ps of the OH bending mode. After OH stretching excitation, the OH bending mode shows an instantaneous response, a hallmark of the anharmonic coupling of stretching and bending modes, and a delayed population buildup by relaxation of the stretching via the bending mode. The relaxation steps are discussed within the framework of current theoretical pictures of water's vibrational relaxation.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji
2008-11-01
The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.
Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.
Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J
2017-06-14
We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.
Anharmonic dynamics of a mass O-spring oscillator
NASA Astrophysics Data System (ADS)
Filipponi, A.; Cavicchia, D. R.
2011-07-01
We investigate the dynamics of a one-dimensional oscillator made of a mass connected to a circular spring under uniaxial extension. The functional dependence of the elastic energy on the strain is obtained by solving the differential equations resulting from a variational formalism common to Euler's elastica problem. The calculated nonlinear force agrees with the experiment, confirming the anharmonic nature of the oscillator.
High-resolution spectroscopy of the C-N stretching band of methylamine
NASA Astrophysics Data System (ADS)
Lees, Ronald M.; Sun, Zhen-Dong; Billinghurst, B. E.
2011-09-01
The C-N stretching infrared fundamental of CH3NH2 has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH3 torsion and the NH2 inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the vt = 0 torsional state, along with many of the weaker sub-bands of the s species. The C-N stretching sub-state origins have been determined by fitting the upper-state term values to J(J + 1) power-series expansions. For comparison with the ground-state behaviour, both ground and C-N stretch origins have been fitted to a phenomenological Fourier series model that produces an interesting pattern with the differing periodicities of the torsional and inversion energies. The amplitude of the torsional energy oscillation increases substantially for the C-N stretch, while the amplitude of the inversion energy oscillation is relatively unchanged. Independent inertial scale factors ρ were fitted for the torsion and the inversion and differ significantly in the upper state. The C-N stretching vibrational energy is determined to be 1044.817 cm-1, while the effective upper state B-value is 0.7318 cm-1. Several anharmonic resonances with vt = 4 ground-state levels have been observed and partially characterized. A variety of J-localized level-crossing resonances have also been seen, five of which display forbidden transitions arising from intensity borrowing that allow determination of the interaction coupling constants.
Reaction of SO2 with OH in the atmosphere.
Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G
2017-03-15
The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.
NASA Astrophysics Data System (ADS)
Futami, Yoshisuke; Minamoto, Chihiro; Kudoh, Satoshi
2018-05-01
The frequencies and absorption intensities of the five kinds of conformers of 1,3-butanediol with the same carbon skeleton (GG‧) were calculated by anharmonic calculation for the fundamentals and first overtones of OH stretching vibrations. The four kinds of conformers form intramolecular hydrogen bonds and one conformer did not. Intramolecular hydrogen bond formation shifted the frequency of fundamental and first overtone of H-bonding OH stretching vibration to the lower frequency. The absorption intensities of the fundamentals as well as the vibrational anharmonicities increased upon hydrogen bond formation, while the intensities of first overtones decreased. The differences of conformers were clearly seen in the frequencies of the first overtones of free OH.
NASA Astrophysics Data System (ADS)
Ng, L. L.; Tan, T. L.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don
2016-10-01
The synchrotron Fourier transform infrared (FTIR) spectrum of the b-type ν10 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded at a resolution of 0.00096 cm-1 in the 550-750 cm-1 region. The measured FWHM of the lines was about 0.002 cm-1. The ν10 band, centred at 662.871885(27) cm-1 was found to be perturbed through a b-type Coriolis resonance with the infrared inactive ν8 at 759.9582(20) cm-1. In this work, 1989 infrared transitions of ν10 were assigned for the first time. These perturbed and unperturbed infrared transitions were fitted with an rms deviation of 0.00033 cm-1 using the Watson's A-reduced Hamiltonian in the Ir representation with three Coriolis terms to derive the rovibrational constants for v10 = 1 and v8 = 1 states. Ground state rovibrational constants up to two sextic terms were also derived from a fit of a total of 2532 ground state combination differences with arms deviation of 0.00030 cm-1 from the infrared transitions of the present analysis and those determined previously. The ground state constants compared favourably to the equilibrium state constants from harmonic cc-pVTZ basis set at CCSD(T), MP2 and B3LYP levels. The rotational constants of ν10 and ν8 from this work agree well with those from anharmonic calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
Salna, Bridget; Benabbas, Abdelkrim; Russo, Douglas; Champion, Paul M
2017-07-20
A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10 -5 -10 -7 , indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be tunneling-active due to its broad range of sampled D-A distances.
Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2018-02-28
The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
Anharmonic quantum contribution to vibrational dephasing.
Barik, Debashis; Ray, Deb Shankar
2004-07-22
Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics N(2), O(2), and CO.
The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration)
ERIC Educational Resources Information Center
Lieberherr, Martin
2013-01-01
Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate…
Low energy determination of the QCD strong coupling constant on the lattice
Maezawa, Yu; Petreczky, Peter
2016-09-28
Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value α s( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.
Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan; ...
2018-01-02
Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less
Modeling the Conformation-Specific Infrared Spectra of N-Alkylbenzenes
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Sibert, Edwin; Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.
2016-06-01
Conformation-specific UV-IR double resonance spectra are presented for n-alkylbenzenes. With the aid of a local mode Hamiltonian that includes the effects of stretch-bend Fermi coupling, the spectra of ethyl, n-propyl, and n-butylbenzene are assigned to individual conformers. These molecules allow for further development of the work on a first principles method for calculating alkyl stretch spectra. Due to the consistency of the anharmonic couplings from conformer to conformer, construction of the model Hamiltonian for a given conformer only requires a harmonic frequency calculation at the conformer's minimum geometry as an input. The model Hamiltonian can be parameterized with either density functional theory or MP2 electronic structure calculations. The relative strengths and weaknesses of these methods are evaluated, including their predictions of the relative energetics of the conformers. Finally, the IR spectra for conformers that have the alkyl chain bend back and interact with the π cloud of the benzene ring are modeled.
Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.
2016-12-01
The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.
NASA Astrophysics Data System (ADS)
Wu, Xufei; Liu, Zeyu; Luo, Tengfei
2018-02-01
In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan
Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less
Bansal, Dipanshu; Niedziela, Jennifer L; Sinclair, Ryan; Garlea, V Ovidiu; Abernathy, Douglas L; Chi, Songxue; Ren, Yang; Zhou, Haidong; Delaire, Olivier
2018-01-02
Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments and theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.
CH stretching overtone spectra of trimethyl amine and dimethyl sulfide
NASA Astrophysics Data System (ADS)
Billinghurst, Brant E.; Gough, Kathleen M.; Low, Geoffrey R.; Kjaergaard, Henrik G.
2004-01-01
Trimethyl amine (TMA) exhibits the largest known difference in CH bond lengths within a methyl group, due to what is known as the lone pair trans effect. Dimethyl sulfide also exhibits this effect, but to a far lesser extent, making it ideal for comparison to TMA. In this paper, the first through fourth overtone spectra of N(CH3)3, N(CD3)3, N(CD2H)(CD3)2, N(CH3)(CD3)2, N(CD3)(CH3)2 and S(CH3)2 are reported and all major bands are assigned. The intensities of the observed bands are compared to intensities predicted by the harmonically coupled anharmonic oscillator local mode model. Good correlation is found between the experimental intensities and those predicted with the local mode model and HF/6-311++G(2d,2p) calculated dipole moment functions. An increase in the ability to resolve peaks as methyl groups are deuterated suggests that the lone pair mediates increased coupling between methyl groups.
Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
Li, Jiaming; de Melo, Leonardo F; Luo, Le
2017-03-30
We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.
NASA Astrophysics Data System (ADS)
Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt
2013-10-01
Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.
High-Resolution Infrared Spectrum of Monoiodoacetylene Between 2000 and 3000 cm -1
NASA Astrophysics Data System (ADS)
Ahonen, Anne-Maaria; Ahonen, Tarmo; Alanko, Seppo
1998-09-01
The high-resolution infrared spectrum of monoiodoacetylene measured with a Bruker IFS 120 HR Fourier transform spectrometer in the spectral range of 2000-3000 cm-1has been studied in detail. The strongest bands observed in the wavenumber region investigated are the C-C stretching fundamental ν2(2034-2082 cm-1) and the accompanying hot bands of the types ν2+ νn- νn, wheren= 3, 4, or 5, associated with the lowest stretching statev3= 1 and with the low-lying bending statesv4= 1 andv5= 1, 2, respectively. The combination bands of the types ν2+ νn, wherenis as above, starting direct from the ground state have also been observed. In addition, the weak overtone band 2ν2(4081-4121 cm-1) has been measured to study the anharmonicity of the C-C stretching mode. The new, more accurate values for the ground state rotational constants have been derived by combining the ground state combination differences calculated from our IR data available in the present work as well as in our previous investigations concerning the HCCI molecule to the accurate MW transitions from the literature. The rotational structures of the overtone levelv2= 2 and the combination levelsv2=vn= 1, wherenis as above, have been investigated by analyzing the observed spectra with a model including various Fermi- andl-type resonances. As a result, the values for the harmonic frequency ω02and the anharmonicity constantsx22,x23,x24, andx25are determined.
NASA Astrophysics Data System (ADS)
Hayat, Sardar Sikandar; Rehman, Zakirur; Shah, Zulfiqar Ali
2017-11-01
We study the diffusion of two-dimensional Cun(1 ≤ n ≤ 9) islands on Ag(111) surface using molecular dynamics (MD) simulations. The work is the extension of calculations of monomer and dimer Hayat et al. [Phys. Rev. B 82 (2010) 085411] and trimer results Shah et al. [Phys. Lett. A 378 (2014) 1732]. Simulations carried out at three different temperatures — 300, 500, and 700 K — show the concerted motion to be dominant for the smaller islands (2- to 4-atoms), while the shape-changing multiple-atom processes are responsible for the diffusion of larger islands. Arrhenius plots of the diffusion coefficients reveal that the effective energy barrier is less than 260 ± 5 meV for the largest island size of Cu/Ag(111). There is a scaling of the effective energy barrier with size to some extent, but most notably it remains constant for islands with 4- to 6-atoms. The diffusion coefficient increases within a factor of 10 at the three temperatures 300, 500, and 700 K. The observed anharmonic features of the Cun adislands (breakage and pop-up) at Ag(111) surface as well as the surface anharmonicity of the Ag-substrate (fissures, dislocations, vacancy generation, and atomic exchange), are also presented. These findings can serve as an input for kinetic Monte Carlo (KMC) simulations. For the smaller sized islands the variation in the effective energy barrier with the island size is in good agreement with the experimental findings.
Global Analysis of Broadband Rotation and Vibration-Rotation Spectra of Sulfur Dicyanide
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Winnewissser, Manfred; Winnewisser, Brenda P.; De Lucia, Frank C.; Tokaryk, Dennis W.; Billinghurst, Brant E.
2013-06-01
The successful analysis of the quantum monodromy induced features in the rotational spectrum of the NCNCS molecule prompted a quest for similar behaviour in its vibration-rotation spectrum and several high-resolution FT-IR spectra were recorded on the IFS125HR interferometer at the Canadian Light Source. The sulfur dicyanide, S(CN)_2, molecule is a precursor to NCNCS and the analysis of its spectrum proved to be a prerequisite to a search for the elusive NCNCS transitions. The CLS spectra provided the opportunity to augment the previous extensive analysis of the FASSST rotational spectrum of S(CN)_2 with vibration-rotation data, in particular from the ν_4 fundamental at 121 cm^{-1} and its related hot-band series. A global fit of the two data sets allowed retaining the detailed analysis of the previously reported perturbations in the 3ν_4 triad and 4ν_4 tetrad of states, while allowing for determination of precise energies of all low-lying vibrational states of S(CN)_2. In this way we have determined wavenumbers for five lowest fundamentals of this experimentally difficult molecule and obtained an extensive set of benchmark data for calibration of anharmonic force field calculations of such quantities as the vibration-rotation changes in rotational constants, and anharmonicity coefficients. Comparisons with results of several such calculations are presented. B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. {12}, 8158 (2010). M.Winnewisser et al., 67^th OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2012, TF-01. Z.Kisiel et al., J. Mol. Spectrosc. {246}, 39 (2007).
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis
2010-02-03
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2003-01-01
We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.
Harmonic and Anharmonic Free Energies in Superlattices of Soft Particle Systems
NASA Astrophysics Data System (ADS)
Travesset, Alex; Calero, Carles; Knorowski, Chris
Many problems in self and directed assembly rely on the rigorous calculation of free energies. In systems of nanoparticles with capping ligands, for example, superlattices are found in closely competing structures, such as hcp/fcc, cubic/hexagonal diamond or those isomorphic between MgCu2 and MgZn2. With this motivation, we investigate a general method to calculate free energy of crystalline solids by considering the harmonic approximation and quasistatically switching the anharmonic contribution. The advantage of the method is that the harmonic approximation provides an already very accurate estimate of the free energy, and therefore the anharmonic term is numerically very small and can be determined to very high accuracy. We further show that the anharmonic contribution to the free energy satisfies a number of exact inequalities that place con- strains on its magnitude and allows approximate but fast and accurate estimates. We apply it to Lennard Jones sytems where we demonstrate that hcp is the equilibrium phase at low temperature and pressure and obtain the coexistence curve with the fcc phase, which exhibits reentrant behavior and binary systems that model nanoparticle superlattices with hydrocarbon capping ligand. The research was performed at the Ames Laboratory, which is operated for the US DOE by Iowa State University under Contract Number DE-AC02-07CH11358.
Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction
NASA Astrophysics Data System (ADS)
Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg
2018-04-01
We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.
Engineering of nonclassical motional states in optomechanical systems
NASA Astrophysics Data System (ADS)
Xu, Xun-Wei; Wang, Hui; Zhang, Jing; Liu, Yu-xi
2013-12-01
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.
Calibration and energy measurement of optically levitated nanoparticle sensors
NASA Astrophysics Data System (ADS)
Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas
2018-03-01
Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.
Dynamic Nonreciprocity in Loss-Compensated Piezophononic Media
NASA Astrophysics Data System (ADS)
Merkel, Aurélien; Willatzen, Morten; Christensen, Johan
2018-03-01
Violating time-reversal symmetry enables one to engineer nonreciprocal structures for isolating and rectifying sound and mechanical vibrations. Rectifying sound is commonly achieved in nonlinear media, but the operation is inherently linked to weak and distorted signals. Here, we show how a pronounced electron-phonon coupling in linear piezophononic media under electrical bias can generate full mechanical rectification of broad spectral width, which permits the isolation of pulsed vibrations while keeping the wave-front shape fully intact. In this context, we deliberately show how the acoustoelectric effect can provide active loss compensation against lattice anharmonicity and thermoelastic damping. Further, our predictions confirm tunable nonreciprocity at an ultralarge contrast ratio, which should open the doors for future mechanical diodes and compact ultrasonic transducers for sensing and imaging.
VizieR Online Data Catalog: Protonated oxirane characterization (Puzzarini+, 2014)
NASA Astrophysics Data System (ADS)
Puzzarini, C.; Ali, A.; Biczysko, M.; Barone, V.
2017-04-01
The coupled-cluster (CC) singles and doubles approximation augmented by a perturbative treatment of triple excitations (CCSD(T); Raghavachari et al., 1989, ChPhL, 157, 479) was employed in molecular structure and anharmonic force-field calculations. Harmonic force fields were also computed using the less expensive and less accurate second-order Moller-Plesset perturbation theory (MP2; Moller & Plesset, 1934, PhRv, 46, 618). CCSD(T) and MP2 calculations were carried out in conjunction with the correlation-consistent basis sets, (aug)-cc-p(C)VnZ (n = T, Q) (Dunning, 1989, JChPh, 90, 1007; Kendall et al., 1992, JChPh, 96, 6796; Woon & Dunning, 1995, JChPh, 103, 4572), with the quantum-chemical CFour program package employed throughout. (4 data files).
Perspective: Theory and simulation of hybrid halide perovskites
Jung, Young-Kwang
2017-01-01
Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such “plastic crystals” feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the average crystallographic space group; (iv) strong relativistic (spin-orbit coupling) effects on the electronic band structure; and (v) thermodynamic metastability and rapid chemical breakdown. These issues, which affect the operation of solar cells, are outlined in this perspective. We also discuss general guidelines for performing quantitative and predictive simulations of these materials, which are relevant to metal-organic frameworks and other hybrid semiconducting, dielectric and ferroelectric compounds. PMID:29166078
Identification of the fragment of the 1-methylpyrene cation by mid-IR spectroscopy
NASA Astrophysics Data System (ADS)
Jusko, Pavol; Simon, Aude; Wenzel, Gabi; Brünken, Sandra; Schlemmer, Stephan; Joblin, Christine
2018-04-01
The fragment of the 1-methylpyrene cation, 17C 11H+, is expected to exist in two isomeric forms, 1-pyrenemethylium PyrCH2+ and the tropylium containing species PyrC7+. We measured the infrared (IR) action spectrum of cold 17C 11H+ tagged with Ne using a cryogenic ion trap instrument coupled to the FELIX laser. Comparison of the experimental data with density functional theory calculations allows us to identify the PyrCH2+ isomer in our experiments. The IR Multi-Photon Dissociation spectrum was also recorded following the C2H2 loss channel. Its analysis suggests combined effects of anharmonicity and isomerisation while heating the trapped ions, as shown by molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi
2016-09-01
We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.
Ciezak-Jenkins, Jennifer A.
2016-04-22
We have studied the structural and chemical response of tetrahydroxy-p-benzoquinone to isothermal compression to near 20 GPa using powder x-ray diffraction and vibrational spectroscopy. Compression beyond 11.5 GPa resulted in the appearance of several new peaks in the x-ray patterns, changes in the peak distribution and intensities, as well as the disappearance of features observed at lower pressures, which when coupled with concomitant changes in the infrared spectrum are indicative of a phase transition. Further analysis of the infrared spectra suggest this phase transition results in an increase in the anharmonicity of the system. Finally, Raman spectroscopic experiments indicate themore » high-pressure phase to be highly photosensitive and easily polymerized.« less
NASA Astrophysics Data System (ADS)
Zhang, Zu-Quan; Lü, Jing-Tao
2017-09-01
Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.
Investigating the Ground-State Rotamers of n-Propylperoxy Radical
Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry
2016-11-01
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less
Molecular dynamics study of interfacial thermal transport between silicene and substrates.
Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan
2015-10-07
In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.
The Effects of the Organic-Inorganic Interactions on the Thermal Transport Properties of CH3NH3PbI3.
Hata, Tomoyuki; Giorgi, Giacomo; Yamashita, Koichi
2016-04-13
Methylammonium lead iodide perovskite (CH3NH3PbI3), the most investigated hybrid organic-inorganic halide perovskite, is characterized by a quite low thermal conductivity. The rotational motion of methylammonium cations is considered responsible for phonon transport suppression; however, to date, the specific mechanism of the process has not been clarified. In this study, we elucidate the role of rotations in thermal properties based on molecular dynamics simulations. To do it, we developed an empirical potential for CH3NH3PbI3 by fitting to ab initio calculations and evaluated its thermal conductivity by means of nonequilibrium molecular dynamics. Results are compared with model systems that include different embedded cations, and this comparison shows a dominant suppression effect provided by rotational motions. We also checked the temperature dependence of the vibrational density of states and specified the energy range in which anharmonic couplings occur. By means of phonon dispersion analysis, we were able to fully elucidate the suppression mechanism: the rotations are coupled with translational motions of cations, via which inorganic lattice vibrations are coupled and scatter each other.
Temperature dependent effective potential method for accurate free energy calculations of solids
NASA Astrophysics Data System (ADS)
Hellman, Olle; Steneteg, Peter; Abrikosov, I. A.; Simak, S. I.
2013-03-01
We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in detail. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular, we examine from first principles the behavior of force constants upon the dynamical stabilization of the body centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He modeled with the Aziz potential and obtain results which are in favorable agreement both with respect to experiment and established techniques.
NASA Astrophysics Data System (ADS)
Awasthi, Anjali; Awasthi, Aashees
2017-06-01
The acoustic non-linearity parameter (B/A) for binary mixtures of 2-chloroethanol with 2-dimethylethanolamine (2-DMAE) and 2-diethylethanolamine (2-DEAE) are evaluated using Tong Dong, Beyer and Beyer-Tong Dong coefficients at varying concentrations and temperatures ranging from 293.15 to 313.15 K. The nonlinearity parameter is used to calculate various molecular properties such as internal pressure, cohesive energy density, Van der waals' constant, distance of closest approach, diffusion coefficient and rotational correlation time. Additionally, the intermediate quantities like temperature and pressure derivatives of sound velocity and phase shift parameter as a function of temperature are also deduced. The extent of intermolecular interactions, anharmonicity and structural configuration of the binaries under investigation are discussed in terms of excess non-linearity parameter (B/A)E.
Lattice dynamics of solid N2 with an ab initio intermolecular potential
NASA Astrophysics Data System (ADS)
Luty, T.; van der Avoird, A.; Berns, R. M.
1980-11-01
We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.
Superradiance of cold atoms coupled to a superconducting circuit
NASA Astrophysics Data System (ADS)
Braun, Daniel; Hoffman, Jonathan; Tiesinga, Eite
2011-06-01
We investigate superradiance of an ensemble of atoms coupled to an integrated superconducting LC circuit. Particular attention is paid to the effect of inhomogeneous coupling constants. Combining perturbation theory in the inhomogeneity and numerical simulations, we show that inhomogeneous coupling constants can significantly affect the superradiant relaxation process. Incomplete relaxation terminating in “dark states” can occur, from which the only escape is through individual spontaneous emission on a much longer time scale. The relaxation dynamics can be significantly accelerated or retarded, depending on the distribution of the coupling constants. On the technical side, we also generalize the previously known propagator of superradiance for identical couplings in the completely symmetric sector to the full exponentially large Hilbert space.
Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides
NASA Astrophysics Data System (ADS)
Mei, Antonio Rodolph Bighetti
Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based upon temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity rho 300K of 12.0 muO-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6x10-8 O-cm K -1, a residual resistivity rhoo below 30 K of 0.78 muO-cm (corresponding to a residual resistivity ratio rho300K/rho 15K = 15), and the layers exhibit a superconducting transition temperature Tc = 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, xi|| = 18 nm and xi⊥ = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7+/-1.7 and 450+/-25 GPa. Transport electron/phonon coupling parameters and Eliashberg spectral functions alphatr2F(ho) are determined for Group-IV TM nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements. Transport electron/phonon coupling parameters lambdatr vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in lambda tr among the TM nitrides and the weak coupling in CeN are consistent with measured Tc values: 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and < 4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in alpha2F(ho), corresponding to regions in energy-space for which electrons couple to acoustic hoac and optical ho op phonon modes, are centered at ho ac = 33 and hoop = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15+/-0.1 for all four nitrides, indicating similar electron/phonon coupling strengths alphatr(h o) for both modes. Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically-unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134+/-0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density rho = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8+/-0.3, v011 = 9.1+/-0.3, and v111 = 9.1+/-0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585+/-30 GPa; the c44 elastic constant, 126+/-3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and rho, the VN c 12 elastic constant is 178+/-33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio nu = 0.29, and the anisotropic Poisson ratios nu001 = 0.23, nu011 = 0.30, and nu 111 = 0.29. The elastic stability criteria requires cubic crystals to resist [001] and [011] shears as well as isotropic compression or, equivalently, for G001 = (c11 -- c12)/2 > 0, G 011 = c44 > 0, and B = (c11 + 2c12)/3 > 0, in which G001 and G011 are directional shear moduli and B is the bulk modulus. Thus, NaCl-structure VN is elastically stable at room temperature. Structural phase transitions in epitaxial stoichiometric VN/MgO(011) thin films are investigated using temperature-dependent synchrotron XRD, SAED, resistivity measurements, HR-XTEM, and ab-initio molecular dynamics (AIMD). At room temperature, VN has the B1 NaCl structure. However, below Tc = 250 K, XRD and SAED results reveal forbidden (00 l) reflections of mixed parity associated with a non-centrosymmetric tetragonal structure. The intensities of the forbidden reflections increase with decreasing temperature following the scaling behavior I ∝ (T c - T)1/2. Resistivity measurements between 300 and 4 K consist of two linear regimes resulting from different electron/phonon coupling strengths in the cubic and tetragonal VN phases. The VN transport Eliashberg spectral function alpha2trF(ho), the product of the phonon density-of-states F(ho) and the transport electron/phonon coupling strength alpha2 tr(ho), is determined and used in combination with AIMD renormalized phonon dispersion relations to show that anharmonic vibrations stabilize the NaCl structure at T > Tc. Free-energy contributions due to vibrational entropy, often neglected in theoretical modeling, are essential for understanding the room-temperature stability of NaCl-structure VN, and of strongly anharmonic systems in general. (Abstract shortened by UMI.).
Finite-element time evolution operator for the anharmonic oscillator
NASA Technical Reports Server (NTRS)
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Communication: Helium nanodroplet isolation and rovibrational spectroscopy of hydroxymethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavitt, Christopher M.; Moradi, Christopher P.; Stanton, John F.
Here, hydroxymethylene (HCOH) and its d 1-isotopologue (HCOD) are isolated in low temperature helium nanodroplets following pyrolysis of glyoxylic acid. Transitions identified in the infrared spectrum are assigned exclusively to the trans-conformation based on previously reported anharmonic frequency computations. For the OH(D) and CH stretches, a-and b-type transitions are observed, and when taken in conjunction with CCSD(T)/cc-pVTZ computations, lower limits to the vibrational band origins are determined. The relative intensities of the a-and b-type transitions provide the orientation of the transition dipole moment in the inertial frame. The He nanodroplet data are in excellent agreement with anharmonic frequency computations reportedmore » here and elsewhere, confirming an appreciable Ar-matrix shift of the OH and OD stretches and strong anharmonic resonance interactions in the high-frequency stretch regions of the mid-infrared.« less
Communication: Helium nanodroplet isolation and rovibrational spectroscopy of hydroxymethylene
Leavitt, Christopher M.; Moradi, Christopher P.; Stanton, John F.; ...
2014-05-05
Here, hydroxymethylene (HCOH) and its d 1-isotopologue (HCOD) are isolated in low temperature helium nanodroplets following pyrolysis of glyoxylic acid. Transitions identified in the infrared spectrum are assigned exclusively to the trans-conformation based on previously reported anharmonic frequency computations. For the OH(D) and CH stretches, a-and b-type transitions are observed, and when taken in conjunction with CCSD(T)/cc-pVTZ computations, lower limits to the vibrational band origins are determined. The relative intensities of the a-and b-type transitions provide the orientation of the transition dipole moment in the inertial frame. The He nanodroplet data are in excellent agreement with anharmonic frequency computations reportedmore » here and elsewhere, confirming an appreciable Ar-matrix shift of the OH and OD stretches and strong anharmonic resonance interactions in the high-frequency stretch regions of the mid-infrared.« less
Anharmonic Vibrational Spectroscopy on Metal Transition Complexes
NASA Astrophysics Data System (ADS)
Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2014-06-01
Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen W.; Smith, Hillary L.; Lan, Tian
2015-04-13
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO 2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhatmore » more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less
Phonon anharmonicity in silicon from 100 to 1500 K
Kim, D. S.; Smith, Hillary L.; Niedziela, Jennifer L.; ...
2015-01-21
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes weremore » $$\\langle$$Δε i/ε iΔT$$\\rangle$$=₋0.07, giving a mean isobaric Grüneisen parameter of +6.95±0.67, which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15k B/atom to the vibrational entropy, compared to 0.03k B/atom from quasiharmonicity. Lastly, excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.« less
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey
2015-12-28
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Krishnendu; Hossain, S. Minhaz
2008-12-01
We analyze the lattice equation of motion involving terms up to third order in lattice displacement. The phenomenological arguments suggest that the force constant D1 of the quadratic term must always be positive and the force constant B1 of the cubic term may take either positive or negative value. The criterion for stability of the lattice provides constraint on the relative magnitudes of the three force constants. We solve the equation of motion using root mean-square spatial fluctuation approximation and obtain the seminonperturbative dispersion relation both for positive and negative B1 . The nature of phonon density of states curves for positive B1 show some close resemblance with the experimental observations. At very low temperature, the specific heat of this system to leading order in large positive B1 varies as square root of temperature and it obeys Debye’s T law in one dimension for small negative B1 . At very high temperature, the specific heat may fall below or above its classical value depending on the relative magnitudes of B1 and D1 for B1>0 and it always falls above its classical value for B1<0 . The lattice model with positive B1 emerges as a good candidate for description of a monoatomic crystal.
Indirect NMR spin-spin coupling constants in diatomic alkali halides
NASA Astrophysics Data System (ADS)
Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B.; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2016-12-01
We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.
Autschbach, Jochen
2009-09-14
A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.
Dielectric properties of calicum and barium-doped strontium titanate
NASA Astrophysics Data System (ADS)
Tung, Li-Chun
Dielectric properties of high quality polycrystalline Ca- and Ba-doped SrTiO3 perovskites are studied by means of dielectric constant, dielectric loss and ferroelectric hysteresis measurements. Low frequency dispersion of the dielectric constant is found to be very small and a simple relaxor model may not be able to explain its dielectric behavior. Relaxation modes are found in these samples, and they are all interpreted as thermally activated Bipolar re-orientation across energy barriers. In Sr1- xCaxTiO3 (x = 0--0.3), two modes are found associated with different relaxation processes, and the concentration dependence implies a competition between these processes. In Sr1-xBa xTiO3 (x = 0--0.25), relaxation modes are found to be related to the structural transitions, and the relaxation modes persist at low doping levels (x < 0.1), where structural ordering is not observed by previous neutron scattering studies. The validity of well-accepted Barret formula is discussed and two of the well-accepted models, anharmonic oscillator model and transverse Ising model, are found to be equivalent. Both of the Ca and Ba systems can be understood qualitatively within the concept of transverse Ising model.
Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE
NASA Astrophysics Data System (ADS)
Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.
2013-06-01
Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.
Thermodynamic properties of PbTe, PbSe, and PbS: a first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Ke, Xuezhi; Chen, Changfeng
2009-01-01
The recent discovery of novel lead chalcogenide-based thermoelectric materials has attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, S) using first-principles density functional theory calculations and a direct force-constant method. We calculate the struc- tural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the resultsmore » of these calculations, we further employ quasihar- monic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruneisen parameters. The mode Gruneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS.« less
The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration)
NASA Astrophysics Data System (ADS)
Lieberherr, Martin
2013-04-01
Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate around a vertical axis. LEGO rockers (see Fig. 1) are much more reliable and versatile.
Coherent Raman Spectra of the nu(1) Mode of 10BF3 and 11BF3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Robynne; Masiello, Tony; Weber, Alfons
2006-05-01
High resolution (0.001cm-1) coherent anti-Stokes Raman spectroscopy (CARS) was used to directly examine the v1 symmetric stretching mode of the planar symmetric D3h molecules 10BF3 and 11BF3. Simulations of the spectra were done using v1 rovibrational parameters deduced from published infrared hot-band and difference-band studies and the close similarity to the observed CARS spectra confirms the validity of the infrared constants. No significant perturbations by Fermi resonance or Coriolis interactions with nearby states are observed, in marked contrast to the case of sulfur trioxide, a similar D3h molecule recently studied. In the harmonic approximation, the 10BF3 and 11BF3 v1 Q-more » branches would be identical since the isotopic substitution is at the center of mass but, interestingly, the v1 stretching frequency for 11BF3 is found to be 0.198 cm-1 higher than for the lighter 10BF3 isotopomer. This counterintuitive result is reproduced almost exactly (0.200 cm -1) by ab initio calculations (B3LYP/cc-pVTZ) that included evaluation of cubic and quartic forced constants and xij anharmonicity constants. The ab initio computations also predict to within 1% the ?B, ?C changes in the rotational constants in going from the ground state to the v1=1 vibrational level. The results illustrate nicely the complementary interplay of modern infrared, Raman, and ab initio methods in obtaining and analyzing rovibrational spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net
2016-01-15
The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less
Thermal rectification in anharmonic chains under an energy-conserving noise.
Guimarães, Pedro H; Landi, Gabriel T; de Oliveira, Mário J
2015-12-01
Systems in which the heat flux depends on the direction of the flow are said to present thermal rectification. This effect has attracted much theoretical and experimental interest in recent years. However, in most theoretical models the effect is found to vanish in the thermodynamic limit, in disagreement with experiment. The purpose of this paper is to show that the rectification may be restored by including an energy-conserving noise which randomly flips the velocity of the particles with a certain rate λ. It is shown that as long as λ is nonzero, the rectification remains finite in the thermodynamic limit. This is illustrated in a classical harmonic chain subject to a quartic pinning potential (the Φ(4) model) and coupled to heat baths by Langevin equations.
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-06-01
The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.
Origin of Superconductivity and Latent Charge Density Wave in NbS2
NASA Astrophysics Data System (ADS)
Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano
2017-08-01
We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.
4TH Mediterranean Workshop and Tropical Meeting "Novel Optical Materials and Applications" NOMA 99.
1999-07-19
If excitons have anharmonicity, the combination of large oscillator strength and the anharmonicity leads to large optical nonlinearity. Numerous...almost all NLO-polymers have a large optical loss compared with passive WG polymers. In these hybrid structures, only an active part for signal...quasi- phase matching based on chirality. I .::;~~~~~~~~a -: . .: 1 2 :: : , : •:•: :.?- ?i•;-•’’’::: .. AZOBENZENE POLYMERS FOR OPTICAL INFORMATION
Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine
NASA Astrophysics Data System (ADS)
Pecori, Barbara; Torzo, Giacomo; Sconza, Andrea
1999-03-01
We describe how the Atwood's machine, interfaced to a personal computer through a rotary encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy force acting on a body immersed in water. We report experimental studies of oscillators produced by driving forces of the type F=-kxn with n=1,2,3, and F=-k sgn(x). Finally we suggest how this apparatus can be used for showing to the students a macroscopic model of interatomic forces.
Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model
Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...
2017-03-28
We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Theoretical study on the potential energy surfaces of CaNC and CaCN
NASA Astrophysics Data System (ADS)
Ishii, Keisaku; Taketsugu, Tetsuya; Hirano, Tsuneo
2003-06-01
The potential energy surfaces of CaNC ( overlineX2Σ+) and CaCN ( overlineX2Σ+) have been investigated by the highly correlated ab initio molecular orbital methods. The bending potential for CaNC is shallow, and shows quite anharmonic and anomalous character, which can explain why the centrifugal distortion constants up to the tenth order were required for the analysis of its rotational spectrum. The reaction path for the isomerization reaction of CaNC and CaCN was also determined: The activation barrier is 2111 cm -1 from the CaNC side, and 602 cm -1 from the CaCN side. Core-core and core-valence correlation contributions of Ca M-shell electrons make the Ca-N (for CaNC) and Ca-C (for CaCN) bond lengths shorter by 0.05 and 0.04 Å, respectively, which indicates the significance of these core-correlation effects.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
Quantum chemical study of small AlnBm clusters: Structure and physical properties
NASA Astrophysics Data System (ADS)
Loukhovitski, Boris I.; Sharipov, Alexander S.; Starik, Alexander M.
2017-08-01
The structure and physical properties, including rotational constants, characteristic vibrational temperatures, collision diameter, dipole moment, static polarizability, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and formation enthalpy of the different isomeric forms of AlnBm clusters with n + m ⩽ 7 are studied using density functional theory. The search of the structure of isomers has been carried employing multistep hierarchical algorithm. Temperature dependencies of thermodynamic functions, such as enthalpy, entropy, and specific heat capacity, have been determined both for the individual isomers and for the ensembles with equilibrium and frozen compositions for the each class of clusters taking into account the anharmonicity of cluster vibrations and the contribution of their excited electronic states. The prospects of the application of small AlnBm clusters as the components of energetic materials are also considered.
Raman and and x-ray diffraction study of iron and iron-nickel alloys at varying P-T conditions
NASA Astrophysics Data System (ADS)
Goncharov, A.; Struzhkin, V.; Gregoryanz, E.; Maddury, S.; Huang, E.; Hemley, R. J.; Mao, H.
2002-05-01
High-pressure properties of iron and iron-rich alloys are crucial for understanding of the Earth interior, because iron is the major constitute element of the Earth core. Using recently developed [1,2] Raman spectroscopy technique for shear elastic modulus determination, we studied iron-rich alloys of Ni (0 to 20 % Ni) up to 150 GPa, and also at varying temperatures (78-400 K). We find substantial decrease of the Raman hcp-phonon frequency compared to the pure iron, and also considerable anharmonic temperature effects. In contrast, low-temperature x-ray diffraction measurements indicate a usual temperature variation of the lattice constants. Possible implications to the Earth core composition and properties are discussed. [1] A. P. Jephcoat, H. Olijnyk, K. Refson, Eos 80, F929 (1999). [2] S. Merkel et al., Science 288, 1626 (2000).
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule
NASA Astrophysics Data System (ADS)
Duchko, A. N.; Bykov, A. D.
2015-10-01
Large-order Rayleigh-Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H2CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ˜5000 cm-1), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.
Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.
2012-01-01
Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562
Duchko, A N; Bykov, A D
2015-10-21
Large-order Rayleigh-Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H2CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm(-1)), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.
Propagating elastic vibrations dominate thermal conduction in amorphous silicon
NASA Astrophysics Data System (ADS)
Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.
2018-01-01
The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.
Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics
Li, C. W.; Ma, J.; Cao, H. B.; ...
2014-12-29
The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V
2013-08-21
This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.
Brites, V; Nicely, A L; Sieffert, N; Gaigeot, M-P; Lisy, J M
2014-07-14
IR-PD vibrational spectroscopy and DFT-based molecular dynamics simulations are combined in order to unravel the structures of M(+)(APE)(H2O)0-1 ionic clusters (M = Na, K), where APE (2-amino-1-phenyl ethanol) is commonly used as an analogue for the noradrenaline neurotransmitter. The strength of the synergy between experiments and simulations presented here is that DFT-MD provides anharmonic vibrational spectra that unambiguously help assign the ionic clusters structures. Depending on the interacting cation, we have found that the lowest energy conformers of K(+)(APE)(H2O)0-1 clusters are formed, while the lowest energy conformers of Na(+)(APE)(H2O)0-1 clusters can only be observed through water loss channel (i.e. without argon tagged to the clusters). Trapping of higher energy conformers is observed when the argon loss channel is recorded in the experiment. This has been rationalized by transition state energies. The dynamical anharmonic vibrational spectra unambiguously provide the prominent OH stretch due to the OH···NH2 H-bond, within 10 cm(-1) of the experiment, hence reproducing the 240-300 cm(-1) red-shift (depending on the interacting cation) from bare neutral APE. When this H-bond is not present, the dynamical anharmonic spectra provide the water O-H stretches as well as the rotational motion of the water molecule at finite temperature, as observed in the experiment.
Non-minimal derivative coupling gravity in cosmology
NASA Astrophysics Data System (ADS)
Gumjudpai, Burin; Rangdee, Phongsaphat
2015-11-01
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.
Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates
NASA Astrophysics Data System (ADS)
Gu, Mingqiang; Rondinelli, James M.
2017-01-01
The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.
Shao, Cheng; Bao, Hua
2016-01-01
The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656
Tasinato, Nicola; Stoppa, Paolo; Charmet, A Pietropolli; Giorgianni, Santi; Gambi, Alberto
2006-12-21
The FTIR spectra of CH2[double bond]CHF have been investigated in the nu(8), nu(10), and nu(11) region between 750 and 1050 cm(-1) at a resolution of about 0.002 cm(-1). The nu(8) vibration of symmetry species A' gives rise to an a/b-type hybrid band, while the nu(10) and nu(11) modes of A' ' symmetry produce c-type absorptions. Due to the proximity of their band origins, the three vibrations perturb each other by Coriolis and high-order anharmonic resonances. In particular, the interactions between the nu(8) and nu(10) modes are very strong and widespread with band origins separated by only 1.37 cm(-1). Besides the expected c-type characteristics, the nu(10) band shows a very intense pseudo a-type component caused by the strong first-order Coriolis resonances with the nu(8) state. Furthermore, the 2nu(9) "dark state" was found to be involved in the interacting band systems. The spectral analysis resulted in the identification of 3144, 3235, and 3577 transitions of the nu(8), nu(10), and nu(11) vibrations, respectively. Almost all the assigned data were simultaneously fitted using the Watson's A-reduction Hamiltonian in the Ir representation and the perturbation operators. The model employed includes nine types of resonances within the tetrad nu(8)/nu(10)/nu(11)/2nu(9) and a set of spectroscopic constants for the nu(8), nu(10), and nu(11) fundamentals as well as parameters for the "dark state" 2nu(9), and fourteen coupling terms have been determined.
Ultrafast phosphate hydration dynamics in bulk H{sub 2}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costard, Rene, E-mail: costard@mbi-berlin.de; Tyborski, Tobias; Fingerhut, Benjamin P., E-mail: fingerhut@mbi-berlin.de
2015-06-07
Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H{sub 2}PO{sub 4}{sup −} ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν{sub S}(PO{sub 2}{sup −})) and asymmetric (ν{sub AS}(PO{sub 2}{sup −})) PO{sub 2}{sup −} stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH){sub 2}) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decaymore » and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν{sub S}(PO{sub 2}{sup −}) and ν{sub AS}(PO{sub 2}{sup −}) transition frequencies with larger frequency excursions for ν{sub AS}(PO{sub 2}{sup −}). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO{sub 2}{sup −}) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H{sub 2}PO{sub 4}{sup −}/H{sub 2}O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.« less
Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira
2016-01-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634
Slenkamp, Karla M; Lynch, Michael S; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira
2016-03-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O or formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent.
Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.
Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S
2017-12-21
Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1972-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1971-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glinchuk, Maya D.; Eliseev, Eugene A.; Morozovska, Anna N., E-mail: anna.n.morozovska@gmail.com
2016-01-14
Landau-Ginzburg thermodynamic formalism is used for the description of the anomalous ferroelectric, ferromagnetic, and magnetoelectric properties of Pb(Fe{sub 1/2}Ta{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1−x}O{sub 3} and Pb(Fe{sub 1/2}Nb{sub 1/2}){sub x}(Zr{sub 0.53}Ti{sub 0.47}){sub 1−x}O{sub 3} micro-ceramics. We calculated temperature, composition, and external field dependences of ferroelectric, ferromagnetic, and antiferromagnetic phases transition temperatures, remanent polarization, magnetization, hysteresis loops, dielectric permittivity, and magnetoelectric coupling. Special attention was paid to the comparison of developed theory with experiments. It appeared possible to describe adequately main experimental results including a reasonable agreement between the shape of calculated and measured hysteresis loops and remnant polarization. Since Landau-Ginzburgmore » thermodynamic formalism appertains to single domain properties of a ferroic, we did not aim to describe quantitatively the coercive field under the presence of realistic poly-domain switching. Information about linear and nonlinear magnetoelectric coupling coefficients was extracted from the experimental data. From the fitting of experimental data with theoretical formula, we obtained the composition dependence of Curie-Weiss constant that is known to be inversely proportional to harmonic (linear) dielectric stiffness, as well as the strong nonlinear dependence of anharmonic parameters in free energy. Keeping in mind the essential influence of these parameters on multiferroic properties, the obtained results open the way to govern practically all the material properties with the help of suitable composition choice. A forecast of the strong enough influence of antiferrodistortive order parameter on the transition temperatures and so on the phase diagrams and properties of multiferroics are made on the basis of the developed theory.« less
Kutateladze, Andrei G; Mukhina, Olga A
2014-09-05
Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.
Effects of mucosal loading on vocal fold vibration.
Tao, Chao; Jiang, Jack J
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Effects of mucosal loading on vocal fold vibration
NASA Astrophysics Data System (ADS)
Tao, Chao; Jiang, Jack J.
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Effect of interaction range on phonon relaxation in Fermi-Pasta-Ulam beta chain.
Santhosh, G; Kumar, Deepak
2007-08-01
We study the effect of increasing the range of interactions on phonon relaxation in a chain of atoms with quartic anharmonicity. The study is motivated by recent numerical studies, showing that the value of the exponent alpha characterizing the divergence of conductivity with system size apparently depends on the presence of second neighbor couplings. We perform a quantum calculation of the wave-vector (q) dependent relaxation rate gamma(q) in the second order perturbation theory. The nonanalytic dependence of gamma(q) arises due to small-q singularity of the collision integral. We find that gamma(q) proportional to Aq(5/3) + Bq2. This gives rise to an asymptotic value alpha = 0.4, but the q2 terms lead to a higher apparent value of alpha at small sizes of the chain.
Electromechanical quantum simulators
NASA Astrophysics Data System (ADS)
Tacchino, F.; Chiesa, A.; LaHaye, M. D.; Carretta, S.; Gerace, D.
2018-06-01
Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical nano-oscillators. It is shown that very high operational fidelities for single- and two-qubits gates can be achieved in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting artificial atom. An effective scheme to induce large single-phonon nonlinearities in nanoelectromechanical devices is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by using realistic experimental parameters in state-of-the-art devices, and considering the transverse field Ising model as a paradigmatic example.
Traveling solitons in long-range oscillator chains
NASA Astrophysics Data System (ADS)
Miloshevich, George; Nguenang, Jean Pierre; Dauxois, Thierry; Khomeriki, Ramaz; Ruffo, Stefano
2017-03-01
We investigate the existence and propagation of solitons in a long-range extension of the quartic Fermi-Pasta-Ulam (FPU) chain of anharmonic oscillators. The coupling in the linear term decays as a power-law with an exponent 1<α ≤slant 3 . We obtain an analytic perturbative expression of traveling envelope solitons by introducing a non linear Schrödinger equation for the slowly varying amplitude of short wavelength modes. Due to the non analytic properties of the dispersion relation, it is crucial to develop the theory using discrete difference operators. Those properties are also the ultimate reason why kink-solitons may exist but are unstable, at variance with the short-range FPU model. We successfully compare these approximate analytic results with numerical simulations for the value α =2 which was chosen as a case study.
NASA Astrophysics Data System (ADS)
Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori
2017-04-01
We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.
NASA Astrophysics Data System (ADS)
Demissie, Taye B.
2017-11-01
The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es
The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less
NASA Astrophysics Data System (ADS)
Beć, Krzysztof B.; Grabska, Justyna; Czarnecki, Mirosław A.
2018-05-01
We investigated near-infrared (7500-4000 cm-1) spectra of n-hexanol, cyclohexanol and phenol in CCl4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules.
NASA Astrophysics Data System (ADS)
Goncharov, A.; Struzhkin, V.
2003-04-01
The knowledge of high-pressure properties of iron and iron-rich alloys are crucial for understanding of the Earth interior, because iron is the major constitute element of the Earth core. Raman spectroscopy has been used recently [1,2] for the shear elastic modulus C44 determination in Fe at compression levels approaching the core boundary. We studied iron-rich alloys of Ni (0 to 20 % Ni) up to 150 GPa, and also at varying temperatures (78-400 K). We find substantial decrease of the Raman hcp-phonon frequency compared to the pure iron, and also considerable anharmonic temperature effects. We argue that the strong anharmonicity of the E2g mode the vicinity of α to ɛ transition can be one of the reasons of the discrepancy between theoretical [3,4] and experimental Raman frequencies and the shear elastic modulus C44. Theoretical calculations do not take into the account the anharmonic effects explicitly, so that the calculated Raman frequency is higher than the experimental one, which is strongly renormalized as a consequence of a Fermi damping. The E2g mode becomes less anharmonic at high pressures (>80 GPa), and theory and experiment are indeed in a much better agreement. [1] S. Merkel et al., Science 288, 1626 (2000). [2] H. Olijnyk, A.P. Jephcoat, K. Refson, Europhys. Lett. 53, 504 (2001). [3] G. Steinle-Neumann, L. Stixrude, and R.E. Cohen, Phys. Rev. B 60, 791 (1999). [4] L. Vocadlo, personal communication.
NASA Astrophysics Data System (ADS)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So
2017-09-01
A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.
Interstate vibronic coupling constants between electronic excited states for complex molecules
NASA Astrophysics Data System (ADS)
Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne
2018-03-01
In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.
Transition state theory for activated systems with driven anharmonic barriers.
Revuelta, F; Craven, Galen T; Bartsch, Thomas; Borondo, F; Benito, R M; Hernandez, Rigoberto
2017-08-21
Classical transition state theory has been extended to address chemical reactions across barriers that are driven and anharmonic. This resolves a challenge to the naive theory that necessarily leads to recrossings and approximate rates because it relies on a fixed dividing surface. We develop both perturbative and numerical methods for the computation of a time-dependent recrossing-free dividing surface for a model anharmonic system in a solvated environment that interacts strongly with an oscillatory external field. We extend our previous work, which relied either on a harmonic approximation or on periodic force driving. We demonstrate that the reaction rate, expressed as the long-time flux of reactive trajectories, can be extracted directly from the stability exponents, namely, Lyapunov exponents, of the moving dividing surface. Comparison to numerical results demonstrates the accuracy and robustness of this approach for the computation of optimal (recrossing-free) dividing surfaces and reaction rates in systems with Markovian solvation forces. The resulting reaction rates are in strong agreement with those determined from the long-time flux of reactive trajectories.
Thermal Conductivities in Solids from First Principles: Accurate Computations and Rapid Estimates
NASA Astrophysics Data System (ADS)
Carbogno, Christian; Scheffler, Matthias
In spite of significant research efforts, a first-principles determination of the thermal conductivity κ at high temperatures has remained elusive. Boltzmann transport techniques that account for anharmonicity perturbatively become inaccurate under such conditions. Ab initio molecular dynamics (MD) techniques using the Green-Kubo (GK) formalism capture the full anharmonicity, but can become prohibitively costly to converge in time and size. We developed a formalism that accelerates such GK simulations by several orders of magnitude and that thus enables its application within the limited time and length scales accessible in ab initio MD. For this purpose, we determine the effective harmonic potential occurring during the MD, the associated temperature-dependent phonon properties and lifetimes. Interpolation in reciprocal and frequency space then allows to extrapolate to the macroscopic scale. For both force-field and ab initio MD, we validate this approach by computing κ for Si and ZrO2, two materials known for their particularly harmonic and anharmonic character. Eventually, we demonstrate how these techniques facilitate reasonable estimates of κ from existing MD calculations at virtually no additional computational cost.
Bouchet, Aude; Schütz, Markus; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta; Dopfer, Otto
2015-10-21
The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-π interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-π interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-π hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Bloino, Julien; Biczysko, Malgorzata; Barone, Vincenzo
2017-01-01
The aim of this paper is twofold. First, we want to report the extension of our virtual multifrequency spectrometer (VMS) to anharmonic intensities for Raman Optical Activity (ROA) with the full inclusion of first- and second-order resonances for both frequencies and intensities in the framework of the generalized second-order vibrational perturbation theory (GVPT2) for all kinds of vibrational spectroscopies. Then, from a more general point of view, we want to present and validate the performance of VMS for the parallel analysis of different vibrational spectra for medium-sized molecules (IR, Raman, VCD, ROA) including both mechanical and electric/magnetic anharmonicity. For the well-known methyloxirane benchmark, careful selection of density functional, basis set, and resonance tresholds permitted to reach qualitative and quantitative vis-à-vis comparison between experimental and computed band positions and shapes. Next, the whole series of halogenated azetidinones is analyzed, showing that it is now possible to interpret different spectra in terms of electronegativity, polarizability, and hindrance variation between closely related substituents, chiral spectroscopies being particular effective in this connection. PMID:26580121
Fred L. Tobiason; Richard W. Hemingway
1994-01-01
A GMMX conformational search routine gives a family of conformations that reflects the Boltzmann-averaged heterocyclic ring conformation as evidenced by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.
Fred L. Tobiason; Richard w. Hemingway
1994-01-01
A GMMXe conformational search routine gives a family a conformations that reflects the boltzmann-averaged heterocyclic ring conformation as evidence by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.
Kim, Ji-Wan; Kovalenko, Oleksandr; Liu, Yu; Bigot, Jean-Yves
2016-12-27
We report the anharmonic angstrom dynamics of self-assembled Au nanoparticles (Au:NPs) away from a nickel surface on top of which they are coupled by their near-field interaction. The deformation and the oscillatory excursion away from the surface are induced by picosecond acoustic pulses and probed at the surface plasmon resonance with femtosecond laser pulses. The overall dynamics are due to an efficient transfer of translational momentum from the Ni surface to the Au:NPs, therefore avoiding usual thermal effects and energy redistribution among the electronic states. Two modes are clearly revealed by the oscillatory shift of the Au:NPs surface plasmon resonance-the quadrupole deformation mode due to the transient ellipsoid shape and the excursion mode when the Au:NPs bounce away from the surface. We find that, contrary to the quadrupole mode, the excursion mode is sensitive to the distance between Au:NPs and Ni. Importantly, the excursion dynamics display a nonsinusoidal motion that cannot be explained by a standard harmonic potential model. A detailed modeling of the dynamics using a Hamaker-type Lennard-Jones potential between two media is performed, showing that each Au:NPs coherently evolves in a nearly one-dimensional anharmonic potential with a total excursion of ∼1 Å. This excursion induces a shift of the surface plasmon resonance detectable because of the strong near-field interaction. This general method of observing the spatiotemporal dynamics with angstrom and picosecond resolutions can be directly transposed to many nanostructures or biosystems to reveal the interaction and contact mechanism with their surrounding medium while remaining in their fundamental electronic states.
Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S
2012-11-01
Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchko, A. N.; V.E. Zuev Institute of Atmospheric Optics, Tomsk; Bykov, A. D., E-mail: adbykov@rambler.ru
2015-10-21
Large-order Rayleigh–Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H{sub 2}CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonancemore » mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm{sup −1}), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.« less
Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky
2018-04-24
Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, Christian B.; Spohn, Herbert
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems
NASA Technical Reports Server (NTRS)
Zylka, Christian; Vojta, Guenter
1993-01-01
The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Vicinal fluorine-fluorine coupling constants: Fourier analysis.
San Fabián, J; Westra Hoekzema, A J A
2004-10-01
Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics
Vicinal fluorine-fluorine coupling constants: Fourier analysis
NASA Astrophysics Data System (ADS)
San Fabián, J.; Westra Hoekzema, A. J. A.
2004-10-01
Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.
Quark masses and strong coupling constant in 2+1 flavor QCD
Maezawa, Y.; Petreczky, P.
2016-08-30
We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less
Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model
NASA Astrophysics Data System (ADS)
Ngai, K. L.
2015-03-01
Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ1(f), the frequency dispersion of the third-order dielectric susceptibility, χ3(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ1(f) and χ3(f) is the characteristic of the many-body relaxation dynamics of interacting systems which are governed solely by the intermolecular potential, and thermodynamic condition plays no role in this respect. Although linked to χ3(f), dynamic heterogeneity is one of the parallel consequences of the many-body dynamics, and it should not be considered as the principal control parameter for the other dynamic properties of glassforming systems. Results same as χ3(f) at elevated pressures had been obtained before by molecular dynamics simulations from the four-points correlation function and the intermediate scattering function. Naturally all properties obtained from the computer experiment, including dynamics heterogeneity, frequency dispersion, the relation between the α- and JG β-relaxation, and the breakdown of the Stokes-Einstein relation, are parallel consequences of the many-body relaxation dynamics governed by the intermolecular potential.
Beć, Krzysztof B; Grabska, Justyna; Czarnecki, Mirosław A
2018-05-15
We investigated near-infrared (7500-4000 cm -1 ) spectra of n-hexanol, cyclohexanol and phenol in CCl 4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard
2018-04-01
Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.
Millimeter-wave spectroscopy of syn formyl azide (HC(O)N3) in seven vibrational states
NASA Astrophysics Data System (ADS)
Walters, Nicholas A.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.
2017-01-01
Millimeter-wave spectra for formyl azide (HC(O)N3) were obtained from 240 to 360 GHz at ambient temperature. For the ground state of syn formyl azide, over 1500 independent rotational transitions were measured and least-squares fit to a complete S-reduced 8th order centrifugal distortion/rigid rotor Hamiltonian. The decomposition of formyl azide was monitored over a period of several hours, the half-life (t½ = 30 min) was determined, and its decomposition products were investigated. Transitions from five vibrational satellites of syn formyl azide (ν9, ν12, 2ν9, ν9 + ν12, and ν11) were observed, measured, and least-squares fit to complete or nearly complete octic centrifugally-distorted, single-state S-reduced models. A less complete single-state fit of 3ν9 (509.3 cm-1) was obtained from an unperturbed subset of its assignable transitions. This state is apparently coupled to the fundamental ν8 (489.4 cm-1) and the overtone 2ν12 (503.6 cm-1), but the coupling remains unanalyzed. Anharmonic CCSD(T)/ANO1 estimates of the vibrational frequencies of syn formyl azide were in close agreement with previously published experimental and computational values. Experimentally determined vibration-rotation interaction (αi) values were in excellent agreement with coupled-cluster predicted αi values for the fundamentals ν9, ν12, and ν11.
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.
Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S
2016-04-14
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2
NASA Astrophysics Data System (ADS)
Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.
2016-04-01
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murphy-Armando, Felipe; Trigo, Mariano; Savic, Ivana; Murray, Eamonn; Reis, David
We have calculated the time-evolution of carriers and generated phonons in Ge after ultrafast photo-excitation above the direct band-gap. The relevant electron-phonon and anharmonic phonon scattering rates are obtained from first-principles electronic structure calculations. Measurements of the x-ray diffuse scattering after excitation near the L point in the Brillouin zone find a relatively slow (5 ps, compared to the typical electron-phonon energy relaxation of the Gamma-L phonon) increase of the phonon population. We find this is due to emission caused by the scattering of electrons between the Delta and L valleys, after the initial depopulation of the Gamma valley. The relative slowness of this process is due to a combination of causes: (i) the finite time for the initial depopulation of the conduction Gamma valley; (ii) the associated electron-phonon coupling is relatively weaker (compared to Gamma-L, Gamma-Delta and Delta-Delta couplings) ; (iii) the TA associated phonon has a long lifetime and (iv) the depopulation of the Delta valley suppresses the phonon emission. Supported by Science Foundation Ireland, Grant 12/1A/1601.
Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
Ramírez, R; Herrero, C P
2010-10-14
The isotope effect in the melting temperature of ice Ih has been studied by free energy calculations within the path integral formulation of statistical mechanics. Free energy differences between isotopes are related to the dependence of their kinetic energy on the isotope mass. The water simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. The reported melting temperature at ambient pressure of this model (T=251 K) increases by 6.5±0.5 and 8.2±0.5 K upon isotopic substitution of hydrogen by deuterium and tritium, respectively. These temperature shifts are larger than the experimental ones (3.8 and 4.5 K, respectively). In the classical limit, the melting temperature is nearly the same as that for tritiated ice. This unexpected behavior is rationalized by the coupling between intermolecular interactions and molecular flexibility. This coupling makes the kinetic energy of the OH stretching modes larger in the liquid than in the solid phase. However, the opposite behavior is found for intramolecular modes, which display larger kinetic energy in ice than in liquid water.
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
Homayoon, Zahra
2014-09-28
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Astrophysics Data System (ADS)
Homayoon, Zahra
2014-09-01
A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.
NASA Astrophysics Data System (ADS)
Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.
2018-04-01
The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.
Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke
2009-09-15
In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase.
Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium
Söderlind, Per
2017-04-25
Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less
Anharmonic longitudinal motion of bases and dynamics of nonlinear excitation in DNA.
Di Garbo, Angelo
2016-01-01
The dynamics of the transcription bubble in DNA is studied by using a nonlinear model in which torsional and longitudinal conformations of the biomolecule are coupled. In the absence of forcing and dissipation the torsional dynamics is described by a perturbed kink of the Sine-Gordon DNA model, while the longitudinal conformational energy propagate as phonons. It was found that for random initial conditions of the longitudinal conformational field the presence of the kink promotes the creation of phonons propagating along the chain axis. Moreover, the presence of forcing, describing the active role of RNA polymerase, determines in agreement to the experimental data a modulation of the velocity of the transcription bubble. Lastly, it was shown that the presence of dissipation impacts the dynamic of the phonon by reducing the amplitude of the corresponding conformational field. On the contrary, dissipation and forcing modulate the velocity of the transcription bubble alone.
Applications of the trilinear Hamiltonian with three trapped ions
NASA Astrophysics Data System (ADS)
Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry
2017-04-01
The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.
Jet cooled cavity ringdown spectroscopy of the A ˜ 2 E ″ ← X ˜ 2 A2 ' transition of the NO3 radical
NASA Astrophysics Data System (ADS)
Codd, Terrance; Chen, Ming-Wei; Roudjane, Mourad; Stanton, John F.; Miller, Terry A.
2015-05-01
The A ˜ 2 E ″ ← X ˜ 2 A2 ' spectrum of NO3 radical from 7550 cm-1 to 9750 cm-1 has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 1 band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.
What makes the difference in perovskite titanates?
NASA Astrophysics Data System (ADS)
Bussmann-Holder, Annette; Roleder, Krystian; Ko, Jae-Hyeon
2018-06-01
We have investigated in detail the lattice dynamics of five different perovskite titanates ATiO3 (A = Ca, Sr, Ba, Pb, Eu) where the A sites are occupied by +2 ions. In spite of the largely ionic character of these ions, the properties of these compounds differ substantially. They range from order/disorder like, to displacive ferroelectric, quantum paraelectric, and antiferromagnetic. All compounds crystallize in the cubic structure at high temperature and undergo structural phase transitions to tetragonal symmetry, partly followed by further transitions to lower symmetries. Since the TiO6 moiety is the essential electronic and structural unit, the question arises, what makes the significant difference between them. It is shown that the lattice dynamics of these compounds are very different, and that mode-mode coupling effects give rise to many distinct properties. In addition, the oxygen ion nonlinear polarizability plays a key role since it dominates the anharmonicity of these perovskites and determines the structural instability.
Rotation of a Single Acetylene Molecule on Cu(001) by Tunneling Electrons in STM
NASA Astrophysics Data System (ADS)
Shchadilova, Yulia E.; Tikhodeev, Sergei G.; Paulsson, Magnus; Ueba, Hiromu
2013-11-01
We study the elementary processes behind one of the pioneering works on scanning tunneling microscope controlled reactions of single molecules [Stipe et al., Phys. Rev. Lett. 81, 1263 (1998)]. Using the Keldysh-Green function approach for the vibrational generation rate in combination with density functional theory calculations to obtain realistic parameters we reproduce the experimental rotation rate of an acetylene molecule on a Cu(100) surface as a function of bias voltage and tunneling current. This combined approach allows us to identify the reaction coordinate mode of the acetylene rotation and its anharmonic coupling with the C-H stretch mode. We show that three different elementary processes, the excitation of C-H stretch, the overtone ladder climbing of the hindered rotational mode, and the combination band excitation together explain the rotation of the acetylene molecule on Cu(100).
A peptide co-solvent under scrutiny: self-aggregation of 2,2,2-trifluoroethanol.
Scharge, Tina; Cézard, Christine; Zielke, Philipp; Schütz, Anne; Emmeluth, Corinna; Suhm, Martin A
2007-08-28
Trifluoroethanol (TFE) and its aggregates are studied via supersonic jet FTIR and Raman spectroscopy as well as by quantum chemistry and simple force field approaches. A multi-slit nozzle is introduced to study collisionally excited clusters. Efforts are made to extract harmonic frequencies from experiment for better comparison to theory. Based on deuteration, the OH stretching anharmonicity changes weakly upon dimerization, but increases for trimers. Among the possible dimer conformations, only an all-gauche, homoconfigurational, compact, OH-F connected structure is observed in an extreme case of chiral discrimination. Quantum tunneling assisted pathways for this surprising helicity synchronization are postulated. The oscillator coupling in hydrogen-bonded trimers is analyzed. Trans conformations of TFE start to become important for trimers and probably persist in the liquid state. Simple force fields can be refined to capture some molecular recognition features of TFE dimer, but their limitations are emphasized.
Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Xi; Liang, Liangbo; Huang, Shengxi
2015-05-08
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both themore » crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.« less
NASA Astrophysics Data System (ADS)
Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.
2016-11-01
Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.
Local polar fluctuations in lead halide perovskite crystals
Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; ...
2017-03-28
Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3NH 3PbBr 3) and all-inorganic (CsPbBr 3) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicatemore » that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, P.L.; Scott, A.C.; Muto, V.
In recent years the possibility that anharmonic excitations could play a role in the dynamics of SNA has been considered by several authors. It has been suggested that solitons may be generated thermally at biological temperatures. The denaturation of the DNA double helix has been investigated by statistical mechanics methods and by dynamical simulations. Here the potential for the hydrogen bond in each base pair is approximated by a Morse potential. In the present paper we describe the Toda lattice model of DNA. Temperature enters via the initial conditions and through a perturbation of the dynamical equations. The model ismore » refined by introduction of transversal motion of the Toda lattice and by transversal coupling of two lattices in the hydrogen bonds present in the base pairs. Using Lennard-Jones potentials to model these bonds we are able to obtain results concerning the open states of DNA at biological temperatures. 39 refs., 7 figs.« less
Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Ceriotti, Michele
2018-02-01
The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.
Thermal expansion anomaly regulated by entropy.
Liu, Zi-Kui; Wang, Yi; Shang, ShunLi
2014-11-13
Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.
A simple nonlinear element model
NASA Astrophysics Data System (ADS)
Mikhailov, S. G.; Rudenko, O. V.
2017-05-01
We study experimentally the behavior of a nonlinear element, a light plate pressed to the opening in the cavity of an acoustic resonator. Measurements of field oscillations inside and outside the cavity have shown that for large amplitudes, they become essentially anharmonic. The time dependences of displacement of the plate with increasing amplitude of the exciting voltage demonstrates a gradual change in the shape of vibrations from harmonic to half-period oscillation. A constant component appears in the cavity: rarefaction or outflow of the medium through the orifice. We construct a theory for nonlinear oscillations of a plate taking into account its different elastic reactions to compression and rarefaction with allowance for monopole radiation by the small-wave-size plate or radiation of a plane wave by the plate. We calculate the amplitudes of the harmonics and solve the problem of low-frequency stationary noise acting on the plate. We obtain expressions for the correlation function and mean power at the output given a normal random process at the input.
Evolutions structurales et effets de pression dans des céramiques supraconductrices à haute T_c
NASA Astrophysics Data System (ADS)
Gavarri, J. R.; Carel, C.; Monnereau, O.; Vacquier, G.; Vettier, C.; Hewat, A. W.
1991-11-01
Using structural evolution data and a method permitting the calculation of elastic constants and Grüneisen parameters, the thermal expansion of two high T_c superconductors is interpreted. It is shown that the superconductors YBaCuO (123) and BiSrCaCuO (2212) present strongly different elastic and anharmonic properties. En appliquant une méthode déjà mise au point sur d'autres composés (Gavarri, 1981), l'évolution structurale de deux supraconducteurs à haute T_c est interprétée par le biais de leurs compressibilités anisotropes et de leurs coefficients de Grüneisen, obtenus par diffraction de neutrons et de rayons X. On montre ici que les supraconducteurs YBaCuO (123) et BiSrCaCuO (2212) diffèrent considérablement par leurs compressibilités anisotropes et par leurs coefficients de Grüneisen.
NASA Astrophysics Data System (ADS)
Hu, Yuan-Chao; Shang, Bao-Shuang; Guan, Peng-Fei; Yang, Yong; Bai, Hai-Yang; Wang, Wei-Hua
2016-09-01
A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
Thermal Expansion Anomaly Regulated by Entropy
NASA Astrophysics Data System (ADS)
Liu, Zi-Kui; Wang, Yi; Shang, Shunli
2014-11-01
Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.
Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy.
Goncharov, Vasiliy; Kaledin, Leonid A; Heaven, Michael C
2006-10-07
The pulsed field ionization-zero kinetic energy photoelectron technique has been used to observe the low-lying energy levels of UO+. Rotationally resolved spectra were recorded for the ground state and the first nine electronically excited states. Extensive vibrational progressions were characterized. Omega+ assignments were unambiguously determined from the first rotational lines identified in each vibronic band. Term energies, vibrational frequencies, and anharmonicity constants for low-lying energy levels of UO+ are reported. In addition, accurate values for the ionization energies for UO [48,643.8(2) cm(-1)] and U [49,957.6(2) cm(-1)] were determined. The pattern of low-lying electronic states for UO+ indicates that they originate from the U3+(5f3)O2- configuration, where the uranium ion-centered interactions between the 5f electrons are significantly stronger than interactions with the intramolecular electric field. The latter lifts the degeneracy of U3+ ion-core states, but the atomic angular momentum quantum numbers remain reasonably well defined.
Automated combinatorial method for fast and robust prediction of lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano
The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.
Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface
NASA Astrophysics Data System (ADS)
Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.
2017-10-01
In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.
Raman scattering of rare earth hexaborides
NASA Astrophysics Data System (ADS)
Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru
2009-06-01
Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.
Torsional anharmonicity in the conformational thermodynamics of flexible molecules
NASA Astrophysics Data System (ADS)
Miller, Thomas F., III; Clary, David C.
We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.
Squeezing and its graphical representations in the anharmonic oscillator model
NASA Astrophysics Data System (ADS)
Tanaś, R.; Miranowicz, A.; Kielich, S.
1991-04-01
The problem of squeezing and its graphical representations in the anharmonic oscillator model is considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribution (QPD) function are given and illustrated graphically. Approximate analytical formulas for the variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and its graphical representations in the form of variance lemniscates and QPD contours are plotted. For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite regular ellipses are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Thermal conductivities of La 3Cu 3X 4(X=P,As,Sb,Bi) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that La 3Cu 3P 4 has the lowest κ l, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κ l among like systems. The origin of this unusual behavior lies in the strengthmore » of the individual anharmonic phonon scattering matrix elements, which are much larger in La 3Cu 3P 4 than in the heavier La 3Cu 3Bi 4 system. Lastly, our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.« less
None, None
2017-06-30
Thermal conductivities of La 3Cu 3X 4(X=P,As,Sb,Bi) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that La 3Cu 3P 4 has the lowest κ l, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κ l among like systems. The origin of this unusual behavior lies in the strengthmore » of the individual anharmonic phonon scattering matrix elements, which are much larger in La 3Cu 3P 4 than in the heavier La 3Cu 3Bi 4 system. Lastly, our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Sdran, N.; Najran University, Faculty of Sciences and Arts, Najran; Maiz, F., E-mail: fethimaiz@gmail.com
2016-06-15
The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) bymore » a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.« less
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.
2017-06-01
Thermal conductivities of L a3C u3X4 (X =P ,As ,Sb ,Bi ) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that L a3C u3P4 has the lowest κl, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κl among like systems. The origin of this unusual behavior lies in the strength of the individual anharmonic phonon scattering matrix elements, which are much larger in L a3C u3P4 than in the heavier L a3C u3B i4 system. Our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.
Kühn, O; Manz, J; Schild, A
2010-04-07
An anharmonic extension of the Einstein model is developed in order to describe the effect of translational zero point motion on structural and thermodynamic properties of para-H(2) and ortho-D(2) crystals in the zero temperature limit. Accordingly, the molecules carry out large amplitude translational motions in their matrix cage, which are formed by the frozen environment of all other molecules. These translations lead from the molecular equilibrium positions via the harmonic to the anharmonic domain of the potential energy surface. The resulting translational distributions are roughly isotropic, and they have approximately Gaussian shapes, with rather broad full widths at half-maximum, FWHM(para-H(2)/ortho-D(2)) = 1.36/1.02 Å. The translational zero point energies induce expansions of the crystals, in nearly quantitative agreement with experimental results. Furthermore, they make significant contributions to the sublimation energies and zero pressure bulk moduli. These quantum effects decrease with heavier molecular masses. The corresponding isotope effects for ortho-D(2) compared to para-H(2) are confirmed by application of the model to Ar crystals. The results imply consequences for laser induced reaction dynamics of dopants with their host crystals.
Hydrogen Diffusion and Trapping in α -Iron: The Role of Quantum and Anharmonic Fluctuations
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Paxton, Anthony T.; Ceriotti, Michele
2018-06-01
We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α -iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments.
Resilience of the quantum Rabi model in circuit QED
NASA Astrophysics Data System (ADS)
E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano
2017-07-01
In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.
Electrical Coupling Between Glial Cells in the Rat Retina
Ceelen, Paul W.; Lockridge, Amber; Newman, Eric A.
2008-01-01
The strength of electrical coupling between retinal glial cells was quantified with simultaneous whole-cell current-clamp recordings from astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell pairs in the acutely isolated rat retina. Experimental results were fit and space constants determined using a resistive model of the glial cell network that assumed a homogeneous two-dimensional glial syncytium. The effective space constant (the distance from the point of stimulation to where the voltage falls to 1/e) equaled 12.9, 6.2, and 3.7 µm, respectively for astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell coupling. The addition of 1 mM Ba2+ had little effect on network space constants, while 0.5 mM octanol shortened the space constants to 4.7, 4.4, and 2.6 µm for the three types of coupling. For a given distance separating cell pairs, the strength of coupling showed considerable variability. This variability in coupling strength was reproduced accurately by a second resistive model of the glial cell network (incorporating discrete astrocytes spaced at varying distances from each other), demonstrating that the variability was an intrinsic property of the glial cell network. Coupling between glial cells in the retina may permit the intercellular spread of ions and small molecules, including messengers mediating Ca2+ wave propagation, but it is too weak to carry significant K+ spatial buffer currents. PMID:11424187
Constraints on the {omega}- and {sigma}-meson coupling constants with dibaryons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faessler, A.; Buchmann, A.J.; Krivoruchenko, M.I.
The effect of narrow dibaryon resonances on basic nuclear matter properties and on the structure of neutron stars is investigated in mean-field theory and in relativistic Hartree approximation. The existence of massive neutron stars imposes constraints on the coupling constants of the {omega} and {sigma} mesons with dibaryons. In the allowed region of the parameter space of the coupling constants, a Bose condensate of the light dibaryon candidates d{sub 1}(1920) and d{sup {prime}}(2060) is stable against compression. This proves the stability of the ground state of heterophase nuclear matter with a Bose condensate of light dibaryons. {copyright} {ital 1997} {italmore » The American Physical Society}« less
Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131
2006-01-01
We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less
Quantum-gravity predictions for the fine-structure constant
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Wetterich, Christof
2018-07-01
Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.
A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.
Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang
2011-07-01
A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.
Quantum and spectral properties of the Labyrinth model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Yuki, E-mail: takahasy@math.uci.edu
2016-06-15
We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show that the spectrum of this model, which is known to be a product of two Cantor sets, is an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model and show that it is absolutely continuous with respect to Lebesgue measure for almost all values of coupling constants in the small coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Lonardo, G.; Fusina, L., E-mail: luciano.fusina@unibo.it; Canè, E.
Infrared and Raman spectra of mono {sup 13}C fully deuterated acetylene, {sup 13}C{sup 12}CD{sub 2}, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm{sup −1} in the region 1800–7800 cm{sup −1}. Sixty new bands involving the ν{sub 1} and ν{sub 3} C—D stretching modes also associated with the ν{sub 4} and ν{sub 5} bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition,more » the Q branch of the ν{sub 1} fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm{sup −1}. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ{sub 4} + υ{sub 5} up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ{sub 4} = 2 and υ{sub 5} = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm{sup −1}, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν{sub 2} manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlHallak, M.; Chamoun, N.; Physikalisches Institut der Universität Bonn,Nußalle 12, D-53115 Bonn
We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.
ERIC Educational Resources Information Center
Treadwell, Edward M.; Yan, Zhiqing; Xiao, Xiao
2017-01-01
A one-day laboratory epoxidation experiment, requiring no purification, is described, wherein the students are given an "unknown" stereoisomer of 3-hexen-1-ol, and use [superscript 1]H NMR coupling constants to determine the stereochemistry of their product. From this they work backward to determine the stereochemistry of their starting…